10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

Internet Engineering Task Force SIP WG
INTERNET-DRAFT Various Authors
draft-ietf-sip-rfc2543bis-05.ps Various places
January 8, 2002
Expires: April 2002

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt
To view the list Internet-Draft Shadow Directories, $ggp://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2002). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
telephone calls, multimedia distribution and multimedia conferences.

SIP invitations used to create sessions carry session descriptions which allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests
to the users current location, assist in firewall traversal, and provide features to users. SIP also provides a
registration function that allows them to upload their current location for use by proxy servers. SIP runs
ontop of several different transport protocols.

Contents

1 Introduction 7

2 Overview of SIP Functionality 8

3 Terminology 8

4 Overview of Operation 9

5 Structure of the Protocol 14

6 Definitions 15

7 SIP Messages 18
7.1 Requests e e e 19
7.2 RESPONSES o o i e 19

7.3 Header Fields e e e 20

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps
7.3.1 HeaderFieldFormat
7.3.2 Header Field Classification
7.3.3 CompactForm
7.4 Bodies
7.41 MessageBody Type
7.4.2 MessageBodylength
7.5 FramingSIPmessages

8 General User Agent Behavior

8.1 UACBehavior.
8.1.1 GeneratingtheRequest
8.1.2 SendingtheRequest
8.1.3 ProcessingResponses.

8.2 UASBehavior. e
8.2.1 Authentication/Authorization
8.2.2 Method Inspection
8.2.3 Headerlnspection
8.24 ContentProcessing... e
8.2.5 Applying Extensions
8.2.6 ProcessingtheRequest
8.2.7 GeneratingtheResponse
8.2.8 Stateless UAS Behavior

8.3 RedirectServers.

9 Canceling a Request

9.1 ClientBehavior e
9.2 ServerBehavior

10 Registrations

10.1 OverviewofUsage,

10.2 Construction of the REGISTERrequest.
10.2.1 Adding Bindings WitliREGISTER
10.2.2 Removing Bindings WitREGISTER
10.2.3 Fetching Bindings WitREGISTER
10.2.4 Refreshing Registrations
10.2.5 DiscoveringaRegistrar

10.3 Processing of REGISTER atthe Registtar

11 Querying for Capabilities

11.1 Construction of OPTIONSRequest.
11.2 Processing of OPTIONSRequest.

12 Dialogs

12.1 CreationofaDialog.
12.1.1 UASbehavior.
12.1.2 UACbehavior

Various Authors Expires April 2002

January 8, 2002

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

75 12.2 RequestswithinaDialog e 43
76 12.2.1 UACBehavior e 44
77 12.2.2 UASbehavior e 45
78 12.3 Terminationof aDialog e e 46
79 13 Initiating a Session 46

80 13.1 OVEIVIEW o e e e 46
81 13.2 Caller ProCcessing o o v i i e e e e e e e e e 47
82 13.2.1 Creatingthe InitidNVITE 47

83 13.2.2 ProcessintNVITEResponses it 48
84 13.3 Callee ProCessing o v v v e e e e 49
85 13.3.1 Processing ofthe INVITE, 49

ss 14 Modifying an Existing Session 51

87 14.1 UAC Behavior e 51
88 14.2 UASBehavior e 52
8o 15 Terminating a Session 52

90 15.1 Terminating a Dialogwitha BYE 53
a1 15.1.1 UACBehavior e 53
92 15.1.2 UASBehavior e 53
93 16 Proxy Behavior 54

94 16.1 OVEIVIEW o o o e e e e e e 54
95 16.2 Stateful Proxy o o 54
96 16.3 Request Validation e 55
97 16.4 Making a Routing Decision 57
98 16.5 Request Processing. i i e e e e e e e e 58
99 16.6 Response ProCessSinNg. v v v v v i i e e e e e 62
100 16.7 Handling transport errors e e e e e e 66
101 16.8 CANCEL Processing. o v v i i e e e e 66
102 16.9 Stateless ProxXy o o o e e e e e 66
103 17 Transactions 68

104 17.1 Clienttransaction e e e 69
105 17.1.1 INVITEClient Transaction i it i e 69
106 17.1.2 nonNVITE Client Transaction 73
107 17.1.3 Matching Responses to Client Transactions 75
108 17.1.4 Handling Transport Errors e 75
109 17.2 Server Transaction e e 75
110 17.2.1 INVITE Server Transaction ittt 75
111 17.2.2 nonNVITE Server Transaction 77
112 17.2.3 Matching Requests to Server Transactions 79
113 17.3 RTTEStimation e e e e 79
14 18 Reliability of Provisional Responses 80

Various Authors Expires April 2002 [Page 3]

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002
18.1 UASBehavior e 80
18.2 UAC Behavior e 82

19 Transport 82
19.1 Clients e e 82

19.1.1 Sending Requests e 82
19.1.2 Receiving ReSpONSEeS. 83
19.2 Servers e 84
19.2.1 Receiving Requests... 84
19.2.2 Sending RESPONSES i i i e e e e e 84
19.3 Framing o e 85
19.4 ErrorHandling e e e e 85

20 Security Considerations 85
20.1 Transport and Network Layer Security. 0 86
20.2 SIP Authentication e 87

20.2.1 Framework e 87
20.2.2 Userto User Authentication, 88
20.2.3 Proxyto User Authentication., 89
20.2.4 Authentication Schemes 91
20.3 SIPENncryption e 92
20.4 Denialof Service e e e 92

21 Common Message Components 93

21.1 SIP Uniform Resource Indicators e 94
21.1.1 SIPURIcOmponents. e e e e 94
21.1.2 Character escaping requirements. oo 96
21.1.3 Example SIPURIS e 97
21.1.4 SIPURICOMPAriSON o e e e e e e e 97
21.1.5 Forming RequestsfromaSIPURI 99

212 OptONTAGS . .« o o v e e e e e e 99

21.3 TaQS . . o o e e e e e 99

22 Header Fields 100
22.1 ACCEPL . . . e e e 101
22.2 Accept-Encoding 101
22.3 Accept-Language e e e e e e 101
224 Alert-Info L e 103
225 AllOW . . L 104
22.6 Authentication-Info 104
22.7 Authorization e 104
22.8 Call-ID e 104
229 Call-info e 105
22.20C0NtACE 105
22.11Content-Disposition e e e 106
22.12ontent-Encoding e e e e e e 106

Various Authors Expires April 2002 [Page 4]

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

189

190

191

192

193

194

196

197

198

199

200

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002
22.13ontent-Language e e e e e e 106
22.14Content-Length L e 107
22.15CoNtent-TYPe e e 107
2218CSEQ .« « v v e e 107
221TDAte e e 107
22.18rror-Info . . L L L e 108
22.LFEXPITES . . o o e 108
2220FIOM . . L o e e 108
22.21N-Reply-TO o 109
22.2Max-Forwards e e 109
222 MIME-VErSION L e e 109
22.240rganization e e e e e e e 109
2225100ty . . . e e e e 110
22.26Proxy-Authenticate 110
22.27Proxy-Authorization e 110
22.28Proxy-Require e e 111
222RACK . L 111
22.3Record-Route e e 111
22.3IREqUIIE i e e e e 111
22.3Retry-After 111
22.3R0ULE . . . e 112
22.34RSEQ . . o e 112
22.355€IVer . . 112
22.365ubject 112
22.37Supported . .. 113
22.38TimMestamp e e e e e e 113
22.39T0 . . . e 113
22.400nsupported e e e e e e e e 113
22.40User-Agent e 114
22421a 114
22.43NarNINg 114
22 AANWW-Authenticate L 115

23 Response Codes 116
23.1 Provisional IXX e 116

23.1.1 100 TrYiING . . v v o o e e 116
23.1.2 180RINGING e 116
23.1.3 181 CalllsBeing Forwarded 116
23.1.4 182 Queued e 116
23.1.5 183 SeSSiON Progress o 117
23.2 Successful 2xxX 117
23.2.1 200 0K e e 117
23.3 Redirection 3XX e e 117
23.3.1 300 Multiple Choices 117
23.3.2 301 Moved Permanently 117
Various Authors Expires April 2002 [Page 5]

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

239

240

241

242

243

244

Various Authors

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002
23.3.3 302 Moved Temporarily. e 117
23.3.4 305USeProxXy o i e e 118
23.3.5 380 Alternative Service e 118

23.4 Request Failure 4xx e e e e 118
23.4.1 400 Bad Request 118
23.4.2 401 Unauthorized e 118
23.4.3 402 PaymentRequired 118
23.4.4 403 Forbidden 118
23.45 404 NotFound 118
23.4.6 405 Method Not Allowed L 119
23.4.7 406 Not Acceptable... 119
23.4.8 407 Proxy Authentication Required 119
23.4.9 408 RequestTimeout i i e e e 119
23410410 GONE o e e e e e e 119
23.4.11413 Request Entity TooLarge. e 119
23.4.12414 Request-URITooLong o i 119
23.4.13415 Unsupported Media Type. e 119
23.4.14420 Bad EXtension e e 120
23.4.15421 Extension Required e 120
23.4.16 480 Temporarily Unavailable 120
23.4.17 481 Call/Transaction Does NotExist. 120
23.4.18482 Loop Detected 120
23.4.19483 TooMany HOpSs e e e 120
23.4.20484 Address Incomplete e 120
23.4.21485 Ambiguous L 121
23.4.22486 Busy Here L 121
23.4.23487 Request Terminated 121
23.4.24 488 Not Acceptable Here. e 121

23.5 ServerFailure 5Xx 121
23.5.1 500 ServerInternal Error 121
23.5.2 501 NotImplemented 122
23.5.3 B02Bad Gateway 122
23.5.4 503 Service Unavailable 122
23.5.5 504 Server Time-out e 122
23.5.6 505 Version NotSupported e 122
23.5.7 513 Message TooLarge e 122

23.6 Global Failures 6XX e 122
23.6.1 600 Busy Everywhere 123
23.6.2 603 Decline 123
23.6.3 604 Does Not Exist Anywhere 123
23.6.4 606 Not Acceptable... e 123

24 Examples 123

24.1 Registration L e e 123

242 SesSSION SetUp e e 124

Expires April 2002

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps

25 Augmented BNF for the SIP Protocol

25.1 BasicRuUleS

26 IANA Considerations

26.1 OptionTags o o
26.1.1 Registrationof 100rel.
26.2 Warn-Codes e e
26.3 Header FieldNames
26.4 Methodand ResponseCodes

27 Changes Made in Version 00
28 Changes Made in Version 01
29 Changes Made in Version 02
30 Changes Made in Version 03
31 Changes Made in Version 04
32 Changes Made in Version 05
33 Changes Made in Version 06
34 Acknowledgments

35 Authors’ Addresses

1 Introduction

January 8, 2002

151
153
155
156
159
161

162

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation
of these services is complicated by the practices of participants; users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia

session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling
Internet endpoints (called “user agents”) to discover one another and to agree on a characterization of a
session they would like to share. For locating prospective session participants, SIP relies on an infrastructure
of network hosts (called “proxy servers”) to which user agents can send registrations, invitations to sessions

and other requests. SIP is an agile, general-purpose tool for creating, modifying and terminating sessions
that works independently of underlying transport protocols and without dependency on the type of session

that is being established.

Various Authors Expires April 2002

[Page 7]

275

276

277

278

279

280

281

282

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

300

301

302

303

304

305

306

307

308

309

310

311

312

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify, and
terminate multimedia sessions (conferences) such as Internet telephony calls. SIP can also invite participants
to already existing sessions. A SIP entity issuing an invitation for an already existing session does not
necessarily have to be a member of the session to which it is inviting. Media can be added to (and removed
from) an existing session. SIP transparently supports name mapping and redirection services, which supports
personal mobility{1, p. 44] - users can maintain a single externally visible identifier (SIP URI) regardless
of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;
User capabilities: determination of the media and media parameters to be used,;

Session setup:“ringing”, establishment of session parameters at both called and calling party;

Session handling:including transfer and termination of sessions, modifying session parameters, and in-
voking services.

SIP is not a vertically integrated communications system. SIP is rather a component of the overall IETF
multimedia data and control architecture that incorporates protocols such as RSVP (RFC 2205 [2]) for re-
serving network resources, the real-time transport protocol (RTP) (RFC 1889 [3]) for transporting real-time
data and providing QOS feedback, the real-time streaming protocol (RTSP) (RFC 2326 [4]) for controlling
delivery of streaming media, the session announcement protocol (SAP) [5] for advertising multimedia ses-
sions via multicast and the session description protocol (SDP) (RFC 2327 [6]) for describing multimedia
sessions. Therefore, SIP should be used in conjunction with other protocols in order to provide complete
services to the users. However, the basic functionality and operation of SIP does not depend on any of these
protocols.

SIP does not provide services. SIP rather provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the parameters of a session
can be agreed between endpoints. If the same primitive is used to deliver a photo of the caller as well as
the session description, a "caller ID” service can be easily implemented. As this example shows, a single
primitive is typically used to provide several different services. Consequently, generality is more important
than efficiency when designing SIP primitives.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed. SIP can be used to initiate a session that uses some other conference control
protocol. SIP does not allocate multicast addresses and does not reserve network resources.

3 Terminology
In this document, the key words1UST”, “ MUST NOT”, “ REQUIRED', “ SHALL", “ SHALL NOT”, “ SHOULD",

“SHOULD NOT’, “RECOMMENDED’, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [7] and indicate requirement levels for compliant SIP implementations.

Various Authors Expires April 2002 [Page 8]

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4 Overview of Operation

This section introduces the basic operations of SIP using simple examples. Note that this section is tutorial
in nature and does not contain any normative statements.

The first example shows the basic functions of SIP: location of an end point, signal of a desire to com-
municate, negotiation of session parameters to establish the session, and teardown of the session once es-
tablished.

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dashed lines in Figure 1.

.-~"" atlanta.com biloxi.com “>~.
el Proxy Server Proxy Server INGY
Alice’s PC Bob’s SIP
INITE 1y, Phone

INVITE £3 'Y
< 100 Trying F4
< 180 Ringing £/ <

< 100 Trying A2 INVITE F5

180 Ringing F6

180 Ringing F8

<
€200 0K F10 20005
< 200 OK F11
ACK F12
4 RTP Media Session :
< BYE F13

200 OK F14
>

Figure 1: SIP session setup example with SIP trapezoid

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) called a SIP URI
and defined in Section 21.1. It has a similar form to an email address, typically containing a username and
a host name. In this case, it is sip:bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP service
provider (which can be an enterprise, retail provider, etc). Alice also has a SIP URI of sip:alice@atlanta.com.
Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink or an entry in an address book.

Various Authors Expires April 2002 [Page 9]

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

SIP is based on an HTTP-like request/response transacton model. Each transaction consists of a request
that invokes a particular “Method”, or function, on the server, and at least one response. In this example, the
transaction begins with Alice’s softphone sendind¥ITE request addressed to Bob’s SIP URIVITE
is an example of a SIP method which specifies the action that the requestor (Alice) wants the server (Bob)
to take. ThelNVITE request contains a number of header fields. Header fields are named attributes that
provide additional information about a message. The ones presentNV#FE include a unique identifier
for the call, the destination address, Alice’s address, and information about the type of session that Alice
wishes to establish with Bob. THNVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 314159 INVITE

Contact: <sip:alice@10.1.3.3>

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method nEME E). The lines that follow
are a list of header fields. This example contains a minimum required set. The headers are briefly described
below:

Via contains the IP address (10.1.3.3), port number (5060), and transport protocol (UDP) on which Alice
is expecting to receive responses to this request.

To contains a display name (Bob) and a SIP URI (sip:bob@biloxi.com) towards which the request was
originally directed.

From also contains a display name (Alice) and a SIP URI (sip:alice@atlanta.com) that indicate the
originator of the request. This header field also haagaparameter containing a pseudorandom string
(1928301774) that was added to the URI by the softphone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the combination of a pseudoran-
dom string and the softphone’s IP address. The combination dbtiferom, andCall-ID completely define
a peer-to-peer SIP relationship betwee Alice and Bob, and is referred to as a “dialog”.

CSeq or Command Sequence contains an integer and a method nameSéhgenumber is incremented
for each new request, and is a traditional sequence number.

Contact contains a SIP URI that represents a direct route to reach or contact Alice, usually composed
of a username at an IP address. While\tie header field tells other elements where to send the response,
the Contact header field tells other elements where to send future requests for this dialog.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 22.

The details of the session, type of media, codec, sampling rate, etc. are not described using SIP. Rather,
the body of a SIP message contains a description of the session, encoded in some other protocol format.
One such format is Session Description Protocol (SDP) [6]. This SDP message (not shown in the example)

Various Authors Expires April 2002 [Page 10]

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

is carried by the SIP message in a way that is analogous to a document attachment being carried by an email
message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in the biloxi.com domain, the
softphone sends tHBIVITE to the SIP server that serves Alice’s domain, atlanta.com. The IP address of the
atlanta.com SIP server could have been configured in Alice’s softphone, or it could have been discovered by
DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives SIP
requests and forwards them on behalf of the requestor. In this example, the proxy server recéiéd the
request and sends a 100 Trying response back to Alice’s softphone. The 100 Trying response indicates
that theINVITE has been received and that the proxy is working on her behalf to routBlYH&E to the
destination. Responses in SIP use a three-digit code followed by a descriptive phrase. This response contains
the samelo, From, Call-ID, andCSeq as thelNVITE, which allows Alice’s softphone to correlate this
response to the seMiVITE. The atlanta.com proxy server locates the proxy server at biloxi.com, possibly
by performing a DNS (Domain Name Service) lookup to find the SIP server that serves the biloxi.com
domain. This is described in [8].As a result, it obtains the IP address of the biloxi.com proxy server and
forwards, or proxies, thiNVITE request there. Before forwarding the request, the atlanta.com proxy server
adds an additionalia header field that contains its own IP address (W TE already contains Alice’s IP
address in the firstia). The biloxi.com proxy server receives tié¢VITE and responds with a 100 Trying
response back to the Atlanta.com proxy server to indicate that it has receidMITdE and is processing
the request. The proxy server consults a database, generically called a location service, that contains the
current IP address of Bob. (We shall see in the next section how this database can be populated.) The
biloxi.com proxy server adds anothra header with its own IP address to tiéVITE and proxies it to
Bob’s SIP phone.

Bob’s SIP phone receives thHVITE and alerts Bob to the incoming call from Alice so that Bob can
decide whether or not to answer the call - i.e. Bob’s phone rings. Bob’s SIP phone sends an indication of
this in a 180 Ringing response, which is routed back through the two proxies in the reverse direction. Each
proxy uses thé&/ia header to determine where to send the response and removes its own address from the
top. As a result, although DNS and location service lookups were required to route the NWAE, the
180 Ringing response can be returned to the caller without lookups or without state being maintained in the
proxies. This also has the desirable property that each proxy that sés/ii& will also see all responses
to theINVITE.

When Alice’s softphone receives the 180 Ringing response, it passes this information to Alice, perhaps
using an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a
200 OK response to indicate that the call has been answered. The 200 OK contains a message body with the
SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages; Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model. If
Bob did not wish to answer the call or was busy on another call, an error response would have been sent
instead of the 200 OK, which would have resulted in no media session being established. The complete list
of SIP response codes is in Section 23. The 200 OK (message F9 in Figure 1) might look like this:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1
Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4c2312983.1

Various Authors Expires April 2002 [Page 11]

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

454

455

456

457

459

460

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 314159 INVITE

Contact: <sip:bob@10.4.1.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

The first line of the response contains the response code (200) and the reason phrase (OK). The remain-
ing lines contain header fields. Théa header fieldsJo, From, Call- ID, andCSeq are all copied from
the INVITE request. (Note that there are thiéia headers - one added by Alice’s SIP phone, one added by
the atlanta.com proxy, and one added by the biloxi.com proxy.) Also note that Bob’s SIP phone has added a
tag parameter to th@o header field. This tag will be incorporated by both User Agents into the dialog and
will be included in all future requests and responses in this call.Odmact header field contains a URI at
which Bob can be directly reached at his SIP phone. CTbetent-Type and Content-Length refer to the
message body (not shown) that contains Bob’s SDP media information.

In additon to DNS and location service lookups shown in this example, proxy servers can make arbitrar-
ily complex “routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned
a 486 Busy Here response, the biloxi.com proxy server could proxfWYETE to Bob’s voicemail server.

A proxy server can also send 84VITE to a number of locations at the same time. This type of parallel
search is known as “forking”.

In this case, the 200 OK is routed back through the two proxies and is received by Alice’s softphone
which then stops the ringback tone and indicates that the call has been answered. Finally, an acknowledge-
ment messagACK, is sent by Alice to Bob to confirm the reception of the final response (200 OK). Note
that in this example, th&CK is sent directly from Alice to Bob, bypassing the two proxies. This is be-
cause, through thiNVITE/200 OK exchange, the two SIP user agents have learned each other’s IP address
through theContact header fields, which was not known when the initMVITE was sent. The lookups
performed by the two proxies are no longer needed, so they drop out of the call flow. This completes the
INVITE/200/ACK three-way handshake used to establish SIP sessions and is the end of the transaction. Full
details on session setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media packets using the format agreed to
in the exchange of SDP. In general, the end-to-end media packets take a different path from the SIP signaling
messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session.
This is accomplished by sending aliVITE containing a new media description. If the change is accepted
by the other party, a 200 OK is sent, which is itself responded to witAGIK. This reiNVITE references
the existing dialog so the other party knows that it is to modify an existing session instead of establishing a
new session. If the change is not accepted, an error response, such as a 406 Not Acceptable, is sent, which
also receives aACK. However, the failure of the riNVITE does not cause the existing call to fail - the
session continues using the previously negotiated characteristics. Full details on session modification is in
Section 14.

At the end of the call, Bob disconnects (hangs up) first, and gener&&&€anessage. ThiBYE is

Various Authors Expires April 2002 [Page 12]

461

462

463

464

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

494

495

496

497

499

500

501

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

routed directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt BiytGeavith

a 200 OK response, which terminates the session anBletransaction. Note that nACK is sent - an

ACK is only sent in response to a response tdNMITE request. The reasons for this special handling for
INVITE will be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take
for a ringing phone to be answered, and forking. For this reason, request handling in SIP is often classified
as eithedNVITE or non-INVITE, referring to all other methods besidd$VITE. Full details on session
termination is in Section 15.

Full details of all the messages shown in the example of Figure 1 are shown in Section 24.2.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between
the endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to remain
in the SIP messaging path beyond the inithV/ITE, it would add to thdNVITE a required routing header
field known asRecord-Route that contained a URI resolving to the proxy. This information would be
received by both Bob’s SIP phone and (due toReeord-Route header field being passed back in the 200
OK) Alice’s softphone and stored for the duration of the dialog. The biloxi.com proxy server would then
receive and proxy thACK, BYE, and 200 OK to th&YE. Each proxy can independently decide to receive
subsequent messaging, and that messaging will go through all proxies that elect to receive it. Common uses
of this capability are firewall traversal and mid-call feature implementation.

Registration is another common operation in SIP. Registration is one way that the biloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in the biloxi.com domain known as a SIP registraRHGETER
messages associate Bob's SIP URL (sip:bob@biloxi.com) with the machine he is currently logged in at
(conveyed as a SIP URL in ti@ontact header). The registrar writes this association, also called a binding,
to a database, called thacation servicewhere it can be used by the proxy in the biloxi.com domain. Often,

a registrar server for a domain is co-located with the proxy for that domain. It is an important concept that
the distinction between types of SIP servers is logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and
the one in the office could send registrations. This information is stored together in the location service and
allows a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be
registered on a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy
to input a URI and get back a translated URI that tells the proxy where to send the request. Registrations
are one way to create this information, but not the only way. Arbitrarily complex mapping functions can be
programmed, at the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and
has no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either
on a request-by-request, challenge/response mechanism, or using a lower layer scheme as discussed in
Section 20.

The complete set of SIP message details for this registration example is in Section 24.2.

Additional operations in SIP, such as querying for the capabilities of a SIP server or clientQRing
TIONS, canceling a pending request usiGANCEL, or supporting reliability of provisional responses
usingPRACK will be introduced in later sections.

Various Authors Expires April 2002 [Page 13]

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5 Structure of the Protocol

The SIP protocol is structured as a layered protocol, which means that its behavior is described in terms of a
set of fairly independent processing stages, with only a loose coupling between each stage. The structuring
of the protocols into layers is for the purpose of presentation and conciseness; it allows the grouping of
functions common across elements into a single place. It does not dictate an implementation in any way.
When we say that an element “contains” a layer, that means it is compliant to the set of rules defined by that
layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified
by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction by transaction basis.

The lowest layer of the SIP protocol is its syntax and encoding. Its encoding is specified using a BNF.
The complete BNF is specified in Section 25. However, a basic overview of the structure of a SIP message
can be found in Section 7. This section introduces enough of an understanding of the format of a SIP
message to facilitate understanding the remainder of the protocol.

The next higher layer is the transport layer. This layer defines how a client takes a request, and physically
sends it over the network, and how a response is sent by a server, and then received by a client. All SIP
elements contain a transport layer. The transport layer is described in Section 19.

The next higher layer is the transaction layer. Transactions are a fundamental component of SIP. A
transaction is a request, sent by a client transaction (using the transport layer), to a server transaction, along
with all responses to that request sent from the server transaction back to the client. The transaction layer
handles retransmissions, matching of responses to requests, and timeouts. Any task that a UAC wishes to
accomplish takes place using a series of transactions. Discussion of transactions can be found in Section 17.
User agents contain a transaction layer, as do stateful proxies. Stateless proxies do not contain a transaction
layer.

The transaction layer has a client component (referred to as a client transaction), and a server component
(referred to as a server transaction), each of which are represented by an FSM that is constructed to process
a particular request. The layer on top of the transaction layer is called the transaction user (TU), of which
there are several types. When a TU wishes to send a request, it creates a client transaction instance and
passes it the request, along with the destination IP address, port, and transport to send the request to.

SIP provides the ability for a transaction to be canceled by the client which initiated it. When a client
cancels a transaction, it requests that the server give up on further processing, revert to the state that ex-
isted before the transaction was initiated, and generate a specific error response to that transaction. This is
done with aCANCEL request, which constitutes its own transaction, but references the transaction to be
cancelled. Cancellation is described in Section 9.

There are several different types of transaction users. A UAC contains a UAC core, a UAS contains a
UAS core, and a proxy contains a proxy core. The behavior of the UAC and UAS cores depend largely on
the method. However, there are some common rules for all methods. These rules are captured in Section 8.
The primarily deal with construction of a request, in the case of a UAC, and processing of that request, and
generation of a response, in the case of a UAS.

UAC and UAS core behavior for tiREGISTER method is described in Section 10. Registrations play
an important role in SIP. In fact, a UAS that handleREBGISTER is given a special name - a registrar -
and it is described in that section.

UAC and UAS core behavior for tHePTIONS method, used for determining the capabilities of a UAC,
are described in Section 11.

Various Authors Expires April 2002 [Page 14]

546

547

548

549

550

551

5562

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Certain other requests are sent withidialog. A dialog is a peer-to-peer SIP relationship between a
two user agents that persists for some time. The dialog facilitates sequencing of messages between the user
agents, and proper routing of requests between both them. One way to setup a dialog is INWITiEe
method. When a UAC sends a request that is within the context of a dialog, it follows the common UAC
rules as discussed in Section 8, but also the rules for mid-dialog requests. Section 12 discusses dialogs,
and presents the procedures for their construction, and maintenance, in addition to construction of requests
within a dialog.

The UAS core can generate provisional responses to requests, which are responses that provide ad-
ditional information about the request processing, but do not indicate completion. Normally, provisional
responses are not transmitted reliably. However, an optional mechanism exists for them to be transmitted
reliably. This mechanism makes use of a method cd#BACK, sent as a separate transaction within the
dialog between the UAC and UAS, which is used to acknowledge a reliable provisional response.

The most important method in SIP is tie¢VITE method, which is used to establish a session between
participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are modified, through the up&/oT BTequest
within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core. Section 16
discusses the proxy element, which facilitates routing of messages between user agents.

6 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The definitions of client, server and proxy are similar to those used by the Hypertext Transport Protocol
(HTTP) (RFC 2616 [9]). The terms and generic syntax of URI and URL are defined in RFC 2396 [10]. The
following terms have special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it as an user agent server (UAS). In order to determine how the request should be
answered, it acts as an user agent client (UAC) and generates requests. Unlike a proxy server, it
maintains dialog state and must participate in all requests sent on the dialogs it has established. Since
it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behavior.

Call: A callis an informal term that refers to a dialog between peers generally set up for the purposes of a
multimedia conversation.

Call leg: Another name for a dialog.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiatidVITE to the termi-
natingBYE request. A call stateful proxy is always stateful, but the converse is not true.

Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may or
may not interact directly with a human uskser agent clientandproxiesare clients.

Conference: A multimedia session (see below) that contains multiple participants.

Various Authors Expires April 2002 [Page 15]

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Dialog: A dialog is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time.
A dialog is established by SIP messages, such as a 2xx responséNWUIaE request. A dialog is
identified by a call identifier, local address, and remote address. A dialog was formerly known as a
call leg in RFC 2543.

Downstream: A direction of message forwarding within a transaction that refers to the direction that re-
quests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposeg@rtvigional respons¢hat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Informational Response: Same as a provisional response.

Initiator, calling party, caller. The party initiating a session with dANVITE request. A caller retains this
role from the time it sends tH&IVITE until the termination of any dialogs established by HR¥ITE.

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives dNVITE request for the purposes of
establishing a new session. A callee retains this role from the time it receivé\HEE until the
termination of the dialog established by thsi/ITE.

Location server: Seelocation service.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It is an abstract database, sometimes referred to as a location server.
The contents of the database can be populated in many ways, including being written by registrars.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, iRequest-URI is identical to the first time, and other headers that affect
proxy operation are unchanged, so that the proxy would make the same processing decision on the
request it made the first time around. Looped requests are errors, and the procedures for detecting
them and handling them are described by the protocol.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example method®&tid E andBYE.

Outbound proxy: A proxythat receives all requests from a client, even though it is not the server resolved
by the Request-URI. The outbound proxy sends these requests, after any local processing, to the
address indicated in tHfeequest-URI, or to another outbound proxy.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as isaguential searcha parallel search issues requests without waiting for
the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are consigerétbrmally, provisional
responses are not sent reliably. A provisional response that is sent reliably is referredrétiadea
provisional response

Various Authors Expires April 2002 [Page 16]

620

621

622

623

624

625

626

627

628

629

630

631

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Proxy, proxy server: Anintermediary entity that acts as both a server and a client for the purpose of making
requests on behalf of other clients. A proxy server primarily plays the role of routing, which means
its job is to ensure that a request is passed on to another entity that can further process the request.
Proxies are also useful for enforcing policy and for firewall traversal. A proxy interprets, and, if
necessary, rewrites parts of a request message before forwarding it.

Registrar: A registrar is a server that accefREGISTER requests, and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other tIN&#TE, ACK, or
CANCEL.

Reliable Provisional Response:A provisional response that is sent reliably from the UAS to UAC.

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Server: A server is a network element that receives requests in order to service them and sends back re-
sponses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential search:In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session.
If SDP is used, a session is defined by the concatenation afsdienamesession igdnetwork type
address typeandaddresselements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client, and th&CK for the response in the case the response was a non-2xxAdKdor a
2XX response is a separate transaction.

Spiral: A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again at that
proxy, but this time, differs in a way that will result in a different processing decision than the original
request. Typically, this means that the requeRiExjuest-URI differs from its previous arrival. A
spiral is not an error condition, unlike a loop.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request. Also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A stateful proxy is not the same as a call
stateful proxy.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Various Authors Expires April 2002 [Page 17]

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction that refers to the direction that responses
flow from the user agent server to user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [11].

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later on, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later on, it assumes the role of a user agent client
for the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that reside above the transaction and transport
layers.

User agent (UA): A logical entity that can act as both a user agent client and user agent server for the
duration of a dialog.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-
transaction basis. For example, the user agent initiating a call acts as a UAC when sending the initial
INVITE request and as a UAS when receivinB¥4E request from the callee. Similarly, the same software
can act as a proxy server for one request and as a redirect server for the next request.

Proxy, location, and registrar servers defined abovdogiieal entities; implementationsAy combine
them into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [12]).
A SIP message is either a request from a client to a server, or a response from a server to a client.
Both Request (section 7.1) andResponse (section 7.2) messages use teneric-message format

of RFC 822 [13]. Both types of messages consist sfiaait-line, one or more header fields (also known as

“headers”), an empty line indicating the end of the header fields, and an opti@sahge-body.

generic-message = start-line
*message-header
CRLF
[message-body]

Various Authors Expires April 2002 [Page 18]

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721
722

723

724

725

726

727

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

The start-line, each message-header line, and the emptwilise be terminated by a carriage-return
line-feed sequenceCRLF). Note that the empty lin®usT be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is
identical to HTTP/1.1. Rather than repeating the syntax and semantics here we use [HX.Y] to refer to
Section X.Y of the current HTTP/1.1 specification (RFC 2616 [9]).

Note, however, that SIP is not an extension of HTTP.

7.1 Requests

SIP Requests are distinguished by havingesjuest-Line for a start-line. A Request-Line begins with
a method token, followed by tHeequest-URI and the protocol version, and ending WiEiRLF. The ele-
ments are separated By characters. N€R or LF are allowed except in the end-of-li@RLF sequence.
No LWS is allowed in any of the elements.

Method Request-URI SIP-Version

e Method

This specification defines seven method®EGISTER for registering contact informatiotiNVITE,
ACK, PRACK and CANCEL for setting up session®YE for terminating sessions ardPTIONS
for querying servers about their capabilitieSIP extensions may define additional methods.

e Request-URI

The Request-URI is a SIP URI as described in Section 21.1 or a general URI (RFC 2396 [10]). It
indicates the user or service to which this request is being addresseRegest-URI MUST NOT
contain unescaped spaces or control charactersasd NOT be enclosed in&>".

SIP serversuAy supportRequest-URIs with schemes other than “sip”, for example the “tel” URI
scheme of RFC 2806 [14]. WAy translate non-SIP URIs using any mechanism at its disposal,
resulting in either a SIP URI or some other scheme.

e SIP Version

Both request and response messages include the version of SIP in use, and follow [H3.1] (with HTTP
replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance require-
ments, and upgrading of version numbers. To be compliant with this specification, applications send-
ing SIP messagemusT include aSIP- Version of “SIP/2.0”. The string is case-insensitive, but
implementations1usT send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP Responses are distinguished by havirgtatus-Line for a start-line. A Status-Line, consists of the
protocol version followed by a numerfstatus-Code and its associated textual phrase, with each element
separated by SP characters. or LF is allowed except in the fin&l RLF sequence.

SIP-version Status-Code Reason-Phrase

Various Authors Expires April 2002 [Page 19]

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

756

757

758

759

760

761

762

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand
and satisfy a request. ThHReason-Phrase is intended to give a short textual description of Btatus-
Code. TheStatus-Code is intended for use by automata, whereasRieason-Phrase is intended for the
human user. A client is not required to examine or displayRbason-Phrase.

The first digit of theStatus-Code defines the class of response. The last two digits do not have any
categorization role. For this reason, any response with a status code between 100 and 199 is referred to as
a “1xx response”, any response with a status code between 200 and 299 as a “2xx response”, and so on.
SIP/2.0 allows 6 values for the first digit:

1xx: Provisional — request received, continuing to process the request;

2xx: Success — the action was successfully received, understood, and accepted;

3xx: Redirection — further action needs to be taken in order to complete the request;
4xx: Client Error — the request contains bad syntax or cannot be fulfilled at this server;
5xx: Server Error — the server failed to fulfill an apparently valid request;

6xx: Global Failure — the request cannot be fulfilled at any server.

Full definitions of these classes and each registered code appear in Section 23.

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax for message-header, the rules for extending header fields over
multiple lines, the use of multiple message-header fields with the same field-name, and the rules regarding
ordering of header fields.

7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 3.1 of RFC 822 [13]. Each
header field consists of a field name followed by a colon (") and the field value.

field-name: field-value

Note that the formal grammar fomaessage-header specified in Section 25 allow for an arbitrary amount
of whitespace on either side of the colon. No space before the colon and a single space (SP) between the
colon and the field-value is preferred. That is,

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

are all valid, and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at le88t one
horizontal tab (HT). The line break and the whitespace at the beginning of the next line are treated as a
single SP character. Thus the following are equivalent:

Various Authors Expires April 2002 [Page 20]

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Subject: | know you're there, pick up the phone and talk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

The relative order of header fields with different field names is not significant. The relative order of those
with the same field name is important. Multiple header fields with the same field-name may be present in a
message if and only if the entire field-value for that header field is defined as a comma-separated list (i.e.,
#(values)). It MUusT be possible to combine the multiple header fields into one “field-name: field-value”
pair, without changing the semantics of the message, by appending each subBelgizesliue to the first,
each separated by a comma.

ImplementationsausT be able to process multiple header fields with the same nhame in any combination
of the single-value-per-line or comma-separated value forms.

The following blocks of headers are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>, <sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It will always be either an opaque
sequence of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings.
Many of them will adhere to the general form of a value followed by a semi-colon separated sequence of
parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

Various Authors Expires April 2002 [Page 21]

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

When comparing headers, field names are always case-insensitive. Unless otherwise stated in the def-
inition of a particular header field, field values, parameter names, and parameter values (tokens in general)
are case-insensitive. Unless specified otherwise, values expressed as quoted strings are case-sensitive.

The following are equivalent:

Contact: <sip:alice@atlanta.com>;expires=3600
CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

Content-Disposition: session;handling=optional
content-disposition: Session;HANDLING=OPTIONAL

The following are not equivalent;

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called Request Header Fields and
Response Header fields respectively. Those header fields that can appear in either a request or response are
called General Header Fields. If a header appears in a message not matching its category (such as a request
header in a response) MUST be ignored. Section 22 defines the classification of each header.

7.3.3 Compact Form

SIP provides a mechanism to represent common header fields in an abbreviated form. This may be useful
when messages would otherwise become to large to be carried on the transport available to it (exceeding
the MTU when using UDP for example). These compact forms are defined in Section 22. A compact form
MAY be substituted for the longer form of a header name at any time without changing the semantics of a
the message. Multiple header fields in a message with the same heademmarappear with an arbitrary

mix of its long and short field name form. ImplementatiomgsTt accept both the long and short forms of

each header name.

7.4 Bodies

Requests, including new requests defined in extensions to this specificatior;ontain message bodies
unless otherwise noted.

For response messages, the request method and the response status code determine the type and inter-
pretation of any message body. All responses include a body.

7.4.1 Message Body Type

The Internet media type of the message brd\sT be given by theContent-Type header field. If the body
has undergone any encoding (such as compression) themudbisbe indicated by th€ontent-Encoding
header field, otherwis€ontent-Encoding MUSsT be omitted. If applicable, the character set of the message
body is indicated as part of theéontent-Type header-field value.

Various Authors Expires April 2002 [Page 22]

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853
854
855
856
857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

The "multipart” MIME type defined in RFC 2046 [155AY be used within the body of the message.
Implementations that send requests containing multipart message bogiasbe able to send a session
description as a non-multipart message body if the remote implementation requests this thrAagan
header field.

7.4.2 Message Body Length

The body length in bytes is provided by tl@®ntent-Length header field. Section 22.14 describes the
necessary contents of this header in detail.

The “chunked” transfer encoding of HTTP/IMMUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

7.5 Framing SIP messages

Unlike HTTP, SIPMAY use UDP or other unreliable datagram protocols. Each such datagram carries one
request or response. Datagrams, including all headereuLD NOT be larger than the path maximum
transmission unit (MTU) if the MTU is known, or 1500 bytes if the MTU is unknown. However, implemen-
tationsMUST be able to handle messages up to the maximum datagram packet size. For UDP, this size is
65,535 bytes, including headers.

The MTU of 1500 bytes accommodates encapsulation within the “typical” ethernet MTU without IP fragmen-
tation. Recent studies [16, p. 154] indicate that an MTU of 1500 bytes is a reasonable assumption. The next lower
common MTU values are 1006 bytes for SLIP and 296 for low-delay PPP (RFC 1191 [17]). Thus, another reason-
able value would be a message size of 950 bytes, to accommodate packet headers within the SLIP MTU without
fragmentation.

In the interest of robustness, any leading empty ling(s3$1 be ignored. In other words, if tHeequest
or Response message begins with one or m@RLF, CR, or LFs, these charactersusT be ignored.

Likewise, Implementations processing SIP messages over stream oriented transigarignore noise
between messages.

8 General User Agent Behavior

A user agent represents an end system. It contains a User Agent Client (UAC), which generates requests,
and a User Agent Server (UAS) which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line), and processing a response.
A UAS is capable of receiving a request, and generating response, based on user input, external stimulus,
the result of a program execution, or some other mechanism.

When a UAC sends a request, it will pass through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, whether the request or response is
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly
in Section 12; they represent a peer-to-peer relationship between user agents, and are established by specific
SIP methods, such a8§VITE.

In this section, we discuss the method independent rules for UAC and UAS behavior when processing
of requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

Various Authors Expires April 2002 [Page 23]

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

8.1 UAC Behavior
8.1.1 Generating the Request

A valid SIP request formulated by a UAGUST at a minimum contain the following headerf, From,
CSeq, Call-ID, andVia; all of these headers are mandatory in all SIP messages. These five headers are
the fundamental building blocks of a SIP message, as they jointly provide for most of the critical message
routing services including the addressing of messages, the routing of responses, ordering of messages, and
the unique identification of transactions.

Examples of requests send outside of a dialog includ®®TE to establish a session (Section 13) and
anOPTIONS to query for capabilities (Section 11).

8.1.1.1 To TheTo general-header field first and foremost specifies the desired “logical” recipient of the
request, or the address of record of the user or resource that is the target of this request. This may or may
not be the ultimate recipient of the request. TioeheademAy contain a SIP URI, but it may also make

use of other URI schemes (for example as the tel URL [14]) when appropriateloTteader field allows

for a display name; this is meant to contain a descriptive version of the URI, and is intended to be displayed
to a user interface.

A UAC may learn how to populate thEo header field for a particular request in a number of ways.
Usually the user will suggest thio header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book.

A request outside of a dialagusT NOT contain a tag; the tag in thio field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on th&o header see Section 22.39.

The following is an example of validio header:

To: Carol <sip:carol@chicago.com>

8.1.1.2 From TheFrom general-header field indicates the logical identity of the initiator of the request,
possibly the user’s address of record. Like Tiwefield, it contains a URI and optionally a display name.
It is used by SIP elements to determine processing rules to apply to a request (for example, automatic call
rejection). As such, it is very important that the URI not contain IP addresses or host names, since these are
not logical names.

The From header field allows for a display name; this is meant to contain a descriptive version of the
URI, and is intended to be displayed to a user interface. A JAGULD use the display nhame “Anonymous”
if the identity of the client is to remain hidden.

Usually the value that populates tReom header field in requests generated by a particular user agent
is pre-provisioned by the user or by the administrators of the user’s local domain. If a particular user agent
is used by multiple users, it might have switchable profiles that include a URI corresponding to the identity
of the profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain
that they are who thelfrom header field claims they are (see Section 20.2 for more on authentication).

The From field MUST contain a newtag” parameter, chosen by the UAC. See Section 21.3 for details
on choosing a tag.

For further information on therom header see Section 22.20.

Examples:

Various Authors Expires April 2002 [Page 24]

917

918

919

920

921

922

923

924

925

926
927
928
929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

From: "Bob" <sip:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

8.1.1.3 Call-ID TheCall-ID general-header field acts as a unique identifier to group together series of
messages. It is always the same for all requests and responses sent by either UA in a dialog. It is also the
same in each registration from a UA within a single boot cycle.

In a new request created by a UAC outside of any dialog, unless overridden by method specific behavior,
it MUST be selected by the UAC as a a globally unique identifier over space and time; all SIP user agents
must have a means to guarantee thatG@a#-1D headers they produce will not be inadvertently generated
by any other user agent.

Use of cryptographically random identifiers [18] in the generation of Call-IDREISOMMENDED. Im-
plementationsvAy use the form “localid@host”.Call-IDs are case-sensitive and are simply compared
byte-by-byte.

Using cryptographically random identifiers provides some protection against session hijacking, and reduces the
likelihood of unintentional Call-ID collisions.

No provisioning or human interface is required for the selection ofxal-ID header field value for a
request.

For further information on th€all-ID header see Section 22.8.

Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91leb6bf6@foo.bar.com

8.1.1.4 CSeq The Cseq header serves as a way to identify and order transactions. It consists of a
sequence number and a method. The methodT match that of the request. The sequence number value
is arbitrary, butmusT be expressible as a 32-bit unsigned integerraudT be less than 2**31.

As long as it follows the above guidelines, a client may use any mechanism it would like toG8keqt
header field values.

For further information on th€Seq header see Section 22.16.

Example:

CSeq: 4711 INVITE

8.1.1.5 Via The Via header is used to determine the transport to use for sending a request, and for
identifying the IP address and port where the response is to be sent. Rules for setting and using the values
in this header are described in Section 19.

For further information on th¥ia header see Section 22.42.

8.1.1.6 Contact The Contact header provides a SIP URI that can be used to contact that specific in-
stance of the user agent for subsequent requestsCohtact heademusT be present in any request that
can result in the establishment of a dialog. For the methods defined in this specification, that includes only
the INVITE request. For these requests, the scope ofthtact is the dialog. That is, th€ontact header
refers to the URL that the UA would like to receive requests at, for requests that are part of that dialog only.
Only a single URIMUST be present.

For further information on th€ontact header, see Section 22.10.

Various Authors Expires April 2002 [Page 25]

956

957

958

959

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

8.1.1.7 Request-URI The initial Request-URI of the messageHOULD be set to the value of the URI
in the To field. One notable exception is tIREGISTER method; behavior for setting tHieequest-URI

of register is given in Section 10. Another exception is the case of pre-exRtote headers; in that case,
the procedures of Section 12.2.1.1 as they pertain t®Régest- URI are followed, even though there is
no dialog.

8.1.1.8 Supported and Require If the UAC supports extensions to SIP that can be applied by the
server to the response, the UABoOULD include aSupported header in the request listing the option tags

for those extensions. This includes support for reliability for provisional responses, which is an extension
even though it is defined within this specification. The option tag for reliability of provisional responses is
100rel

The option-tags listeshusT only refer to extensions defined in standards track RFCs. This is to prevent
servers from insisting that clients implement non-standard, vendor defined features in order to receive ser-
vice. Extensions defined by experimental and informational RFCs are explicitly excluded from usage with
the Supported header in a request, since they too are often used to document vendor defined extensions.

If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request in
order to process the requestmit'ST insert aRequire header into the request listing the option tag for that
extension. If the UAC wishes to apply an extension to the request and insist that a proxy understand that
extension, iMUST insert aProxy-Require header into the request listing the option tag for that extension.

A Require header in a request with the option th@0rel means that the UAC wishes for all provi-
sional responses to this request to be transmitted reliably. This headarNOT be present in any requests
exceptingINVITE, although extensions to SIP may allow its usage with other request methods.

8.1.1.9 Additional Message ComponentsAfter a new request has been created, the headers described
above have been properly constructed, any additional optional headers are added, as are any headers specific
to the method.

SIP requestsiAy contain a MIME-encoded message-body. Regardless of the type of body that a request
contains, certain headers must be formulated to characterize the contents of the body. For further information
on these headers see Section 7.4.

8.1.2 Sending the Request

The destination for the request is then computed. This can be a preconfigured IP address, port and transport
of an outbound proxy, or it can be determined through DNS procedures appliedRednest-URI. These
procedures are described in [8], which yield an ordered set of address, port and transports to attempt.
The UAC sHouLD follow the procedures defined there for stateful elements, trying each address until a
server is contacted. Each try constitutes a new transaction, and therefore a new client tramsectibe
constructed for each.

8.1.3 Processing Responses

Responses are first processed by the transport layer, and then passed up to the transaction layer. The trans-
action layer performs its processing, and then passes it up to the TU. The majority of response processing
in the TU is method specific. However, there are some general behaviors independent of the method.

Various Authors Expires April 2002 [Page 26]

994

995

996

997

998

999
1000

1001
1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

8.1.3.1 Unrecognized ResponsesA UAC MUST treat any response they do not recognize as being
equivalent to the x00 response code of that class,vwslT be able to process the x00 response code for

all classes. For example, if a UAC receives an unrecognized response code of 431, it can safely assume that
there was something wrong with its request and treat the response as if it had received a 400 (Bad Request)
response code.

8.1.3.2 Vias If more than oneVia header field is present in a response, the UMOULD discard the
message.

The presence of addition®ia header fields that precede the originator of the request suggests that the message
was misrouted or possibly corrupted.

8.1.3.3 Processing Reliable 1xx Responses 1xx response that containsRequire header with the
option tag100rel is a reliable provisional response. The UA core follows the procedures in Section 18.2
to process the response, which will result in the generatiorPiR ACK request to acknowledge the reliable
provisional response.

8.1.3.4 Processing 3xx responsedJpon receipt of a redirection response (e.g. a 3xx response status
code), clientssHouLD use the URI(s) in th€ontact header field to formulate a new request.

To do that, the client copies all but thenethod-param” and “header” elements of thexddr-spec part
of the Contact header field into th®equest-URI of the request. It uses thbéader” parameters to create
headers for the request, replacing any default headers normally used.

In all other respects, requests sent upon receipt of a redirect respeose D re-use the headers and
bodies of the original request.

The Contact values present in redirection response®uULD NOT be cached across calls, as they may
not represent the most desirable location for a particular destination address.

8.1.3.5 Processing 4xx responsegCertain 4xx response codes require specific UA processing, indepen-
dent of the method.
If a 401 or 407 response is received, the UsouLD follow the authorization procedures of Section
20.2.2 and Section 20.2.3 to retry the request with credentials.
If a 413 response is received (Section 23.4.11), it means that the request contained a body that was
longer than the UAS was willing to accept. If possible, the U@ ULD retry the request, either omitting
the body or using one of a smaller length.
If a 415 response is received (Section 23.4.13), it means the request contained media types not supported
by the UAS. The UACSHOULD retry sending the request, this time only using content with types listed in
the Accept header in the response, with encodings listed inAbeept-Encoding header in the response,
and with languages listed in tieccept-Language in the response.
If a 420 response is received (Section 23.4.14), it means the request contdeepgliee or Proxy-
Require header listing an option-tag for a feature not supported by a proxy or UAS. The d0&@LD
retry the request, this time omitting any extensions listed inthsupported header in the response.
In all of the above cases, retrying the request is accomplished by creating a new request with the appro-
priate modifications. This new requestiouLD have the same value of ti@all-ID, To, andFrom of the
previous request, but t@Seq should contain a new sequence number that is one higher than the previous.
With other 4xx responses, a retry may or may not be possible depending on the method and the use case.

Various Authors Expires April 2002 [Page 27]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

s 8.2 UAS Behavior

1035 When a request outside of a dialog is processed by a UAS, there are a set of processing rules which are
1036 followed, independent of the method. Section 12 gives guidance on how a UAS can tell whether a request
1037 IS inside or outside of a dialog.

w3 8.2.1 Authentication/Authorization

103 A UAS MAY authenticate the originator of a request, and this process may require the server to issue a
1040 Challenge for credentials. The required behavior is independent of the method of the request, and is detailed
1041 in Section 20.2.

1042 8.2.2 Method Inspection

1043 OnNce arequest is authenticated (or no authentication was desired), thaWwSnspect the method of the
1042 request. If the UAS does not support the method of a requeststr generate a 405 (Method Not Allowed)
1045 response. Procedures for generation of responses are described in Section 8.2.7. Thesd/Aa%o add
146 anAllow header to the 405 response. Thlow header fieldwusT list the set of methods supported by the
1047 UAS generating the message.

1048 TheAllow header is presented in Section 22.5.

1049 If the method is one supported by the server, processing continues.

150 8.2.3 Header Inspection

1051 If @ UAS does not understand a header field in a request (i.e. the header is not defined in this specification
1052 Or in any supported extension), the sermersT ignore that header and continue processing the message. A
1053 UAS sSHOULD ignore any malformed headers which are not necessary for processing requests.

154 8.2.3.1 To and Request-URI The To header field identifies the original recipient of the request desig-
105 nated by the user identified in tireom field. The original recipient may or may not be the UAS processing
1056 the request, due to call forwarding or other proxy operations. A WAS apply any policy it wishes in

1057 determination of whether to accept requests whethigeld is not the identity of the UAS. However, it is

1058 RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (elg., a

1059 URI) in the To header, or if thélo header does not address a known or current user of this UAS. If, on the
we0 Other hand, the UAS decides to reject the request@uLD generate a response with a 403 status code and
1061 Send it to the server transaction for transmission.

1062 However, theRequest-URI identifies the UAS that is to process the request. IfRleguest-URI does

1063 Not identify an address that the UAS is willing to accept requests fari@uLD reject the request with

1sa @ 404 (Not Found) response. If tiRequest-URI does not provide sufficient information for the UAS to
1065 determine whether it is willing to process the requestHbULD return a 485 (Ambiguous) response. This
1066 rE€SPONSESHOULD contain aContact header field containing URIs of new addresses to be tried. Typically,
1067 a UA which uses thREGISTER method to bind its address of record to a specific contact address, will see
1es requests whosBequest-URI equals those contact addresses.

wes 8.2.3.2 Require Assuming the UAS decides that it is the proper element to process the request, it ex-
1070 amines théRequire header field, if present.

Various Authors Expires April 2002 [Page 28]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1071 TheRequire general-header field is used by UAC to tell UAS about SIP extensions that the UAC expects
1072 the UAS to support in order to properly process the request. If a UAS does not understand an option listed
1073 in @aRequire header field, iMusT respond by generating a response with status code 420 (Bad Extension).
172 The UASMUST add aUnsupported, and list in it those options it does not understand amongst those in
1075 the Require header of the request. Upon receipt of the 420 the cherduLD retry the request, this time

1076 Without using those extensions listed in the Unsupported header in the response.

1077 Example:

1018 UACC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
1079 Require: com.example.billing
1080 Payment: sheep_skins, conch_shells

1081

1082 UASS->UAC: SIP/2.0 420 Bad Extension

1083 Unsupported: com.example.billing

1084 This is to make sure that the client-server interaction will proceed without delay when all options are understood
1085 by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
1086 client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
1087 In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
1088 features, such as call handling fields, are only of interest to end systems.

1wss 8.2.4 Content Processing

100 Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
1001 Message, and the headers that describe it. If there are any bodies whose type (indicateddmyehe

192 Type), language (indicated by teéontent-Language) or encoding (indicated by théontent-Encoding)

1003 are not understood, and that body part is not optional (as indicated Botitent-Disposition) header, the

10ea UAS MUST reject the request with a 415 (Unsupported Media Type) response. The respggiseontain

1005 @ Accept header listing the types of all bodies it understands, in the event the request contained bodies of
1006 types not supported by the UAS. If the request contained content encodings not understood by the UAS,
1007 the respons&UsT contain anAccept-Encoding header listing the encodings understood by the UAS. If

1008 the request contained content with languages not understood by the UAS, the regpemseontain an

1000 Accept-Language header indicating the languages understood by the UAS.

1100 Beyond these checks, body handling is method and type specific.

1101 For further information on the processing of Content-specific headers see Section 7.4.

uoz 8.2.5 Applying Extensions

1oz A UAS that wishes to apply some extension when generating the resparsseonly do so if support for

10a that extension is indicated in tlgupported header in the request. If the desired extension is not supported,

105 the serversHOULD rely only on baseline SIP and any other extensions supported by the client. To ensure

1os that thesHouLD can be fulfilled, any specification of a hew extensioasT include discussion of how

uo7 to gracefully return to baseline SIP when the extension is not present. In rare circumstances, where the
1108 Server cannot process the request without the extension, the setvesend a 421 (Extension Required)

100 response. This response indicates that the proper response cannot be generated without support of a specific
10 extension. The needed extensiomns)sT be included in &Require header in the response. This behavior

111 ISNOT RECOMMENDED as it will generally break interoperability.

Various Authors Expires April 2002 [Page 29]

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Any extensions applied to a non-421 responsesT be listed in aRequire header included in the
response. Of course, the senwewsT NOT apply extensions not listed in tHeupported header in the
request. As a result of this, tiRequire header in a response will only ever contain option tags defined in
standards track RFCs.

8.2.6 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method
specific. Section 10 deals with tHREGISTER request, section 11 deals with tPTIONS request,
section 13 deals with theNVITE request, and section 15 deals with B¥E request.

8.2.7 Generating the Response

When a UAS wishes to construct a response to a request, it follows these procedures. Additional procedures
may be needed depending on the status code of the response and the circumstances of its construction. These
additional procedures are documented elsewhere.

The From field of the respons&iusT equal theFrom field of the request. Th€all-ID field of the
response/usT equal theCall-ID field of the request. Th€seq field of the responseiusT equal theCseq
field of the request. Th¥ia headers in the responseJST equal theVia headers in the request, amd ST
maintain the same ordering.

If a request contained® tag in the request, thio field in the responssusT equal that of the request.
However, if theTo field in the request did not contain a tag, the URI in Tioefield in the responsetusT
equal the URI in thelo field in the request. Additionally, the UABUST add a tag to thdo field in the
response. This serves to identify the UAS that is responding, possibly resulting in a component of a dialog
ID. The same tagnusT be used for all responses to that request, both provisional and final. Procedures for
generation of tags are defined in Section 21.3.

8.2.8 Stateless UAS Behavior

A stateless UAS is a UAS that doesn’t maintain transaction state. It replies to requests normally, but discards
any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless UAS
receives a retransmission of a request, it regenerates the response and resends it, just as if it were the replying
to the first instance of the request. Stateless UASs do not use a transaction layer; they receive requests
directly from the transport layer amd send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge
response is issued. If unauthenticated requests were handled statefully, then malicious floods of unauthenti-
cated requests could create massive amounts of transaction state that might slow or complete halt call pro-
cessing in a UAS, effectively creating a denial of service condition; for more information see Section 20.4.

The most import behaviors of a stateless UAS are the following:

A stateless UAS/USTNOT send provisional (1xx) responses.

A stateless UASAUSTNOT retransmit responses.

A stateless UAS1UST ignore ACK requests.

A stateless UAS1UST ignore CANCEL requests.

Various Authors Expires April 2002 [Page 30]

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

e To header tags1usT be generated for responses in a stateless manner - in a manner that will generate
the same tag for the same request consistently. For information on tag construction see Section 21.3.

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate
in either a stateful or stateless mode for each new request.

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests by relying on redirection. Redirection allows servers to push routing information for a
request back in a response to the client, thereby taking themselves out of the loop of further messaging for
this transaction while still aiding in locating the target of the request. When the originator of the request
receives the redirection it will send a new request based on the routing information it has received. By
propagating routing information from the core of the network to its edges, redirection allows for considerable
network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has
access to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request otli@hkhan
CEL, the server gathers the list of alternative locations from the location service and either returns a final
response of class 3xx or it refuses the request. For well-for@&NCEL requests, iSHOULD return a
2xx response. This response ends the SIP transaction. The redirect server maintains transaction state for an
entire SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alterna-
tive locations intoContact headers. Anéxpires” parameter to th&€ontact header may also be supplied
to indicate the lifetime of th€ontact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 or 302 response may also give the same location and user-
name that was targeted by the initial request but specify additional transport parameters such as a different
server or multicast address to try, or a change of SIP transport from UDP to TCP or vice versa.

Note that theContact header fieldwAy also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special informational announcement
such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URL'’s for phones, féx, @they were
defined) or anailto: (RFC 2368, [19]) URL.

The “expires” parameter of th€ontact header field indicates how long the URI is valid. The parameter
is either a number indicating seconds or a quoted string containBifp-aate. If this parameter is not
provided, the value of th&xpires header field determines how long the URI is valid. Implementations
MAY treat values larger than 2**32-1 (4294967295 seconds or 136 years) as equivalent to 2**32-1.

Redirect serversmusT ignore features that are not understood (including unrecognized he&ders,
quired extensions, or even method names) and proceed with the redirection of the session in question. If
a particular extension requires that intermediate devices support it, the extenstanbe tagged in the
Proxy-Require field as well (see Section 22.28).

Various Authors Expires April 2002 [Page 31]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

ue 9 Canceling a Request

192 The previous section has discussed general UA behavior for generating requests, and processing responses,
ues for requests of all methods. In this section, we discuss a general purpose methodCANIEEL.

1194 TheCANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specif-
ues ically, it asks the user agent server to cease processing the request, and generate an error response to that
e request.CANCEL has no effect on a request that has already been responded to. Because of this, it is most
197 useful toCANCEL requests which can take a long time to respond to. For this re€@8NCEL is most

ues useful forINVITE requests, which can take a long time to generate a response. In that usage, a UAS that
199 receives &ANCEL request for anNVITE, but has not yet sent a response, would “stop ringing”, and then

1200 respond to théNVITE with a specific error response (a 487).

1201 Cancel requests can be constructed and sent by any type of client, including both proxies and user
1202 agent servers. Section 15 discusses under what conditions a UAC @ANEEL anINVITE request, and

1203 Section 16 discusses proxy usageM¥ITE.

1204 Because a stateful proxy can generate its GAMNCEL, a stateful proxy also responds t€ANCEL,

1205 rather than simply forwarding a response it would receive from a downstream element. For that reason,
1206 CANCEL is referred to as a “hop-by-hop” request, since it is responded to at each stateful proxy hop.

oz 9.1 Client Behavior

1206 A CANCEL requestsHOULD NOT be sent to cancel a request other tHeWITE.

1209 Since requests other thaNVITE are responded immediately, sendin@ANCEL for a noniNVITE request
1210 would always create a race condition.

1211 The following procedures are used to constru@ANCEL request. ThdRequest-URI, Call-ID, To,

1212 the numeric part o€Seq andFrom header fields in th€ ANCEL requestMusT be identical to those in

1213 the request being cancelled, including tagsCANCEL constructed by a cliemiusT have only a single

1214 Via header, whose value matches the Ya in the request being cancelled. Using the same values for
1215 these headers allows tRANCEL to be matched with the request it cancels (Section 9.2 indicates how such
12126 mMatching occurs). However, the method part of @s&eq heademusT have a value ofCANCEL. This

1217 allows it to be identified and processed as a transaction in its own right (See Section 17). If the request being
1218 cancelled containeBoute header fields th€ ANCEL requestvusT include thesdroute header fields.

1219 This is needed so that stateless proxies are able to @ANCEL requests properly.

1220 Once theCANCEL is constructed, the clie®HouLD check whether any response (provisional or final)

1221 has been received for the request being cancelled (herein referred to as the "original requeSIANTTEL

1222 requestMuUST NOT be sent if no provisional response has been received, rather, thenolismtwait for the

1223 arrival of a provisional response before sending the request. If the original request has generated a final
1224 response, th€ANCEL sHOULD NOT be sent, as it is an effective no-op, sitCANCEL has no effect on

1225 requests which have already generated a final response. When the client decides to €&NGEL, it

1226 creates a client transaction for tBANCEL, and passes it th e ANCEL request along with the destination

1227 address, port and transport. The destination address, port, and transporGaN@EL MUusT be identical

1228 to those used to send the original request.

1229 If it was allowed to send th€ANCEL before receiving a response for the previous request the server could
1230 receive theaCANCEL before the original request.
1231 Note that both the transaction corresponding to the original request aftiINEEL transaction will

1232 complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request
1233 Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a

Various Authors Expires April 2002 [Page 32]

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

response. If there is no final response for the original request in 64*T1 secondsliW & transaction,
and T3 seconds for a ndMWVITE transaction, the cliensHouULD then consider the original transaction
cancelled andHouLD destroy the client transaction handling the original request.

9.2 Server Behavior

The CANCEL method requests that the TU at the server side cancel a pending request with tti@adame
ID, To, From, top Via header andRequest-URI andCSeq (sequence number only) header field values.

The processing of EBANCEL request at a server depends on the type of server. A stateless proxy will
forward it, a stateful proxy might respond to it and generate sGARCEL requests of its own, and a UAS
will respond to it. See Section 16.8 for proxy treatmenCaiNCEL.

When a UAS receives @ANCEL, it looks for any server transactions which were created by requests
with the samelo, From, Call-ID, Cseq numeric valueRequest-URI and topVia header. If no matching
transactions are found, t@@ANCEL SHOULD be responded to with a 481 (Call Leg/Transaction Does Not
Exist). If the transaction for the original request still exists, the behavior of the UAS on recelGAYIEEL
request depends on whether it has already sent a final response for original request. If it QA @HEL
request has no effect on the processing of the original request, no effect on any session state, and no effect
on the responses generated for the original request.If the UAS has not issued a final response for the original
request, its behavior depends on the method of the original request. If the original requestiMebIan
the UASsHouLD immediately respond to tH&lVITE with a 487 (Request Terminated). The behavior upon
reception of &CANCEL request for any other method defined in this spec is effectively no-op. Extensions
to this spec that define new methadssT define the behavior of a UAS upon reception cEANCEL for
those methods.

Regardless of the method of the original request,GA&NCEL request itself is answered with a 200
(OK) response in either case. Once the response is constructed it is passed to the server transaction for the
CANCEL request.

10 Registrations

10.1 Overview of Usage

SIP is a protocol that offers a discovery capability. For one user to initiate a session with another, SIP must
discover the current host(s) that the called user is reachable at. This discovery process is accomplished
by SIP proxy servers, which are responsible for receiving a request, determining where to send it based
on knowledge of the location of the user, and then sending it there. To do this, proxies consult an abstract
service known as lcation servicewhich provides address bindings for a particular domain. These address
bindings map an incoming SIP UREip:bob@Biloxi.com , for example, to one or more SIP URLs
which are somehow “closer” to the desired usgy;bob@engineering.Biloxi.com , for example.
Ultimately, a proxy will consult a location service which maps a received URL to the current host(s) that a
user is logged in to.

There are many ways by which the contents of the location service can be established. One way is
administratively. In the above example, Bob is known to be a member of the engineering department through
access to a corporate database. SIP provides a mechanism, however, for a user agent to explicitly create a
binding in the location service of a proxy. This mechanism is known as registration.

The process of registration entails sendin@EGISTER message to a special type of UAS known as a

Various Authors Expires April 2002 [Page 33]

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

registrar. The registrar acts as a front end to the location service for a domain, reading and writing mappings
based on the contents of tREGISTER messages. This location service will then be consulted by a proxy
server that is responsible for routing requests for that domain.

SIP does not mandate a particular mechanism for implementing the location service. The only require-
ment is that a registrar for some domainsT be capable of reading and writing data to the location service,
and a proxy for that domaimusT be capable of reading that same data. A registrar be co-located with
a particular SIP proxy server for the same domain, allowing usage of an in memory database for the location
service. Usage of a shared database is another implementation choice. The choice depends entirely on the
architectural requirements (redundancy, scalability, etc) of a particular deployment.

Registration creates bindings in a location service for a particular domain that associate an “address of
record” URI with one or more “contact addresses”. This means that when a proxy for that domain receives a
request whose request URI matches the address of record, the proxy will forward the request to the contact
addresses registered to that address of record. Generally, it only makes sense to register an address of record
at a location service for a domain when requests for that address of record would be routed to that domain.
In most cases, this means that the domain of the registration will need to match the domain in the URI of
the address of record.

The most important usage of the registration mechanism is to inform a proxy of the mapping between
the address of record and the current host on which the UA resides. However, the registration process is a
general mechanism for establishing bindings, and can be used for other purposes (for example, to set up call
forwarding).

bob
+————t
| UA|
|1
+————+
I
[3)INVITE
| carol@chicago.com
chicago.com +—————— + \%
- + 2)Store|Location|4)Query +————— +
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
F———————— + +———— +=======>4————— +
A 5)Resp |
| I
| I
1)REGISTER| |
| I
et |
| VA |<-——————————————— +
cube2214a| | 6)INVITE
F————t carol@cube2214a.chicago.com
carol

Figure 2:REGISTER example

Various Authors Expires April 2002 [Page 34]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

12ea 10.2 Construction of the REGISTER request

125 Several operations can be performed wWilREGISTER method with respect to a registrar. One of these is

1296 the basic registration operation that is described above, which provides a new binding between an address
127 Of record and one or more contact addresses. Registration on behalf of a particular address of record may be
1208 performed by a third party if they are authorized to do so. A client may also remove previous bindings, or
1200 query to determine which bindings are currently in place for an address of record.

1300 Aside from the exceptions noted in this and the following sections, the construction REBETER

11 method, and behavior of clients sendinBBGISTER is identical to the general UAC behavior described in

1302 Section 8.1 and Section 17.1. Regardless of the operation that is perform@&HByISTER, the following

1303 header fieldsausT be formulated as follows:

1304 Request-URI: TheRequest-URI hames the domain of the location service that the registration is meant
1305 for (e.g. “chicago.com”). The user nammeST be empty.

1306 T0: The To header field contains the address of record whose registration is to be created or modified.

1307 Note that the initialTo header field and thRequest-URI field sHouLD therefore be different in a

1308 REGISTER message.

1309 From: TheFrom header field contains the address of record of the person responsible for the registration,
1310 which MAY be identical to the value of th&o header field. For third-party registrations theom

1311 header field ando header field are different.

1312 Call-ID: All registrations from a user agent cliesHOULD use the sam€all-ID header value, at least
1313 within the same reboot cycle.

1314 If different Call-IDs were used for overlappifr@EGISTER messages coming from the same client, the
1315 registrar might have trouble determining their ordering.

1316 Contact: REGISTER requestavAy contain one or mor€ontact header fields. Contact addresses are

1317 presented in th€ontact header fields OREGISTER requests.

1318 Note that user agentg@usT NOT send a new registration (containing n€&wontact header fields, as

1319 Opposed to a retransmission) until they have received a response from the registrar for the previous one.
1320 The following optionalContact header parameters also contain behavior specific to the registration

1321 Process.

1322 action : The “action” parameter has been deprecated. UAB®ULDNOT use the action” parameter.

1323 expires : The “expires” parameter indicates how long the UAC would like the binding to be valid. The

1324 parameter is either a number indicating seconds or a quoted string contaiSifydate. If this

1325 parameter is not provided, the value of taepires header field determines how long the binding is
1326 valid. ImplementationsiAy treat values larger than 2**32-1 (4294967295 seconds or 136 years) as
1327 equivalent to 2**32-1.

1328 10.2.1 Adding Bindings withREGISTER

1329 For a simple registration, REGISTER request sent to a registrar includes contact addresses to which
1330 requests should be forward for the originating user’s address of record. The address of record itself (i.e.

Various Authors Expires April 2002 [Page 35]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1331 'sip:carol@chicago.com’MUST populate thelo header of thdREGISTER. The Contact header fields of

1332 the request typically contain SIP URIs that identify particular SIP endpoints (i.e. 'sip:carol@cube2214a.chicago.cor
1333 but theyMAY use any URI scheme; this way a SIP UA can choose to register telephone numbers (with the
1334 tel URL, [14]) or email addresses (with a mailto URL, [19])@sntacts for an address of record.

1335 For example, if Carol, whose address of record is 'sip:carol@chicago.com’, needed to register, she would
1336 typically want to register with the registrar associated with the location service of chicago.com. This location
1337 service would then be accessed by a proxy server that receives requests targeting users in the chicago.com
1338 domain, and hence new requests for Carol’'s address of record will be routed to her SIP endpoint.

1339 Once a client has established bindings at a registrarat send subsequent registrations containing

1390 New bindings or modifications to pre-existing bindings as necessary. The 2xx respons ERI®TER

1311 Message will contain (i€ontact header fields) a complete list of bindings that have been registered for this

1322 address of record at this registrar.

1343 10.2.1.1 Setting the Expiration Interval of Contact Addresses When a client sends REGISTER

1344 request, itMAY suggest an expiration interval that indicates how long the client would like the registration
1345 to be valid (although as is detailed in Section 10.3, the registrar has the ultimate say).

1346 There are two ways in which a client can suggest an expiration interval for a binding: throEgpises

1347 header, or anéxpires” Contact header parameter. The latter allows expiration intervals to be suggested
1348 0N a per-binding basis when more than one binding is given in a sRGBISTER, whereas the former

1349 SUQQests an expiration interval for @lbntact header fields that do not contain thexpires” parameter.

1350 If neither mechanism for expressing a suggested expiration time is preseREGETER, a default

1351 suggestion of one hour is assumed.

12 10.2.1.2 Setting Preference among Contact Addressesf more than oneContact is sent in ®IS-
153 TER, then the registering UA intends to associate all of the URIs given in {Bes¢act headers with the
1354 address of record present in the field. This list can be prioritized with theg™ mechanism.

1355 (: The “q” parameter indicates a relative preference for the particdQtamtact header field compared to
1356 other bindings present in thREGISTER message or existing within the location service of the
1357 registrar. For an example of how a proxy server usgs/élues, see Section 16.5.

18 10.2.2 Removing Bindings withREGISTER

1359 Registrations are removed from the registrar through an expiration process; registrations are soft state and
130 need to be refreshed periodically. A client may attempt to influence the expiration intervals selected by the
1361 registrar as described in Section 10.2.1.

1362 A registering user agent requests the immediate removal of a binding by specifying an expiration in-
1363 terval of “0” for that contact address iInREGISTER. It is RECOMMENDED that user agents support this

1364 Mechanism so that bindings can be removed (for whatever reason) before their expiration interval has passed.
1365 TheREGISTER-specificContact header field value of “*” applies to all registrations, butit ST only

136 be used when thExpires header is present with a value of “0”.

1367 Use of the “*” Contact header field value allows a registering user agent to remove all of its bindings expediently.

Various Authors Expires April 2002 [Page 36]

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399
1400

1401

1402

1403

1404

1405

1406

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

10.2.3 Fetching Bindings withREGISTER

If no Contact headers are present iREGISTER, then the UA is not in fact registering any new bindings,
and the list of bindings is therefore left unchanged. As noted above, in a successful responseEGsthis
ISTER message, the complete list of existing bindings is returned, and tRRE$GASTER without Contact
headers serves as a fetch operation.

10.2.4 Refreshing Registrations

When a 2xx response has been received by the clientREG@ISTER request, the cliermiusT determine
when each of the bindings enumerated in the response needs to be refreshed. This may include bindings that
were registered in previolREGISTER transactions.

Since the list of bindings returned in the response RE&ISTER may contain bindings that were not
included in thisSREGISTER transaction, the client must correldBontact header fields in the response
with the Contact header fields it sent in the request in order to establish proper expiration timers. This
correlation should be performed in accordance with the URI comparison rules given in Section 21.1.4.

The registering UAMUST re-register each contact address at least as often as the mandated expiration
interval. A REGISTER that refreshes a bindingHouLD have the sam€all-ID as the request which
created the binding. Th€Seq headersHouLD have a numeric sequence number that is one higher than
the value sent in the last request with the s&@ad-ID.

Note that a UAMUST must update its expiration timers for refreshing each binding every time it receives
a response to a registration request.

Registration refreshesHoOULD be sent to the same address as the original registration, unless redirected.

10.2.5 Discovering a Registrar

Depending on the policy of their administrative domain, SIP UAs can be configured with the address of a
local registrar. Some UAs may be equipped with protocol tools (outside the scope of SIP) that allow them
to discover their local registrar dynamically.

Note that as an alternate means of discovering a registrar if no local registrar is configured in the user
agent, clientsvAy register via multicast. Multicast registrations are addressed to the well-known “all SIP
servers” multicast address “sip.mcast.net” (224.0.1.75). This request be scoped to ensure it is not
forwarded beyond the boundaries of the administrative system. MAnNsbe done with either TTL or
administrative scopes (see [20]), depending on what is implemented in the network. SIP usemagents
listen to that address and use it to become aware of the location of other local users (see [21]); however, they
do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

If a SIP UA knows of an appropriate registrasitOULD attempt to register with this server periodically
- management of registration intervals is detailed below.
10.3 Processing of REGISTER at the Registrar

A registrar is a UAS that responds tdREGISTER request, and stores the information gathered from that
request in a location service that is in turn accessible to proxy servers within its administrative domain. A
registrar handles requests as a UAS (in conformity with Section 8.2 and Section 17.2) but it accepts only the

Various Authors Expires April 2002 [Page 37]

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428
1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

REGISTER method and generates only the responses detailed in this section. Note tREGHSTER
method also does not support tRecord-Route or Route header, and that proxy servens/ST NOT add
Record-Route headers teREGISTER requests.

A registrar must know (through provisioning or some other mechanism) the set if administrative do-
main(s) for which its associated location service(s) are responsRiEGISTER requestavusT be pro-
cessed by a registrar in the order that they are received.

Upon the arrival of REGISTER message, the registratusT inspect theRequest-URI to determine
whether it has access to a location service responsible for the domain to which this request is addressed.
If this message is for some other administrative domain, then if the registrar can act as a proxy server, it
sHouLD forward the request to the addressed domain (following the general behavior for proxying messages
described in Section 16).

When a registrar receivesREGISTER message, it IRECOMMENDED that the registrar authenticate
the user agent client. Mechanisms for the authentication of SIP user agents are described in Section 20.2;
registration behavior in no way overrides the generic authentication framework for SIP. If no authentication
mechanism is available, the registrasy take the From address as the asserted identity of the originator of
the request.

Once the identity of the registering user has been ascertainedREd9MMENDED that the registrar
determine if the authenticated user agent is authorized to request and/or modify registrations for this address
of record. For example, a registrar might consult a authorization database (directly or through an appropriate
protocol) that maps credentials or other tokens of identity resulting from authentication to one or more
addresses of record for which this identity is responsible.

Note that in architectures that support third-party registration, one entity may be responsible for updating the
registrations associated with multiple addresses of record.

When the registrar has determined that the client is permitted to make the request, the negistrar
extract the address of record from tfe header field of thdREGISTER. Note that the registranmusT
extract the entirdo header field URI in order to use it as an index in the location service.

Next, the registraMmusT query its location service (the repository of previously registered bindings)
for the set of bindings associated with this address of record. If the address of record is not valid for this
administrative domain (for example, because the username is not assigned), then the registration attempt
fails (see below). A full URI comparison (as described in Section 21MUST be performed to determine
whether a given binding matches this address of record.

The registrar nowusT extract all theContact header fields from thREGISTER message (note that
there may be n@ontact header field).

Each contact address irREGISTER MUST now be compared to all existing registrations at this loca-
tion service according to the rules in Section 21.1.4. Note that URIs other than SIP URIs in contact addresses
MUST be compared according to the standard URI equivalency rules for the URI schema in question.

If a match is found among pre-existing registrations, the registtesT copy all parameters associated
with the currentContact header field from th®ISTER message into the pre-existing binding in its
location service (overwriting with changed values any existing parameters as necessary, with the exception
of “expires”). Expiration intervals for this contact addressJST also be reset, based on any suggested
expiration in theREGISTER (remember that this can be “0”).

If no match is found among the set of pre-existing registrations, the registrsir create a new binding
in its location service between the address of record and the c@mrict header field. AllContact
header field parameters are copied verbatim into this new binding (again with the exceptpicés”).
An expiration intervalMusT be selected by the registrar, taking into account any suggested expiration for

Various Authors Expires April 2002 [Page 38]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

us2 this contact address in tiREGISTER.

1453 Allowing the registrar to set the registration interval protects it against excessively frequent registration refreshes
1454 while limiting the state that it needs to maintain and decreasing the likelihood of registrations going stale.
1455 The expiration interval mandated by the registrar may be either longer or shorter than the interval sug-

ss gested by the sender of tiREGISTER, though the registrasHOULD abide by the registering client's
1457 suggestion.

1458 A servermAy decide to lengthen the expiration interval if the refresh rate of a particular client exceeds a thresh-

1459 old, for example.

1460 After the expiration interval selected by the registrar for a binding has passed, if the binding has not been
e1 refreshed (increasing the expiration interval), the registrapuLD silently discard the binding.

1462 Once all bindings in the location service have been updated to reflect any changes present to contact
1463 addresses in thREGISTER message, the registraiusT remove any bindings that expire immediately.

1464 The REGISTER might have set the expiration interval for some bindings to “0” to remove them before their

1465 expiration interval passes.

1466 Finally, the registrar must generate a response. If the address of record giverTinhteader field of

s the REGISTER method is valid for its administrative domain, then a 200 responseT be sent, which

1468 MUST contain a complete list (withi€ontact header fields) of the currently valid bindings in the location
1469 Service associated with the address of record contained ifotfield of theREGISTER request. This list

1470 MAY be empty (in which case the 200 would not contain @mntact headers).

1471 In a successful response tREGISTER, wherein the bindings for this address of record are enumerated
1472 as described above, the registrawsT supply an expiration interval for each contact address in either an
1473 “expires” parameter of a Contact header orExpires header. This interval specifies the expiration interval
1472 that has been mandated by the registrar (taking into account the registering UA's suggestion).

1475 If the registration failed because the address of record contained in the To fiel REGKTER is not

1476 valid for this domain, then a 404uUST be sent.

w11 Querying for Capabilities

1478 The SIP metho®PTIONS allows a UA to query another UA or a proxy server as to its capabilitielsis

1479 allows a client to discover information about the methods, content types, extensions, codecs etc. supported
14s0 Without actually "ringing” the other party. For example, before a client inseRgguire header field into

1481 an INVITE listing an option that it is not certain the destination UAS supports, the client can query the
g2 destination UAS with at©PTIONS to see if this option is returned inQupported header field.

1483 The target of the®OPTIONS request is identified by thRequest-URI, which could identify another

1asa User Agent or a SIP Server. If tHePTIONS is addressed to a proxy server, tRequest-URI is set

1485 Without a user part, similar to the wayRequest-URI is set for aREGISTER request. Alternatively, a

186 Server receiving a@PTIONS request with avlax-Forwards header value of @AY respond to the request

g7 regardless of thRequest-URI.

1488 This behavior is common with HTTP/1.1. This behavior can be used as a "traceroute” functionality to check the

1489 capabilities of individual hop servers by sending a serie®®TIONS requests with incrementédax-Forwards

1490 values.

1491 An OPTIONS request sent as part of an established dialog does not have any impact on the dialog.

Various Authors Expires April 2002 [Page 39]

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

11.1 Construction of OPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed Section 8.1.1.
A Contact header fielduay be present in a@PTIONS.
An Accept header fieldsHOULD be included to indicate the type of message body the UAC wishes to
receive in the response.
ExampleOPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0

Via: SIP/2.0/UDP 10.1.1.1:5060;branch=23411513a6
Via: SIP/2.0/UDP 10.1.3.3:5060

To: <sip:carol@chicago.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 63104 OPTIONS

Contact: <sip:alice@10.1.3.3>

Accept:. application/sdp

Content-Length: 0

11.2 Processing of OPTIONS Request

The response to a@PTIONS is constructed using the standard rules for a SIP response as discussed in
Section 8.2.7. The response code chosen is the same that would have been chosen had the request been an
INVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy Here)
would be returned if the UAS is busy, etc. This allows@RTIONS request to be used to determine the
basic state of a UAS, which can be an indication of whether the UAC will accelpt\&iTE request.

Note that this use dDPTIONS has limitations due the differences in proxy handling@®@®TIONS and
INVITE requests. While a forkeiNVITE can result in multiple 200 OK responses being returned, a forked
OPTIONS will only result in a single 200 OK response, since it is treated by proxies using thENWIE
handling. See Section 13.2.1 for the normative details.

If the response to a@PTIONS is generated by a proxy server, the proxy returns a 200 (OK) listing the
capabilities of the server. The response does not contain a message body.

Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fieldssHouLD be
present in a 200 OK response to@RTIONS request.

A Contact header fielduAy be present in a 200 OK response.

A Warning header fieldwAy be present.

A message bodwAy be sent, the type of which is determined by faept header in th@©PTIONS
request.

ExampleOPTIONS response generated by a UAS (corresponding to the request in Section 11.1):

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.1.1.1:5060;branch=23411513a6
Via: SIP/2.0/UDP 10.1.3.3:5060

To: <sip:carol@chicago.com>;tag=93810874

Various Authors Expires April 2002 [Page 40]

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 63104 OPTIONS

Contact: <sip:carol@10.3.6.6>

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Accept: application/sdp

Accept-Encoding: gzip

Accept-Language: en

Supported: foo

Content-Type: application/sdp

Content-Length: 274

v=0

o=carol 28908764872 28908764872 IN IP4 10.3.6.6
S=-

t=0 0

c=IN IP4 10.3.6.6

m=audio 0 RTP/AVP 0 1 3 99
a=rtpmap:0 PCMU/8000
a=rtpmap:1 1016/8000
a=rtpmap:3 GSM/8000
a=rtpmap:99 SX7300/8000
m=video 0 RTP/AVP 31 34
a=rtpmap:31 H261/90000
a=rtpmap:34 H263/90000

12 Dialogs

A key concept for a user agent is that of a dialog. A dialog represents a peer- to-peer SIP relationship between
a two user agents that persists for some time. The dialog facilitates sequencing of messages between the
user agents, and proper routing of requests between both them. The dialog represents a context in which to
interpret SIP messages. The previous section discussed method independent UA processing for requests and
responses outside of a dialog. This section discusses how those requests and responses are used to construct
a dialog, and then how subsequent requests and responses are sent within a dialog.

A dialog is identified at each UA with a dialog ID, which consists dtall-ID value, a local URI and
local tag (together called the local address), and a remote URI and remote tag (together called the remote
address). The dialog ID at each UA involved in the dialog is not the same. Specifically, the local URI and
local tag at one UA are identical to the remote URI and remote tag at the peer UA. The tags are opaque
tokens that facilitate the generation of unique dialog IDs.

A dialog ID is also associated with all responses, and with any request that contains a tafpifietee
The rules for computing the dialog ID of a message depend on whether the entity is a UAC or UAS. For a
UAC, theCall-ID value of the dialog ID is set to th@all-ID of the message, the remote address is set to the
To field of the message, and the local address is set téribm field of the message (these rules apply to

Various Authors Expires April 2002 [Page 41]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1572 both requests and responses). As one would expect, for a UAEallD value of the dialog ID is set to

1573 the Call-ID of the message, the remote address is set tbribim field of the message, and the local address

1572 is set to theTlo field of the message.

1575 A dialog contains certain pieces of state needed for further message transmissions within the dialog.
1576 This state consists of theall-ID, a local sequence number (used to order requests from the UA to its peer),

1577 @ remote sequence number (used to order requests from its peer to the UA), and a route set, which is an
1578 ordered list of URIs. The route set is the set of servers that need to be traversed to send a request to the peer.
1579 A dialog can also be in the “early” state, which occurs when it is created with a provisional response, and
1580 then transition to the “confirmed” state when the final response comes.

1ss1 12.1 Creation of a Dialog

1522 Dialogs are created through the generation of non-failure responses to requests with specific methods.
1ss3 Within this specification, only 2xx and 1xx responses witlioatag to INVITE establish a dialog. A di-

1582 alog established by a non-final response to a request is in the “early” state and it is called an early dialog.
1ss5 EXtensionsviAy define other means for creating dialogs. Section 13 gives more details that are specific to
1sss the INVITE method. Here, we describe the process for creation of dialog state that is not dependent on the
157 Mmethod.

1588 A dialog is identified by a dialog ID. A dialog ID consists of three components, namely a call identifier
1589 component, a local address component and a remote address componenrt &iAassign values to these

1590 components as described below.

151 12.1.1 UAS behavior

1522 When a UAS responds to a request with a response that establishes a dialog (such add\2x6&) the

15s3 UAS MUST copy all Record-Route headers from the request into the response (including the URIs, URI
1504 parameters, and afyecord-Route header parameters, whether they are known or unknown to the UAS)
150 andMUST maintain the order of those headefBhe UASMUST add aContact header field to the response.

1596 The Contact header field contains an address where the UAS would like to be contacted for subsequent
1597 requests in the dialog (which includes th€K for a 2xx response in the case of INVITE). Generally, the

1se8 host portion of this URI is the IP address of the host, or its FQDN. The URI provided @dheact header

1599 MUST be a SIP URI.

1600 The UAS then constructs the state of the dialog. This stateT be maintained for the duration of the

101 dialog. First, the route setusT be computed by following these steps:

1602 1. The list of URIs in theRecord-Route headers in the request, if present, are taken, including any URI
1603 parameters.

1604 2. The URI in theContact header from the request if present, is taken, including any URI parameters.

1605 The URI is appended to the bottom of the list of URIs from the previous step.
1606 Contact was not mandatory in RFC2543. Thus, if the UAS is talking to an older UAC, the UAC might not
1607 have inserted th€ontact header.

1608 3. The resulting list of URIs is called theute set

1609 These rules clearly imply that a URusT be able to parse and procd®scord-Route header fields. This is a
1610 change from RFC2543, where all record-route and route processing was optional for user agents.

Various Authors Expires April 2002 [Page 42]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1611 It is possible for theroute setto be empty. This will occur if neitheRecord-Route headers nor a

1612 Contact header were present in the request. The WAST also remember whether the bottom-most entry
1613 N theroute setwas constructed from@ontact header or not. This is effectively a boolean value, which we
1614 refer to as CONTACTSET. This is needed in order for the UA to determine whether the bottom most value

1615 can be updated from subsequent requests; if it was constructed féamtact, it can be updated.

1616 The remote sequence numbeusT be set to the value of the sequence number inbeq header of

1617 the request. The local sequence numbesT be empty. The call identifier component of the dialog 1D

1618 MUST be set to the value of th@all-ID in the request. The local address component of the dialaguBT

1619 be set to thdo field in the response to the request (which therefore includes the tag), and the remote address
120 component of the dialog IMUsT be set to thd=rom field in the request. A UASAUST be prepared to

121 receive a request without a tag in tReom field, in which case the tag is considered to effectively have a

1622 value of null.

1623 This is to maintain backwards compatibility with RFC2543, which did not marigate tags.

1624 12.1.2 UAC behavior

1625 When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state
1626 MUST be maintained for the duration of the dialog. First, the routevaesT be computed by following
1627 these steps:

1628 1. The list of URIs present in thRecord-Route headers in the response are taken, if present, including
1629 all URI parameters, and their order is reversed.

1630 2. The URI in theContact header from the response, if present, is taken, including all URI parameters,
1631 and appended to the end of the list from the previous step.

1632 3. The list of URIs resulting from the above two operations is referred to astite set

1633 It is possible for theroute setto be empty. This will occur if neitheRecord-Route headers nor a
1634« Contact header were present in the response. The WAGT also remember whether the bottom-most
1635 entry in theroute setwas constructed from @ontact header or not. This is effectively a boolean value,
1636 Which we refer to as CONTACTBET. This is needed in order for the UA to determine whether the bottom

1637 MOSt value can be updated from subsequent requests; if it was constructedJomtaat, it can be updated.
1638 The local sequence number sequence numtsT be set to the value of the sequence number in the
1630 Cseq header of the request. The remote sequence numnbst be empty (it is established when the UA
1640 Sends a request within the dialog). The call identifier component of the dialagux be set to the value
161 Of the Call-ID in the request. The local address component of the dialogilBT be set to the=rom

1622 field in the request, and the remote address component of the dialeg $D be set to thelo field of the

1643 response. A UAGWUST be prepared to receive a response without a tag ifehigeld, in which case the
1644 tag is considered to effectively have a value of null.

1645 This is to maintain backwards compatibility with RFC2543, which did not mariiatags.

s 12.2 Requests within a Dialog

1647 Once a dialog has been established between two UAs either ofiagnmitiate new transactions as needed
1s4s Within the dialog. However, a dialog imposes some restrictions on the use of simultaneous transactions.
1649 A TU MUST NOT initiate a new regular transaction within a dialog while a regular transaction is in
150 progress (in either direction) within that dialog.

1651 OPEN ISSUE #113: Should we relax the constraint on non-overlapping regular transactions?

Various Authors Expires April 2002 [Page 43]

1652
1653
1654
1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668
1669
1670
1671
1672

1673

1674

1675

1676

1677
1678
1679
1680
1681
1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

A route refresh request sent within a dialog is defined as a request that can modibythesetof
the dialog. For dialogs that have been established wittNSAiTE, the only route refresh request defined
is redNVITE (see Section 14). Other extensions may define different route refresh requests for dialogs
established in other ways.

Note that artACK is NOT a route refresh request.

12.2.1 UAC Behavior

12.2.1.1 Generating the Request A request within a dialog is constructed by using many of the com-
ponents of the state stored as part of the dialog.

TheTo header field of the requestusT be set to the remote address, andRham header fieldwusT
be set to the local address (both including tags, assuming the tags are not null).

The Call-ID of the requestusT be set to theCall-ID of the dialog. Requests within a dialogusT
contain strictly monotonically increasing and contigu@Seq sequence numbers (increasing-by-one) in
each direction. Therefore, if the local sequence number is not empty, the value of the local sequence number
MUST be incremented by one, and this valuesT placed into theCseq header. If the local sequence
number is empty, an initial valugausT be chosen using the guidelines of Section 8.1.1.4. The method field
in the Cseq heademusT match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within
the same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence
number. A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial
sequence number.

TheRequest-URI of requests is determined according to the following rules:

The UAC takes the list of URI in theoute set The top URIMUST be inserted into the request URI of
the request, including all URI parameters. Any URI parameters not allowed in the requestudRthen
be stripped. Each of the remaining URIs (if any) from tbete setincluding all URI parametersjusT be

placed into &Route header field into the request, in order.

A TU sHouLD follow the rules just mentioned to build tiRequest-URI of the request, regardless of
whether the UA uses an outbound proxy server or not. However, in some instances, a UA may not be willing
or capable of sending the request to the top element irotite set One example is a UA that is not capable
of DNS, and therefore may not be able to follow those procedures. In these cases, kherUfend the
request to a local outbound server. In this casapisT NOT remove the togroute header.

In dialogs created by aiNVITE, if the UA is the caller, it sets thRequest-URI to the same value it used for
the initial request, and sends it to its local outbound server.
Bug#161: Which Request-URI does the callee use?

A UAC sHouLD include aContact header in any route refresh requests within a dialog, and unless
there is a need to change it, the UslouLD be the same as used in previous requests within the dialog. As
discussed in Section 12.2.2Cantact header in a route refresh request updates the route set. This allows a
UA to provide a new contact address, should its address change during the duration of the dialog.

However, requests that are not route refresh requests do not affectitbesetfor the dialog.

Once the request has been constructed, the address of the server is computed and the request is sent,
using the same procedures for requests outside of a dialog (Section 8.1.1).

12.2.1.2 Processing the Response3he UAC will receive responses to the request from the transaction
layer.

Various Authors Expires April 2002 [Page 44]

1695
1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706
1707
1708
1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727
1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if
the request would have been sent outside a dialog. This behavior is described in Section 13.2.2.

Note however that when the UAC tries alternative locations it still usesotlte setfor the dialog to build the
Route header of the request.

If a UAC has aroute seffor a dialog, and receives a 2xx response to a route refresh it se@ptitact
header field of the response is examined. If not presentptiie seremains unchanged. If the response had
a Contact header field, and the boolean variable CONTASET is false, the URI in th€ontact header
field in the response is added to the bottom ofrthde setand CONTACTSET is set to true. If the route
refresh request response ha@eantact header field, and CONTACSET is true, the URI in th€ontact
header field of the response to the route refresh request replaces the bottom valueltetket If a route
refresh request is responded with a non-2xx final responsmtie setremains unchanged as if no route

refresh request had been issued.

If the response for the a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408
(Request Timeout) the UAGHOULD terminate the dialog. A UAGHOULD also terminate a dialog if no
response at all is received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs terminating the dialog consists of sendiBY&.

12.2.2 UAS behavior

The UAS will receive the request from the transaction layer. If the request has a tagim lleader field,

the UAS core computes the dialog identifier corresponding to the request and compares it with existing
dialogs. If there is a match, this is a mid-dialog request. In that case, the same processing rules for requests
outside of a dialog, discussed in Section 8.2, are applied by the UAS once the request is received from the
transaction layer.

If the request has a tag in tfie header field but the dialog identifier does not match any of the existing
dialogs, the UAS may have crashed and restarted, or may have received a request for a different (possibly
failed) UAS. The UASvAY either accept or reject the request. Accepting the request provides robustness, so
that dialogs can persist even through crashes. UAs wishing to support this capability must choose monoton-
ically increasingCSeq sequence numbers even across reboots. This is because subsequent requests from
the crashed-and-rebooted UA towards the other UA need to h&@®eg sequence number higher than
previous requests in that direction.

Note also that the crashed-and-rebooted UA will have lostRoyte headers which would need to be
inserted into a subsequent request. Therefore, it is possible that the requests may not be properly forwarded
by proxies.

RTP media agents allowing restarts need to be robust by accepting out-of-range timestamps and sequence num-
bers.

If the UAS wishes to reject the request, because it does not wish to recreate the dialogt itespond
to the request with a 481 (Call/Transaction Does Not exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (e.g., an
OPTIONS request). They are processed as if they had been received outside the dialog.

Requests within a dialogAy containRecord-Route and Contact header fields. However, requests
that are not route refresh requests do not updateotite setfor the dialog. This specification only defines
one route refresh request: IVITE (see Section 14).

Special rules apply when updat&dcord-Route or Contact header fields are received inside a route
refresh request. If a UAS hagaute seffor a dialog, and receives a route refresh for that dialog containing

Various Authors Expires April 2002 [Page 45]

1739

1740

1741

1742

1743

1744
1745
1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Record-Route header fields, imusT copy those header fields into any 2xx response to that request. If the
boolean variable CONTACBET is true, theContact header field in the request (if present) replaces the
last entry in theoute set If the boolean variable CONTACSEET is false, the UAMUST add the URI in the
Contact header field in the route refresh request to the bottom afoiliee setand then set CONTACBET

to true. If the request did not contairContact header field, the route-set at the UAS remains unchanged.

Route refresh requests only update @entact of the route setand not the elements formed froRecord-
Route. Updating the latter would introduce severe backwards compatibility problems with RFC 2543 compliant
systems.

If the remote sequence number is emptyitsT be set to the value of the sequence number iCheq
header in the request. If the remote sequence number was not empty, but the sequence number of the request
is lower than the remote sequence number, the request is out of orderumTtdbe rejected with a 500
response. If the remote sequence number was not empty, and the sequence number of the request is greater
than the remote sequence number, the request is in order. It is possible @Bdigeheader to be higher
than the remote sequence number by more than one. This is not an error condition, andadIA® be
prepared to receive and process requests @8hq values more than one higher than the previous received
request. The UASMUST then set the remote sequence number to the value of the sequence number in the
Cseq header in the request.

12.3 Termination of a Dialog

Dialogs can end in several different ways, depending on the method. When a dialog is established with
INVITE, itis terminated with 8YE. No other means to terminate a dialog are described in this specification,
but extensions can define other ways.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates
anINVITE request. ThéNVITE request asks a server to establish a session. This request is forwarded by
proxies, eventually arriving at one or more UAS which can potentially accept the invitation. These UAS’s
will frequently need to query the user about whether to accept the invitation. After some time, those UAS can
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx,4xx,5xx or 6xx response is sent, depending on the reason for the rejection. Before
sending a final response, the UAS can also send a provisional response (1xx), either reliably or unreliably,
to advise the UAC of progress in contacting the called user.

After possibly receiving one or more provisional responses, the UA will get one or more 2xx responses or
one non-2xx final response. Because of the protracted amount of time it can take to receive final responses
to INVITE, the reliability mechanisms faNVITE transactions differ from those of other requests (like
OPTIONS). Once it receives a final response, the UAC needs sendiCih for every final response it
receives. The procedure for sending thiSK depends on the type of response. For final responses between
300 and 699, th&CK processing is done in the transaction layer, and follows one set of rules (See Section
17). For 2xx responses, t#eCK is generated by the UAC core.

A 2xx response to aiNVITE establishes a session, and it also creates a dialog between the UA that
issued théNVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are

Various Authors Expires April 2002 [Page 46]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1779 received from different remote UAs (because IR¥ITE forked), each 2xx establishes a different dialog.
170 All these dialogs are part of the same call.
1781 This section provides details on the establishment of a session INSHFE.

w2 13.2 Caller Processing
1783 13.2.1 Creating the Initial INVITE

1782 Since the initiaINVITE represents a request outside of a dialog, its construction follows the procedures of
175 Section 8.1.1. Additional processing is required for the specific caBe\iTE.

1786 An Allow header field (Section 22.5H0OULD be present in théNVITE. It indicates what methods can

1787 be invoked within a dialog, on the UA sending tieVITE, for the duration of the dialog. For example, a

1788 UA capable of receivindNFO requests within a dialog [2ZHouULD include anAllow header listing the

179 INFO method.

1790 A Supported header field (Section 22.3BHoOULD be present in théNVITE. It enumerates all the

1791 extensions understood by the UAC.

1792 An Accept (Section 22.1) header fieMay be present in thitNVITE. It indicates which content-types

1793 are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
1794 dialogs established by tHBVITE. TheAccept header is especially useful for indicating support of various
1795 Session description formats.

1796 The UAMAY add anExpires header field (Section 22.19) to limit the validity of the invitation. If the

1797 time indicated in théexpires header field is reached and no final answer forlléITE has been received

1798 the UAC coresHOULD generate £ANCEL request for the origindNVITE.

1799 A UAC mAY also find useful to add, among othe&ybject (Section 22.36)Qrganization (Section

100 22.24) andJser-Agent (Section 22.41) header fields. They all contain information related tiNMETE.

1801 The UACMAY choose to add a message body tolMITE. Section 8.1.1.9 deals with how to construct
1802 the header fields=ontent-Type among others- needed to describe the message body.
1803 There are special rules for message bodies that contain a session description - their corresponding

1804 Content-Disposition is “session”. SIP uses an offer/answer model where one UA sends a session de-
1805 Scription, called the offer, which contains a proposed description of the session. The offer indicates the
1806 desired communications means (audio, video, games), parameters of those means (such as codec types) and
1807 addresses for receiving media from the answerer. The other UA responds with another session description,
1808 called the answer, which indicates which communications means are accepted, the parameters which apply
1800 t0 those means, and addresses for receiving media from the offerer. The offer/answer model can be mapped
1810 into theINVITE transaction in two ways. The first, which is the most intuitive, is thalfh& TE contains

1811 the offer, the 2xx response contains the answer, and no session description is providetiGi the this

1812 Model, the UAC is the offerer, and the UAS is the answerer. A second model is thiMHEE contains no

1813 Session description, the 2xx response contains the offer, adKecontains the answer. In this model, the

114 UAS is the offerer, and the UAC is the answerer. The second model is useful for gateways from H.323v1
1815 to SIP, where the H.323 media characteristics are not known until the call is established. This is also useful
1816 for sessions that use third-party call control. As a result of these models, INYH& E contains a session

1817 description, thédCK MUST NOT contain one. Conversely, if the caller chooses to omit the session descrip-

1818 tion in theINVITE, the ACK MUST contain one (if a 2xx response is received). 2xx responses|i\dil E

1819 MUST always contain a session description. All user agents that sUppoIitE musT support both models.

1820 The Session Description Protocol (SDP) §8)sT be supported by all user agents as a means to describe

121 Sessions, and its usage for construction offers and answess follow the procedures defined in [23].

Various Authors Expires April 2002 [Page 47]

1822
1823
1824
1825
1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Note that the restrictions of the offer-answer model (session description only iNYH&E OR in
the ACK, but not in both) just described only apply to bodies wh@smtent-Disposition header field
is “session”. Therefore, it is possible that both INVITE and theACK contain a body message (e.g.,
the INVITE carries a photoGontent-Disposition: render) and thé\CK a session descriptiorContent-
Disposition: session)).

If the Content-Disposition header field is missing, bodies G6bntent-Type application/sdp imply the
disposition “session”, while other content types imply “render”.

Once thdNVITE has been created, the UAC follows the procedures defined for sending requests outside
of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
request and deliver responses to the UAC.

If a UA A sends alNVITE request taB and receives alNVITE request fromB before it has received
the response to its request fra) A MAY return a 500 (Internal Server Error), whishkiouLD include a
Retry- After header field specifying when the request should be resubmitted.

13.2.2 ProcessingNVITE Responses

Once thedNVITE has been passed to th¢VITE client trasaction, the UAC waits for responses for liRe
VITE. Responses are matched to their corresponiiNMiTE because they have the saf@all-ID, the same
From header field, the san® header field, excluding the tag, and the sa$eq. Rules for comparisons
of these headers are described in Section 22.

13.2.2.1 1xx responses Zero, one or multiple provisional responses may arrive before one or more
final responses are received. Provisional responses ftIN\AITE request can create “early dialogs”. If a
provisional response has a tag in ffeefield, and if the dialog ID of the response does not match an existing
dialog, one is constructed using the procedures defined in Section 12.1.2.

The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog be-
fore the initialINVITE transaction completes. Header fields present in a provisional response are applicable
as long as the dialog is in the early state (e.g.AHow header field in a provisional response contains the
methods that can be used in the dialog while this is in the early state).

13.2.2.2 3xxresponses A 3xx response may containGontact header field providing new addresses
where the callee might be reachable. Depending on the status code of the 3xx response (see Section 23.3)
the UACMAY choose to try those new addresses.

13.2.2.3 4xx, 5xx and 6xx responses A single non-2xx final response may be received forltte
VITE. 4xx, 5xx and 6xx responses may contai@a@ntact header field indicating the location where addi-
tional information about the error can be found.

All early dialogs are considered terminated upon reception of the non-2xx final response.

After having received the non-2xx final response the UAC core considers the INVITE transaction com-
pleted. TheNVITE client transaction handles generationA@Ks for the response (see Section 17).

13.2.2.4 2xx responses Multiple 2xx responses may arrive at the UAC for a sindi&/ITE request
due to a forking proxy. Each response is distinguished bya@arameter in thdo header field, and each
represents a distinct dialog, with a distinct dialog identifier.

Various Authors Expires April 2002 [Page 48]

1860

1861

1862

1863

1864
1865
1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892
1893
1894
1895

1896
1897
1898

1899

1900

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
MUST be transitioned to the “confirmed” state, and the route set for the dialsy be recomputed based
on the 2xx response using the procedures of Section 12.1.2. Otherwise, a new dialog in the “confirmed
state is constructed in the same fashion.

The route set only is recomputed for backwards compatibility. RFC 2543 did not mandate mirrdRegatl-
Route headers in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog
requests may have been sent within the early call leg, modifying the sequence numbers, for example.

The UAC coremusT generate a\CK request for each 2xx received from the transaction layer. The
header fields of thACK are constructed in the same way as for any request sent within a dialog (see Section
12) with the exception of th€Seq. The sequence number of tlSeq header fieldMusT be the same as
the INVITE being acknowledged, but tf@Seq methodmusT be ACK. If the INVITE did not contain an
offer, the 2xx will contain one, and therefore tAEK MUST carry an answer in its body.

Once theACK has been constructed, the procedures of [8] are used to determine the destination address,
port and transportHowever, the request is passed to the transport layer directly for transmission, rather than
a client transaction. This is because the UAC core handles retransmissionsA@fKhaot the transaction
layer. TheACK MUST be passed to the client transport every time a retransmission of the 2xx final response
that triggered théCK arrives.

The UAC core considers thH&lVITE transaction completed 64*T1 seconds after the reception of the
first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are
terminated. Once th&NVITE transaction is considered completed by the UAC core, no more new 2xx
responses are expected to arrive.

If, after acknowledging any 2xx response tol&lVITE, the caller does not want to continue with that
dialog, then the callemusT terminate the dialog by sendind®E request as described in Section 15.

13.3 Callee Processing
13.3.1 Processing of the INVITE

The UAS core will receivéNVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the
additional processing steps:

1. If the request is atNVITE that contains afExpires header field the UAS core inspects this header
field. If the INVITE has already expired a 487 resporsseULD be generated. In any case, if the
INVITE expires before the UAS has generated a final response a 487 respansed be generated.

2. Ifthe request has no tag in tfie the UAS core checks ongoing transactions. IftagFrom, Call-ID,
CSeq exactly match (including tags) those of any request received previously, but the branch-ID in
the topmosWia is different from those received previously, the UAS cereOULD generate a 482
(Loop detected) response and pass it to the server transaction.

The same request that was generated by the UAC has arrived to the UAS more than once following different
paths. The UAS processes the request that was received first and responds with 482 (Loop detected) to the rest
of them.

If no match is found, the request does not belong to any existing dialog. If the requesN¥ I3k
the UAS core follows the procedures described in this section.

Various Authors Expires April 2002 [Page 49]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1901 3. If the request is a mid-dialog request, the method-independent processing described in Section 12.2.2
1902 is first applied. It might also modify the session; Section 14 provides details.

1903 4. If the request has a tag in the header field but the dialog identifier does not match any of the existing

1904 dialogs, the UAS may have crashed and restarted, or may have received a request for a different
1905 (possibly failed) UAS. Section 12.2.2 provides guidelines to achieve a robust behaviour under such a
1906 situation.

1907 Processing from here forward assumes thatRNETE is outside of a dialog, and is thus for the purposes

1908 Of establishing a new session.

1909 TheINVITE may contain a session description, in which case the UAS is being presented with an offer

1910 for that session. It is possible that the user is already a participant in that session, even thoNyhTRe

1011 IS outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
1912 Other participants. If desired, the UA®AY use identifiers within the session description to detect this

1913 duplication. For example, SDP contains a session id and version number in the oyifieid. If the user

1914 IS already a member of the session and the session parameters contained in the session description have not
115 changed, the UASIAY silently accept théNVITE (i.e., send a 2xx response without prompting the user).

1916 The INVITE may not contain a session description at all, in which case the UAS is being asked to
1917 participate in a session, but the UAC has asked that the UAS provide the offer of the session.
1918 The callee can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formu-

1919 lates a response using the procedures described in Section 8.2.7.

1920 13.3.1.1 Progess The UAS may not be able to answer the invitation immediately, and might choose

1921 to indicate some kind of progress to the caller (for example, an indication that a phone is ringing). This is
1922 accomplished with a provisional response between 101 and 199. These provisional responses establish early
1923 dialogs and therefore follow the procedures of Section 12.1.1 in addition to those of Section 8.2.7. A UAS
1924 MAY send as many provisional responses as it likes. Each of thesg indicate the same dialog ID. SIP,

1925 however, does not guarantee that these provisional responses are reliably delivered to the UAC.

126 13.3.1.2 The INVITE is redirected If the UAS decides to redirect the call, a 3xx response is sent. A
1927 300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) resgHeeLD contain

1928 aContact header field containing URIs of new addresses to be tried. The response is passeNWTEe

1920 Server transaction, which will deal with its retransmissions.

130 13.3.1.3 The INVITE is rejected A common scenario occurs when the callee is currently not willing

1931 Or able to take additional calls at this end system. A 486 (Busy HereJLD be returned in such scenario.

1032 If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response
1933 SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
1931 this response will not usually be used. The response is passedIMMHEE server transaction, which will

1935 deal with its retransmissions.

1936 13.3.1.4 The INVITE is accepted The UAS core generates a 2xx response. This response establishes
1937 a dialog, and therefore follows the procedures of Section 12.1.1 in addition to those of Section 8.2.7.

Various Authors Expires April 2002 [Page 50]

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950
1951
1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

A 2xx response to alNVITE sHouLD contain theAllow header field and th8upported header field,
andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
features and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, the 2w sT contain an answer. If tH&lVITE did not contain
an offer, the 2xxMuUST contain an offer.

Once the response has been constructed it is passedMMHEE server transaction.Note, however, that
the INVITE server transaction will be destroyed as soon as it receives this final response. Therefore, it is
necessary to pass periodically the response to the transport uiiCarrives. The 2xx response is passed
to the transport with an interval that starts at T1 seconds and doubles for each retransmission until it reaches
T2 seconds (T1 and T2 are defined in Section R8sponse retransmissions cease whef\@ request is
received with the same dialog ID as the response. This is independent of whatever transport protocols are
used to send the response.

Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC which are UDP. To ensure
reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is
reliable.

If the server retransmits the 2xx response for 64*T1 seconds without receiviiGlanit considers the
dialog completed, the session terminated, and therefeteduLD send éBYE.

14 Modifying an Existing Session

A successfullNVITE request (see Section 13) establishes both a dialog between two user agents and a
session (using the offer/answer model). Section 12 explains how to modify an existing dialog using a route
refresh request (e.g., changing toete setof the dialog). This section describes how to modify the actual
session. This modification can involve changing addresses or ports, adding a media stream, deleting a media
stream, and so on. This is accomplished by sending alN&ATE request within the same dialog that
established the session. AMVITE request sent within an existing dialog is known as NI TE.

Note that a single réNVITE can modify at the same time the dialog and the parameters of the session.

Either the caller or callee can modify an existing session.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptidN&/ITEs (Section 13.2.1) applies to
redINVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that itNMITE request to its peer. It is important to note that the
full description of the session, not just the change, is sent. This maintains the idempotency of SIP, supports
stateless session processing in various elements, and supports failover and recovery capabilities. Of course,
a UACMAY send a rdNVITE with no session description, in which case the response to théfig-E will
contain the offer.

If the session description format has the capability for version numbers, the dffecerLb indicate
that the version of the session description has changed.

TheTo, From, Call-ID, CSeq, andRequest-URI of a reINVITE are set following the same rules as
for regular requests within an existing dialog, described in Section 12.

Various Authors Expires April 2002 [Page 51]

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997
1998
1999
2000
2001

2002

2003

2004

2005
2006
2007
2008

2009
2010
2011

2012

2013

2014

2015

2016

2017

2018

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Note that, as opposed to inititNVITESs (see Section 13), iNVITES contain tags in th@o header
field and are sent using theute setfor the dialog. Therefore, a single final (2xx or non-2xx) response is
received for reNVITEs.

Note that a UAQWUST NOT initiate a newINVITE transaction within a dialog while another transaction
(INVITE or nonINVITE) is in progress. However, a URAY initiate a regular transaction within an early
dialog - while anINVITE transaction is in progress.

If a reINVITE is responded with a non-2xx final response the session paranveisrsremain un-
changed, as if no riNVITE had been issued. Note that, as stated in Section 12.2.1.2, if the non-2xx final
response is a 481 (Call/Transaction Does Not Exist) or a 408 (Request Timeout) or no response at all is
received for the réNVITE the UAC will terminate the dialog.

The rules for transmitting a NVITE and for generating aACK for a 2xx response to riNVITE are
the same as for aflNVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the steps to follow in order to distinguish incomiigid-Es from incoming
initial INVITEs. This Section describes the procedures to follow upon reception ofNMIGE for an
existing dialog.

A UAS that receives a secontlVITE before it sent the final response to a fildWITE with a lower
CSeq sequence number on the same dialogsT return a 500 response to the secdNYITE andMusT
include aRetry-After header field with a randomly chosen value of between 0 and 10 seconds. Similarly,
a UAS the receives afNVITE on a dialog while adNVITE it had sent on that dialog is in progregs/sT
return a 500 response to the receis¥YITE andMusT include aRetry-After header field with a randomly

chosen value of between 0 and 10 seconds.

If a user agent receives a IVITE for an existing dialog iMusT check any version identifiers in the
session description or, if there are no version identifiers, the content of the session description to see if it has
changed. If the session description has changed, the user agentvsgsieadjust the session parameters
accordingly, possibly after asking the user for confirmation.

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media or change from a unicast to a multicast conference.
If a UAS generates a 2xx response and never receiveC#n it SHOULD generate 8YE to terminate

the dialog.

A UAS providing an offer in a 2xx (because theVITE did not contain an offerMusT offer the same
session description as last provided to the peer, with the exception of being able to change the IP address/port
if so desired.

Under error conditions (e.g., the UAS has crashed and restarted) the session description in the 2xx response for
an empty reNVITE may be different than the one in use at that moment. If the new session description is not
acceptable for the UAC sHouLD then send 8YE (after ACKing the 2xx response).

15 Terminating a Session

This section describes the procedures to be followed in order to terminate a SIP dialog. For two-party
sessions that are otherwise unbound in time the termination of the dialog implies the termination of the
session. Other types of sessions such as multicast sessions are not terminated when a participant terminates
the SIP dialog that he used to join the session. However, the SIP dialogLD be terminated even

though its termination does not imply the termination of the session. A UA joining a multicast segsion
terminate the SIP dialog immediately after iINVITE transaction used to join the session has completed.

Various Authors Expires April 2002 [Page 52]

2019
2020

2021

2022

2023

2024
2025
2026
2027
2028
2029
2030

2031
2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043
2044
2045
2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Either the caller or callee may terminate a dialog for any reason. A caller terminates a dialog either with
BYE of CANCEL depending on the state of the dialog. A callee IBB¥E to terminate a confirmed dialog.

Note that if the callee wants to terminate an early dialog it just returns a non-2xx final responselfov FE.

Sections 13 and 12 document some cases where dialog termination is normative behavior. As a general
rule, if a UA decides that the dialog is to be terminatedyitsT follow the procedures here to initiate

signaling action to convey that.

When a UAC sends aNVITE request to create a session, if a 1xx response with a tag ifotfield
is received, an early dialog is created. When a 2xx response is received, the dialog becomes confirmed.
For either state of the dialog, if the UAC desires to terminate the session, thesdAOLD follow the
procedures described in Section 15.1.1 to terminate the session. If the callee for a new session wishes to
terminate the dialog, it uses the procedures of Section 15.1.umst NOT do so until it has receive an
ACK or until the server transaction times out.

This does not mean a user can’'t hang up right away; it just means that the software in their phone needs to
maintain state for a short while in order to properly clean up.

OPEN ISSUE #202: Is this the right solution.

If the UAC desires to end the session before any type of dialog has been createduitd send a
CANCEL for the INVITE request that requested establishment of the session that is to be terminated. The
UAC constructs and sends t@ANCEL following the procedures described in Section 9. TBANCEL
will normally result in a 487 response to be returned to HK¥ITE, indicating successful cancellation.
However, it is possible that tHeANCEL and a 2xx response to theVITE “pass on the wire”. In this case,
the UAC will receive a 2xx to théNVITE. It sHouLD then terminate the call by following the procedures
described in Section 15.1.1.

15.1 Terminating a Dialog with a BYE

15.1.1 UAC Behavior

A user agent client usd®YE request, sent within a dialog, to indicate to the server that it wishes to terminate
the session. This will also terminate the dialogBXE requestMAY be issued by either caller or callee. A
BYE requestsHOULD NOT be sent before the creation of a dialog (either early or confirmed). In that case
the UAC sHouLD follow the procedures described in Section 9 instead.

Proxies ensure that @ANCEL request is routed in the same way as IN¥ITE was. However, a proxy
performing load balancing may routéB¥ E without aRoute header field in a different way than théVITE, since
both requests have differe@Seq sequence numbers.
The To, From, Call-ID, CSeq, andRequest-URI of a BYE are set following the same rules as for
regular requests sent within a dialog, described in Section 12.
Once theBYE is constructed, it creates a new niNVITE client transaction, and passes it tR¥E
request. The user ageaHOULD stop sending media as soon as B¥E request is passed to the client
transaction.

15.1.2 UAS Behavior

A UAS core receiving eBYE request checks to see if it matches an existing dialog. IfBM& does
not match an existing dialog, the UAS caselouLD generate a 481 response and pass that to the server
transaction.

A UAS core receiving 8BYE request for an existing dialogusT follow the procedures of Section
12.2.2 to process the request. Once done, the MAST cease transmitting media streams for the session

Various Authors Expires April 2002 [Page 53]

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

being terminated. The UAS comeusT generate a 2xx response to tB¥E, andMusT pass that to the
server transaction for transmission.

The UASMuUST still respond to any pending requests received for that dialog, (which can only be an
INVITE). It is RECOMMENDED that a 487 (Request Terminated) response is generated to those pending
requests.

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

It is important to note that being a proxy is a logical role for a SIP element. When a request arrives, an
element that can play the role of a proxy must first decide if it needs to respond to the request on its own.
For instance, the request could be malformed or the element may need credentials from the client before
acting as a proxy. The elememiy respond with any appropriate error code. When responding directly to
a request, the element is playing the role of a UAS mngT behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request.

When stateless, a proxy acts as a simple forwarding element. It forwards each request downstream to
a single element determined by making a routing decision based on the request. It simply forwards every
response it receives upstream. A stateless proxy discards information about a message once it has been
forwarded.

On the other hand, a stateful proxy remembers information (specifically, transaction state) about each
incoming request and any requests it sends as a result of processing the incoming request. It uses this
information to affect the processing of future messages associated with that request. A statefulgyroxy
chose to “fork” a request, routing it to multiple destinations. Any request that is forwarded to more than
one locatiormMusT be handled statefully. Any request processed using TCP (or any other mechanism that is
inherently stateful)MusT be handled statefully.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those
places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms
of the Server and Client Transactions defined in Section 17. A stateful proxy has a server transaction
associated with one or more client transactions by a higher layer proxy processing component (see figure 3),
known as a proxy core. An incoming request is processed by a server transaction. Requests from the server
transaction are passed to a proxy core. The proxy core determines where to route the request, choosing
one or more next-hop locations. An outgoing request for each next-hop location is processed by its own
associated client transaction. The proxy core collects the responses from the client transactions and uses
them to send responses to the server transaction.

A stateful proxy creates a new server transaction for each new request received. Any retransmissions of

Various Authors Expires April 2002 [Page 54]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

200 the request will then be handled by that server transaction per Section 17.
2102 Note that this is a model of proxy behavior, not of software. An implementation is free to take any
2103 @pproach that replicates the external behavior this model defines.

=
Q
©
? proxy "higher" 2
< layer 2
<'_l?i (]
=
Q
©
Figure 3: Stateful Proxy Model
2104 For all new requests, including any with unknown methods, an element intending to proxy the request

2105 MUST!

. Validate the request (Section 16.3)

2106 1

2107 2. Make a routing decision (Section 16.4)

2108 3. Forward the request to each chosen destination (Section 16.5)
4

2109 . Process all responses (Section 16.6)

a0 16.3 Request Validation

a1 Before an element can proxy a requestviitsT verify the message’s validity. A valid message must pass
2112 the following checks:

2113 1. Reasonable Syntax

Various Authors Expires April 2002 [Page 55]

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

(621

Max-Forwards
Loop Detection
Proxy-Require

Proxy-Authorization

If any of these checks fall, the elememtST behave as a user agent server (see Section 8.2) and respond

1.

with an error code.

Reasonable Syntax check

The requestusT be well-formed enough to be handled with a server transaction. Any components
involved in the remainder of these Request Validation steps or the Request Processingvsegstion

be well-formed. Any other components, well-formed or re#ouULD be ignored. For instance, an
elementsHOULD NOTreject a request because of a malfornede header field.

This protocol is designed to be extended. Future extensions may define new methods and header fields
at any time. An elememiusT NOT refuse to proxy a request because it contains a method or header
field it does not know about.

. Max-Forwards check

The Max-Forwards header (Section 22.22) is used to limit the number of elements a SIP request can
traverse.

If the request does not contairMax-Forwards header field, this check is passed.

If the request containsMax-Forwards header field with a field value greater than zero, the check is
passed.

If the request containsMax-Forwards header field with a field value of zero (0), the elemenisT
NoT forward the request. If the request was@PTIONS, the elementiAy act as the final recipient
and respond per Section 11. Otherwise, the elemerstt return a 483 (Too many hops) response.

. Loop Detection check

An elementmusT check for forwarding loops before forwarding a request. If the request contains a
Via header field value with A sent-by value that equals a value placed into previous requests by the
proxy, the request has been forwarded by this element before. The request has either looped or is
legitimately spiraling through the element. To determine if the request has looped, the elersent
perform thebranch parameter calculation described in Section 3 on this message and compare it to
the parameter received in thdta field value. If the parameters match, the request has looped. If
they differ, the request is spiraling, and processing continues. If a loop is detected, the elersent

return a 482 (Loop Detected) response.

An elementMusT NOT forward a request to a multicast group which already appears in any of the
Via headers.
Proxy-Require check

Future extensions to this protocol may introduce features that require special handling by proxies.
Endpoints will include &roxy-Require header in requests that use these features, telling the proxy
it should not process the request unless the feature is understood.

Various Authors Expires April 2002 [Page 56]

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179
2180
2181

2182

2183

2184

2185

2186
2187
2188

2189

2190

2191

2192

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

If the request contains Broxy-Require header (Section 22.28) with one or more option-tags this
element does not understand, the elemens T return a 420 (Bad Extension) response. The response
MUST include anUnsupported (Section 22.40) header field listing those option-tags the element did
not understand.

5. Proxy-Authorization check

If an element requires credentials before forwarding a request, the raequestbe inspected as
described in Section 20.2.3. That section also defines what the element must do if the inspection fails.

16.4 Making a Routing Decision

At this point, the proxy must decide where to forward the request. This can be modeled as computing a set
of destinations for the request. This set will either be predetermined by the contents of the request or will
be obtained from an abstract location service. Each destination is represented as a URI and an optional IP
address, port and transport. This combination is referred to as a “next-hop location”.

First, the proxy core checks the received requestNoute headers. If anyRoute header fields are
present in the request, the elemenisTt use the URI (including all of its parameters) from the topmost
Route header field as only next hop URI in the destination set, with no IP address, port and transport set for
that next hop. The destination set is complete, contaioimyg this URI, and the proxyusT proceed to the
Request Processing of Section 16.5.

TheRoute mechanism is used to control the path a request takes through SIP elements, much like strict
IP source routing. The UAC will inseRoute header fields (see Section 12), usually based on information
provided by proxies througRecord-Route header fields (see Section 6).

Assuming there were nRoute headers in the received request, the proxy checkRéwpiest-URI of
the received request. If it has an maddr parameter, and that parameter does not indicate an interface the
proxy is listening on, th&equest-URI MUSsT be placed into the destination set as the only next hop URI,
with no IP address, port and transport set for that next hop, and the progy proceed to Section 16.5.

If the maddr parameter was present, but did indicate an interface the proxy is listening on, thepsaxy
strip the maddr and continue processing as if no maddr were present.

OPEN ISSUE #213: Do we strip just the maddr, or the port and transport as well?

OPEN ISSUE #218: Are we really sure this ordering of preceden&oatfe, maddr, and domain is correct??
Itis not yet clear. This needs resolution asap finally, since it affects things like loose source routing, outbound proxy
processing at a UA, and so on.

If the domain of theRequest-URI indicates a domain this element is not responsible fer@®ULD set
the next hop URI to th&®equest-URI, and leave the IP address, port and transport of the next hop empty.
That next hopsiusT be placed into the destination set as the only next hop, and the elemasmtproceed
to the task of Request Processing (Section 16.5.
There are many circumstances in which a proxy might receive a request for a domain it is not responsible for.

A firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

If the destination set for the request has not been predetermined as described above, this implies that the
element is responsible for the domain in RRequest-URI, and the elementiAy use whatever mechanism
it desires to determine where to send the request. Any of these mechanisms can be modeled as accessing
an abstract Location Service. This may consist of obtaining information from a location service created

Various Authors Expires April 2002 [Page 57]

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211
2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

by a SIP Registrar, reading a database, consulting a presence server, utilizing other protocols, or simply
performing an algorithmic substitution on tiRequest-URI. The output of these mechanisms is used to
construct the destination set.

Any information in or about the request or the current environment of the elewrente used in the
construction of the destination set. For instance, different sets may be constructed depending contents or
presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential destinations are located through these services, their next hops are added to the destination
set. Next-hop locations may only be placed in the destination set once. If a next-hop location is already
present in the set (based on the definition of equality for the URI type and equality of the optional parame-
ters), itMUST NOT be added again.

A proxy MAY continue to add destinations to the set after beginning Request Processing.Use any
information obtained during that processing to determine new locations. For instance, a proxy may choose
to incorporate contacts obtained in a redirect response (3xx class) into the destination set. If a proxy uses a
dynamic source of information while building the destination set (for instance, if it consults a SIP Registrar),
it SHouLD monitor that source for the duration of processing the request. New locatitmsLD be added
to the destination set as they become available. As above, any givemUl NOT be added to the set
more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incor-
porating contacts from redirect requests prevents infinite recursion.

An example trivial location service is achieved by configuring an element with a default outbound des-
tination. All requests are forwarded to this location. TRequest-URI of the request is placed in the
destination set with the optional next-hop IP address, port and transport parameters set to the default out-
bound destination. The destination set is complete, contamihgthis URI, and the element proceeds to
the task of Request Processing.

If the Request-URI indicates a resource at this proxy that does not exist, the pnagr return a 404
(Not Found) response.

If the destination set remains empty after applying all of the above, the pnapgr return an error
response, whicsHOULD be the 480 (Temporarily Unavailable) response.

16.5 Request Processing

As soon as the destination set is non-empty, a pmxy begin forwarding the request. A stateful proxy

MAY process the set in any orderMay process multiple destinations serially, allowing each client transac-
tion to complete before starting the nextmiay start client transactions with every destination in parallel. It
alsoMAY arbitrarily divide the set into groups, processing the groups serially and processing the destinations
in each group in parallel.

A common ordering mechanism is to use the qvalue parameter of destinations obtained from Contact
header fields (see Section 22.10). Destinations are processed from highest gvalue to lowest. Destinations
with equal gvalues may be processed in parallel.

A stateful proxy must have a mechanism to maintain the destination set as responses are received and
associate the responses to each forwarded request with the original request. For the purposes of this model,
this mechanism is a “response context” created by the proxy layer before forwarding the first request.

For each destination, the proxy forwards the request following these steps:

Various Authors Expires April 2002 [Page 58]

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249
2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

1
2
3
4,
5
6
7
8

. Make a copy of the received request

. Update the Request-URI

. Add a Via header field value

Update the Max-Forwards field if present

. Update the Route header field if present

. Optionally add a Record-route header field value
. Optionally add additional headers

. send the new request

Each of these steps is detailed below:

1

. Copy request

The proxy starts with a copy of the received request. The sopgT initially contain all of the header

fields from the received request. Only those fields detailed in the processing described below may be
removed. The copgHOULD maintain the ordering of the header fields as in the received request. The
proxy MUST NOT reorder field values with a common field name (See Section 7.3.1).

An actual implementation need not perform a copy; the primary requirement is that the processing of each
next hop begin with the same request.

. Request-URI

TheRequest-URI in the copy’s start linemusT be replaced with the URI for this destination. If the
URI contains any parameters not allowed in a Request-URI, theyT be removed.

This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
toward its destination.

. Via
The proxymusT insert aVia header field into the copy before the existWig header fields. Th¥ia
header maddr, ttl, and sent-by components will be set when the request is processed by the transport

layer (Section 19). Th¥ia headers ensure that responses will follow the same set of elements that
the request traversed.

The proxymusT include a branch” parameter (Section 22.42) in th&a header. When the path of

a request through one or more forking proxies is graphed, the result is a tree. The branch parameter
identifies the “branch” each request was forwarded on.Brhach parameter valueusT be unique

for each client transaction to which the request is forwarded. The precise formatwétiwh. token

is implementation-defined. In order to be able to both detect loops and associate responses with the
corresponding request, the parametepuLD consist of two parts separable by the implementation.

The first part is used to detect loops and distinguish loops from spirals. The second is used to match
responses to requests.

Various Authors Expires April 2002 [Page 59]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2269 Loop detection is performed by verifying that those fields having an impact on the routing decision
2270 have not changed. The value placed in the this part obthach parameteisHouLD reflect all of

2271 those fields (which include arroxy-Require andProxy-Authorization headers). This is to ensure

2272 that if the request is routed back to the proxy, and one of those fields changes, it is treated as a spiral
2273 and not a loop (Section 3). A common way to create this value is to compute a cryptographic hash
2274 of theTo, From, Call-ID header fields, thRequest-URI of the request received (before translation)

2275 and the sequence number from tb8eq header field, in addition to arroxy-Require andProxy-

2276 Authorization fields that may be present. The algorithm used to compute the hash is implementation-
2277 dependent, but MD5 [24], expressed in hexadecimal, is a reasonable choice. (Note that base64 is not
2278 permissible for @oken.)

2279 In order to correctly match responses to requests (Section 17.1.3), thesvabwa D also contain a

2280 part that is a globally unique function of of the branch on which this request will be forwarded. One
2281 example is a hash of a sequence number, local IP addressa@uneist-URI of the request.

2282 For example7a83e5750418bce23d5106b4c06cc632.1

2283 The “branch” parametemusT depend on all information used for routing decisions, including the incom-

2284 ing request-URI and any header values affecting the routing choices. This is necessary to distinguish looped

2285 requests from requests whose routing parameters have changed before returning to this server.

2286 Note that the request methedusT NOT be included in the calculation of tHeranch parameter.

2287 In particular, CANCEL and ACK requestavusT have the sambranch value as the corresponding

2288 request they cancel or acknowledge. Tmanch parameter is used in correlating those requests at
2289 server handling them (see Section 17.2.3 and 9.2).

2290 4. Max-Forwards
2201 If the copy contains a Max-Forwards header field, the proxy must decrement its value by one (1).

2292 5. Route

2203 If the copy contains a Route header field, the proxy must remove the first (topmost) value. Note that
2294 this value was placed in the destination set and then int&Regpiest-URI of this copy in previous
2295 steps.

2296 6. Record-Route

2207 If this proxy wishes to request to remain on the path of future requests in this dialogsitinsert a

2298 Record-Route header value (Section refsec:record-route) into the copy before any eXkeouyd-

2299 Route header values. See Section 12 for details on whether this request will be honored. Each proxy
2300 in the path of a request makes this request independently - the presence of a Record-Route header
2301 does not obligate this proxy to add a value.

2302 If the request is honored, the information the proxy places irrtbeord-Route header value will be

2303 used at the endpoints to constrirtibute headers. As shown in the processing steps alRuete

2304 headers determine forwarding destinations much like strict IP source routing.

2305 The URI placed in th&kecord-Route header valuausT be a SIP URI. This URMAY be different

2306 for each destination the request is forwarded to. The 8/RYULD NOT contain the transport param-

2307 eter unless the proxy has knowledge (such as in a private network) that the next downstream element
2308 that will be in the path of subsequent requests supports that transport.

Various Authors Expires April 2002 [Page 60]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2309 The URI this proxy provides will be used by some other element to make a routing decision. This proxy, in

2310 general, has no way to know what the capabilities of that element are, so it must restrict itself to the mandatory

2311 elements of a SIP implementation: SIP URIs and UDP transports.

2312 The URI placed in théRecord-Route header valueiusT resolve to this element when the server

2313 location procedures of [8] are applied to it. This ensures subsequent requests are routed back to this
2314 element.

2315 The URI placed in thé&kecord-Route header valuesHouLD be such that if a subsequent request is

2316 received with this URI in th&®equest-URI, the proxy’s normal request processing will cause it to be

2317 forwarded to one of the previous elements, including the originating client, traversed by the original
2318 request. This improves robustness, ensuring thaRéguest-URI contains enough information to

2319 forward subsequent requests to a reasonable destination even in the abseogte dfeaders.

2320 The URI placed in th&Record-Route header valugusT vary with theRequest-URI in the received

2321 request. A request may legitimately pass through this proxy more than once on the way to its final
2322 destination (this is called a spiraling request). TRequest-URI will be different each time the

2323 request passes through. If this proxy places the same URI in the Record-Route header field each time,
2324 subsequent requests will be rejected as looped requests. It is insufficient to simply cBeygthesst-

2325 URI from each request into the Record-Route header. Some modification, such as adding an maddr
2326 parameter, is necessary.

2327 URIs satisfying the above paragraphs can be constructed in many ways. One way is to use a URI that
2328 is nearly the same as ti@ontact header in the initial request (if present, elsefhem field), but with

2329 the maddr and port set to resolve to the proxy, and with a transaction identifier added to the user part of
2330 the request-URI (in order to meet the requirement that the URI iR&eord-Route be different for

2331 each distincRequest-URI). A call stateful proxy could use a URI of the form sip:proxy.example.com

2332 and use information from the stored call state to meet the requirements.

2333 The proxyMmAY include Record-Route header parameters in the value it provides. These will be

2334 returned in some responses to the request (200 responiddgIE for example) and may be useful

2335 for pushing state into the message.

2336 The Record-Route process is designed to work for any SIP request that initiates a dialog. The only
2337 such request in this specificationlSVITE. Extensions to the protocolAy define others, and the

2338 mechanisms described here will apply. The request that initiates a dialog and all refredNB4 Tite-

2339 for example)MusT haveRecord-Route header values added to them if the proxy wishes to remain

2340 in the request path. This means a proxy will often need to record-route requests that Barissn

2341 headers. Section 12 describes how this will affect a dialog.

2342 Including Record-Route even when Route headers already exist in a request improves robustness in the

2343 presence of a preload&bute header field and recovery from endpoint failure.

2344 A proxy MAY insert a Record-Route header into any requelta proxy needs to be in the path of

2345 any type of dialog (such as one straddling a firewallsHouLD add aRecord-Route header value

2346 to every request with a method it does not understand since that method may have dialog semantics.
2347 Generally, the choice about whether to record-route or not is a tradeoff of features vs. performance.
2348 Faster request processing and higher scalability is achieved when proxies do not record route. How-
2349 ever, provision of certain services may require a proxy to observe all messages in a dialog. Itis

Various Authors Expires April 2002 [Page 61]

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369
2370
2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

RECOMMENDED that proxies do not automatically record route. They should do so only if specifi-
cally required.

7. Adding Additional Headers
The proxymAY add any other appropriate headers to the copy at this point.

8. Forward Request

A stateful proxy creates a new client transaction for this request as described in Section 17.1. If
the next-hop location used in building this request contains the optional addressing parameters, the
transaction is instructed to send the request based on those parameters. Otherwise, the proxy uses
the procedures of Section [8] to compute an ordered set of addresses freiteghest-URI, and

as described there, attempts to contact the first one by instructing the client transaction to send the
request there. If this fails, the stateful proxy continues down the list. Each attempt is a new client
transaction, and therefore represents a new branch, so that the processing described above for each
branch would need to be repeated. This results in a requirement to use a different branch ID parameter
for each attempt.

16.6 Response Processing

When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
ing the response. If none is found, the elemenisT process the response (even if it is an informational
response) as a stateless proxy (described below). If a match is found, the response is handed to the client
transaction.

Forwarding responses for which a client transaction (or more generally any knowledge of having sent an asso-
ciated request) is not found improves robustness. In particular, it ensures that “late” 2xx class responses to INVITE
requests are forwarded properly.

As client transactions pass responses to the proxy layer, the following processitgake place:
1. Find the appropriate response context

2. Remove the topmost Via

3. Add the response to the response context

4. Check to see if this response should be forwarded

The following processingnusT be performed on each response that is forwarded. Note that more than
one response to each request will likely be forwarded - each provisional and one final at the least.

1. Aggregate authorization header fields if necessary
2. Forward the response
3. Generate any necess®&@ANCEL requests

If no final response has been forwarded after every client transaction associated with the response context
has been terminated, the proxy must choose and forward the “best” response from those it has seen so far.
Each of the above steps are detailed below:

Various Authors Expires April 2002 [Page 62]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2385 1. Find Context

2386 The proxy locates the “response context” it created before forwarding the original request using the
2387 key described in Section 16.5. The remaining processing steps take place in this context.

2388 2. Via

2389 The proxy removes the topmoéta field value from the response. The address in this value necessar-
2390 ily matches the proxy since the response matched a client transaction above. The branch parameter
2301 from this value can be used to determine which branch the response corresponds to.

2392 If no Via field values remain in the response, the response was meant for this elemeamt snd

2393 NOT be forwarded. The remainder of the processing described in this section is not performed on this
2394 message. This will happen, for instance, when the element gen&ANGEL requests as described

2395 in Section sec:proxy-response-processing-cancel.

2396 3. Add response to context

2397 Final responses received are stored in the response context until a final response is generated on
2398 the server transaction associated with this context. The response may a candidate for the best final
2399 response to be returned on that server transaction. Information from this response may be needed in
2400 forming the best response even if this response is not chosen.

2401 If the proxy chooses to recurse on a 3xx class respong@,St NOT add the response to the response

2402 context

2403 4. Check response for forwarding

2404 Until a final response has been sent on the server transaction, the following respoisgedse for-

2405 warded immediately:

2406 ¢ Any provisional response other than 100 Trying

2407 e Any 2xx response

2408 If a 6xx response is received, it is not immediately forwarded, but the stateful groagyLD cancel

2409 all pending transactions as described in Section 9.

2410 This is a change from RFC2543, which mandated that the 6xx be forwarded immediately. The problem

2411 with this is that it is possible for a 2xx to arrive on another branch, in which case the proxy would have to

2412 forward that in the case of dNVITE transaction. The result is that the UAC could receive a 6xx followed by

2413 a 2xx, which should never be allowed to happen. So, instead, upon receiving a 6xx, a proRANIEL,

2414 which will generally result in 487s to all outstanding client transactions, and then at that point the 6xx is

2415 forwarded upstream.

2416 After a final response has been sent on the server transaction, the following respossedse for-

2417 warded immediately:

2418 e Any 2xx class response to @dNVITE request

2419 A stateful proxymusT NOT immediately forward any other responses. In particular, a stateful proxy
2420 MUST NOT forward any 100 Trying response. Those responses that are candidates for forwarding later
2421 as the “best” response have been gathered as described in step “Add Response to Context”.

2422 Any response chosen for immediate forwardimgsT be processed as described in steps “Aggregate
2423 authorization headers” through “Record-Route”.

Various Authors Expires April 2002 [Page 63]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2424 5. Choosing the best response

2425 A stateful proxyMusT send a final response to a response context’s server transaction if no final
2426 responses have been immediately forwarded by the above rules and all client transactions in this
2427 response context have been terminated.

2428 The stateful proxymusT choose the “best” final response among those received and stored in the
2429 response context.

2430 If there are no final responses in the context, the proxgT send a 408 (Request Timeout) response

2431 to the server transaction.

2432 Otherwise, the proxyusT forward one of the responses from the lowest response class stored in the
2433 response context. The proxjay select any response within that lowest class. The psxguLD

2434 give preference to responses that provide information affecting resubmission of this request, such as
2435 401, 407, 415, 420, and 484.

2436 A proxy which receives a 503 resporseouLD NOTforward it upstream unless it can determine that

2437 any subsequent requests it might proxy will also generate a 503. In other words, forwarding a 503
2438 means that the proxy knows it cannot service any requests, not just the one Redghest-URI in

2439 the request which generated the 503.

2440 The forwarded responseusT be processed as described in steps “Aggregate authorization headers”
2441 through “Record-Route”.

2442 For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
2443 responses, it may choose to forward the 407 response.

2444 1xx and 2xx class responses may be involved in the establishment dialogs. When a request does not
2445 contain a To tag, the To tag in the response is used by the UAC to distinguish multiple responses to
2446 a dialog creating request. A prowyusT NOT insert a tag into the To header of a 1xx or 2xx class

2447 response if the request did not contain one. A praxysT NOT modify the tag in the To header of a

2448 1xx or 2xx class response.

2449 3-6xx class responses are delivered hop-hop. When issuing a 3-6xx class response, the element is
2450 effectivly acting as a UAS, issuing its own response, usually based on the responses received from
2451 downstream elements. An elemesHouLD preserve the To tag when simply forwarding a 3-6xx

2452 class response to a request that did not contain a To tag.

2453 A proxy MusT NOT modify the To tag in any forwarded response to a request that contains a To tag.
2454 While it makes no difference to the upstream elements if the proxy replaced the To tag in a forwarded

2455 3-6xx class response, preserving the original tag may assist with debugging.

2456 When the proxy is aggregating information from several responses, choosing a To tag from among them

2457 is arbitrary, and generating a new To tag may make debugging easier. This happens ,for instance, when

2458 combining 401 and 407 challenges, or combining Contact values from unencrypted and unauthenticated 3xx

2459 class responses.

2460 6. Aggregate authorization headers

2461 If the selected response is a 401 or 407, the proxg T collect anyWWW-Authenticate andProxy-
2462 Authenticate header fields from all other 401 and 407 responses received so for in this response
2463 context and add them to this response before forwarding.

Various Authors Expires April 2002 [Page 64]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2464 This is necessary because any or all of the destinations the request was forwarded to may have re-
2465 quested credentials. The client must receive all of those challenges and supply credentials for each of
2466 them when it retries the request. Motivation for this behavior is provided in Section 20.

2467 7. Record-Route

2468 If the selected response contairRecord-Route header field value originally provided by this proxy,

2469 the proxyMAY chose to rewrite the value before forwarding the response. This allows the proxy to
2470 provide different URISs for itself to the next upstream and downstream elements. A proxy may choose
2471 to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

2472 The new URI provided by the proxyusT satisfy the same constraints on URIs placedéactord-

2473 Route header fields in requests (see Section 6) with the following modifications:

2474 The URISHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
2475 upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
2476 that transport.

2477 The URI placed in thé&kecord-Route header valuesHOULD be such that if a subsequent request is

2478 received with this URI in thdRequest-URI, the proxy’s normal request processing will cause it to

2479 be forwarded to the same next-hop element (as opposed to some previous element) as the originally
2480 forwarded request.

2481 When a proxy does decide to modify tRecord-Route header in the response, one of the operations

2482 it must perform is to locate thRecord-Route that it had inserted. If the request spiraled, and the

2483 proxy inserted eRecord-Route in each iteration of the spiral, locating the correct header in the

2484 response (which must be the proper iteration in the reverse direction) is tricky. Note that the rules
2485 above dictate that a proxy insert a different URI into Bhecord-Route for each distincRequest-

2486 URI received. The two issues can be solved jointlyRBCOMMENDED mechanism is for the proxy

2487 to append a piece of data to the user portion of the URI. This piece of data is a hash of the transaction
2488 key for the incoming request, concatenated with a unique identifier for the proxy instance. Since the
2489 transaction key includes thHRequest-URI, this key will be unique for each distin®equest-URI.

2490 When the response arrives, the proxy modifies the Restord-Route whose identifier matches the

2491 proxy instance. The modification results in a URI without this piece of data appended to the user
2492 portion of the URI. Upon the next iteration, the same algorithm (find the topResbrd-Route

2493 header with the parameter) will correctly extract the neecord-Route header inserted by that

2494 Proxy.

2495 8. Forward response

2496 After performing the processing described in steps “Aggregate authorization headers” through “Record-
2497 Route”, the proxy may perform any feature specific manipulations on the selected response. Unless
2498 otherwise specified, the proxyusT NOT remove the message body or any header values other than
2499 the Via header value discussed in Section refsec:proxy-response-processing-via. Thei1psixy

2500 pass the response to the server transaction associated with the response context. This will result in
2501 the response being sent to the location now indicated in the topvii@dteld value. If the server

2502 transaction is no longer available to handle the transmission, the eleraemtforward the response

2503 statelessly by sending it to the server transport.

2504 Even after forwarding a final response, the proxysT maintain the response context until all of its

2505 associated transactions have been terminated.

Various Authors Expires April 2002 [Page 65]

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520
2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

9. Generat€€ ANCELs

OPEN ISSUE #7: If CANCEL is restricted to INVITE only, this behavior must restrict itself to
INVITE requests.

If the forwarded response was a final response, the pyraxgT generate £LANCEL request for all

pending client transactions associated with this response context. A pHDXYLD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response and has not had an assod24CEL generated for it. GeneratingANCEL

requests is described in Section 9.1.

16.7 Handling transport errors

If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 19.4), the
proxy MUST behave as if the forwarded request received a 400 response.

If the proxy is notified of an error when forwarding a response, it drops the response. ThepmxyD
NOT cancel any outstanding client transactions associated with this response context due to this notification.

If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all
transactions to fail through its Via header field.

16.8 CANCEL Processing

A stateful proxy may generate@GANCEL to any other request it has generated at any time. For instance,

it may choose to generateANCELSs based on having a transaction exceed the time specified Bxthe

pire header of certain requests, or as a result of any logic it applies while forwarding requests. A proxy
MUST cancel any pending client transactions associated with a response context when it receives a matching
CANCEL request.

OPEN ISSUE #185: Should generating CANCEL at a proxy based on Expires in INVITE be deprecated?

While aCANCEL request is handled in a stateful proxy by its own server transaction, a new response
context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
transaction handling the request associated withGABICEL. If a matching response context is found, the
elementMusT immediately return a 200 OK response to @ANCEL request. In this case, the element is
acting as a user agent server as defined in Section 8.2. Furthermore, the elersegenerateCANCEL
requests for all pending client transactions in the context as described in Section 9.

If a response context is not found, the element does not have any knowledge of the request to apply
the CANCEL to. It musT forward theCANCEL request (it may havestatelessly forwarded the associated
request previously).

16.9 Stateless proxy

When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
acting statelessly is the same as when behaving statefully. The differences are detailed here.

A stateless proxy does not have any notion of a transaction, or of the response context used to describe
stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly
from the transport layer (See section 19). As a result, stateless proxies do not retransmit messages on their

Various Authors Expires April 2002 [Page 66]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2524 OWN. They do, however, forward all retransmission they receive (they do not have the ability to distinguish
2545 @ retransmission from the original message). Furthermore, when handling a request statelessly, an element
2546 MUST NOT generate its own 100 Trying (or any other provisional) response.

2547 A stateless proxy must validate a request as described in Section 16.3

2548 A stateless proxy must make a routing decision as described in Section 16.4 with the following excep-
2549 tiON:

2550 e A stateless proxyiusT choose one and only one destination from the destination set. This choice
2551 MUST only rely on fields in the message and time-invariant properties of the server. In particular, a
2552 retransmitted requestusT be forwarded to the same destination each time it is processed. Further-
2553 more, CANCEL and non-Routed\CK requestavusT generate the same choice as their associated
2554 INVITE.

2555 A stateless proxy must process the request before forwarding as described in Section 16.5 with the

256 following exceptions:

2557 e Thebranch parameter on the insertda header fieldMusT be the same each time a retransmitted

2558 request is forwarded. Thus for a stateless proxybtiaach parameter calculatiomusT only depend

2559 on message parameters affecting the routing of the request which are invariant on retransmission.

2560 e Thebranch parametemusT vary with the value of the branch parameter of the topmbatfield

2561 value in the original request. If two requests arrive with different topmost Via field values, the top-
2562 most Via field values in the resulting forwarded requestsT be different. This is necessary to avoid

2563 merging requests as they traverse the proxy. One way to ensure this when forwarding requests state-
2564 lessly is to include the original request’s topmbganch in the hash calculation forming the second

2565 part (used to match requests and responses) of the branch parameter discussed in Section 16.5 step 3.
2566 e The request is sent directly to the transport layer instead of through a client transaction. If the next-
2567 hop destination parameters don't provide an explicit destination, the element applies the procedures
2568 of [8] to the Request-URI to determine where to send the request.

2569 Since a stateless proxy must forward retransmitted requests to the same destination and add identical branch

2570 parameters to each of them, it can only use information from the message itself and time-invariant configuration

2571 data for those calculations. If the configuration state is not time-invariant (for example, if a routing table is updated)

2572 any requests that could be affected by the change may not be forwarded statelessly during an interval equal to the

2573 transaction timeout window before or after the change. The method of processing the affected requests in that

2574 interval is an implementation decision. A common solution is to forward them transaction statefully.

2575 Stateless proxie®uUsT NOT perform special processing fQ/ANCEL requests. They are processed by

2576 the above rules as any other requests. In particular, a stateless proxy applies normal Route header processing
2577 10 CANCEL requests.

2578 Response processing as described in Section 16.6 does not apply to a proxy behaving statelessly. When
2579 @ response arrives at a stateless proxy, the proxy inspects the address in the first (igjanestiier value.

80 If that address matches the proxy, the proxysT remove that value from the response and forward the

281 result to the location indicated in the nexta header value. Unless specified otherwise, the proxgT

2582 NOT remove any other header values or the message body. If the address does not match the proxy, the

2583 MessagerusT be silently discarded.

Various Authors Expires April 2002 [Page 67]

2584

2585
2586
2587
2588
2589
2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

17 Transactions

SIP is fundamentally a transactional protocol. This means that interactions between components take place

in a series of independent message exchanges. Specifically, a SIP transaction consists of a single request,
and any responses to that request (which include zero or more provisional responses and one or more final

responses). In the case of a transaction where the request Wéiglai: (known as aidNVITE transaction),

the transaction also includes tA€K only if the final response was not a 2xx response. If the response was

a 2xx, theACK is not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 OK responsdsitd B to
the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them, and the UAC
alone takes responsibility for acknowledging them wWitbK. Since thisACK is retransmitted only by the UAC, it
is effectively considered its own transaction.

Transactions have a client side and a server side. The client side is known as a client transaction, and the
server side, as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example of
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a
server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn, sends
the request to a server transaction in the UAS. This is shown pictorially in Figure 4.

F———————— + Fm———————— + Fm———————— + Fm———————— +
| +-+|Request |[+-+ +-+|Request |[+-+ +-—+|Request |+—+ |
| IC||-———~ >||S| [Cl|=———— >||S| |C||==———= >|IS| |
[l [lel I llel I llel |
[il (] il vl 1ill Il
| lell I E [[v] Tell v |
| Inl| lle] [nll lle] nl| llel |
[It vl 1] [l 1l [l |
[1l IR (1T Tl I
[[Tl [T} [T1I [IT] [T]I |
[Irll (] Irlf Il Irll 11—
| lall IEIE IEE! llal |
| Inl| [Nl | I[Nl nl| IInl |
| |s||Response||s| |s||Response||s| |s||Response||s| |
| +—t|<——————— [+—+ +—+|<—————- [+—+ +—H|<—————— [+—+
+—— + +——— + +——— + +——— +
UAC Outbound Inbound UAS
Proxy Proxy

Figure 4: Transaction relationships

A stateless proxy does not contain a client or server transaction. The transaction exists between the
UA or stateful proxy on one side of the stateless proxy, and the UA or stateful proxy on the other side.
As far as SIP transactions are concerned, stateless proxies are effectively transparent. The purpose of the
client transaction is to receive a request from the element the client is embedded in (call this element the
“Transaction User” or TU; it can be a UA or a stateful proxy), and reliably deliver the request to that server

Various Authors Expires April 2002 [Page 68]

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

transaction. The client transaction is also responsible for receiving responses, and delivering them to the
TU, filtering out any retransmissions or disallowed responses (such as a respé€)tdn the case of
anINVITE transaction, that includes generation of &@€K request for any final response excepting a 2xx
response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer, and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU, and delivers them to the transport layer for transmission over the
network. In the case of dNVITE transaction, it absorbs tHCK request for any final response excepting
a 2xx response.

The 2xx response, and tWe&CK for it, have special treatment. This response is retransmitted only by a
UAS, and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows
the entire set of users that have accepted the call. Because of this special handling, retransmissions of the
2xx response are handled by the UA core, not the transaction layer. Similarly, generatioACkier the
2xx is handled by the UA core. Each proxy along the path merely forwards each 2xx respt\s¢Tig,
and its correspondingCK.

A reliable provisional response, and tRRACK for it, also have special treatment. Reliable provisional
responses are also only retransmitted by the UAS core, arRRIAEK generated by the UAC core. Unlike
ACK, howeverPRACK is a normal norniNVITE transaction, which means that it will generate its own final
response. The reason for this seemingly inexplicable difference be®R&GK andACK is that reliability
of provisional responses was added on later as an extra feature, and therefore needed to be done within the
confines of SIP extensibility. SIP extensibility only allowed the additions of new methods which behaved
like any other noriNVITE method.

17.1 Client transaction

The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction, and passes it the SIP request to send, a value for
timer C (described below), and an IP address, port, and transport to send it to. The client transaction begins
execution of its state machine. Valid responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method the request passed
by the TU. One handles client transactions HdVITE request. This type of machine is referred to as an
INVITE client transaction. Another type handles client transactions for all requests éXS4piE and
ACK. This is referred to as a ndNVITE client transaction. There is no client transaction A@K. If the
TU wishes to send aACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Nor-
mally, human input is required in order to respond tdldNITE. The long delays expected for sending a
response argue for a three way handshake. Requests of other methods, on the other hand, are expected to
completely rapidly. In fact, because of its reliance on just a two way handshakesA&sLD respond
immediately to noriNVITE requests. Protocol extensions which require longer durations for generation of
aresponse (such as a new method that does require human interagtion)p instead use two transactions
- one to send the request, and another in the reverse direction to convey the result of the request.

17.1.1 INVITE Client Transaction

Various Authors Expires April 2002 [Page 69]

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

17.1.1.1 Overview ofNVITE Transaction ThelNVITE transaction consists of a three-way handshake.

The client transaction sends 8dVITE, the server transaction sends responses, and the client transaction
sends a\CK. For unreliable transports (such as UDP), the client transaction will retransmit requests at an
interval that starts at T1 seconds and doubles after every retransmission. The request is not retransmitted over
reliable transports. After receiving a 1xx response, any retransmissions cease altogether, and the client waits
for further responses. The server transaction can send additional 1xx responses, which are not transmitted
reliably by the server transaction. If the provisional response needs to be sent reliably, this is handled by
the TU. Eventually, the server transaction decides to send a final response. For unreliable transports, that
response is retransmitted periodically, and for reliable transports, its sent once. For each final response that
is received at the client transaction, the client transaction send€HKnthe purpose of which is to quench
retransmissions of the response.

17.1.1.2 Formal Description The state machine for tH&IVITE client transaction is shown in Figure 5.
The initial state, “calling” MUsT be entered when the TU initiates a new client transaction withNafiTE
request. The client transactioamusT pass the request to the transport layer for transmission (see Section
19). If an unreliable transport is being used, the client transadioouLD start timer A with a value

of T1, andsHOULD NOT start timer A when a reliable transport is being used (Timer A controls request
retransmissions). For any transport, the client transastiosT start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

When timer A fires, the client transacti@HouLD retransmit the request by passing it to the transport
layer, andsHOULD reset the timer with a value of 2*T1. When the timer fires 2*T1 seconds later, the
requestsHOULD be retransmitted again (assuming the client transaction is still in this state). This process
SHOULD continue, so that the request is retransmitted with intervals that double after each transmission.
These retransmissiorss1oULD only be done while the client transaction is in the “calling” state.

The default value for T1 is 500ms. T1 is an estimate of the RTT between the client and server transac-
tions. The optional RTT estimation procedure of Section 148 be followed, in which case the resulting
estimatemAy be used instead of 500ms. If no RTT estimation is used, other veimebe used in private
networks where it is known that RTT has a different value. On the public InternetaA¥ Ibe chosen larger,
but sSHouLD NOTbe smaller.

If the client transaction is still in the “calling” when timer B fires, the client transactisopuLD inform
the TU that a timeout has occurred. The client transactiosT NOT generate aACK. The value of 64*T1
is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the "calling” state, it transitions to
the “proceeding” state. Upon entering this state, the client transartisT start timer C with the value
provided by the TU when the client transaction was created. This timeout dictates how long the client
transaction waits for a final response before giving up (i.e., roughly how long does it “let the phone ring”). In
the “proceeding” state, the client transact&mouLD NOT retransmit the request any longer. Furthermore,
the provisional responseusT be passed to the TU. Any further provisional respongesT be passed up
to the TU while in the “proceeding” state. Passing of all provisional responses is necessary since the TU
will handle reliability of these messages, and therefore even retransmissions of a provisional response must
be passed upwardswhen timer C fires, the client transactierusT transition to the terminated state, and
it MUST inform the TU of the timeout.

When in either the "calling” or “proceeding” states, reception of a response with status code from 300-
699 MUST cause the client transaction to transition to “completed”. The client transaeti®T pass the
received response up to the TU, andvuivST generate arACK request, even if the transport is reliable

Various Authors Expires April 2002 [Page 70]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

[INVITE from TU
Timer Afires |INVITE sent

Reset A, Y Timer B fires
INVITE sent +——————————— + t.o.to TU
F——— | |- +
| | Calling | |
e >| |- >|
= + 2XX |
300-699 |] 2xxto TU |
ACK sent | |1xx |
= + |1xxto TU |
I I I
| 1xx \% Timer C fires |
| Ixxto TU ——————————- +to.toTU |
| #mmmmmmmes |- >
| | |Proceeding | |
|+ I >
| - + 2XxX |
300-699	2xxto TU
ACK sent,	
resp. to TU	
300-699 V	
ACKsent +——————————- +	transitions
+———————	
+——————— >	[
- +	to take
I o	
————— +	-
I	
v I	
+—— +	
I I	
Terminated	<—————————————- +

Figure 5:INVITE client transaction

2603 (guidelines for constructing th&CK from the response are given in Section 17.1.1.3) and then pa&€the

2604 1O the transport layer for transmission. TREK MUST be sent to the same address, port and transport that
2605 the original request was sent to. The client transactisauLD start timer D when it enters the “completed”

2606 State, with a value of T3 seconds for unreliable transports, and zero seconds for reliable transports. T3 is
2607 the total amount of time that the server transaction can remain in the “completed” state when unreliable
2608 transports are used. For the default values of the timers below, this is 16 seconds.

2699 OPEN ISSUE #210: Timer D should be based on the values of the timers selected at the server, but these values

Various Authors Expires April 2002 [Page 71]

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

aren’t known by the client. We could alternatively specify an absolute minimum.

Any retransmissions of the final response that are received while in the “completedSistaieD cause
the ACK to be re-passed to the transport layer for retransmission, but the newly received raegpsmse
NOT be passed up to the TU. A retransmission of the response is defined as any response which would match
the same client transaction, based on the rules of Section 17.1.3.

If timer D fires while the client transaction is in the “completed” state, the client transagtisT move
to the terminated state, andvtusT inform the TU of the timeout.

When in either the “calling” or “proceeding” states, reception of a 2xx respmiuser cause the client
transaction to enter the terminated state, and the responsg be passed up to the TU. The handling of
this response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation
of the ACK for this response, while a proxy core will always forward the 200 OK upstream. The differing
treatment of 200 OK between proxy and UAC is the reason that handling of it does not take place in the
transaction layer.

The client transactiomusT be destroyed the instant it enters the terminated state. This is actually nec-
essary to guarantee correct operation. The reason is that 2xx responsés\éTdhare treated differently;
each one is forwarded by proxies, and &@K handling in a UAC is different. Thus, each 2xx needs to be
passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No
transaction layer processing takes place. Whenever a response is received by the transport, if the transport
layer finds no matching client transaction (using the rules of Section 17.1.3, the response is passed directly
to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no
match and therefore be passed to the core.

17.1.1.3 Construction of theACK Request The ACK request constructed by the client transaction
MUST contain values for th&€all-ID, From, and Request-URI which are equal to the values of those
headers in the request that created the client transaction (call this the “original requesiT fidié in the
ACK MusT equal theTo field in the response being acknowledged, and will therefore usually differ from
the To field in the original request by the addition of the tag parameter. AGK MUST contain a single
Via header, and thistiusT be equal to the tojYia header of the original request. TAEK requestMusT
contain the samBoute headers as the request whose response it is acknowled@imgCSeq header in
the ACK MUST contain the same value for the sequence number as was present in the original request, but
the method parameterusT be equal to ACK”.

These rules for construction 8iCK only apply to the client transaction. A UAC core which generates
anACK for 2xx MUsT instead follow the rules described in Section 13.

For example, consider the following request:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Call-ID: 987asjd97y7atg@10.1.3.3

CSeq: 986759 INVITE

The ACK request for a non-2xx final response to this request would look like:

Various Authors Expires April 2002 [Page 72]

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3

To: Bob <sip:bob@biloxi.com>;tag=99sa0xk
From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Call-ID: 987asjd97y7atg@10.1.3.3

CSeq: 986759 ACK

17.1.2 noniNVITE Client Transaction

17.1.2.1 Overview of the nonNVITE Transaction nondNVITE transactions do not make useA€K.
They are a simple request-response interaction. For unreliable transports, requests are retransmitted at an
interval which starts at T1, and doubles until it hits T2. If a provisional response is received, retransmis-
sions continue for unreliable transports, but at an interval of T2. The server transaction retransmits the last
response it sent (which can be a provisional or final response) only when a retransmission of the request is
received. This is why request retransmissions need to continue even after a provisional response, they are
what ensure reliable delivery of the final response.

Unlike anINVITE transaction, a notNVITE transaction has no special handling for the 2xx response.
The result is that only a single 2xx response to a NWWITE is ever delivered to a UAC.

17.1.2.2 Formal Description The state machine for the ndNVITE client transaction is shown in Fig-
ure 6. Itis very similar to the state machine fBWVITE.

The “Trying” state is entered when the TU initiates a new client transaction with a request. When
entering this state, the client transact®nouLD set Timer F to fire in T3 seconds. The requastsT be
passed to the transport layer for transmission. If an unreliable transport is in use, the client tramgastion
set timer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this time with a
value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This process continues,
so that retransmissions occur with an exponentially increasing inverval that caps at T2. The default value
of T2 is 4s, and it represents the amount of time a MWITE server transaction will take to respond to a
request, if it does not respond immediately. For the default values of T1 and T2, this results in intervals of
500ms, 1s,2s,4s,4s,4s, etc.

If Timer F fires while the client transaction is still in the “Trying” state, the client transadioouLD
inform the TU about the timeout, and thersiouLDenter the “Terminated” state. If a provisional response
is received while in the “Trying” state, the responsesT be passed to the TU, and then the client transaction
SHOULD move to the “Proceeding” state. If a final response (status codes 200-699) is received while in the
“Trying” state, the responsRUST be passed to the TU, and the client transactirsT transition to the
“Completed” state.

If Timer E fires while in the “Proceeding” state, the requestsT be passed to the transport layer
for retransmission, and Timer BUST be reset with a value of T2 seconds. If timer F fires while in the
“Proceeding” state, the TMUST be informed of a timeout, and the client transactiomsT transition to the
terminated state. If a final response (status codes 200-699) is received while in the “Proceeding” state, the
responsevUsT be passed to the TU, and the client transactiarsT transition to the “Completed” state.

Once the client transaction enters the “Completed” statey&T set Timer K to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. The “Completed” state exists to buffer any
additional response retransmissions that may be received (which is why the client transaction remains there
only for unreliable transports). T4 represents the amount of time the network will take to clear messages

Various Authors Expires April 2002 [Page 73]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

|Request from app
|send request

Timer E \Y Timer F

send request +——————————- + t.o.to TU
t————— | |- +
I | Trying | I
o >| I I

Fo———————— + |

200-699 | | |

resp.to TU | |1xx |

o + |resp. to TU |

I |
Timer E \% Timer F |

| .
|
| send req +——————————- +to.to TU |
+=———		--— >	
		Proceeding	
+=—————— >		-———- +	
B — +	Ixx		
	~ resptoTU		
200-699	+———————— 4		
resp.to TU			
I			
V			
e +			
I			
	Completed		
I			
e +			
n			
		Timer K	
+———— +	-		
I			
v |
NOTE: —————— e + |
I I |
transitions | Terminated|<-————————————————— +
labeled with | |
the event Fmm +
over the action
to ta ke

Figure 6: nonNVITE client transaction

272 between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it
2783 Matches the same transaction, using the rules specified in Section 17.1.3. If Timer K fires while in this state,
2784 the client transactiomusT transition to the “Terminated” state.

2785 OPEN ISSUE #211: This special treatment for reliable transports, where the state machine transactions directly

Various Authors Expires April 2002 [Page 74]

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

to terminated, is new.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responseNidITE.

17.1.3 Matching Responses to Client Transactions

When the transport layer in the client receives a response, it has to figure out which client transaction will
handle the response, so that the processing of Sections 17.1.1 and 17.1.2 can take place.

A response matches a client transaction through a comparison process with fields in the request that
created the transaction. Specifically, friem, Call-ID, CSeq, and the topmosV¥ia heademusT match
the same fields in the request, using the matching operations for those headers defined in Section 22. If
the To field in the request had a tag, tfie field in the respons@usT match theTo field in the request,
as described in Section 22.39. However, if the To field in the request did not contain a tag,fiblel in
the responseiusT match that in the request, except that the MagsT NOT be considered as part of the
matching process. This is needed since a UAS will add a tag toatifield of the response.

A response which matches a transaction match by a previous response is considered a retransmission of
that response.

17.1.4 Handling Transport Errors

When the client transaction sends a request to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

The client transactiosHoULD inform the TU that a transport failure has occurred, and the client trans-
actionsHouLD transition directly to the terminated state.

17.2 Server Transaction

The server transaction is responsible for the delivery of requests to the TU, and the reliable transmission of
responses. It accomplishes this through a state machine. Server transactions are created by the core when a
request is received, and transaction handling is desired for that request (this won't always be the case).

As with the client transactions, the state machine depends on whether the received reqUeB iSEN
request or not.

17.2.1 INVITE Server Transaction

The state diagram for tH&VITE server transaction is shown in Figure 7.

When a server transaction is constructed with a request, it enters the “Proceeding” state. The server
transactiormusT generate a 100 response (not any status code - the specific value of 100) unless it knows
that the TU will generate a provisional or final response within 200 ms, in which ceige igenerate a 100
response. This provisional response is needed to rapidly quench request retransmissions in order to avoid
network congestion. The request/'ST be passed to the TU.

The TU passes any number of provisional responses to the server transaction. So long as the server
transaction is in the “Proceeding” state, each of thegsT be passed to the transport layer for transmission.
They are not sent reliably by the transaction layer (they are not retransmitted by it), and do not cause a
change in the state of the server transaction. When provisional responses need to be delivered reliably,
it is handled by the TU, which will retransmit the provisional responses itself, and pass downwards each

Various Authors Expires April 2002 [Page 75]

2824

2825

2826

2827

2828

2829

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

[INVITE
|[pass to TU, send 100
INVITE \Y
send response+——————————- +
e | |[-——————- +101-199 from TU
| | Proceeding| |send response
- >| |[<=—————— +
- +
300-699 from TU | |2xx from TU
send response | |send response
| +—————————— +
INVITE Vv Timer G fires |
send response+——————————— + send response |
LA— I e +
| | Completed | | |
e >| |[<—————— + |
- + |
| I
ACK| | |
- +—————————— >+
| Timer H fires |
\Y failto TU |
- + |
I I I
| Confirmed | |
I I I
- + |
I I
[Timer | fires |
|- I
I |
\Y I
- +
I I I
| Terminated|<——————-———————- +
I I
- +

Figure 7:INVITE server transaction

retransmission to the server transactioli.a request retransmission is received while in the “Proceeding”
state, the most recent provisional response that was received from thiwJItUbe passed to the transport
layer for retransmission. A request is a retransmission if it matches the same server transaction based on the
rules of Section 17.2.3.

If, while in the “proceeding” state, the TU passes a 2xx Response to the server transaction, the server
transactionMUST pass this response to the transport layer for transmission. It is not retransmitted by the

Various Authors Expires April 2002 [Page 76]

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

server transaction; retransmissions of 2xx responses are handled by the TU. The server tramsaation
then transition to the “terminated” state.

While in the “Proceeding” state, if the TU passes a response with status code from 300 to 699 to the
server transaction, the respomsesT be passed to the transport layer for transmission, and the state machine
MUST enter the “Completed” state. For unreliable transports, timer G is set to fire in T1 seconds, and is not
set to fire for reliable transports.

This is a change from RFC2543, where responses were always retransmitted, even over reliable transports.

When the “Completed” state is entered, timexmdST be set to fire in 64*T1 seconds, for all transports.
Timer H determines when the server transaction gives up retransmitting the response. Its value is chosen to
equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G
fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in
MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again for
transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it
is reset with the value of T2. This is identical to the retransmit behavior for requests in the “Trying” state of
the non-INVITE client transaction. Furthermore, while in the “completed” state, if a request retransmission
is received, the server SHOULD pass the response to the transport for retransmission.

If an ACK is received while the server transaction is in the “Completed” state, the server transaction
MUST transition to the “confirmed” state. As Timer G is ignored in this state, any retransmissions of the
response will cease.

If timer H fires while in the “Completed” state, it implies that tA€K was never received. In this case,
the server transactionusT transition to the terminated state, andsT indicate to the TU that a transaction
failure has occurred.

The purpose of the “confirmed” state is to absorb any additid@ messages that arrive, triggered
from retransmissions of the final response. When this state is entered, timer | is set to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. Once timer | fires, theiseyvéransition
to the “Terminated” state.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responsedNiI TE.

17.2.2 noniNVITE Server Transaction

The state machine for the ndNVITE server transaction is shown in Figure 8.

The state machine is initialized in the “Trying” state, and is passed a request othdNW@ErE or
ACK when initialized. This request is passed up to the TU. Once in the “Trying” state, any further request
retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using
the rules specified in Section 17.2.3.

While in the “Trying” state, if the TU passes a provisional response to the server transaction, the server
transactionmusT enter the “Proceeding” state. The responrgesT be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the “Proceeding”
stateMusT be passed to the transport layer for transmission. If a retransmission of the request is received
while in the “Proceeding” state, the most recently sent provisional response be passed to the transport
layer for retransmission. If the TU passes a final response (status codes 200-699) to the server while in the
“Proceeding” state, the transactiomusT enter the “Completed” state, and the respomssT be passed to
the transport layer for transmission.

Various Authors Expires April 2002 [Page 77]

2872

2873

2874

2875

2876

2877

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

|Request received

|pass to TU
\Y
+—— +
I I
| Trying |[-———————————= +
I I I
e + |200-699 from TU
| |send response
|1xx from TU |

|send response |

Request V Ixxfrom TU |
send response+——————————— +send response|
#omm—m e |- + |
| | Proceeding| |]
- >| |<=————— + |
+—— + |

|200-699 from TU |
|send response |

Request \ |
send response+——————————- +
#ommm e | |
| | Completed |-———————————- +
+ommmmmm 5
+——————— +
o
[Timer J fires
|__
I
\Y
+——————— +
|
| Terminated]|
I I
+——————— +

Figure 8: nonINVITE server transaction

When the server transaction enters the “Completed” state)$tr set Timer J to fire in T3 seconds for
unreliable transports, and zero seconds for reliable transports. While in the “Completed” state, the server
transactiormusT pass the final response to the transport layer for retransmission whenever a retransmission
of the request is received. Any other final responses passed by the TU to the server tramsastidore
discarded while in the “Completed” state. The server transaction remains in this state until Timer J fires, at
which point itMUST transition to the “Terminated” state.

Various Authors Expires April 2002 [Page 78]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

2878 The server transactionusT be destroyed the instant it enters the “Terminated” state.

2579 17.2.3 Matching Requests to Server Transactions

2880 When anINVITE or ACK request is received from the network by the server, it has to be matched to an
2881 eXisting INVITE transaction. ThéNVITE request matches a transaction if fRequest-URI, To, From,

82 Call-ID, CSeq, and topVia header match those of thVITE request which created the transaction. In

2883 this case, théNVITE is a retransmission of the original one that created the transactionACKeaequest

2884 Matches a transaction if tieequest-URI, From, Call-ID, CSeq number (not the method), and t&fia

2685 header match those of tHBIVITE request which created the transaction, and Tidield of the ACK

2886 matches thdo field of the response sent by the server transaction (which then includes thévtaghing

2887 IS done based on the matching rules defined for each of those headers. The usage of the tEgfialthe

288 helps disambiguatACK for 2xx from ACK for other responses at a proxy which may have forwarded both

2889 responses (which can occur in unusual conditions).ASK request that matches #NVITE transaction

2800 Matched by a previouACK is considered a retransmission of that previa@K.

2891 For all other request methods, a request is matched to a transactionRethesst-URI, To, From,

282 Call-ID and Cseq (including the method) and togia header match those of the request which created

2803 the transaction. Matching is done based on the matching rules defined for each of those headers. When a
2804 NONINVITE request matches an existing transaction, it is a retransmission of the request which created that
2805 transaction.

2896 Because the matching rules include Request-URI, the server cannot match a response to a transac-

2897 tion. When the TU passes a response to the server, it must inform the TU which transaction the response is
2808 fOr.

w00 17.3 RTT Estimation

2000 Most of the timeouts used in the transaction state machines derive from T1, which is an estimate of the RTT
2001 between the client and server transactions. This subsection defines optional procedures that a client can use
2002 t0 build up estimates of the RTT to a particular IP address. To perform this procedure, thevclgnt

2003 Maintain a table of variables for each destination IP address to which an RTT estimate is being made.

2904 OPEN ISSUE #212: Is destination IP address the right index for an RTT estimate? HowRanmuést-URI?

2905 If a client wishes to measure RTT for a particular IP addressygT include aTimestamp header into

2006 @ request containing the time when the request is initially created and passed to a new client transaction,
2007 Which transmits the request. If a 100 response (not any 1xx, only the 100 response) is received before the
2008 Client transaction generates a retransmission, an RTT estimate is made. This is consistent with the RFC
2000 2988 requirements on TCP for using Karn’s algorithm in RTT estimation.

2910 The estimate, called R, is made by computing the difference between the current time and the value of
2011 Timestamp header in the 100 response. The value of R is applied to the estimation of RTO as described

2012 in Section 2 of RFC 2988 [25], with the following differences. First, the initial value of RTO is 500 ms for

2013 SIP, not 3 s as is used for TCP. Second, there is no minimum value for the RTO, as there is for TCP, if SIP

2014 IS being run on a private network. When run on the public Internet, the minimum is 500 ms, as opposed to

205 1 s for TCP. This difference is because of the expected usage of SIP in private networks where rapid call

2016 Setup times are service critical. Once RTO is computed, the timer T1 is set to the value of RTO, and all other

2017 timers scale proportionally as described above.

Various Authors Expires April 2002 [Page 79]

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950
2951

2952

2953

2954

2955

2956

2957

2958

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

18 Reliability of Provisional Responses

Normally, provisional responses are not transmitted reliably. The TU generates a single provisional re-
sponse, and passes it to the server transaction, which sends it once. RFC 2543 provided no means for
reliable transmission of these messages.

It was later observed that reliability was important in several cases, including interoperability scenarios
with the PSTN. Therefore, an optional capability was added in this specification to support reliable trans-
mission of provisional responses.

The reliability mechanism works by mirroring the current reliability mechanisms for 2xx final responses
to INVITE. Those requests are transmitted periodically by the TU, until a separate transaqiénjs
received, that indicates reception of the 2xx by the UAC. The reliability for the 2XKWTE and ACK
messages are end-to-end. In order to achieve reliability for provisional responses, we do nearly the same
thing. Reliable provisional responses are retransmitted by the TU with an exponential backoff. Those
retransmisions cease wherPRACK message is received. TIRRACK request plays the same role as
ACK, but for provisional responses. There is an important difference, howB¥YACK is a normal SIP
message, likBYE. As such, its own reliability is ensured hop-by-hop through each stateful proxy. Similarly,
PRACK has its own response. If this were not the case PRACK message could not traverse existing
proxy servers.

Each provisional response is given a sequence number, carried RSie header in the response.

The PRACK messages contain &Ack header, which indicates the sequence number of the provisional
response which is being acknowledged. The acknowledgements are not cumulative, and the specifications
recommend a single outstanding provisional response at a time, for purposes of congestion control.

18.1 UAS Behavior

A UAS MAY send any non-100 provisional respons&NWITE reliably, so long as the initidNVITE request
(the request whose provisional response is being sent reliably) contafhaoparted header with the op-
tion tag100rel . While this specification does not allow reliable provisional responses for any method but
INVITE, extensions that define new methods which can establish dialogs may make use of the mechanism.
The UASMUST send any non-100 provisional response reliably if the initial request contaRedare
header with the option tatOO0rel . If the UAS is unwilling to do so, iMusT reject the initial request with
a 420 (Bad Extension) and includéJasupported header containing the option ta§Orel
A UAS MUST NOT attempt to send a 100 response reliably. Only provisional responses numbered 101
to 199 may be sent reliably. If the request did not include eitfBuported or Require header indicating
this feature, the UAMUST NOT send the provisional response reliably.

100 responses are hop-by-hop only. For this reason, the reliability mechanisms described here, which are end-
to-end, cannot be used.

An element which can act as a proxy can also send reliable provisional responses; in that case, it acts as
a UAS for purposes of that transaction. HowevemitsT NOT attempt to do so for any request that contains
atag in theTo field. That is, a proxy cannot generate reliable provisional responses to requests sent within
the context of a dialog. Of course, unlike a UAS, when the proxy element receRa@K that does not
match any outstanding reliable provisional responsePRRACK MUST be proxied.

The rest of this discussion assumes that the initial request contaiBagported or Require header
listing 100rel , and that there is a provisional response to be sent reliably.

Various Authors Expires April 2002 [Page 80]

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969
2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

The provisional response to be sent reliably is constructed by the UAS core according to the procedures
of Section 8.2.7 and Section 12. Specifically, the provisional respmiser establish a dialog if one
is not yet created. In addition, MusTcontain Require header containing the option td@®0rel , and
MusTinclude anRSeq header. The value of the header for the first reliable provisional response in a
transactionMusT be between 1 and 2**31 - 1. It BECOMMENDED that it be chosen uniformly in this
range. ThéRSeq numbering space is within a single transaction. This means that provisional responses for
different requestsAy use the same values for tRSeq number.

The reliable provisional response is passed to the transaction layer periodically with an interval that
starts at T1 seconds and doubles for each retransmission (T1 is defined in Section 17). Once passed to the
server transaction, it is added to an internal list of unacknowledged reliable provisional responses.

This differs from retransmissions of 2xx responses, which cap at T2 seconds. This is because retransmissions of
ACK are triggered on receipt of a 2xx, but retransmissiorRRACK take place independently of reception of 1xx.

Retransmissions cease when a matcRACK is received PRACK is like any other request within a
dialog, and the UAS core processes it according to the procedures of Sections 8.2 and 12.2.2. A matching
PRACK is defined as one within the same dialog as the response, and whose method, CSeg-num, and
response-num in thRAck header match, respectively, the method and sequence number fraDSéue
and sequence number from tR&eq of the reliable provisional response.

If a PRACK request is received that does not match any unacknowledged reliable provisional response,
the UASMUST respond to th€RACK with a 481 response. If tieRACK does match an unacknowledged
reliable provisional response, MUST be responded to with a 2xx response. The UAS can be certain at
this point that the provisional response has been received in orderoliLD cease retransmissions of the
reliable provisional response, amsT remove it from the list of unacknowledged provisional responses.

If a reliable provisional response is retransmitted for 64*T1 seconds without reception of a correspond-
ing PRACK, the UASsHOULD reject the original request with a 500 class response.

If the PRACKcontained a body, the body is treated in the same way a bodyACHis treated.

After the first reliable provisional response for a request has been acknowledged, theAyAsend
additional reliable provisional responses. The UWASST NOT send a second reliable provisional response
until the first is acknowledged. After the first, it RECOMMENDED that the UAS not send an additional
reliable provisional response until the previous is acknowledged. The first reliable provisional response
receives special treatment because it conveys the intitial sequence number. If additional reliable provisional
responses were sent before the first was acknowledged, the UAS could not be certain these were received in
order.

The value of theRSeq in each subsequent reliable provisional response for the same requEste
greater by exactly ond&rSeq numbersvusT NOT wrap around. Because the initial one is chosen to be less
than 2**31 - 1, but the maximum is 2**32 - 1, there can be up to 2**31 reliable provisional responses per
request, which is more than sufficient.

Note that the UASMAY send a final response to the initial request before having recBiR&LCKSs for
all unacknowledged reliable provisional responses. In that casepitLD NOT continue to retransmit the
unacknowledged reliable provisional responses, butuisT be prepared to proce$2RACKrequests for
those outstanding responses. A UNMSST NOT send new reliable provisional responses (as opposed to
retransmissions of unacknowledged ones) after sending a final response to a request.

Various Authors Expires April 2002 [Page 81]

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

18.2 UAC Behavior

If a provisional response is received for the initial request, and that response conRégliae header
containing the option taOOrel , the response is to be sent reliably. If the response is a 100 (as opposed
to 101 to 199), this option tagusT be ignored, and the procedures belkawsT NOT be used.

Assuming the response is to be transmitted reliably, the WAGT create a new request with method
PRACK. This request is sent within the dialog associated with the provisional response (indeed, the provi-
sional response may have created the dialBACK requestavAy contain bodies, which are interpreted
according to their type and disposition.

Note that thePRACK is like any other noiNVITE request within a dialog. In particular, a UAC
SHOULD NoOT retransmit thd®?RACK request when it receives a retransmission of the provisional response
being acknowledged, although doing so does not create a protocol error.

Once a reliable provisional response is received, retransmissions of that respmsee discarded.

A response is a retransmission when its dialog@i3eq andRSeq match the original response. The UAC
MUST maintain a sequence number which indicates the most recently received in-order reliable provisional
response for the initial request. This sequence numbeT be maintained until a final response is received

for the initial request. Its valueusT be initialized to theRSeq header in the first reliable provisional
response received for the initial request.

Handling of subsequent reliable provisional responses for the same initial request follows the same rules
as above, with the following difference. Reliable provisional responses are guaranteed to be in order. As
a result, if the UAC receives another reliable provisional response to the same requestRSehitsmlue
isn’t one higher than the value of the sequence number, that resparsseNOT be acknowledged with a
PRACK, andMusT NOT be processed further by the TU. An implementatioxy discard the response, or
MAY cache the response in the hopes of receiving the missing responses.

The UAC MAY acknowledge reliable provisional responses received after the final responsey or
discard them.

19 Transport

The transport layer is responsible for the actual transmission of requests and responses over network trans-
ports. This includes determination of the connection to use for a request or response, in the case of connec-
tion oriented transports.

The transport layer is responsible for managing any persistent connections (for transports like TCP, TLS
and SCTP) including ones it opened, as well as ones opened to it. This includes connections opened by the
client or server transports, so that connections are shared between client and server transport functions. It is
RECOMMENDEDthat connections be kept open for some implementation defined time after the last message
was sent or received over that connection. This tBrReuULD be at least 16 seconds in order to ensure with
high probability that responses can be sent over the same connection a request was sent.

All SIP elementsvusT support UDP at a minimum.

19.1 Clients
19.1.1 Sending Requests

The client side of the transport layer is responsible for sending the request and receiving responses. The
user of the transport layer passes the client transport the request, an IP address, port, transport, and possibly

Various Authors Expires April 2002 [Page 82]

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

TTL for multicast destinations.

A client that sends a request to a multicast addrassT add the addr” parameter to itd/ia header
field, andsHouLD add the ttI” parameter. (In that case, tlreaddr parameteisHouLD contain the des-
tination multicast address, although under exceptional circumstanees itcontain a unicast address.)
Requests sent to multicast groupgouLD be scoped to ensure that they are not forwarded beyond the
administrative domain to which they were targeted. This scoogimg be done with either TTL or admin-
istrative scopes [20], depending on what is implemented in the network.

It is important to note that the layers above the transport layer do not operate differently for multicast
as opposed to unicast requests. This means that SIP treats multicast more like anycast, assuming that there
is a single recipient generating responses to requests. If this is not the case, the first response will end
up “winning”, based on the client transaction rules. Any other responses from different UA will appear
as retransmissions and be discarded. This limits the utility of multicast to cases where an anycast type of
function is desired, such as registrations.

OPEN ISSUE #7: This is a proposed resolution to whether or not multicast should be removed entirely.

Before a request is sent, the client transpausT insert a value of the sent-by field into thiéa header.

This field contains an IP address or host name, and port. In certain cases discussed in Section 19.2.2, this
IP address and port are used to construct a SIP URI for sending the response. The transpaddayer

be prepared to receive incoming connections (and receive responses sent over such connections) on any IP
addresses and ports that this SIP URI might resolve to using the procedures defined Ting8jransport

layer MUST also be prepared to receive an incoming connection on the source IP address that the request

was sent from, and port number in the sent-by field. The client transpst also be prepared to receive

the response on the same connection used to send the request.

For unreliable unicast transports, the client transpassT be prepared to receive responses on the
source IP address that the request is sent from (as responses are sent back to the source address), but the
port number in the sent-by field. Furthermore, as with reliable transports, in certain cases the IP address and
port are used to construct a URI for sending the response. The client tramgarbe prepared to receive
responses on any IP address/port combinations that this SIP URI might resolve to using the procedures of
[8].

For multicast, the client transpavtusT be prepared to receive responses on the same multicast group
and port that the request is sent to (e.g., it needs to be a member of the multicast group it sent the request
to.)

If a request is destined to an IP address, port, and transport to which an existing connection is open, it
is RECOMMENDED that this connection be used to send the request, but another connestidre opened
and used.

If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the transport
user. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided by
the transport user.

19.1.2 Receiving Responses

When a response is received, the client transport examines théadpeader. If the value of the sent-by
parameter in that header does not correspond to a value that the client transport is configured to insert into
requests, the responswJST be rejected.

If there are any client transactions in existence, the client transport uses the matching procedures of Sec-
tion 17.1.3 to attempt to match the response to an existing transaction. If there is a match, the respaonse

Various Authors Expires April 2002 [Page 83]

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

be passed to that transaction. Otherwise, the respouse be passed to the core (whether it be stateless
proxy, stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on
the core (a stateless proxy will forward all responses, for example).

19.2 Servers
19.2.1 Receiving Requests

When the server transport receives a request over any transpeusit examine the value of the sent-by
parameter in the topia header field. If the host portion of the sent-by parameter contains a domain name,
or if it contains an IP address that differs from the packet source address, thexsesreadd a feceived”
attribute to tha¥ia header field. This attributausT contain the source address that the packet was received
from. This is to assist the server transport layer in sending the response, since it must be sent to the source
IP address that the request came from.

Consider a request received by the server transport which looks like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 1.2.3.4. Before passing the request up, the transport
would add a received parameter, so that the request would look like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;received=1.2.3.4

Next, the client transport attempts to match the request to the client transaction. It does so using the
matching rules described in Section 17.2.3. If a matching server transaction is found, the request is passed
to that transaction for processing. If no match is found, the request is passed to the core, which may
decide to construct a new server transaction for that request. Note that when a UAS core sends a 2xx
response tdNVITE, the server transaction is destroyed. This means that whekGHearrives, there will
be no matching server transaction, and based on this rul&Gleis passed to the UAS core, where it is
processed.

19.2.2 Sending Responses

The server transport uses the value of the top Via header in order to determine where to send a response. It
MuUsT follow the following process:

e If the “sent-protocol” is a reliable transport protocol such as TCP, TLS or SCTP, the response
be sent using the existing connection to the source of the original request that created the transaction, if
that connection is still open. This does require the server transport to maintain an association between
server transactions and transport connections. If that connection is no longer open, theiserver
open a connection to the IP address intheeived parameter, if present, using the port in gent-
by value, or the default port for that transport, if no port is specified (5060 for UDP and TCP, 5061
for TLS and SSL). If that connection attempt fails, the seseouLD use the procedures in [8] for

Various Authors Expires April 2002 [Page 84]

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002
servers in order to determine the IP address and port to open the connection and send the response to.

e Otherwise, if theVia header field contains arfaddr” parameter, forward the response to the address
listed there, using the port indicated is€ht-by”, or port 5060 if none is present. If the address is
a multicast address, the resporsseoULD be sent using the TTL indicated in th#l™ parameter, or
with a TTL of 1 if that parameter is not present.

e Otherwise (for unreliable unicast transports), if the ¥ip has areceived parameter, send the re-
sponse to the address in the€eived” parameter, using the port indicated in theetht-by” value, or
using port 5060 if none is specified explicitly. If this fails, e.g., elicits an ICMP “port unreachable”
response, send the response to the address instrg-by” parameter. The address to send to is
determined by following the procedures defined in [8] for servers.

e Otherwise, if it is not receiver-tagged, send the response to the address indicated dgniiey”
value.

19.3 Framing

In the case of message oriented transports (such as UDP), if the messadeondsrd-Length header, the
message body is assumed to contain that many bytes. If there are additional bytes in the transport packet
below the end of the body, theyusT be discarded. If the transport packet ends before the end of the
message body, this is considered an error. If the message is a respangsy ibe discarded. If its a
request, the elemesHouULD generate a 400 class response. If the message I@asment-Length header,
the message body is assumed to end at the end of the transport packet.

In the case of stream oriented transports (such as TCPEdhéent-Length header indicates the size
of the body. TheContent-Length heademusT be used with stream oriented transports.

19.4 Error Handling

Error handling is independent of whether the message was a request or response.

If the transport user asks for a message to be sent over an unreliable transport, and the result is an ICMP
error, the behavior depends on the type of ICMP error. A host, network, port or protocol unreachable errors,
or parameter problem erros10ULD cause the transport layer to inform the transport user of a failure in
sending. Source quench and TTL exceeded ICMP esewsuLD be ignored.

If the transport user asks for a request to be sent over a reliable transport, and the result is a connection
failure, the transport layesHouLD inform the transport user of a failure in sending.

20 Security Considerations

The fundamental security issues confronting SIP are: preserving the confidentiality and integrity of mes-
saging, preventing replay attacks or message spoofing, providing for the authentication and privacy of the
participants in a session, and preventing denial of service attacks.

SIP messages frequently contain sensitive information about their senders - not just what they have to
say, but with whom they communicate, when they communicate and for how long, and from where they

Various Authors Expires April 2002 [Page 85]

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

participate in sessions. Many applications and their users require that this sort of private information be
hidden from any parties that do not need to know it.

Encryption provides the best means to preserve the confidentiality of signaling - it can also guarantee
that messages are not modified by any malicious intermediaries. However, SIP requests and responses
cannot be encrypted end-to-end (that is, between a pair of distinct user agents who share encryption keys)
in their entirety because message fields such aRk#west-URI, Route andVia need, in most network
architectures, to be visible to proxies so that SIP requests are routed correctly. Note that proxy servers need
to modify signaling as well (addingia headers) in order for SIP to function. Proxy servers must therefore
be a part of trust relationships in SIP networks.

Note that there are also less direct ways in which private information can be divulged. If a user or service
chooses to be reachable at an address that is guessable from the person’s name and organizational affiliation
(which describes most addresses of record), the traditional method of ensuring privacy by having an unlisted
“phone number” is compromised. A user location service can infringe on the privacy of the recipient of a
session invitation by divulging their specific whereabouts to the caller; an implementation consequently
SHOULD be able to restrict, on a per-user basis, what kind of location and availability information is given
out to certain classes of callers.

SIP entities also have a need to identify one another in a secure fashion. Ordinarily a SIP UA asserts
an identity for the initiator of a request in tlf#om header field, but in many systems this information
is controlled directly by the end user, and thus spoofing the contents &rdine is trivial. When a SIP
endpoint asserts the identity of its user to a peer user agent or to a proxy server, that identity should in some
way be verifiable. A cryptographic authentication mechanism is provided in SIP to address this requirement.

The most comprehensive mechanisms for securing SIP messages (providing confidentiality and integrity
guarantees for signaling as well as authentication) make use of transport or network layer encryption. en-
cryption encrypts the entire SIP request or response on the wire so that packet sniffers or other eavesdroppers
cannot see who is calling whom.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert
with SIP such as RTP, or with any MIME types carried as SIP bodies, such as SDP. Any media associated
with a session can be encrypted end-to-end without any of the problems associated with encrypting SIP
signaling. Media encryption is outside the scope of this document.

20.1 Transport and Network Layer Security

SIP requests and responsesy be protected by security mechanisms at the transport or network layer.
No particular mechanism is mandated by this document, but two popular alternatives are briefly examined:
protection at the transport layer can be afforded by TLS [26], and network layer security is provided by
IPSec [27].

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and
integrity (note however that the originator and recipient of a session may be deducible by observers per-
forming a network traffic analysis). The keys used to establish encrypt traffic can also be used to verify an
asserted identity in many architectures, and therefore provide a means of authentication.

IPSec is a network layer protocol - essentially, a secure replacement for traditional IP (Internet Protocol).
IPSec is most suited to VPN (virtual private network) architectures in which a set of SIP hosts (mingled user
agents and proxy servers) or bridged administrative domains have a trust relationship with one another.

TLS is a transport protocol and hence, like TCP and UDP, TLS can be specified as the desired transport
protocol within aVia header field or a SIP-URI. TLS is most suited to architectures in which a chain of trust

Various Authors Expires April 2002 [Page 86]

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

joins together a set of hosts (e.g. Alice trusts her local proxy server, which in turn trust Bob’s local proxy
server, which Bob trusts, hence Bob and Alice can communicate securely).

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on
a hop-by-hop basis in SIP, and that in some networks TLS might be used for only certain portions of the
signaling path.

Itis RECOMMENDED that SIP endpoints support TLS as a secure transport for SIP.

20.2 SIP Authentication

SIP provides a stateless challenged-based mechanism for authentication. Any time that a proxy server or
user agent receives a request, tiveyr challenge the initiator of the request to provide assurance of their
identity. Once the originator has been identified, the recipient of the requesiLD ascertain whether or

not this user is authorized to make the request in question. No authorization systems are recommended or
discussed in this document.

The “Digest” authentication mechanism described in this section provide message authentication only,
without message integrity or confidentiality. Protective measures above and beyond authentication need to
be taken to prevent active attackers from modifying and/or replaying SIP requests and responses.

Note that due to its weak security, the usage of “basic” authentication has been deprecated, and that
serversmUSTNOT accept credentials using the “basic” authorization scheme, and serversLasbOT
challenge with “basic”. This is a change from RFC 2543.

20.2.1 Framework

The framework for SIP authentication closely parallels that of HTTP (RFC 2617 [28]). In particular, the
BNF for auth- scheme, auth-param, challenge, realm, realm-value, andcredentials is identical. The

401 response is used by user agent servers in SIP to challenge the identity of a user agent client. Additionally,
registrars and redirect servangy make use of 401 (Unauthorized) responses for authentication, but proxies
MUST NOT, and insteadiAy use the 407 (Proxy Authentication Required) response. The requirements for
inclusion of theProxy-Authenticate, Proxy- Authorization, WWW-Authenticate, and Authorization in

the various messages are identical to those described in RFC 2617 [28].

Since SIP does not have the concept of a canonical root URL, the notion of protection spaces is in-
terpreted differently in SIP. The realm string alone defines the protection domain. This is a change from
RFC2543, in which the Request-URI and the realm together defined the protection domain; this definition
gave rise to some amount of confusion since the Request-URI sent by the UAC and the Request-URI re-
ceived by the server issuing a challenge might be different, and indeed the final form of the Request-URI
might not be known to the UAC. Also, the previous definition depended on the presence of a SIP URI in the
Request-URI, and seemed to rule out alternative URI schemes (like the tel URL).

Operators of user agents or proxy servers that will authenticate received requestadhere to the
following guidelines for creation of a realm string representing their server:

e Realm stringsvusT be globally unique. It iIRECOMMENDED that a realm string contain a hostname
or domain name, following the recommendation in Section 3.2.1 of RFC2617 [[28]].

e Realm stringssHOULD present a human-readable identifier that can be rendered to a user.

For example:

Various Authors Expires April 2002 [Page 87]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

3236 INVITE sip:bob@biloxi.com SIP/2.0
3237 WWW-Authenticate: Digest realm="biloxi.com"
3238 Generally, SIP authentication is for a specific realm, a protection domain. Thus, for Digest authentica-

3239 tion, each such protection domain has its own set of user names and secrets. If a server does not care about
3220 authenticating individual users, it may make sense to establish a “global” user name and secret for its realm
241 as a default challenge if a particulRequest-URI does not have its own realm or set of user names (e.g.

s222 an INVITE to 'sip:10.3.6.6’). Similarly, UACs representing many users, such as PSTN gateweaysave

3223 their own device-specific credentials for particular realms.

3244 While a server can legimitately challenge most SIP requests, there are two requests defined by the SIP
3225 Standard today that require special handling for authenticai@i andCANCEL.
3246 Complications with theACK method arise because it requires no response. Under an authentication

3227 Scheme that uses responses to carry nonces (such as Digest), some problems come up for any requests that
348 take no response (includingCK). For this reason any credentials in théVITE that were accepted by

3229 @ ServemusT be accepted by that server for tAEK. UACs creating arACK message should duplicate

a250 all of the Authorization and Proxy-Authorization headers that appeared in #NVITE to which theACK

3251 corresponds.

3252 Although theCANCEL method does take a response (a 2xx), serversTNOT attempt to challenge

3253 CANCEL requests since these requests cannot be resubmitted. GeneGMGEL requestSHOULD be

3254 accepted by a server if it comes from the same host that sent the request being cancelled (provided that some
3255 sort of transport or network layer security association, as described above, is in place).

3256 When a challenge is received by a UACS#OULD render to the user the contents of thredlim”

3257 parameter in the challenge (which appears in eith@\Ve\W-Authenticate header olProxy-Authenticate

s2s8 header) if the UAC device does not already know of a credential for the realm in question. A service
a2s9 provider that pre-configures UAs with credentials for its realm should be aware that users will not have the
3260 Opportunity to present distinct credentials for this realm when challenged at a pre-configured device.

3261 Finally, note that even if a UAC can locate credentials that are associated with the proper realm, there is
s262 always a potential that these credentials may no longer be valid, or that for whatever reason the challenging
a263 server will not accept these credentials. In this instance a server will commonly repeat its challenge. A
26 UAC MUSTNOT reattempt requests with the credentials that have just been rejected (unless the request was
3265 rejected because of a stale nonce).

266 20.2.2 User to User Authentication

267 When a UAS receives a request from a UAC, the UAS authenticate the originator before the request

s26s IS processed. If no credentials (in tAethorization header field are provided in the request, the UAS can

s260 Challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status
270 code.

3271 TheWWW-Authenticate response-header fieldusT be included in 401 (Unauthorized) response mes-

272 sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
3273 parameters applicable to tRequest-URI. See [H14.47] for a definition of the syntax.

3274 An example of theNVWW-Authenticate in a 401 challenge is:

3275 WWW-Authenticate: Digest realm="biloxi.com"

Various Authors Expires April 2002 [Page 88]

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314
3315

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

When the originating UAC receives the 401s#ouULD, if it is able, re-originate the request with the
proper credentials. The UAC may require input from the originating user before proceeding. Once authenti-
cation credentials have been supplied (either directly by the user, or discovered in an internal keyring), user
agentssHoULD cache the credentials for a given value of Tieeheader andrealm” and attempt to re-use
these values on the next request for that destination.

UAs MAY cache credentials in any way they would like. The following mler be followed when
caching user credentials:

e If a UA receives aVWW-Authenticate in a 401/407 to a request with a particuler header URI, it
MAY reuse that credential in any subsequent request to the Baheader URI.

Any user agent that wishes to authenticate itself with a UAS or registrar — usually, but not necessarily,
after receiving a 401 responsemAy do so by including aruthorization header field with the request.
The Authorization field value consists of credentials containing the authentication information of the user
agent for the realm of the resource being requested.

An example of theéAuthorization header is:

Authorization: Digest username="bob",
realm="biloxi.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri=sip:alice@atlanta.com,
gop=auth,
nc=00000001,
cnonce="0a4f113b",
response="6629fae49393a05397450978507c4efl",
opague="5ccc069c403ebafof0171e9517f40e41"

When a UAC resubmits a request with its credentials after receiving a 401 (or 407) responseT it
increment theCSeq header field as it would normally do when sending an updated request.

20.2.3 Proxy to User Authentication

Similarly, when a UAC sends a request to a proxy server, the proxy semeruthenticate the originator
before the request is processed. If no credentials (irPtiogy-Authorization header field) are provided
in the request, the UAS can challenge the originator to provide credentials by rejecting the request with a
407 (Proxy Authentication Required) status code. The proxgT populate the 407 (Proxy Authentication
Required) message withRroxy- Authenticate header applicable to the proxy for the requested resource.

The use of theProxy-Authentication and Proxy-Authorization parallel that described in [28, Sec-
tion 3.6], with one difference. ProxiesusT NOT add theProxy-Authorization header. 407 (Proxy Au-
thentication Required) responsessT be forwarded upstream towards the UAC following the procedures
for any other response. It is the client’s responsibility to addRhexy-Authorization header containing
credentials for the realm of the proxy which has asked for authentication.

If a proxy were to resubmit a request witlPaoxy-Authorization header field, it would need to increment the

CSeq in the new request. However, this would mean that the UAC which submitted the original request would
discard a response from the UAS, as @feq value would be different.

Various Authors Expires April 2002 [Page 89]

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351
3352

3353

3354

3355

3356

3357

3358

3359

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

When the originating UAC receives the 407s#ouULD, if it is able, re-originate the request with the
proper credentials. It should follow the same procedures for the display ofdhén” parameter that are
given above for responding to 401. The UABOULD also cache the credentials used in the re-originated
request.

The following rule isSRECOMMENDED for proxy credential caching:

¢ If a UA receives @roxy-Authenticate in a 401/407 to a request with a particu@all-ID, it includes
credentials for that realm in all subsequent requests that contain theCsdhiB. In accordance with
the definition of aCall-ID, these credentials MUST NOT be cached across dialogs. However, this
does mean a request could contain credentials that are not needed at any proxy along the path.

Additionally, if a UA is configured with the realm of its local outbound proxy, when one exists, then the
UA MAY cache credentials for that realm across dialogs.

Any user agent that wishes to authenticate itself to a proxy server — usually, but not necessarily, after
receiving a 407 responseMAY do so by including afProxy-Authorization header field with the request.

The Proxy-Authorization request-header field allows the client to identify itself (or its user) to a proxy
which requires authentication. Troxy-Authorization field value consists of credentials containing the
authentication information of the user agent for the proxy and/or realm of the resource being requested.

A Proxy-Authorization header field applies only to the proxy whose realm is identifier in thalth”
parameter (this proxy may previously have demanded authentication usiRgathe Authenticate field).

When multiple proxies are used in a chain, Brexy-Authorization header fieldvusT NOT be consumed
by any proxy whose realm does not match tihealm” parameter specified in thBroxy-Authorization
header.

Note that if an authentication scheme is used inRhexy- Authorization that does not support realms,

a proxy servemusT attempt to parse alProxy-Authorization headers to determine whether or not one

of them has what it considers to be valid credentials. Because this is potentially very time consuming in
large networks, proxy servesHOULD use an authentication scheme that supports realms iRribrey-
Authorization header.

If a request is forked (as described in Section 16.6, various proxy servers and/or user agents may wish
to challenge the UAC. In this case the forking proxy server is responsible for aggregating these challenges
into a single response. Ea®WW-Authenticate and Proxy-Authenticate received in responses to the
forked requesmusT be placed into the single response that is sent by the forking proxy to the user agent;
the ordering of these headers is not significant.

When a proxy issues a challenge in response to a request, it will not forward the request until the UAC has
provided valid credentials. A forking proxy may forward a request simultaneously to multiple proxy servers that
require authentication, each of which in turn will not forward the request until the originating UAC has authenticated
itself in their respective realm. If the UAC does not provide credentials for each of these challenges, then the proxy

servers that issued the challenges will not forward requests to user agents where the destination user might be
located, and therefore, the virtues of forking are largely lost.

If at least one UAS responds to a forked request with a challenge, than s4®d be sent as the
aggregated response by the forking proxy to the UAC; otherwise, if only proxy servers responaj@asa07
be used.

When resubmitting its request in response to a 401 or 407 that contains multiple challengesya}YJAC
include an Authorization for each WWW-Authenticate and Proxy-Authorization for each Proxy-Authenticate
for which the UAC wishes to supply a credential. As noted above, multiple credentials in a regoestpD
be differentiated by therealm” parameter.

Various Authors Expires April 2002 [Page 90]

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Note that it is possible for multiple challenges associated with the same realm to appear in the same 401
or 407 (for example, when multiple proxies within the same administrative domain, which use a common
realm, are reached by a forking request).

See [H14.34] for a definition of the syntax Bfoxy- Authentication andProxy-Authorization.

20.2.4 Authentication Schemes

SIP implementationsiAy use HTTP’s Digest authentication scheme ([28]) to provide a rudimentary form of
security. This section overviews usage of these mechanisms in SIP. The scheme usage is almost completely
identical to that for HTTP [28]. This section outlines this operation, pointing to RFC 2617 ([28]) for details
and noting the differences that arise when using SIP. Since RFC 2543 is based on HTTP Digest as defined in
RFC 2069 [29], SIP servers supporting RFC 2647sT ensure they are backwards compatible with RFC
2069. Procedures for this backwards compatibility are specified in RFC 2617. Note however that servers
MUSTNOT accept or request Basic authentication.

20.2.4.1 HTTP Digest The rules for Digest authentication follow those defined in [28, Section 3], with
“HTTP 1.1" replaced by “SIP/2.0” in addition to the following differences:

1. The URI included in the challenge has the following BNF:
URI = SIP-URL

2. The example in Section 3.5 of RFC 2617 has an error in that the 'uri’ parameterAuttherization
header for Digest authentication is enclosed in quotation marks. Usage in SIP follows the BNF in
RFC 2617 forAuthorization (and by extensiofProxy-Authorization) in that the value of the URI
MUSTNOT be enclosed in quotation marks.

3. The BNF fordigest-uri-value is:

digest-uri-value = Request-URI ; as defined in Section 25
4. The example procedure for choosing a nonce baséttamdoes not work for SIP.
5. The text in RFC 2617 [28] regarding cache operation does not apply to SIP.

6. RFC 2617 [28] requires that a server check that the URI in the request line, and the URI included in
the Authorization header, point to the same resource. In a SIP context, these two URI's may actually
refer to different users, due to forwarding at some proxy. Therefore, in SIP, a sesavecheck
that theRequest-URI in the Authorization header corresponds to a user for whom that the server is
willing to accept forwarded or direct calls.

7. As a clarification to the calculation of the A2 value for message integrity assurance in the Digest
authentication scheme, implementers should assume, when the entity-body is empty (i.e. when SIP
messages have no body) that the hash of the entity-body resolves to the MD5 hash of an empty string,
or:

8. RFC 2617 notes that a cnonce valuesTNOT be sent in aduthorization (and by extensioProxy-
Authorization) header if no qop directive as been sent. Therefore, any algorithms that have a depen-
dency on the cnonce (including “MD5-Sess”) require that the qop directive be sent. Use of the “qop”

Various Authors Expires April 2002 [Page 91]

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411
3412
3413
3414
3415
3416
3417

3418

3419

3420

3421

3422
3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

parameter is optional in RFC 2617 for the purposes of backwards compatibility with RFC 2069; since
RFC 2543 was based on RFC 2069, the “gop” parameter must unfortunately remain optional for
clients and servers to receive. However, sernveusT always send a “gop” parameter WWW-
Authenticate andProxy-Authenticate headers. If a client receives a “gop” parameter in a challenge
header, iMUST send the “qop” parameter in any resulting authorization header.

H(entity-body) = MD5(") = "d41d8cd98f00b204e9800998eci8427¢e”

RFC2543 did not allow usage of tihaithentication-Info header (it effectively used RFC 2069). How-
ever, we now allow usage of this header, since it provides integrity checks over the bodies and provides
mutual authentication. RFC2617 [28] defines mechanisms for backwards compatibility using the qop at-
tribute in the request. These mechanismssT be used by a server to determine if the client supports the
new mechanisms in RFC 2617 that were not specified in RFC 2069.

20.3 SIP Encryption

No mechanism is currently specified for encrypting entire SIP messages end-to-end for the purpose of con-
fidentiality. This is a hard problem because network intermediaries (like proxy servers) need to view certain
headers in order to route messages correctly, and if these intermediaries are excluded from security associa-

tions then SIP messages will essentially be unroutable.

That much said, SIP messages carry MIME bodies and the MIME standard includes mechanisms for
securing MIME contents to ensure both integrity and confidentiality (including the 'multipart/encrypted’
MIME type, see [30]), but detailed description of the use of secure MIME types are outside the scope of this
document. Implementors should note, however, that there may be rare network intermediaries (not typical
proxy servers) that rely on viewing or modifying the bodies of SIP messages (especially SDP), and that
secure MIME may prevent these sorts of intermediaries from functioning.

This applies particularly to certain types of firewalls.

End-to-end encryption relies on keys shared by the two user agents involved in the request. Typically,
the message is sent encrypted with the public key of the recipient, so that only that recipient can read the
message. SIP does not define any mechanism for end-to-end key exchange.

Note that the PGP mechanism for encrypting the headers and bodies of SIP messages described in RFC2543 has
been deprecated.

20.4 Denial of Service

Denial of service attacks focus on rendering a particular network element unavailable, usually by directing
an excessive amount of network traffic at its interfaces. A distributed denial of service attack allows one
network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures SIP proxy servers face the public Internet in order to accept requests from world-
wide IP endpoints. When the host on which a SIP proxy server is operating is routable from the public
Internet, it should be deployed in an administrative domain with secure routing policies (blocking source-
routed traffic, preferably filtering ping traffic).

SIP creates a humber of potential opportunities for distributed denial of service attacks that must be
recognized and addressed by the implementers and operators of SIP systems.

Floods of messages directed at proxy servers can lock up proxy server resources and prevent desirable
traffic from reaching its destination. There is a computational expense associated with processing a SIP

Various Authors Expires April 2002 [Page 92]

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454
3455
3456
3457
3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

transaction at a proxy server, and that expense is greater for stateful proxy servers than it is for stateless
proxy servers. Therefore stateful proxies are more susceptible to flooding than stateless proxy servers.

Attackers can create bogus requests that contain a falsified source IP address and a correg@onding
header field which identify a targeted host as the originator of the request and then send this request to a large
number of SIP network elements, thereby using hapless SIP UAs or proxies to generate denial of service
traffic aimed at the target.

Similarly, attackers might use falsifid®Rloute headers in a request that identify the target host and then
send such messages to forking proxies that will amplify messaging sent to the Regetd-Route could
be used to similar effect when the attacker is certain that the SIP dialog initiated by the request will result in
numerous transactions originating in the backwards direction.

One could prevent one’s host from being commandeered for such an attack by disallowing requests that
do not make use of a persistent security association established through a transport or network layer security
instrument such as TLS or IPsec. This could be an appropriate security solution for two proxy servers that
trust one another and exchange significant amounts of signaling traffic with one another, or between a user
agent and its outbound proxy.

Both TLS and IPSec can also make use of bastion hosts at the edges of administrative domains that
participate in the security associations to aggregate secure tunnels and sockets. These bastion hosts can also
take the brunt of denial of service attacks, ensuring that SIP hosts within the administrative domain are not

encumbered with superfluous messaging.
If such a persistent security association is not feasible, user agents and proxy seiwero chal-
lenge questionable requests with onlgiagle401 (Unauthorized) or 407 (Proxy Authentication Required)
- forgoing the normal response retransmission algorithm, and behaving statelessly towards unauthenticated
requests.

Retransmitting the 401 or 407 status response amplifies the problem of an attacker using a falsified header (such
asVia) to direct traffic to a third party.

A number of denial of service attacks open UREGISTER requests are not properly authenticated
and authorized by registrars. Attackers could de-register some or all users in an administrative domain,
thereby preventing these users from being invited to new sessions. An attacker could also register a large
number of contacts designating the same host for a given address of record in order to use the registrar and
any associated proxy servers as amplifiers in a denial of service attack. Attackers might also attempt to
deplete available memory and disk resources of a registrar by registering huge numbers of bindings.

With either TCP or UDP, a denial of service attack exists by a rogue proxy sending 6xx responses.
Although a clientsHouULD choose to ignore such responses if it requested authentication, a proxy cannot do
so. Itis obliged to forward the 6xx response back to the client. The client can then ignore the response, but
if it repeats the request it will probably reach the same rogue proxy again, and the process will repeat.

The use of multicast to transmit SIP requests can greatly increase the potential for denial of service
attacks.

21 Common Message Components

There are certain components of SIP messages that appear in various places within SIP messages (and
sometimes, outside of them), which merit separate discussion.

Various Authors Expires April 2002 [Page 93]

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

21.1 SIP Uniform Resource Indicators

A SIP URI identifies a communications resource. Like all URIs, SIP URIs may be placed in web pages,
email messages or printed literature. They contain sufficient information to initiate and maintain a commu-
nication session with the resource.

Examples of communications resources include

e a user of an online service
e an appearance on a multiline phone

e a mailbox on a messaging system

a PSTN phone number at a gateway service

a group (such as “sales” or “helpdesk”) in an organization

21.1.1 SIP URI components

The “sip:” scheme follows the guidelines in RFC 2396 [10]. It uses a form similar tonti#o URL, al-

lowing the specification of SIRRquest-header fields and the Slifhessage- body. This makes it possible

to specify the subject, media type, or urgency of sessions initiated by using a URI on a web page or in an
email message. The formal syntax for a SIP URI is presented in Section 25. Its general form is

sip:user:password@host:port;url-parameters?headers

These tokens, and some of the tokens in their expansion, have the following meanings.

user: The identifier of a particular resource at the host being addressed. Note that “host” as used here may,
and frequently does, refer to a domain.

The “userpart” of a URI consists of this user field, the password field and the @ sign following them.
The userpart of a URI is optional amthy be absent when the destination host does not have a notion
of users or when the host itself is the resource being identified. If the @ sign is present in a SIP URI,
the user fieldvusT NOT be empty.

If the host being addressed is capable of processing telephone numbers, an Internet telephony gateway
for instance, delephone- subscriber field defined in RFC 2806 [14}1AY be used to populate the

user field. There are special escaping rules for encodéatgphone-subscriber fields in SIP URIs
described in Section 21.1.2.

password : A password associated with the user

While the SIP URI syntax allows this field to be present, its used$ RECOMMENDED because

the passing of authentication information in clear text (such as URIS) has proven to be a security risk
in almost every case where it has been used. For instance, transporting a PIN number in this field
exposes the PIN.

host: The entity hosting the SIP resource

Thehost part contains either a fully-qualified domain name or numeric IPv4 or IPv6 address. Using
the fully-qualified domain name form BECOMMENDED whenever possible.

Various Authors Expires April 2002 [Page 94]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

11 port: The port number where the request is to be sent.

ss12 - URI parameters: Parameters affecting a request constructed from the URI.

3513 URI parameters are added after thestport component and are separated by semi-colons. This
3514 extensible mechanism includes tin@nsport, maddr, ttl, user, andmethod parameters.

3515 The transport parameter determines the transport mechanism to be used for sending SIP messages.
3516 SIP can use any network transport protocol. Parameter names are defined for UDP [31], TCP [32],
3517 TLS [26], and SCTP [33].

3518 Themaddr parameter indicates the server address to be contacted for this user, overriding any address
3519 derived from thehost field. [8] describes the proper interpretation of tin@ensport, maddr and

3520 hostport in order to obtain the destination address, port and transport for sending a request.

3521 Themaddr field can be used as a simple form of loose source routing. It allows a URI to specify a specific

3522 proxy that must be traversed en-route to the destination. This capability is useful for a roaming user that is

3523 forced to use an outbound proxy, but wishes to force requests through their home proxy.

3524 The ttl parameter determines the time-to-live value of the UDP multicast packetiaisa only

3525 be used ifmaddr is a multicast address and the transport protocol is UDP. Udee parameter

3526 was described above. For example, to specify to alide @atlanta.com using multicast to

3527 239.255.255.1 with a ttl of 15, the following URI would be used:

3528 sip:alice@atlanta.com;maddr=239.255.255.1;ttI=15

3529 The set of validtelephone-subscriber strings is a subset of validser strings. Theuser URI pa-

3530 rameter exists to distinguish telephone numbers from user names that happen to look like telephone
3531 numbers. If the user string contains a telephone number formattetetephone-subscriber, the

3532 user parameter valuephone” sHoOULD be present. Even without this parameter, recipients of SIP

3533 URIs MAY interpret the pre-@ part as a telephone number if local restrictions on the name space for
3534 user name allow it.

3535 The method of the SIP request constructed from the URI can be specified witlethed parameter.

3536 Since the url-parameter mechanism is extensible, SIP elemeistssilently ignore any url-parameters

3537 that they do not understand.

38 Headers: Headers to be included in a request constructed from the URI.

3539 Headers fields in the SIP request can be specified with the “?” mechanism within a SIP URI. The
3540 header names and values are encoded in ampersand seferabee = hvalue pairs. The special

3541 hname “body” indicates that the associatbédalue is themessage-body of the SIP request.

3542 Table 1 summarizes the use of SIP URI components based on the context in which the URI appears. The

ssa3 - external column describes URIs appearing anywhere outside of a SIP message, for instance on a web page
ssaa OF business card. Entries marked “m” are mandatory, those marked “0” are optional, and those marked “-”
ssa5 - are not allowed. Elements processing URKOULD ignore any disallowed components if they are present.

a6 The second column indicates the default value of an optional element if it is not present. “—” indicates that
57 the element is either not optional, or has no default value.

Various Authors Expires April 2002 [Page 95]

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

SIP URIs inContact header fields have different restrictions depending on the context in which the
header field appears. One set applies to messages that establish and maintain dialogs (INVITE and its 200
OK response). The other applies to registration and redirection messages (REGISTER, its 200 OK response,
and 3xx class responses to any method).

OPEN ISSUE #203: maddr is disallowed in To/From, but not port. Should port be disallowed?

OPEN ISSUE #204: Password is disallowed in From, but not To. Why?

OPEN ISSUE #205: Should we allow method and header URI components in registration/redirect Con-
tacts. What do they mean?

dialog
reg./redir. Contact/
default Req.-URlI To From Contact R-R/Route external

user - 0 o] 0 o} o] 0
password - 0 0 - 0 0 o]
host - m m m m m m
port 5060 o] o] o] o] o] o]
user-param ip o] 0 o} 0 0 o]
method INVITE - - - 0 - 0
maddr-param — 0 - - o] o] o]
ttl-param 1 0 - - o] - o]
transp.-param udp o] - - o] o] o]
other-param — 0 o] 0 o] o] 0
headers - - - - o] - o]

Table 1: Use and default values of URI components for SIP heaetgjest-URI and references

21.1.2 Character escaping requirements

SIP follows the requirements and guidelines of RFC 2396 when defining the set of characters that must be
escaped in a SIP URI, and uses its “"%"” HEX HEX” mechanism for escaping. From RFC 2396:

The set of characters actually reserved within any given URI component is defined by that com-
ponent. In general, a character is reserved if the semantics of the URI changes if the character
is replaced with its escaped US-ASCII encoding. [10].

Excluded US-ASCII characters [10, Sec. 2.4.3], such as space and control characters and characters used as
URI delimiters, alsavusT be escaped. URIBUST NOT contain unescaped space and control characters.

For each component, the set of valid BNF expansions defines exactly which characters may appear
unescaped. All other charactens/ST be escaped.

For example, “@” is not in the set of characters in the user component, so the user “j@s0n” must have
at least the @ sign encoded, as in “j%40s0n”.

Expanding the hname and hvalue tokens in Section 25 show that all URI reserved characters in header
names and valuegusT be escaped.

Thetelephone-subscriber subset of thaiser component has special escaping considerations. The set
of characters not reserved in the RFC 2806 [14] descriptiaielephone-subscriber contains a number

Various Authors Expires April 2002 [Page 96]

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

of characters in various syntax elements that need to be escaped when used in SIP URIs. Any characters
occurring in a@elephone-subscriber that do not appear in an expansion of the BNF foruker rule MusT
be escaped.

Note that character escaping is not allowed in the host component of a SIP URI (the % character is not
valid in its expansion). This is likely to change in the future as requirements for Internationalized Domain
Names are finalized. CurrentimplementationssT NOT attempt to improve robustness by treating received
escaped characters in the host component as literally equivalent to their unescaped counterpart. The behavior
required to meet the requirements of IDN may be significantly different.

21.1.3 Example SIP URIs

sip:alice@atlanta.com
sip:alice:secretword@atlanta.com;transport=tcp
sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com

sip:alice@10.1.1.1
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com
sip:alice;day=tuesday@atlanta.com

The last example URI above hasiser field value of “alice;day=tuesday”. The escaping rules defined
above allow a semicolon to appear unescaped in this field. Note, however, that for the purposes of this
protocol, the field is opaque. The apparent structure in that value is only useful to the entity responsible for
the resource.

21.1.4 SIP URI Comparison

SIP URIs are compared for equality according to the following rules:

e Comparisons of scheme name (“sip”), domain names, parameter names and header names are case-
insensitive, all other comparisons are case-sensitive. (OPEN ISSUE #100 : There is a proposal to
make only quoted string comparisons case-sensitive.)

e The ordering of parameters and headers is not significant in comparing SIP URIs.

e Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [10]) are equivalent to
their “"%" HEX HEX” encoding.

e An IP address that is the result of a DNS lookup of a host namemmasatch that host name.

e For two URIs to be equal, theser, password, host, andport components must match. A URI
omitting the optional port component will match a URI explicitly declaring port 5060. A URI omitting
the user component witlot match a URI that includes one. A URI omitting the password component
will not match a URI that includes one.

e URI uri-parameter components are compared as follows

— Any uri-parameter appearing in both URIs must match.

Various Authors Expires April 2002 [Page 97]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

3608 — A user, transport, ttl, or methodrl-parameter appearing in only one URI must contain its

3609 default value or the URIs do not match.

3610 — All other url-parameters appearing in only one URI are ignored when comparing the URIs.

3611 ¢ URI header components are never ignored. Any predesader componentMusT be present in

3612 both URIs and match for the URIs to match. The matching rules are defined for each header in
3613 Section sec:header-fields.

3614 The URIs within each of the following sets are equivalent:

615 Sip:%61lice@atlanta.com:5060
se16 Sip:alice@AtLanTa.CoM;Transport=udp

3617 Sip:carol@chicago.com
se18 Sip:carol@chicago.com;newparam=5
3619 Sip:carol@chicago.com;security=on

3620 Sip:biloxi.com;transport=tcp;method=REGISTER?to=sip:bob%40biloxi.com
se21 Sip:biloxi.com;method=REGISTER;transport=tcp?to=sip:bob%40biloxi.com

622 Sip:alice@atlanta.com?subject=project%20x&priority=urgent
623 Sip:alice@atlanta.com?priority=urgent&subject=project%20x

3624 The URIs within each of the following sets amet equivalent:

3625 SIP:ALICE@AtLanTa.CoM;Transport=udp (different usernames)
626 Sip:alice@AtLanTa.CoM;Transport=UDP

3627 Sip:bob@biloxi.com (different port and transport)
3628 Sip:bob@biloxi.com:6000;transport=tcp

320 Sip:carol@chicago.com (different header component)
3630 Sip:carol@chicago.com?Subject=next%20meeting

3631 Sip:bob@phone21.boxesbybob.com (even though that's what

632 Sip:bob@10.4.1.4 phone21.boxesbybob.com resolves to)
3633 Note that equality is not transitive:

3634 sip:carol@chicago.com and sip:carol@chicago.com;security=on are equivalent

se3s and sip:carol@chicago.com and sip:carol@chicago.com;security=off are equivalent

se36 But sip:carol@chicago.com;security=on and sip:carol@chicago.com;security=ofbtaeguivalent

3637 Comparing URIs is a major part of comparing several SIP headers (see Section 22).

Various Authors Expires April 2002 [Page 98]

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

21.1.5 Forming Requests from a SIP URI

An implementation must take care when forming requests directly from a URI. URIs from business cards,
web pages, and even from sources inside the protocol such as registered contacts may contain inappropriate
header fields or body parts.

The policies to apply during message formation are an implementation decision. An implementation
SHOULD treat the presence of any headers or body parts in the URI as a request to include them in the
message, and choose to honor the request on an per-component basis.

AnimplementatiorsHOULD NOThonor these obviously dangerous header fidhdsm, Call-ID, CSeq,

Via, andRecord-Route.

An implementationsHOULD take special care in honoring any requedimlite header field values in
order to not be used as an unwitting agent in malicious attacks.

An implementatiorsHOULD NOThonor requests to include headers that may cause it to falsely advertise
its location or capabilities. These includ&ccept, Accept-Encoding, Accept-Language, Allow, Contact
(in its dialog usage)Prganization, Supported, andUser-Agent.

An implementatiorsHOULD verify the accuracy of any requested descriptive headers, incluGioigtent-
Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Date, Mime-
Version, andTimestamp.

21.2 Option Tags

Option tags are unique identifiers used to designate new options (extensions) in SIP. These tags are used in
Require (Section 22.31)Proxy-Require (Section 22.28Supported (Section 22.37) antUnsupported

(Section 22.40) header fields. Note that these options appear as parameters in those headptmim-tay

=token form (see Section 25 for the definition twken).

The creator of a new SIP optiomusT either prefix the option with their reverse domain name or register
the new option with the Internet Assigned Numbers Authority (IANA) (See Section 26).

An example of a reverse-domain-name option is “com.foo.mynewfeature”, whose inventor can be reached
at “foo.com”. For these features, individual organizations are responsible for ensuring that option names do
not collide within the same domain. The host name part of the opticsr use lower-case; the option name
is case-sensitive.

Options registered with IANA do not contain periods and are globally unique. IANA option tags are
case-sensitive.

21.3 Tags

The “tag” parameter is used in thEo andFrom fields of SIP messages. It serves as a general mechanism
to identify a particular instance of a user agent for a particular SIP URI.

As proxies can fork requests, the same request can reach multiple instances of a user (mobile and home
phones, for example). Since each can respond, there needs to be a means for the originator of a session to
distinguish the responses. Tag fields in Teeand From disambiguate these multiple instances of the same
user.

This situation also arises with multicast requests.

When atag is generated by a UA for insertion into a request or response&sitbe globally unique and
cryptographically random with at least 32 bits of randomness. A property of this selection requirement is
that a UA will place a different tag into thierom header of aiNVITE as it would place into th&o header

Various Authors Expires April 2002 [Page 99]

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

of the response to the sardVITE. This is needed in order for a UA to invite itself to a session, a common
case for “hairpinning” of calls in PSTN gateways.

Besides the requirement for global uniqueness, the algorithm for generating a tag is implementation
specific. Tags are helpful in fault tolerant systems, where a dialog is to be recovered on an alternate server
after a failure. A UAS can select the tag in such a way that a backup can recognize a request as part of a
dialog on the failed server, and therefore determine that it should attempt to recover the dialog and any other
state associated with it.

22 Header Fields

The general syntax for header fields is covered in Section 7.3. This section lists the full set of header fields
along with notes on syntax, meaning, and usage. Throughout this section, we use [HX.Y] to refer to Section
X.Y of the current HTTP/1.1 specification RFC 2616 [9]. Examples of each header field are given.
Information about header fields in relation to methods and proxy processing is summarized in Ta-
bles 2 and 3.
The “where” column describes the request and response types in which the header field can be used.
Values in this column are:

R: refers to header fields that can be used in requests.

r: designates a header field as applicable to all responses, while a list of numeric values indicates the status
codes with which the header field can be used.

c: indicates a header field is copied from the request to the response.
The “proxy” column describes the operations a proxy may perform on a header.

. indicates that a proxy can add (concatenate) comma-separated elements to the header
m: indicates that a proxy can modify the header
a: indicates that a proxy can add the header if not present

r: indicates that a proxy must be be able to read the header. Headers that need to be read cannot be en-
crypted.

The next six columns relate to the presence of a header field in a method, with the contents indicating:

o: for optional
m: for mandatory

m*: indicates a header thaHouLD be sent, but servers need to be prepared to receive messages without
that header field.

*. indicates that the header fields are required if the message body is not empty. See sections 22.14, 22.15
and 7.4 for details.

-: for not applicable.

Various Authors Expires April 2002 [Page 100]

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

c: for conditional. The header field is either mandatory or optional, depending on the presence of a route
set or the response code.

“Optional” means that a UMAY include the header field in a request or response, and @AYAignore
the header field if present in the request or response (The exception to this rul®eqtiee header field
discussed in 22.31). A “mandatory” header fieldsST be present in a request, amisT be understood
by the UAS receiving the request. A mandatory response heademfigdd be present in the response,
and the header fieldusT be understood by the UAC processing the response. “Not applicable” means that
the header fieldiusT NOT be present in a request. If one is placed in a request by mistake,sit be
ignored by the UAS receiving the request. Similarly, a header field labeled “not applicable” for a response
means that the UASIUST NOT place the header in the response, and the WAGT ignore the header in
the response.

A compact form of some common header fields is also defined for use when overall message size is an
issue.

The Contact, From, andTo header fields contain a URI. If the URI contains a comma, question mark
or semicolon, the URMUST be enclosed in angle brackets &nd>). Any URI parameters are contained
within these brackets. If the URI is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URI parameters.

22.1 Accept

The Accept header follows the syntax defined in [H14.1]. The semantics are also identical, with the excep-
tion that if noAccept header is present, the sergrouLD assume a default value application/sdp
Example:

Accept: application/sdp;level=1, application/x-private, text/html

22.2 Accept-Encoding

The Accept-Encoding header field is similar té\ccept, but restricts the content-codings [H3.5] that are
acceptable in the response. See [H14.3]. The syntax of this header is defined in [H14.3]. The semantics in
SIP are identical to those defined in [H14.3].

An empty Accept-Encoding header field is permissible, even though the syntax in [H14.3] does not
provide for it. It is equivalent téAccept-Encoding: identity, that is, only the identity encoding, meaning
no encoding, is permissible. If this header is not present, the default valleniity. This differs slightly
from the HTTP definition, which indicates that when not present, any encoding can be used, but the identity
encoding is preferred.

Example:

Accept-Encoding: gzip

22.3 Accept-Language

The Accept-Language header follows the syntax defined in [H14.4]. The rules for ordering the languages
based on thed” parameter apply to SIP as well.

Various Authors Expires April 2002 [Page 101]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Header field where proxy ACK BYE CAN INV OPT REG PRA
Accept R - 0] - m* o] o] o]
Accept 2XX - - - m* o] 0 -
Accept 415 - o] - o] o] o] o]
Accept-Encoding R - o] - m* 0 o] o]
Accept-Encoding 2XX - - - m* o] 0 -
Accept-Encoding 415 - o] - (o] o] (o] o]
Accept-Language R - 0] - m* o] o] o]
Accept-Language 2XX - - - m* 0] o] -
Accept-Language 415 - 0 - o] 0] o] o]
Alert-Info R am - - - o] - - -
Alert-Info 180 am - - - o] - - -
Allow R 0 0 o] o] o] o] (o]
Allow 2XX - o] 0 m* m* 0 o]
Allow r - 0 o] o] o] (o] o]
Allow 405 - m m m m m m
Authentication-Info 2XX - o] - 0 0 0 0
Authorization R 0 0 o] o] o] o] o]
Call-ID c r m m m m m m m
Call-Info am - - - 0 o] o] -
Contact R 0 - - m 0 o] -
Contact Ixx - - - o] o] - -
Contact 2XX - - - m o] 0 -
Contact 3xXX - o] - o] o] o] o]
Contact 485 - o] - o] o] o] o]
Content-Disposition o] o] - o] o] o] o]
Content-Encoding o] o] - o] o] (o] o]
Content-Language o] o] - o] o] 0 0
Content-Length r m* m* m* m* m* m* m*
Content-Type * * - * * * *
CSeq c r m m m m m m m
Date a o] o] 0] (o] 0] (o] (o]
Error-Info 300-699 - o] o] o] o] o] o]
Expires - - - o] - 0 -
From c r m m m m m m m
In-Reply-To R - - - 0 - - -
Max-Forwards R rm o] 0] o] o] o] o] o]
MIME-Version o] o] o] o] o] o] o]
Organization am - - - 0 o] o] -

Table 2: Summary of header fields, A-O

Various Authors Expires April 2002 [Page 102]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Header field where proxy ACK BYE CAN INV OPT REG PRA
Priority R a - - - (o] - - -
Proxy-Authenticate 407 - m m m m m m
Proxy-Authorization R r o] o] o] o] 0 0 0
Proxy-Require R r 0] 0] o] o] o] o] o]
RAck R - - - - - - m
Record-Route R amr o] o] o] o] o] - o]
Record-Route 2xx,401,484 - o] o] o] 0 - o]
Require g acr o] o] o] 0 o] o] o]
Retry-After 404,413,480,486 - o] o] o] 0 o] o]
500,503 - 0 o] o] o] 0 0
600,603 - 0 o] 0 o] o] o]
Route R r C c c c c - c
RSeq Ixx - o] - o] o] o] -
Server r - o] o] o] o] o] o]
Subject R - - - o] - - -
Supported - o] o] 0 0 0 0
Timestamp 0 0 0 0 o] o] o]
To gc(1) r m m m m m m m
Unsupported 420 - o] o] o] 0] o] 0]
User-Agent o] o] o] o] o] o] o]
Via c acmr m m m m m m m
Warning r 0 0 0 0 o] o] o]
WWW-Authenticate 401 - m m m m m m

Table 3: Summary of header fields, P-Z; (1): copied with possible addition of tag

3748 TheAccept-Language header is used in requests to indicate the preferred languages for reason phrases,
s720 Session descriptions, or status responses carried as message bodies in the respohseeptii@nguage

a7s0 header field is present in a request, the server assumes all languages are acceptable to the client.

3751 Example:

3752 Accept-Language: da, en-gb;q=0.8, en;q=0.7

sz 22.4 Alert-Info

srsa When present in alNVITE request, thélert-Info header field specifies an alternative ring tone to the UAS.
s7ss - When present in a 180 (Ringing) response,Alert-Info header field specifies an alternative ringback tone
a6 t0 the UAC. A typical usage is for a proxy to insert this header to provide a distinctive ring feature.

3757 The Alert-Info header can introduce security risks. These risks and the ways to handle them are dis-
a5 cussed in Section 22.9, which discussesGa#-Info header since the risks are identical.

3759 In addition, a usesHOULD be able to disable this feature selectively.

3760 This helps prevent disruptions that could result from the use of this header by untrusted elements.

3761 Example:

Various Authors Expires April 2002 [Page 103]

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Alert-Info: <http://wwww.example.com/sounds/moo.wav>

22.5 Allow

The Allow header field lists the set of methods supported by the UA generating the message.

All methods, includingACK and CANCEL, understood by the UMuUST be included in the list of
methods in théAllow header, when present. The absence of\bow heademusT NOT be interpreted to
mean that the UA sending the message supports no methods. Rather, it implies that the UA is not providing
any information on what methods it supports.

Supplying anAllow header in responses to methods other B&TIONS reduces the number of mes-
sages needed.

Example:

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

22.6 Authentication-Info

TheAuthentication-Info header provides for mutual authentication with HTTP Digest. A WAS include
this header in a 2xx response to a request that was successfully authenticated using digest based on the
Authorization header.

Syntax and semantics follow those specified in RFC2617 [28].

Example:

Authentication-Info: nextnonce="47364c23432d2e131a5fh210812¢"

22.7 Authorization

The Authorization header field contains authentication credentials of a UA. Section 20.2.2 overviews the
use of theAuthorization header field, and Section 20.2.4 describes the syntax and semantics when used
with HTTP Basic and Digest authentication.

Note that this header field, along wifroxy-Authorization, breaks the general rules about multiple
header fields. Although not a comma-separated list, this header field may be present multiple times, and
MUST NOT be combined into a single header using the usual rules described in Section 7.3.

Example:

Authorization: Digest username="Alice", realm="Bob’s Friends",
nonce="84a4cc6f3082121f32b42a2187831a9e",
response="7587245234h3434cc3412213e5f113a5432"

22.8 Call-ID

The Call-ID header field uniquely identifies a particular invitation or all registrations of a particular client.
Note that a single multimedia conference can give rise to several calls with diffeediADs, for example,
if a user invites a single individual several times to the same (long-running) confergalidDs are case-
sensitive and are simply compared byte-by-byte.

The compact form of th€all-ID header field is.

Various Authors Expires April 2002 [Page 104]

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823
3824
3825
3826

3827

3828

3829

3830

3831

3832

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Examples:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@biloxi.com
i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6 @10.4.1.4

22.9 Call-Info

The Call-Info header field provides additional information about the caller or callee, depending on whether
it is found in a request or response. The purpose of the URI is described bpuhgose” parameter.

The “icon” parameter designates an image suitable as an iconic representation of the caller or callee. The
“info” parameter describes the caller or callee in general, for example, through a web pageaittie “
parameter provides a business card, for example, in vCard [34] or LDIF [35] formats. Additonal tokens can
be registered using IANA and the procedures in Section 26.

Use of theCall-Info header field can pose a security risk. If a callee fetches the URIs provided by a
malicious caller, the callee may be at risk for displaying inappropriate or offensive content, dangerous or
illegal content, and so on. Therefore, itRECOMMENDED that a UA only render the information in the
Call-Info header if it can verify the authenticity of the element that originated the header and trusts that
element. This need not be the peer UA; a proxy can insert this header into requests.

The use of this header is important in converged applications.

Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg> ;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

22.10 Contact

The Contact header field provides a URI whose meaning depends on the the type of request or response it
is in.

Parameters defined f@ontact include “g” and “expires”. Additional parameters may be defined in
other specifications. Even if thalisplay-name” is empty, the ‘hame-addr” form MmusT be used if the
“addr-spec” contains a comma, semicolon, or question mark. Note that there may or may not be LWS
between thelisplay-name and the «”.

The Contact header field fulfills functionality similar to theocation header field in HTTP. However, the
HTTP header field only allows one address, unquoted. Since URIs can contain commas and semicolons as reserved
characters, they can be mistaken for header or parameter delimiters, respectively. The current syntax corresponds to
that for theTo andFrom header fields, which also allow the use of display names.

The compact form of th€ontact header field isn (for "moved”).
Examples:

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
;g=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

m. <sip:bob@10.5.1.5>

Various Authors Expires April 2002 [Page 105]

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

22.11 Content-Disposition

The Content-Disposition header field describes how the message body or, for multipart messages, a mes-
sage body part is to be interpreted by the UAC or UAS. This SIP header field extends the GiiiM&nt-
Type (RFC 1806 [36]).

The value $ession” indicates that the body part describes a session, for either calls or early (pre-call)
media. The valuerénder” indicates that the body part should be displayed or otherwise rendered to the
user. For backward-compatibility, if theéontent-Disposition header is missing, bodies Gontent-Type
application/sdp imply the disposition §ession”, while other content types implyrender”.

The disposition typeiton” indicates that the body part contains an image suitable as an iconic repre-
sentation of the caller or callee. The valért” indicates that the body part contains information, such as
an audio clip, that should be rendered instead of ring tone.

The handling parametenandling-parm, describes how the UAS should react if it receives a message
body whose content type or disposition type it does not understand. The parameter has defined values of
“optional” and “required”. If the handling parameter is missing, the valueduired” is to be assumed.

If this header field is missing, the MIME type determines the default content disposition. If there is none,
“render” is assumed.
Example:

Content-Disposition: session

22.12 Content-Encoding

The Content-Encoding header field is used as a modifier to theedia-type”. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanisms1UusT be applied in order to obtain the media-type referenced byCthwtent-Type header
field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of
its underlying media type.

If multiple encodings have been applied to an entity, the content codings be listed in the order in
which they were applied.

All content-coding values are case-insensitive. IANA acts as a registry for content-coding value tokens.
See [H3.5] for a definition of the syntax foontent-coding.

ClientsmAY apply content encodings to the body in requests. A senver apply content encodings to
the bodies in responses. The semversT only use encodings listed in teccept-Encoding header in the
request.

The compact form of th€ontent-Encoding header field i®.

Examples:

Content-Encoding: gzip
e: tar

22.13 Content-Language

See [H14.12].
Example:

Various Authors Expires April 2002 [Page 106]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

3871 Content-Language: fr

sz 22.14 Content- Length

73 TheContent-Length header field indicates the size of the message-body, in decimal number of octets, sent

ss74 10 the recipient.

3875 ApplicationssHouLD use this field to indicate the size of the message-body to be transferred, regardless
76 Of the media type of the entity. The size of the message-bodyrdui@sclude the CRLF separating headers

ss77 and body. AnyContent-Length greater than or equal to zero is a valid value. If no body is present in a
78 Message, then theontent-Length header fieldwvusT be set to zero.

3879 The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate re-
3880 sponses.

3881 The compact form of the headerlis

3882 Examples:

3883 Content-Length: 349
3884 [173

ass 22.15 Content-Type

sss 1he Content-Type header field indicates the media type of the message-body sent to the recipient. The
sss7 “Media-type” element is defined in [H3.7]. Th€ontent-Type heademusT be present if the body is not

s empty. If the body is empty, and@ontent-Type header is present, it indicates that the body of the specific
0 type has zero length (for example, an empty audio file).

3890 The compact form of the headerds

3891 Examples:

3892 Content-Type: application/sdp
3893 c: text/html; charset=ISO-8859-4

s 22.16 CSeq

sses A CSeq header field in a request contains a single decimal sequence number and the request method. The
o6 Sequence numberusT be expressible as a 32-bit unsigned integer. C8eq header serves to order trans-

sse7 actions within a dialog, to provide a means to uniquely identify transactions, and to differentiate between
s NEW requests and request retransmissions.

3899 Example:

3900 CSeq: 4711 INVITE

w01 22.17 Date

s02 The Date header field contains an RFC 1123 date (see [H14.18]). Note that unlike HTTP/1.1, SIP only
3903 supports the most recent RFC 1123 [37] formatting for dates. As in [H3.3], SIP restricts the timezone in
3004 SIP-date to “"GMT”, while RFC 1123 allows any timezone.

3905 The consistent use of GMT betweBrate, Expires andRetry-After headers allows implementation of simple
3906 clients that do not have a notion of absolute time.

Various Authors Expires April 2002 [Page 107]

3907

3908

3909
3910

3911

3912

3913

3914

3915
3916
3917
3918
3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Note thatrfc1123-date is case-sensitive.
TheDate header field reflects the time when the request or response is first sent.

The Date header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time. However, in its GMT form, it requires clients to know their offset from GMT.

Example:

Date: Sat, 13 Nov 2010 23:29:00 GMT

22.18 Error-Info

TheError-Info header field provides a pointer to additional information about the error status response.

SIP UACs have user interface capabilities ranging from pop-up windows and audio on PC softclients to audio-
only on "black” phones or endpoints connected via gateways. Rather than forcing a server generating an error to
choose between sending an error status code with a detailed reason phrase and playing an audio recording, the
Error-Info header field allows both to be sent. The UAC then has the choice of which error indicator to render to the
caller.

A UAC mAY treat a SIP URI in arkError-Info header field as if it were €ontact in a redirect and
generate a neWNVITE, resulting in a recorded announcement session being established. A non-SIP URI
MAY be rendered to the user.

Examples:

SIP/2.0 404 The number you have dialed is not in service
Error-Info: <sip:not-in-service-recording@atlanta.com>

22.19 Expires

The Expires header field gives the date and time after which the message (or content) expires. The precise
meaning of this is method dependent.

Note that the expiration time in aiNVITE doesnot affect the duration of the actual session that may
result from the invitation. Session description protocols may offer the ability to express time limits on the
session duration, however.

The value of this field can be either a date (seelate header field) or an integer number of seconds
(in decimal), measured from the receipt of the request. The latter approach is preferable for short durations,
as it does not depend on clients and servers sharing a synchronized clock.

Examples:

Expires: Thu, 01 Dec 1994 16:00:00 GMT
Expires: 5

22.20 From

TheFrom header field indicates the initiator of the request. Note that this may be different from the initiator
of the dialog. Requests sent by the callee to the caller use the callee’s addredsromniheeader field.

The optional Hisplay-name” is meant to be rendered by a human user interface. A systeouLD
use the display name “Anonymous” if the identity of the client is to remain hidden.

Various Authors Expires April 2002 [Page 108]

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953
3954
3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Even if the ‘display-name” is empty, the ‘hame-addr” form MuUsT be used if the &ddr-spec” con-
tains a comma, question mark, or semicolon. Syntax issues are discussed in Section 7.3.1.

The compact form of the headerfis

Examples:

From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
f: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

22.21 In-Reply-To

The In-Reply-To header field enumerates tlall-IDs that this call references or returns. Th&sdl-IDs
may have been cached by the client then included in this header in a return call.

This allows automatic call distribution systems to route return calls to the originator of the first call. This also
allows callees to filter calls, so that only return calls for calls they originated will be accepted. This field is not a
substitute for request authentication.

Example:

In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

22.22 Max-Forwards

The Max-Forwards header field may be used with any SIP method to limit the number of proxies or gate-
ways that can forward the request to the next downstream server. This can also be useful when the client is
attempting to trace a request chain that appears to be failing or looping in mid-chain.
The Max-Forwards value is a decimal integer indicating the remaining number of times this request
message is allowed to be forwarded. This count is decremented by each server that forwards the request.
Example:

Max-Forwards: 6

22.23 MIME-Version

See [H19.4.1].
Example:

MIME-Version: 1.0

22.24 Organization

TheOrganization header field conveys the name of the organization to which the entity issuing the request
or response belongs.

The fieldmAY be used by client software to filter calls.

Example:

Organization: Boxes by Bob

Various Authors Expires April 2002 [Page 109]

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

22.25 Priority

The Priority header field indicates the urgency of the request as perceived by the client. Defined values
include “non-urgent”, “normal”, “urgent”, and “emergency”.
It is RECOMMENDED that the value of “emergency” only be used when life, limb, or property are in

imminent danger. Otherwise, there are no semantics defined for this header field.

These are the values of RFC 2076 [38], with the addition of “emergency”.

Examples:

Subject: A tornado is heading our way!
Priority: emergency

or

Subject: Weekend plans
Priority: non-urgent

22.26 Proxy-Authenticate

The Proxy-Authenticate header field consists of a challenge that indicates the authentication scheme and
parameters applicable to the proxy for tRiequest-URI.

The syntax for this header and its use is defined in [H14.33]. See 20.2.3 for further details on its usage.
Example:

Proxy-Authenticate: Digest realm="Carrier SIP",
domain="sip:ssl.carrier.com",
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

22.27 Proxy-Authorization

TheProxy-Authorization header field allows the client to identify itself (or its user) to a proxy that requires
authentication. Th&roxy-Authorization field value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the resource being requested.

See [H14.34] for a definition of the syntax, and section 20.2.3 for a discussion of its usage.

Note that this header field, along wikuthorization, breaks the general rules about multiple header
fields. Although not a comma-separated list, this header field may be present multiple timas,sandoT
be combined into a single header using the usual rules described in Section 7.3.1.

Example:

Proxy-Authorization: Digest username="Alice", realm="Atlanta ISP",
nonce="c60f3082ee1212b402a21831ae",
response="245f23415f11432b3434341c022"

Various Authors Expires April 2002 [Page 110]

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029
4030
4031
4032
4033
4034

4035
4036

4037

4038

4039

4040

4041

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

22.28 Proxy-Require

The Proxy-Require header field is used to indicate proxy-sensitive features that must be supported by the
proxy. See Section 22.31 for more details on the mechanics of this message and a usage example.
Example:

Proxy-Require: foo

22.29 RAck

TheRAck header is sent inBRACK request to support reliability of provisional responses. It contains two
numbers and a method tag. The first number is the value frolR#e#| header in the provisional response
that is being acknowledged. The next number, and the method, are copied fr@8diydn the response
that is being acknowledged. The method name irRAek header is case sensitive.

Example:

RAck: 776656 1 INVITE

22.30 Record-Route

TheRecord-Route is inserted by proxies in a request to force future requests in the session to route through
the proxy.

Details of its use with th®oute header field are described in Section 16.4.

Example:

Record-Route: <sip:bob@biloxi.com;maddr=10.1.1.1>,
<sip:bob@biloxi.com;maddr=10.2.1.1>

22.31 Require

The Require header field is used by UACs to tell UASs about options that the UAC expects the UAS to
support in order to process the request. Although an optional headðere MusT NOT be ignored if
it is present.

This is to ensure that the client-server interaction will proceed without delay when all options are understood
by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

Example:

Require: com.example.billing

22.32 Retry-After

The Retry-After header field can be used with a 503 (Service Unavailable) response to indicate how long
the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 600 (Busy), or

Various Authors Expires April 2002 [Page 111]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

a0s2 603 (Decline) response to indicate when the called party anticipates being available again. The value of this
a0a3 field can be either &1P-date or an integer number of seconds (in decimal) after the time of the response.

4044 An optional comment can be used to indicate additional information about the time of callback. An
a0s5 Optional ‘duration” parameter indicates how long the called party will be reachable starting at the initial
as6 time of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

4047 Examples:

4048 Retry-After: Mon, 21 Jul 1997 18:48:34 GMT (I'm in a meeting)
4049 Retry-After: Mon, 01 Jan 9999 00:00:00 GMT

4050 (Dear John: Don't call me back, ever)

4051 Retry-After: Fri, 26 Sep 1997 21:00:00 GMT;duration=3600

4052 Retry-After: 120

4053 In the third example, the callee is reachable for one hour starting at 21:00 GMT. In the last example, the
a0s4 delay is 2 minutes.

wss 22.33 Route

as6 TheRoute is used to force routing for a request through the listed set of proxies. Details of its use with the
as7 Record-Route header field are described in Section 13.
4058 Example:

4059 Route: <sip:bob@biloxi.com;maddr=10.1.1.1>, <sip:bob@10.4.1.4>

weo 22.34 RSeq

w61 The RSeq header is used in provisional responses in order to transmit them reliably. It contains a single
a6z Numeric value from 1 to 2**32 - 1. For details on its usage, see Section 18.1.
4063 Example:

4064 RSeq: 988789

wes 22.35 Server

a66 The Server header field contains information about the software used by the UAS to handle the request.
a067 The syntax for this field is defined in [H14.38].
4068 Example:

4069 Server: HomeProxy v2

w0 22.36 Subject

s071 This header field provides a summary or indicates the nature of the call, allowing call filtering without
a072 having to parse the session description. Note that the session description does not have to use the same
s073 subject indication as the invitation.

Various Authors Expires April 2002 [Page 112]

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

The compact form of the headerds
Example:

Subject: Need more boxes
s: Tech Support

22.37 Supported

TheSupported header field enumerates all the extensions supported by the UAC or UAS. If empty, it means
that no extensions are supported.
Example:

Supported: foo, bar

22.38 Timestamp

The Timestamp header field describes when the UAC sent the request to the UAS. The useTahtde
tamp is covered in Section 13.
Example:

Timestamp: 54

22.39 To

The To header field specifies the logical recipient of the request.

The optional tisplay-name” is meant to be rendered by a human-user interface. Td@' ‘parameter
serves as a general mechanism to distinguish multiple instances of a user identified by a single SIP URI.

See Section 13 for details of th&ay” parameter.

Section 22.20 describes how and From header fields are compared for the purpose of matching
requests to dialogs. Even if thei$play-name” is empty, the hame-addr” form mMusT be used if the
“addr-spec” contains a comma, question mark, or semicolon. Note that LWS is commonpbuatanda-
tory between thelisplay-name and the <”.

The compact form of the headertis

The following are examples of valitb headers:

To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
t: sip:+12125551212@server.phone2net.com

22.40 Unsupported

TheUnsupported header field lists the features not supported by the UAS. See Section 22.31 for motivation.
Example:

Unsupported: foo

Various Authors Expires April 2002 [Page 113]

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

22.41 User-Agent

The User-Agent header field contains information about the UAC originating the request. The syntax and
semantics are defined in [H14.43].
Example:

User-Agent: Softphone Betal.5

22.42 Via

TheVia field indicates the path taken by the request so far and indicates the path that should be followed in
routing responses.

TheVia header field contains the transport protocol used to send the message, the client’s host name or
network address and, if not the default port number, the port number at which it wishes to receive responses.
TheVia header field can also contain parameters suchmasitr”, “ttl”, “ received”, and “branch”, whose
meaning and use are described in other sections.

The compact form of the headenis

Example:

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060
Via: SIP/2.0/UDP 128.59.16.1:5060 ;received=128.59.19.3

In this example, the message originated from a multi-homed host with two addresses, 128.59.16.1
and 128.59.19.3. The sender guessed wrong as to which network interface would be used. Erlang.bell-
telephone.com noticed the mismatch and added a parameter to the previougiati@ader field, contain-
ing the address that the packet actually came from.

Another example:

Via: SIP/2.0/UDP first.example.com:4000;ttI=16
:maddr=224.2.0.1 ;branch=a7c6a8dlze.l

22.43 Warning

TheWarning header field is used to carry additional information about the status of a respaseing
headers are sent with responses and contain a three-digit warning code, host name, and warning text.

The “warn-text” should be in a natural language that is most likely to be intelligible to the human user
receiving the response. This decision can be based on any available knowledge, such as the location of the
cache or user, th&ccept-Language field in a request, or th€ontent-Language field in a response. The
default language is i-default [39].

The first digit of warning codes beginning with “3” indicates warnings specific to SIP.

This is a list of the currently-definedvarn-code”s, each with a recommended warn-text in English, and
a description of its meaning. Note that these warnings describe failures induced by the session description.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

Various Authors Expires April 2002 [Page 114]

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

300 Incompatible network protocol: One or more network protocols contained in the session description
are not available.

301 Incompatible network address formats: One or more network address formats contained in the ses-
sion description are not available.

302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
tion are not available.

303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
description were not understood.

304 Media type not available: One or more media types contained in the session description are not avail-
able.

305 Incompatible media format: One or more media formats contained in the session description are not
available.

306 Attribute not understood: One or more of the media attributes in the session description are not sup-
ported.

307 Session description parameter not understoodA parameter other than those listed above was not
understood.

330 Multicast not available: The site where the user is located does not support multicast.

331 Unicast not available: The site where the user is located does not support unicast communication (usu-
ally due to the presence of a firewall).

370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
exceeds that known to be available.

399 Miscellaneous warning: The warning text can include arbitrary information to be presented to a hu-
man user or logged. A system receiving this warmngsT NOT take any automated action.

1xx and 2xx have been taken by HTTP/1.1.

If the warning is caused by the session description, the status respeosa.D include a session de-
scription similar to that included I@PTIONS responses indicating the capabilities of the UAS. Additional
“warn-code’s, as in the example below, can be defined through IANA.

Examples:

Warning: 307 isi.edu "Session parameter 'foo’ not understood"
Warning: 301 isi.edu "Incompatible network address type 'E.164™

22.44 WWW-Authenticate

The WWW-Authenticate header field consists of a challenge that indicates the authentication scheme and
parameters applicable for tHequest-URI.
The syntax for this header and use is defined in [H14.47]. See 20.2.2 for further details on its usage.
Example:

Various Authors Expires April 2002 [Page 115]

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

WWW-Authenticate: Digest realm="Bob’s Friends",
domain="sip:boxesbybob.com”,
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

23 Response Codes

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
SHOULD NOT be used. Response codes not defined by HTTP/1.1 have codes x80 upwards to avoid clashes
with future HTTP response codes. Also, SIP defines a new class, 6xx. The default behavior for unknown
response codes is given for each category of codes.

23.1 Provisional 1xx

Provisional responses indicate that the server or proxy contacted is performing some further action and does
not yet have a definitive response. A server typically sends a 1xx response if it expects to take more than
200 ms to obtain a final response. Note that 1xx responses are not transmitted reliably, that is, they do not
cause the client to send &CK.

Provisional (1xx) responsesay contain message bodies, including session descriptions.

Provisional responses are also known as informational responses.

23.1.1 100 Trying

This response indicates that the request has been received by the next hop server and that some unspeci-
fied action is being taken on behalf of this call (e.g., a database is being consulted). This response stops
retransmissions of aNVITE by a UAC.

23.1.2 180 Ringing

The user agent receiving thVITE is trying to alert the user. This response MAY be used to initiate local
ringback.

23.1.3 181 Call Is Being Forwarded

A proxy serverMAY use this status code to indicate that the call is being forwarded to a different set of
destinations.

23.1.4 182 Queued

The called party is temporarily unavailable, but the callee has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, e.g., “5 calls queued; expected waiting time is 15
minutes”. The servemAyY issue several 182 responses to update the caller about the status of the queued
call.

Various Authors Expires April 2002 [Page 116]

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232
4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

23.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call which is
not otherwise classified. THReason-Phrase, header fields, or message boalyy be used to convey more
details about the call progress.

23.2 Successful 2xx

The request was successful.

23.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request.

23.3 Redirection 3xx

3xx responses give information about the user's new location, or about alternative services that might be
able to satisfy the call.

23.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
user agent) can select a preferred communication end point and redirect its request to that location.

The respons#AY include a message body containing a list of resource characteristics and location(s)
from which the user or user agent can choose the one most appropriate, if allowedAnc#m request
header.

The choicessHOULD also be listed a€ontact fields (Section 22.10). Unlike HTTP, the SIP response
MAY contain severalContact fields or a list of addresses in@ontact field. User agentsAy use the
Contact header field value for automatic redirectionnoxy ask the user to confirm a choice. However, this
specification does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot
or prefers not to proxy the request.

23.3.2 301 Moved Permanently

The user can no longer be found at the address iRdwest-URI and the requesting cliesHouLD retry

at the new address given by tBentact header field (Section 22.10). The callefouLD update any local
directories, address books and user location caches with this new value and redirect future requests to the
address(es) listed.

23.3.3 302 Moved Temporarily

The requesting cliensHOULD retry the request at the new address(es) given byCihetact header field
(Section 22.10). ThRequest-URI of the new request uses the value of @entact header in the response.
The new request can take two different forms. In the first approachJah&rom, Call-ID, andCSeq
header fields in the new request are the same as in the original request, wittbeanelv identifier in the

Various Authors Expires April 2002 [Page 117]

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Via header field. ProxiestusT follow this behavior and UACsAY . In the second approach, UAsaY
also use th&€ontact information for theTo header field, as well as a né®all-ID value.

The duration of the redirection can be indicated througlE®pires (Section 22.19) header. If there is
no explicit expiration time, the address is only valid for this call andsT NOT be cached for future calls.
23.3.4 305 Use Proxy

The requested resouregusT be accessed through the proxy given by @mntact field. The Contact

field gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305
responsesiusT only be generated by user agent servers.

23.3.5 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response. Formats for such bodies are not defined here, and may be the subject of
future standardization.

23.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. Theselieatd NOT retry the

same request without modification (e.g., adding appropriate authorization). However, the same request to a
different server might be successful.

23.4.1 400 Bad Request

The request could not be understood due to malformed syntaxR&ason-Phrase sHouLD identify the

syntax problem in more detail, e.g., “Missing Call-ID header”.

23.4.2 401 Unauthorized

The request requires user authentication. This response is issued by user agent servers and registrars, while
407 (Proxy Authentication Required) is used by proxy servers.

23.4.3 402 Payment Required

Reserved for future use.

23.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
SHOULD NOT be repeated.

23.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specifie®Raqthest-
URI. This status is also returned if the domain in Request-URI does not match any of the domains
handled by the recipient of the request.

Various Authors Expires April 2002 [Page 118]

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

23.4.6 405 Method Not Allowed

The method specified in tHiRequest-Line is not allowed for the address identified by Request-URI.

The responseiusT include anAllow header field containing a list of valid methods for the indicated address.
23.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

23.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the cliergtT first authenticate itself with
the proxy. SIP access authentication is explained in section 20 and 20.2.3.

This status code can be used for applications where access to the communication channel (e.g., a tele-
phony gateway) rather than the callee requires authentication.

23.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, if it could not
determine the location of the user in time. The clismly repeat the request without modifications at any
later time.

23.4.10 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not Fedpd)LD be used instead.

23.4.11 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server is willing or
able to process. The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the serveHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clienay try again.

23.4.12 414 Request-URI Too Long
The server is refusing to service the request becaudedhaest-URI is longer than the server is willing to
interpret.

23.4.13 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not sup-
ported by the server for the requested method. The sereULD return a list of acceptable formats using

the Accept, Accept-Encoding and Accept-Language header fields. UAC processing of this response is
described in Section 8.1.3.5.

Various Authors Expires April 2002 [Page 119]

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337
4338

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

23.4.14 420 Bad Extension

The server did not understand the protocol extension specifie®inxy-Require (Section 22.28) oRe-
quire (Section 22.31) header field. The sergerouLD include a list of the unsupported extensions in an
Unsupported header in the response. UAC processing of this response is described in Section 8.1.3.5.

23.4.15 421 Extension Required

The UAS needs a particular extension to process the request, but this extension is not liSagpored
header in the request. Responses with this statuseode contain aRequire header listing the required
extensions.

In general, a UASHOULD NOT use this response when it wishes to apply an extension to a request. The
end result will often be no service at all, and a break in interoperability. Rather, ser@ta.D process the
request using baseline SIP capabilities and any extensions supported by the client.

23.4.16 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (e.g., not logged
in, logged in in such a manner as to preclude communication with the callee or activated the “do not disturb”
feature). The responseay indicate a better time to call in thRetry-After header. The user could also be
available elsewhere (unbeknownst to this host). The reason péreseLD indicate a more precise cause
as to why the callee is unavailable. This vaBi0oULD be setable by the user agent. Status 486 (Busy Here)
MAY be used to more precisely indicate a particular reason for the call failure.

This status is also returned by a redirect server that recognizes the user identifiedRegtiest-URI,
but does not currently have a valid forwarding location for that user.

23.4.17 481 Call/Transaction Does Not Exist

This status indicates that the UAS received a request that does not match any existing dialog or transaction.

23.4.18 482 Loop Detected

The server has detected a loop (Section 3).

23.4.19 483 Too Many Hops

The server received a request that contaiMaa-Forwards (Section 22.22) header with the value zero.

23.4.20 484 Address Incomplete

The server received a request witliRaquest-URI that was incomplete. Additional informatidHoOULD
be provided.

This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the
dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 status response.

Various Authors Expires April 2002 [Page 120]

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350
4351
4352
4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

23.4.21 485 Ambiguous

The callee address provided in the request was ambiguous. The responsentain a listing of possible
unambiguous addresses@ontact headers.

Revealing alternatives can infringe on privacy concerns of the user or the organizatimpn.sitbe
possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of possible
choices if the request address was ambiguous.

Example response to a request with the UB&@example.com

485 Ambiguous SIP/2.0

Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>
Contact: Lee M. Foote <sip:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices
provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 response.

23.4.22 486 Busy Here

The callee’s end system was contacted successfully but the callee is currently not willing or able to take
additional calls at this end system. The respomge indicate a better time to call in thRetry-After

header. The user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere)sHOULD be used if the client knows that no other end system will be able to accept this call.
23.4.23 487 Request Terminated

The request was terminated bBaE or CANCEL request. This response is never returned fOANCEL

request itself.

23.4.24 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific entity addressed
by theRequest-URI and the request may succeed elsewhere.

23.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred.

23.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. Thexlient
display the specific error condition, anthy retry the request after several seconds.

If the condition is temporary, the servery indicate when the client may retry the request using the
Retry-After header.

Various Authors Expires April 2002 [Page 121]

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

23.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.)

23.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

23.5.4 503 Service Unavailable

The server is currently unable to handle the request due to a temporary overloading (i.e., congestion) or
maintenance of the server. The implication is that this is a temporary condition which will be alleviated
after some delay. If known, the length of the delagy be indicated in &etry-After header. If ndRetry-
After is given, the clientusT handle the response as it would for a 500 response.

A client (proxy or UAC) receiving a 508HoULD attempt to forward the request to an alternate server. It
SHouLD NoT forward any other requests to that server for the duration specified Retrg-After header,
if present.

Note: The existence of the 503 status code does not imply that a server has to use it when becoming
overloaded. Some servayy wish to simply refuse the connection.

23.5.5 504 Server Time-out

The server did not receive a timely response from the server (e.g., a location server) it accessed in attempting
to process the request. Note that 408 (Request Timeout) should be used if there was no response within the
period specified in th&xpires header field from the upstream server.

23.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request
message. The server is indicating that it is unable or unwilling to complete the request using the same major
version as the client, other than with this error message. The resgenseontain an entity describing why

that version is not supported and what other protocols are supported by that server. The format for such an
entity is not defined here and may be the subject of future standardization.

23.5.7 513 Message Too Large

The server was unable to process the request since the message length exceeded its capabilities.

23.6 Global Failures 6xx

6xx responses indicate that a server has definitive information about a particular user, not just the particular
instance indicated in thRequest-URI.

Various Authors Expires April 2002 [Page 122]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

a0a 23.6.1 600 Busy Everywhere

w05 The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
a0 at this time. The responseAy indicate a better time to call in thRetry-After header. If the callee does

407 NOt wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead. This
a108 Status response is returned only if the client knows that no other end point (such as a voice mail system) will
a100 answer the request. Otherwise, 486 (Busy Here) should be returned.

a0 23.6.2 603 Decline

w11 The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partici-
w12 pate. The responseAy indicate a better time to call in tHeetry-After header.

a3 23.6.3 604 Does Not Exist Anywhere

ana The server has authoritative information that the user indicated iReljeest-URI does not exist anywhere.

a5 23.6.4 606 Not Acceptable

as The user’s agent was contacted successfully but some aspects of the session description such as the requested
417 media, bandwidth, or addressing style were not acceptable.

4418 A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately sup-
a9 port the session described. The 606 (Not Acceptable) respomseontain a list of reasons in\Warning

420 header field describing why the session described cannot be supported. Reasons are listed in Section 22.43.
a21 It is hoped that negotiation will not frequently be needed, and when a new user is being invited to join an

422 already existing conference, negotiation may not be possible. It is up to the invitation initiator to decide

a2z Whether or not to act on a 606 (Not Acceptable) response.

ws 24 Examples

425 In the following examples, we often omit the message body and the correspdddirignt-Length and
a6 Content-Type headers for brevity.

a7 24.1 Registration

a2s Bob registers on start-up. The message flow is shown in Figure 9.

4429

a0 F1 REGISTER Bob -> Registrar

4431

4432 REGISTER sip:registrar.biloxi.com SIP/2.0

4433 Via: SIP/2.0/UDP 10.4.1.4:5060

4434 To: Bob <sip:bob@biloxi.com>

4435 From: Bob <sip:bob@biloxi.com>;tag=456248

4436 Call-ID: 843817637684230@phone21.boxesbybob.com
4437 CSeq: 1826 REGISTER

Various Authors Expires April 2002 [Page 123]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

- i

biloxi.com Bob's SIP
Registrar Phone

REGISTER F1 ‘
200 OK F2

Figure 9: SIP Registration Example

4438 Contact: <sip:bob@10.4.1.4>
4439 Expires: 7200
4440 Content-Length: 0

4441 The registration expires after two hours. The registrar responds with a 200 OK:

4442

as3 F2 200 OK Registrar -> Bob

4444

4445 SIP/2.0 200 OK

4446 Via: SIP/2.0/UDP 10.4.1.4:5060

4447 To: Bob <sip:bob@biloxi.com>

4448 From: Bob <sip:bob@biloxi.com>;tag=456248
4449 Call-ID: 843817637684230@phone21.boxesbybob.com
4450 CSeq: 1826 REGISTER

4451 Contact: <sip:bob@10.4.1.4>

4452 Expires: 7200

4453 Content-Length: 0

4454

wss 24.2 Session Setup

as6 This example contains the full details of the example session setup in Section 4. The message flow is shown
457 in Figure 1.

4458

wass F1 INVITE Alice -> atlanta.com proxy
4460

4461 INVITE sip:bob@biloxi.com SIP/2.0
4462 Via: SIP/2.0/UDP 10.1.3.3:5060

4463 To: Bob <sip:bob@biloxi.com>

Various Authors Expires April 2002 [Page 124]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4464 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4465 Call-ID: a84b4c76e66710@10.1.3.3

4466 CSeq: 314159 INVITE

4467 Contact: <sip:alice@10.1.3.3>

4468 Content-Type: application/sdp

4469 Content-Length: 142

4470

4471 (Alice’s SDP not shown)

4472

a3 F2 100 Trying atlanta.com proxy -> Alice

4474

4475 SIP/2.0 100 Trying

4476 Via: SIP/2.0/UDP 10.1.3.3:5060

4477 To: Bob <sip:bob@biloxi.com>

4478 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4479 Call-ID: a84b4c76e66710@10.1.3.3

4480 CSeq: 314159 INVITE

4481 Content-Length: 0

4482

wasz F3 INVITE atlanta.com proxy -> biloxi.com proxy

4484

4485 INVITE sip:bob@biloxi.com SIP/2.0

4486 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢2312983.1
4487 Via: SIP/2.0/UDP 10.1.3.3:5060

4488 To: Bob <sip:bob@biloxi.com>

4489 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4490 Call-ID: a84b4c76e66710@10.1.3.3

4491 CSeq: 314159 INVITE

4492 Contact: <sip:alice@10.1.3.3>

4493 Content-Type: application/sdp

4494 Content-Length: 142

4495

4496 (Alice’s SDP not shown)

4497

a9 F4 100 Trying biloxi.com proxy -> atlanta.com proxy

4499

4500 SIP/2.0 100 Trying

4501 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4502 Via: SIP/2.0/UDP 10.1.3.3:5060

4503 To: Bob <sip:bob@biloxi.com>

4504 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4505 Call-ID: a84b4c76e66710@10.1.3.3

Various Authors Expires April 2002 [Page 125]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4506 CSeq: 314159 INVITE
4507 Content-Length: 0

4508

ss09 F5 INVITE biloxi.com proxy -> Bob

4510

4511 INVITE sip:bob@10.4.1.4 SIP/2.0

4512 Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1
4513 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4c2312983.1
4514 Via: SIP/2.0/UDP 10.1.3.3:5060

4515 To: Bob <sip:bob@biloxi.com>

4516 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4517 Call-ID: a84b4c76e66710@10.1.3.3

4518 CSeq: 314159 INVITE

4519 Contact: <sip:alice@10.1.3.3>

4520 Content-Type: application/sdp

4521 Content-Length: 142

4522

4523 (Alice’s SDP not shown)

4524

a5 F6 180 Ringing Bob -> biloxi.com proxy

4526

4527 SIP/2.0 180 Ringing

4528 Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1
4529 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4530 Via: SIP/2.0/UDP 10.1.3.3:5060

4531 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4532 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4533 Call-ID: a84b4c76e66710@10.1.3.3

4534 CSeq: 314159 INVITE

4535 Content-Length: 0

4536

w37 F7 180 Ringing biloxi.com proxy -> atlanta.com proxy
4538

4539 SIP/2.0 180 Ringing

4540 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4c2312983.1
4541 Via: SIP/2.0/UDP 10.1.3.3:5060

4542 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4543 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4544 Call-ID: a84b4c76e66710@10.1.3.3

4545 CSeq: 314159 INVITE

4546 Content-Length: 0

Various Authors Expires April 2002 [Page 126]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4547
ssss F8 180 Ringing atlanta.com proxy -> Alice

4549

4550 SIP/2.0 180 Ringing

4551 Via: SIP/2.0/UDP 10.1.3.3:5060

4552 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4553 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4554 Call-ID: a84b4c76e66710@10.1.3.3

4555 CSeq: 314159 INVITE

4556 Content-Length: 0

4557

58 F9 200 OK Bob -> biloxi.com proxy

4559

4560 SIP/2.0 200 OK

4561 Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1
4562 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4563 Via: SIP/2.0/UDP 10.1.3.3:5060

4564 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4565 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4566 Call-ID: a84b4c76e66710@10.1.3.3

4567 CSeq: 314159 INVITE

4568 Contact: <sip:bob@10.4.1.4>

4569 Content-Type: application/sdp

4570 Content-Length: 131

4571

4572 (Bob’s SDP not shown)

4573

572 F10 200 OK biloxi.com proxy -> atlanta.com proxy
4575

4576 SIP/2.0 200 OK

4577 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4c2312983.1
4578 Via: SIP/2.0/UDP 10.1.3.3:5060

4579 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4580 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4581 Call-ID: a84b4c76e66710@10.1.3.3

4582 CSeq: 314159 INVITE

4583 Contact: <sip:bob@10.4.1.4>

4584 Content-Type: application/sdp

4585 Content-Length: 131

4586

4587 (Bob’s SDP not shown)

4588

Various Authors Expires April 2002 [Page 127]

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps

F11 200 OK atlanta.com proxy -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 314159 INVITE

Contact: <sip:bob@10.4.1.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

F12 ACK Alice -> Bob

ACK sip:bob@10.4.1.4 SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 314159 ACK

Content-Length: 0

The media session between Alice and Bob is now established.

January 8, 2002

Bob hangs up first. Note that Bob’s SIP phone maintains its @®&aqg numbering space, which, in this
example, begins with 231. Also not that since Bob is making the requesipthedFrom URLs and tags

have been swapped.

F13 BYE Bob -> Alice

BYE sip:alice@10.1.3.3 SIP/2.0

Via: SIP/2.0/UDP 10.4.1.4:5060

From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 231 BYE

Content-Length: 0

F14 200 OK Alice -> Bob

SIP/2.0 200 OK

Various Authors Expires April 2002

[Page 128]

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Via: SIP/2.0/UDP 10.4.1.4:5060

From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 231 BYE

Content-Length: 0

The SIP Call Flows document [40] contains further examples of SIP messages.
;; This buffer is for notes you don’t want to save, and for Lisp evaluation. ;; If you want to create a file,
first visit that file with C-x C-f, ;; then enter the text in that file’s own buffer.

25 Augmented BNF for the SIP Protocol

All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) similar to that used by RFC 2234 [41]. Implementors need to be familiar with the notation
in order to understand this specification. The augmented BNF includes the following constructs:

name = definition
The name of a rule is simply the name itself (without any enclosigend “>") and is separated from
its definition by the equal “=" character. White space is only significant in that the indentation of continua-
tion lines indicates a rule definition that spans more than one line. Certain basic rules are in uppercase, such

as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions to clarify the use
of rule names.

"literal"

Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.
rulel | rule2

Elements separated by a baf’(’are alternatives, that is, “ygsn0” will accept yes or no.

(rulel rule2)

Elements enclosed in parentheses are treated as a single element. Thus, “(eldrarjffetem)” allows the
token sequences “elem foo elem” and “elem bar elem”.

*rule

The character "™*” preceding an element indicates repetition. The full fornxis:” >*< m >element”
indicating at leask n > and at mosk m > occurrences of element. Default values are 0 and infinity so
that "*(element)” allows any number, including zero; "1*element” requires at least one; and "1*2element”
allows one or two.

Various Authors Expires April 2002 [Page 129]

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

[rule]

Square brackets enclose optional elements; "[foo bar]” is equivalent to "*1(foo bar)”.

N rule

Specific repetition: <n>(element)” is equivalent to<n>* <n>(element)”; that is, exactly:n> occur-
rences of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic charac-
ters.

: comment

A semi-colon, set off some distance to the right of rule text, starts a comment that continues to the end of
line. This is a simple way of including useful notes in parallel with the specifications.

25.1 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-
ASCII coded character set is defined by ANSI X3.4-1986.

OCTET = %x00-ff ; any 8-bit sequence of data
CHAR = %x00-7f ; any US-ASCII character (octets 0 - 127)
upalpha = "A”|"B”|"C"|"D"|"E" | "F" | "G”" | "H" | "I" |
"I KL "M | "N | PO | P QT | 'R |
"STTTT U VT WX | YT | 2
lowalpha = "a”|"b”|"c”|"d"|”"e”|"f"|"g" |"h" | " |
T |0 |
"s” |t | u” "y "Z"
alpha = lowalpha | upalpha
DIGIT = "0"|"1"|"2"|"3" | "4" | "5 | 6" | "T”
ngn | g7
alphanum = alpha | DIGIT
CTL = %Xx00-1f | %x7f ; (octets 0 — 31) an®EL (127)
CR = %d13; US-ASCII CR, carriage return character
LF = %0d10 ; US-ASCII LF, line feed character
SP = %d32 ; US-ASCII SP, space character
HT = %0d09 ; US-ASCII HT, horizontal tab character
CRLF = CR LF; typically the end of a line
The following are defined in RFC 2396 [10] for the SIP URI:
reserved = et @ | " ”7| "+"
unreserved = alphanum | mark
mark = e e
escaped = "% hex hex

Various Authors Expires April 2002 [Page 130]

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

SIP header field values can be folded onto multiple lines if the continuation line begins with a space or
horizontal tab. All linear white space, including folding, has the same semantics as SP. A reaipient
replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream. This is intended to behave exactly as HTTP 1.1 as described in RFC2615 [9]. The SWS
construct is similar to LWS but allows zero instances of space or tab

LWS
SWS

(SP | HT) [CRLF] 1(SP | HT) ; linear whitespace
*(SP | HT) [CRLF] *(SP | HT) ; sep whitespace

To separate the header name from the rest of value, a colon is used, which, by the above rule, allows
whitespace before, but no line break, and whitespace after, including a linebreak. The HCOLON defines
this construct.

HCOLON = *(SP|HT)"” SWS

The TEXT-UTF8 rule is only used for descriptive field contents and values that are not intended to be
interpreted by the message parser. Word$T&EXT-UTF8 contain characters from the UTF-8 character
set (RFC 2279 [12]). Th&@ EXT-UTF8-TRIM rule is used for descriptive field contents that aotquoted
strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
uses the ISO 8859-1 character set.

TEXT-UTF8 = *(TEXT-UTF8char | LWS)
TEXT-UTF8-TRIM = *TEXT-UTF8char *(*LWS TEXT-UTF8char)
TEXT-UTF8char = %x21-7e | UTF8-NONASCII

UTF8-NONASCII = %xc0-df 1UTF8-CONT
| %xe0-ef 2UTF8-CONT
| %xf0-f7 3UTF8-CONT
| %xf8-fb 4AUTF8-CONT
| %xfc-fd 5SUTF8-CONT

UTF8-CONT %x80-bf

A CRLF is allowed in the definition oTEXT-UTF8 only as part of a header field continuation. It is
expected that the foldingWs will be replaced with a singl&P before interpretation of theEXT-UTF8
value.

Hexadecimal numeric characters are used in several protocol elements. Some elements (authentication)
force hex alphas to be lower case.

LHEX e dlglt | ”aﬂ Hb” | ”CH Hd” ‘ ”eﬂ Hfﬂ
Others allow mixed upper and lower case

heX — LHEX nAn ”B" ncn nDn nEn nFu

Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise
stated, tokens are case-insensitive. These special chanmaciersbe in a quoted string to be used within a
parameter value.

Various Authors Expires April 2002 [Page 131]

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

token = 1*(alphanum | ™" | "2 | " 9" | AT T | AT T |)
separators = (" |")"|"<"|">" | "@" |

TN <>

T

"7} | SP | HT

When tokens are used or separators are used between elements, whitespace is often allowed before or
after these characters:

MINUS SWS "-” SWS ; minus
DOT SWS " SWS ; period
PERCENT = SWS "%" SWS ; percent

BANG = SWS"I” SWS ; exclamation

PLUS = SWS"+" SWS; plus

STAR = SWS "™ SWS; asterisk

TILDE = SWS ™ SWS; tilde

EQUAL = SWS"="SWS; equal

LPAREN = SWS (" SWS; left parenthesis
RPAREN = SWS")" SWS; right parenthesis
LANGLE = SWS "<" SWS; left angle bracket
RAQUOT = ">"SWS; right angle quote

LAQUOT = SWS "<” left angle quote

RANGLE = SWS ">" SWS; right angle bracket
BAR = SWS"|” SWS; vertical bar

ATSIGN = SWS’@” SWS ; atsign

COMMA = SWS "’ SWS; comma

SEMI = SWS """ SWS ; semicolon

COLON = SWS """ SWS; colon

DQUOT = SWS <"> SWS ; double quotation mark
LDQUOT = SWS <">; open double quotation mark
RDQUOT = <"> SWS; close double quotation mark
LBRACK = SWS"{" SWS; left square bracket
RBRACK = SWS"}” SWS; right square bracket

Comments can be included in some SIP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing “comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = LPAREN *(ctext | quoted-pair | comment) Rl
; ctext includes all chars except left and right parens
ctext = %x21-27 | %x2a-7e | UTF8-NONASCII | LW

A string of text is parsed as a single word if it is quoted using double-quote marks. In quoted strings,
quotation marks (") and backslashe$ feed to be escaped.

quoted-string
gdtext

(SWS <”> *(qdtext | quoted-pair) <">)
LWS | %x21 | %x23-5b | %x5d-7e
| UTF8-NONASCII

Various Authors Expires April 2002 [Page 132]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4714 The backslash charactei() MAY be used as a single-character quoting mechanism only within quoted-
4715 String and comment constructs. Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this
a6 mechanism to avoid conflict with line folding and header separation.

4717

quoted-pair =

| %x0e - %x7f)

SIP-URL = "sip:” [userinfo "@”] hostport
url-parameters [headers |
userinfo = [user | telephone-subscriber [”:” password]]
user = *(unreserved | escaped | user-unreserved)
user-unreserved = & |"=" || US|)| |
password = *(unreserved | escaped |
"N ||)
hostport = host["” port]
host = hostname | IPv4address | IPv6reference
hostname = *(domainlabel ") toplabel ["]
domainlabel = alphanum
| alphanum *(alphanum | ”-") alphanum
a718 toplabel = alpha | alpha *(alphanum | ”-”) alphanum
IPvdaddress = 1*3DIGIT " 1*3DIGIT " 1*3DIGIT ".” 1*3DIGIT
IPvéreference = "[" IPv6address ™’
IPv6address = hexpart[™" IPv4address]
hexpart = hexseq | hexseq "::" [hexseq] | "::" [hexseq]
hexseq = hex4 *(""" hex4)
hex4 = 1*4HEX
4719 port = 1*DIGIT

url-parameters
url-parameter

= *(";” url-parameter)
= transport-param | user-param | method-param
|ttl-param | maddr-param | other-param

transport-param = “transport="
("udp” | "tcp” | "sctp” | "tls”
| other-transport)
other-transport = token
user-param = user=" ("phone” | "ip” | other-user)
other-user = token
method-param = "method=" Method
ttl-param = "tt="tl
maddr-param = "maddr=" host
other-param = pname ["=" pvalue]
pname = 1*paramchar
pvalue = 1*paramchar
paramchar = param-unreserved | unreserved | escaped
4720 param-unreserved = "["|"]" |7 T&T | | ST

Various Authors

Expires April 2002

[Page 133]

4721

4722

INTERNET-DRAFT

headers
header
hname
hvalue

hnv-unreserved

SIP-message
Request

Request-Line
Request-URI
absoluteURI
hier-part
net-path
abs-path
opaque-part
uric
uric-no-slash

scheme
authority
server
reg-name

query
SIP-Version

Various Authors

draft-ietf-sip-rfc2543bis-05.ps

"?" header *("&” header)

hname "=" hvalue

1*(hnv-unreserved | unreserved | escaped)
*(hnv-unreserved | unreserved | escaped)
T "+

Request | Response

Request-Line

*(message-header)

CRLF

[message-body |

Method SP Request-URI SP SIP-Version CRLF

SIP-URL | absoluteURI

scheme COLON (hier-part | opaque-part)

(net-path | abs-path) ["?” query]

"Il authority [abs-path]

"[" path-segments

uric-no-slash *uric

reserved — unreserved — escaped

unreserved | escaped | ;" | "?" |7 | '@

& ||]S

alpha *(alpha | digit | "+”

server | reg-name

[[userinfo "@"] hostport]

1*(unreserved | escaped | "$" | ")’
Ve || =

*uric

"SIP/2.0”

n N

"

Expires April 2002

January 8, 2002

[Page 134]

4723

INTERNET-DRAFT

message-header

Various Authors

draft-ietf-sip-rfc2543bis-05.ps

Accept
Accept-Encoding
Accept-Language
Alert-Info

Allow
Authentication-Info
Authorization
Call-ID

Call-Info

Contact
Content-Disposition
Content-Encoding
Content-Language
Content-Length
Content-Type
CSeq

Date

Error-Info

Expires

From

In-Reply-To
Max-Forwards
MIME-Version
Organization
Priority
Proxy-Authenticate
Proxy-Authorization
Proxy-Require
RAck
Record-Route
Require
Retry-After

Route

RSeq

Server

Subject

Supported
Timestamp

Unsupported
User-Agent

Warning
WWW-Authenticate

Expires April 2002

January 8, 2002

[Page 135]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Method = INVITE” | "ACK” | "OPTIONS” | "BYE"
| "CANCEL | "REGISTER” | "PRACK”
| extension-method

extension-method = token
option-tag = token
Response
= Status-Line
*(message-header)
CRLF
4724 [message-body]
Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF
Status-Code
Informational
Redirection
Success

Server-Error
Global-Failure

\
|
| Client-Error
\
\
| extension-code

extension-code 3DIGIT
4725 Reason-Phrase = *(reserved — unreserved — escaped — SP — HT)
Informational
= 100" ; Trying
| 7"180” ; Ringing
| "181” ; Callls Being Forwarded
| 7"182" ; Queued
4726 | 183" ; Session Progress
4727 Success = "200" ;OK
Redirection "300” ; Multiple Choices

| 301" ; Moved Permanently
| "302” ; Moved Temporarily
| 305" ; Use Proxy

|

4728 "380”" ; Alternative Service

Various Authors Expires April 2002 [Page 136]

4729

4730

4731

INTERNET-DRAFT

Client-Error

Server-Error

Global-Failure

Various Authors

"400”
"401”
"402”
"403”
"404”
"405”
"406”
"407”
"408”
"409”
"410”
"413”
"414”
"415”
"420”
"480”
"481"
"482”
"483"
"484”
"485”
"486”
"487”
488"

"500”
"501”
"502”
"503”
"504”
"505”

"600”
"603”
"604”
"606”

draft-ietf-sip-rfc2543bis-05.ps

; Bad Request

: Unauthorized

; Payment Required

: Forbidden

; Not Found

: Method Not Allowed

; Not Acceptable

; Proxy Authentication Required
; Request Timeout

; Conflict

: Gone

; Request Entity Too Large
; Request-URI Too Large

; Unsupported Media Type
: Bad Extension

; Temporarily not available
; Call Leg/Transaction Does Not Exist
; Loop Detected

; Too Many Hops

; Address Incomplete

; Ambiguous

; Busy Here

; Request Terminated

; Not Acceptable Here

; Internal Server Error

; Not Implemented

; Bad Gateway

: Service Unavailable

; Server Time-out

; SIP Version not supported

; Busy Everywhere

: Decline

; Does not exist anywhere
; Not Acceptable

Expires April 2002

January 8, 2002

[Page 137]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Accept
accept-range
media-range

"Accept” HCOLON (accept-range *(COMMA accept-range))
media-range [accept-params |

("k [0

| (m-type SWS /" "™*” SWS)

| (m-type SLASH m-subtype)

) *(SEMI parameter)

SEMI "q" EQUAL gvalue *(accept-extension)

SEMI ae-name [EQUAL ae-value |

accept-params
accept-extension

ae-name token

4732 ae-value = token | quoted-string
Accept-Encoding = "Accept-Encoding” HCOLON (encoding *(COMMA encoding))
encoding = codings [SEMI "q” EQUAL qvalue]
codings = content-coding | ™"
content-coding = token
gvalue = ("0"["0*3DIGIT])

(1" 0*3('07) 1)
Accept-Language = "Accept-Language” HCOLON (language *(COMMA language))
language = language-range [SEMI "q” EQUAL gvalue]

4734 language-range = ((1*8ALPHA *(MINUS 1*8ALPHA)) | ™)
Alert-Info = "Alert-Info” HCOLON alert-param *(COMMA alert-param)
alert-param = LAQUOT URI RAQUOT *(COLON generic-param)
generic-param = token [EQUAL gen-value]

4735 gen-value = token | host | quoted-string

4736 Allow = "Allow” HCOLON Method *(COMMA Method)

Various Authors Expires April 2002 [Page 138]

4737

4738

4739

4740

4741

INTERNET-DRAFT

Authorization
credentials
digest-response
dig-resp

username
username-value
digest-uri
digest-uri-value
message-qop
cnonce
chonce-value
nonce-count
nc-value
dresponse
request-digest
auth-param
auth-param-name

AuthenticationInfo
auth-info
auth-inf

nextnonce
response-auth
response-digest

Call-ID
callid

Call-Info
info
info-param =

Contact

contact-param
name-addr
addr-spec
display-name

Various Authors

("Call-ID”
token [ATSIGN token]

draft-ietf-sip-rfc2543bis-05.ps

"Authorization” HCOLON credentials
"Digest” digest-response

dig-resp *(COMMA dig-resp)
username | realm | nonce | digest-uri

| dresponse | [algorithm] | [cnonce]

| [opaque] | [message-qop]

| [nonce-count] | [auth-param]
"username” EQUAL username-value
guoted-string

"uri” EQUAL digest-uri-value
request-uri ; As specified by HTTP/1.1
"qop” EQUAL qop-value

"cnonce” EQUAL cnonce-value
nonce-value

"nc” EQUAL nc-value

8LHEX

"response” EQUAL request-digest
LDQUOT 32LHEX RDQUOT
auth-param-name EQUAL (token | quoted-string)
token

"Authentication-Info” COLON auth-info
auth-inf *(COMMA auth-inf)
nextnonce | [message-qop |

| [response-auth] | [cnonce]

| [nonce-count]

"nextnonce” EQUAL nonce-value
"rspauth” EQUAL response-digest
LDQUOT *LHEX RDQUOT

"i") HCOLON callid

"Call-Info” HCOLON info *(COMMA info)
LAQUOT URI RAQUOT *(SEMI info-param)
"purpose” EQUAL ("icon” | "info”

"card”

token) | generic-param

("Contact” | "m”) HCOLON

(STAR | contact-param *(COMMA contact-param))
name-addr | addr-spec *(SEMI contact-params)

[display-name] LAQUOT addr-spec RAQUQOT
SIP-URL | URI

*(token LWS)| quoted-string)

Expires April 2002

January 8, 2002

[Page 139]

4742

4743

4744

4745

4746

4747

4748

INTERNET-DRAFT

contact-params =

c-p-q =
c-p-action =
c-p-expires =

contact-extension =
gvalue =

delta-seconds =

Content-Disposition
disposition-type

disposition-param

other-handling
disp-extension-token

Content-Encoding

Content-Language

language-tag
primary-tag
subtag

Content-Length =

Content-Type =
media-type =
m-type =
discrete-type =

composite-type

extension-token =
ietf-token =
x-token =
m-subtype =
iana-token =
parameter =
m-attribute =
m-value =

Various Authors

draft-ietf-sip-rfc2543bis-05.ps

c-p-q | c-p-action | c-p-expires

| contact-extension

"q” EQUAL qgvalue

"action” EQUAL ("proxy” | "redirect”)
"expires” EQUAL (delta-seconds

| LDQUOT SIP-date RDQUOT)
generic-param

("0"["” 0*3DIGIT])

| (17 [0%3('0") 1)

1*DIGIT

"Content-Disposition” HCOLON
disposition-type *(SEMI disposition-param)
"render” | "session” | "icon” | "alert”

| disp-extension-token

"handling” EQUAL

("optional” | "required”

| other-handling) | generic-param

token

token

= ("Content-Encoding” | "e”) HCOLON

content-coding *(COMMA content-coding)

"Content-Language” HCOLON
language-tag *(COMMA language-tag)
primary-tag *(MINUS subtag)
1*8ALPHA

1*8ALPHA

("Content-Length”

"I”) HCOLON 1*DIGIT

("Content-Type” | "c”) HCOLON media-type
m-type SLASH m-subtype *(SEMI m-parameter)
discrete-type | composite-type

"text” | "image” | "audio” | "video”
"application” | extension-token

"message” | "multipart” | extension-token
ietf-token | x-token

token

("X | "x™) "-" token

extension-token | iana-token

token

m-attribute EQUAL m-value

token

token | quoted-string

Expires April 2002

January 8, 2002

[Page 140]

4749

4750

4751

4752

4753

4754

4755

4756

4757

INTERNET-DRAFT

draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

CSeq = "CSeq”HCOLON 1*DIGIT LWS Method
Date = "Date” HCOLON SIP-date
SIP-date = rfc1123-date
rfc1123-date = wkday COMMA datel SP time SP "GMT”
datel = 2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)
time = 2DIGIT ™" 2DIGIT ™" 2DIGIT
; 00:00:00 - 23:59:59
wkday = "Mon” | "Tue” | "Wed"
"Thu” | "Fri” | "Sat” | "Sun”
month = "Jan” | "Feb” | "Mar” | "Apr”
"May” | "Jun” | "Jul” | "Aug”
| "Sep” | "Oct” | "Nov” | "Dec”
Error-Info = "Error-Info” HCOLON error-uri *(COMMA error-uri)
error-uri - = LAQUOT URI RAQUOT *(SEMI generic-param)
Expires = "Expires” HCOLON (SIP-date | delta-seconds)
From = ("From” | "f”) HCOLON from-spec
from-spec = (\name-addr | addr-spec)
*(SEMI from-param)
from-param = tag-param | generic-param
tag-param = "tag” EQUAL token
In-Reply-To = ’"In-Reply-To” HCOLON called *(COMMA called)

Max-Forwards
MIME-Version
Organization

Priority
priority-value

other-priority

Various Authors

= "Max-Forwards” HCOLON 1*DIGIT

"MIME-Version” HCOLON 1*DIGIT "” 1*DIGIT

"Organization” HCOLON TEXT-UTF8-TRIM

= "Priority” HCOLON priority-value

"emergency” | "urgent” | "normal”

| "non-urgent” | other-priority
token

Expires April 2002 [Page 141]

4758

4759

4760

4761

4762

4763

4764

4765

INTERNET-DRAFT

Proxy-Authenticate

challenge

digest-challenge

draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

"Proxy-Authenticate” HCOLON
challenge *(COMMA challenge)

= ’Digest” digest-challenge
digest-ching *(COMMA digest-ching)

digest-ching = realm | [domain] | nonce
| [opaque] | [stale]| [algorithm]
| [gqop-options] | [auth-param]
realm = "realm” EQUALS realm-value
realm-value = quoted-string
domain = "domain” EQUAL LDQUOT URI
(1*SP URI') RDQUOT
URI = absoluteURI | abs_path
nonce = "nonce” EQUAL nonce-value
nonce-value = quoted-string
opaque = "opaque” EQUAL quoted-string
stale = "stale” EQUAL ("true” | "false”)
algorithm = "algorithm” EQUAL ("MD5” | "MD5-sess”
| token')
gop-options = "gop” EQUAL LDQUOT qop-value *(COMMA qop-value) RDQUOT
gop-value = Tauth” | "auth-int” | token
Proxy-Authorization = "Proxy-Authorization” HCOLON credentials

Proxy-Require

RAck
response-num
CSeqg-num
response-num

Record-Route
rec-route
rr-param
Require

Retry-After

retry-param

Route
route-param

"Proxy-Require” HCOLON option-tag *(COMMA option-tag)

= "RAck” HCOLON response-num LWS CSeg-num LWS Method
= 1*DIGIT
= 1*DIGIT
= 1*DIGIT

= "Record-Route” HCOLON rec-route *(COMMA rec-route)
= name-addr *(SEMI rr-param)

= (generic-param

= "Require” HCOLON option-tag *(COMMA option-tag)

"Retry-After” HCOLON

(SIP-date | delta-seconds)

[comment | *(SEMI retry-param)
"duration” EQUAL delta-seconds

| generic-param

"Route” HCOLON route=param *(COMMA route-param)
name-addr *(SEMI rr-param)

RSeq = "RSeq’ HCOLON response-num

Various Authors

Expires April 2002 [Page 142]

4766

4767

4768

4769

4770

4771

4772

4773

4774

INTERNET-DRAFT

draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Server = "Server” HCOLON 1*(product | comment)
product = token [SLASH product-version]
product-version = token
Subject = ("Subject” |”s”) HCOLON TEXT-UTF8-TRIM
Supported = ("Supported”|"k”) HCOLON

(option-tag *(COMMA option-tag)
Timestamp = "Timestamp” HCOLON *(DIGIT)

["”*(DIGIT)] [delay]
delay = *DIGIT) [") *(DIGIT)]
To = ("To"|"t") HCOLON (hame-addr

| addr-spec) *(SEMI to-param)
to-param = tag-param | generic-param
Unsupported = "Unsupported” HCOLON option-tag *(COMMA option-tag)
User-Agent = "User-Agent” HCOLON 1*(product | comment)
Via = ("Via”"|"v") HCOLON via-parm *(COMMA via-parm)
via-parm sent-protocol sent-by *(SEMI via-params) [comment])
via-params = via-hidden | via-ttl | via-maddr
| via-received | via-branch
| via-extension

via-hidden = "hidden”
via-ttl = "t EQUAL ttl
via-maddr = "maddr’ EQUAL host
via-received = "received” EQUAL host
via-branch = "branch” EQUAL token

via-extension
sent-protocol

protocol-name
protocol-version
transport

sent-by
ttl

Warning
warning-value
warn-code
warn-agent

warn-text
pseudonym

Various Authors

= generic-param

= protocol-name SLASH protocol-version

SLASH transport

"SIP” | token

token

"UDP” | "TCP” | "TLS” | "SCTP”

| other-transport

= host [COLON port]

= 1*3DIGIT ; 0to 255

"Warning” HCOLON warning-value *(COMMA warning-value)
warn-code SP warn-agent SP warn-text

3DIGIT

(host [COLON port]) | pseudonym

; the name or pseudonym of the server adding

; the Warning header, for use in debugging

quoted-string

token

Expires April 2002 [Page 143]

4775

4776

4777

4778

4779

4780

4781
4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

WWW-Authenticate = "WWW-Authenticate” HCOLON challenge

message-body = *OCTET

26 |IANA Considerations

All new or experimental method names, header field names, and status codes used in SIP applications
SHOULD be registered with IANA in order to prevent potential naming conflicts. RESOMMENDED that
new “option- tag”s and ‘warn-code’s also be registered. Before IANA registration, new protcol elements

SHOULD be characterized in an Internet- Draft or, preferably, an RFC.
For Internet-Drafts, IANA is requested to make the draft available as part of the registration database.

By the time an RFC is published, colliding names may have already been implemented.
When a registration for either a new header field, new method, or new status code is created based on
an Internet-Draft, and that Internet-Draft becomes an RFC, the person that performed the registration
notify IANA to change the registration to point to the RFC instead of the Internet-Draft.
Registrations should be sentitma@iana.org
26.1 Option Tags

Option tags are used in header fields sucRegquire, Supported, Proxy-Require, andUnsupported in
support of SIP compatibility mechanisms for extensions. For more on the use of option tags in these header
fields, see Section 21.2. The option tag itself is a string that is associated with a particular SIP option (that
is, an extension) that identifies the option in signaling between SIP endpoints.

When registering a new SIP option with IANA, the following informatimosT be provided:

e Name and description of option. The namay be of any length, busHouLD be no more than
twenty characters long. The nam@sT consist ofalphanum (See Section 25) characters only.

¢ A listing of any new SIP header fields, header parameter fields, or parameter values defined by this
option. A SIP optiormusT NOT redefine header fields or parameters defined in either RFC 2543, any
standards-track extensions to RFC 2543, or other extensions registered through IANA.

¢ Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium, or a particular company or group of companies).

¢ A reference to a further description if available, for example (in order of preference) an RFC, a pub-
lished paper, a patent filing, a technical report, documented source code, or a computer manual.

e Contact information (postal and email address).

This procedure has been borrowed from RTSP [4] and the RTP AVP [42].

26.1.1 Registration of 100rel

This specification registers a single option tag, “100rel”. The required information is:

Name: “100rel”

Various Authors Expires April 2002 [Page 144]

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822
4823
4824
4825
4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Description: This option tag is for reliability of provisional responses. When present $ugported
header, it indicates that the UA can send or receive reliable provisional responses. When present in a
Require header in a request, it indicates that the UASST send all provisional responses reliably.
When present in Require header in a reliable provisional response, it indicates that the response is
to be sent reliably.

New Headers: TheRSeq andRAck header fieds are defined by this optio.
Change Control: IETF.
Reference: RFCXXXX [Note to IANA: Fill in with the RFC number of this specification.

Contact Information: Jonathan Rosenberg, jdrosen@jdrosen.net. 72 Eagle Rock Avenue, First Floor, East
Hanover, NJ, 07936.

26.2 Warn-Codes

Warning codes provide information supplemental to the status code in SIP response messages when the
failure of the transaction results from a Session Description Protocol (SDP, [6]). Wam-code” values
can be registered with IANA as they arise.

The “warn-code” consists of three digits. A first digit of “3” indicates warnings specific to SIP.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

1xx and 2xx have been taken by HTTP/1.1.
26.3 Header Field Names

Header field names do not require working group or working group chair review prior to IANA registration,
but sHouLD be documented in an RFC or Internet-Draft before IANA is consulted.
The following information needs to be provided to IANA in order to register a new header field name:

e The name and email address of the individual performing the registration.

The name of the header field being registered.

A compact form version for that header field, if one is defined.

The name of the draft or RFC where the header field is defined.

A copy of the draft or RFC where the header field is defined.

Header fieldssHouLD NOT use theX- prefix notation anduusT NOT duplicate the names of header
fields used by SMTP or HTTP unless the syntax is a compatible superset and the semantics are similar.
Some common and widely used header fisldy be assigned one-letter compact forms (Section 7.3.3).
Compact forms can only be assigned after SIP working group review. In the absence of this working group,
a designated expert reviews the request.

Various Authors Expires April 2002 [Page 145]

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

26.4 Method and Response Codes

Because the status code space is limited, they do require working group or working group chair review, and
MUST be documented in an RFC or Internet draft. The same procedures apply to new method names.

The following information needs to be provided to IANA in order to register a new response code or
method:

e The name and email address of the individual performing the registration.
e The number of the response code or name of the method being registered.
e The default reason phrase for that status code, if applicable.

e The name of the draft or RFC where the method or status code is defined.

e A copy of the draft or RFC where the method or status code is defined.

27 Changes Made in Version 00

e Indicated that UAC should send bdBlANCEL andBYE after a retransmission fails.

e Added semicolon and question mark to the list of unreserved characters tmahpart of SIP URLS
to handletel: URLSs properly.

¢ Uniform handling of if hop counMax-Forwards: return 483. Note that this differs from HTTP/1.1
behavior, where only OPTIONS and TRACE allow this header, but respond as the final recipient when
the value reaches zero.

¢ Clarified that a forking proxy sendSCKs only forINVITE requests.

e Clarified wording of DNS caching. Added paragraph on “negative caching”, i.e., what to do if one
of the hosts failed. It is probably not a good idea to simply drop this host from the list if the DNS ttl
value is more than a few minutes, since that would mean that load balancing may not work for quite a
while after a server is brought back on line. This will be true in particular if a server group receives a
large number of requests from a small number of upstream servers, as is likely to be the case for calls
between major consumer ISPs. However, without getting into arbitrary and complicated retry rules, it
seems hard to specify any general algorithm. Might it be worthwhile to simply limit the “black list”
interval to a few minutes?

e Added optionalCall-Info and Alert-Info header fields that describe the caller and information to be
used in alerting. (Currently, avoided use of “purpose” qualification since it is not yet clear whether
rendering content without understanding its meaning is always appropriate. For example, if a UAS
does not understand that this header is to replace ringing, it would mix both local ring tone and the
indicated sound URL.) TBD!

e SDP “s=" lines can’'t be empty, unfortunately.
e Noted thatmaddr could also contain a unicast address, $HOULD contain the multicast address if

the request is sent via multicast (Section 22.42.

Various Authors Expires April 2002 [Page 146]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4876 e Clarified that responses are sent to po¥ia sent-by value.
4877 ¢ Added “other-*" to theuser URL parameter and thidide andContent-Disposition headers.
4878 ¢ Clarified generation of timeout (408) responses in forking proxies and mentidxies header.

4879 e Clarified thatCANCEL andINVITE are separate transactions (Fig. 7). Thus, INITE request

4880 generates a 487 (Request Terminated)JANCEL or BYE arrives.

4881 ¢ Clarified thatRecord-Route sHOULD be inserted in every request, but that the route, once estab-
4882 lished, persists. This provides robustness if the called UAS crashes.

4883 e Emphasized that proxy, redirect, registrar and location servers are logical, not physical entities and
4884 that UAC and UAS roles are defined on a request-by-request basis. (Section 6)

4885 e In Section 22.42, noted that tmeaddr andreceived parameters also need to be encrypted when
4886 doing Via hiding.

4887 e Simplified Fig. 7 to only shoWuNVITE transaction.
4888 e Added definition of the use @@ontact (Section 22.10) foOPTIONS.
4889 e Added HTTP/RFC822 heade@ontent-Language andMIME-Version.

4890 e Added note in minimal section indicating that UAs need to support UDP.

4891 ¢ Added explanation explaining what a UA should do when receiving an ifiNiITE with a tag.

4892 ¢ Clarified UA and proxy behavior for 302 responses.

4893 e Added details on what a UAS should do when receiving a ta¢ig&diTE request for an unknown call
4894 leg. This could occur if the UAS had crashed and the UAC senddMVEFE or if the BYE got lost
4895 and the UAC still believes to be in the call.

4896 e Added definition ofContact in 4xx, 5xx and 6xx to “redirect” to more error details.

4897 ¢ Added note to forking proxy description to gattiefuthenticate from responses. This allows several
4898 branches to be authenticated simultaneously.

4899 e Changed URI syntax to use URL escaping instead of quotation marks.

4900 e Changed SIP URL definition to reference RFC 2806tédephone-subscriber part.

4901 e Clarified that theTo URI should basically be ignored by the receiving UAS except for matching
4902 requests to call legs. In particuldip headers with a scheme or name unknown to the callee should
4903 be accepted.

4904 e Clarified thatmaddr is to be added by any client, either proxy or UAC.

4905 e Added response code 488 to indicate that there was no common media at the particular destination.
4906 (606 indicates such failure globally.)

Various Authors Expires April 2002 [Page 147]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4907 e In Section 22.19, noted that registration updates can shorten the validity period.

4908 ¢ Added note to enclose the URI for digest in quotation marks. The BNF in RFC 2617 is in error.

4909 o Clarified that registrars uskuthorization andWWW-Authenticate, not proxy authentication.

4910 ¢ Added note in Section 22.10 thdtéaders” are copied fromContact into the new request.

a011 e Changed URL syntax so that port specifications have to have at least one digit, in line with other URL
4912 formats such as “http”. Previously, an empty port number was permissible.

4913 ¢ In SDP section, added a section on how to add and delete streamB\NIfeEs.

4914 e IETF-blessed extensions now have short names, withiautetf. prefix.

4915 e Cseq is unique within a call leg, not just within a call (Section 22.16).

4916 e Added IPv6 literal addresses to the SIP URL definition, according to RFC 2732 [43]. Modified the

4917 IPv4 address to limit segments to at most three digits.

4918 e modify registration procedure so that it explicitly references the URL comparison. Updates with
4919 shorter expiration time are now allowed.

4920 e For send-only media, SDP still must indicate the address and port, since these are needed as destina-
4921 tions for RTCP messages.

4922 e Changed references regarding DNS SRV records from RFC 2052 to RFC 2782, which is now a Pro-

4923 posed Standard. Integrated SRV into the search procedure and removed the SRV appendix. The only
4924 visible change is that protocol and service names are now prefixed by an underscore. Added wording
4925 that incorporates the precedenceraddr.

4926 e Allow parameters irRecord-Route andRoute headers.

4927 e In Table 1, listudp as the default value for the transport parameter in SIP URI.

4928 e Removed sentence thetom can be encrypted. It cannot, since the header is needed for call-leg
4929 identification.

4930 e Added note that a UAC only copiesTa tag into subsequent transactions if it arrives in a 200 OK to

4931 anINVITE. This avoids the problem that occurs when requests get resubmitted after receiving, say,
4932 a 407 (or possibly 500, 503, 504, 305, 400, 411, 413, maybe even 408). Under the old rules, these
4933 requests would have a tag, which would force the called UAS to reject the request, since it doesn'’t
4934 have an entry for this tag.

4935 ¢ Loop detection has been modified to takerbguest-URI into account. This allows the same request

4936 to visit the server twice, but with different request URIs (“spiral”).

4937 e Elaborated on URL comparison and comparisofr@im/To fields.

4938 e Addednp-queried user parameter.

4939 e Changedag syntax from UUID to token, since there’s no reason to restrict it to hex.

Various Authors Expires April 2002 [Page 148]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4940 e Added Content-Disposition header based on earlier discussions about labeling what to do with a
4941 message body (part).

4942 ¢ Clarification: proxies must inseffo tags for locally generated responses.

4943 e Clarification: multicast may be used for subsequent registrations.

4944 e Feature: Adde®upported header. Needed if client wants to indicate things the server can usefully
4945 return in the response.

4946 e Bug: TheFrom, To, and Via headers were missing extension parameters. Hin@yption and

4947 Response-Key header fields now “officially” allow parameters consisting only of a token, rather
4948 than just “token = value”.

4949 e Bug: Allow was listed as optional in 405 responses in Table 2. It is mandatory.

4950 e Added: “A BYE request from either called or calling party terminates any peniNMJTE, but the

4951 INVITE request transactiomusT be completed with a final response.”

4952 e Clarified: “If an INVITE request for an existing session fails, the session description agreed upon in
4953 the last successfUNVITE transaction remains in force.”

4954 e Clarified what happens if twbiNVITE requests meet each other on the wire, either traveling the same
4955 or in opposite directions:

4956 A UAC musT NOT issue anotheiNVITE request for the same call leg before the pre-

4957 vious transaction has completed. A UAS that receivef\NAATE before it sent the final

4958 response to atNVITE with a lower CSeq numbermusT return a 400 (Bad Request)

4959 response antusT include aRetry-After header field with a randomly chosen value of

4960 between 0 and 10 seconds. A UA that receiveBNAATE while it has anlNVITE transac-

4961 tion pending, returns a 500 (Internal Server Error) and also includRetrg-After header

4962 field.

4963 e Expires header clarified: limits only duration dNVITE transaction, not the actual session. SDP
4964 does the latter.

4965 e Theln-Reply-To header was added.

4966 e There were two incompatible BNFs foWWW-Authenticate. One defined for PGP, and the other
4967 borrowed from HTTP. For basic or digest:

4968 WWW-Authenticate: basic realm="Wallyworld"

4969 and for pgp:

4970 WWW-Authenticate: pgp; realm="Wallyworld"

4971 The latter is incorrect and the semicolon has been removed.

Various Authors Expires April 2002 [Page 149]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

4972 e Added rules folRoute construction from called to calling UA.

4973 e We now allowAccept andAccept-Encoding in BYE andCANCEL requests. There is no particular

4974 reason not to allow them, as both requests could theoretically return responses, particularly when
4975 interworking with other signaling systems.

4976 e PGP “pgp-pubalgorithm” allows server to request the desired public-key algorithm.

4977 e ABNF rules now describe tokens explicitly rather than by subtraction; explicit character enumeration
4978 for CTL, etc.

4979 ¢ Registrars should be careful to check ate header as the expiration time may well be in the past,
4980 as seen by the client.

4981 e Content-Length is mandatory; Table 2 erroneously marked it as optional.

4982 e User-Agent was classified in a syntax definition as a request header rather than a general header.
4983 ¢ Clarified ordering of items to be signed and include realm in list.

4984 e Allow Record-Route in 401 and 484 responses.

4985 e Hop-by-hop headers need to precede end-to-end headers only if authentication is used.

4986 e 1xx message bodiesAy now contain session descriptions.

4987 e Changed references to HTTP/1.1 and authentication to point to the latest RFCs.

4988 e Added 487 (Request terminated) status response. It is issued if the original request was terminated
4989 via CANCEL or BYE.

4990 e The spec was not clear on the identification of a call leg. Section 1.3 says it's the combinalmn of

4991 From, andCall-ID. However, requests from the callee to the caller havathendFrom reversed, so

4992 this definition is not quite accurate. Additionally, the “tag” field should be included in the definition
4993 of call leg. The spec now says that a call leg is defined as the combination of local-address, remote-
4994 address, and call-id, where these addresses include tags.

4995 Text was added to Section 6.21 to emphasize thaFtbe andTo headers designate the originator

4996 of the request, not that of the call leg.

4997 e All URI parameters, excephethod, are allowed in &equest-URI. Consequently, also updated the

4998 description of which parameters are copied from 3xx responses in Sec. 22.10.

4999 e The use of CRLF, CR,or LF to terminate lines was confusing. Basically, each header line can be
5000 terminated by a CR, LF, or CRLF. Furthermore, the end of the headers is signified by a “double
5001 return”. Simplified to require sending of CRLF, but require senders to receive CR and LF as well and
5002 only allow CR CR, LF LF in addition to double CRLF as a header-body separator.

5003 ¢ Round brackets i€ontact header were part of the HTTP legacy, and very hard to implement. They
5004 are also not that useful and were removed.

Various Authors Expires April 2002 [Page 150]

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

28

29

The spec said that a proxy is a back-to-back UAS/UAC. This is almost, but not quite, true. For
example, a UAS should insert a tag into a provisional response, but a proxy should not. This was
clarified.

Section 6.13 in the RFC begins mid-paragraph after the BNF. The following text was misplaced in the
conversion to ASCII:

Even if the “display-name” is empty, the “name-addr” form MUST be used if the “addr-
spec” contains a comma, semicolon or question mark.

Changes Made in Version 01

Uniform syntax specification for semicolon parameters:

Foo
foo-param

"Foo” ";” something *(;" foo-param)
"bar” "=" token
| generic-param

Removedp-queried user parameter since this is now part of a tel URL extension parameter.

In SDP section, noted that if the capabilities intersection is empty, a dummy format list still has to be
returned due to SDP syntax constraints. Previously, the text had required that no formats be listed.
(Brian Rosen)

Reorganized tables 2 and 3 to show proxy interaction with headers rather than “end-to-end” or “hop-
by-hop”.

Changes Made in Version 02

Added “or UAS” in description ofreceived headers in Section 22.42. This makes the response
algorithm work even if the last IP address in M is incorrect.

Tentatively removed restriction th&ANCEL requests cannot haloute headers. (Billy Biggs)

Tentatively addedhlso header foBYE requests, as it is widely implemented and a simple means to
implement unsupervised call transfer. Subject to removal if there is protest. (Billy Biggs)

If a proxy sends a request by UDP (TCP), the spec did not disallow placing TCP (UDP) in the transport
parameter of th&/ia field, which it should. Added a note that the transport protocol actually used is
included.

No default value for theg parameter in Contact is defined. This is not strictly needed, but is useful for
consistent behaviors at recursive proxies and at UAC’s. Now 0.5.

Clarified thatTo andFrom tag values should be different to simplify request matching when calling
oneself.

Removed ability to carry multiple requests in a single UDP packet (Section 22.14).

Various Authors Expires April 2002 [Page 151]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5035 e Added note thafllow MAY be included in requests, to indicate requestor capabilities for the same
5036 call ID.

5087 e Added note to Section 22.17 indicating that registrausT include theDate header to accomodate

5038 UAs that do not have a notion of absolute time.

5039 e Added note emphasizing that non-SIP URIs are permissidREGISTER.

5040 ¢ Rewrote the server lookup section to be more precise and more like pseudo-code, with nesting instead
5041 of “gotos”.

5042 e Removed note

5043 Note that the two URLs example.com and example.com:5060, while considered equal,

5044 may not lead to the same server, as the former causes a DNS SRV lookup, while the latter

5045 only uses the A record.

5046 since that is no longer the case.

5047 e Emphasized that proxies have to forward requests with unknown methods.

5048 ¢ Aligned definition of call leg with URI comparison rules.

5049 ¢ Required that second branch parameter be globally unique, so that a proxy can distinguish different
5050 branches in spiral scenarios similar to the following, with record-routing in place:

5051 B --> Pl - > P2 oo > Pl e > A

5052 BYE B B/1 P1/2,B/1 P2/3,P1/2,B/1 P1/4,P2/3,P1/2,B/1

5053 Here, A/l denotes theia entry with host A and branch parameter 1. Also, this requires updating the
5054 definition of isomorphic requests, since tRequest-URI is the same for alBYE that are record-

5055 routed.

5056 e RemovedVia hiding from spec, for the following reasons:

5057 — complexity, particularly hidden “gotchas” that surface at various points (as in this instance);

5058 — interference with loop detection and debugging;

5059 — Unlike HTTP, where via-hiding makes sense since all data is contained in the request or re-
5060 sponseVia-hiding in SIP by itself does nothing to hide the caller or callee, as address informa-
5061 tion is revealed in a number of places:

5062 x Contact;

5063 * Route/Record-Route;

5064 x SDP, including the o= and c=lines;

5065 x possibly accidental leakage Wser-Agent header andCall-ID headers.

5066 — Unless this is implemented everywhere, the feature is not likely to be very useful, without the
5067 sender having any recourse such as “don't route this request unless you can hide”. It appears
5068 that almost all existing proxies simply ignore the Hide header.

5069 e AddedError-Info header field.

Various Authors Expires April 2002 [Page 152]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

s 30 Changes Made in Version 03

5071 e Description ofRoute and Record-Route moved to separate section, which is new. All UAs must

5072 now support this mechanism.

5073 e Removed status code 411, since it cannot occur (Jonathan Rosenberg, James Jack).

5074 ¢ RewroteRecord-Route section to reflect new mechanism. In particular, requests from callee to caller
5075 now use the same path as in the opposite direction, without substitutifgaireheader field values.

5076 Themaddr parameter is now optional.

5077 ¢ Disallowed SIP URLs that only have a password, without a user name. The prototype from RFC 1738
5078 also doesn't allow this.

5079 e Allow registrar to set the expiration time.

5080 e CSeq (Section 22.16) is counted within a call leg, not a call.

5081 e Removed wording that connection closing is equivaler@&NCEL or 500. This does not work for

5082 connections that are used for multiple transactions and has other problems.

5083 e Cleaned up CSeq section. Removed text about inse@Bgg method when it is absent. Clarified

5084 that CSeq increments for all requests, not just invite. Clarified that all out of order requests, not
5085 just out of order INVITE, are rejected with a 400 class response. Clarified the meaning of “initial”
5086 sequence number. Clarified that after a request forks, each 200 OK is a separate call leg, and thus,
5087 separate CSeq space. Clarified that CSeq humbers are independent for each direction of a call leg.
5088 e Massive reorganization and cleanup of the SDP section. Introduced the concept of the offer-answer
5089 model. Clarified that set of codecs in m line are usable all at the same time. Inserted size restriction
5090 on representation of values in o line. Explicitly describe forked media. New media lines for adding
5001 streams appear at the bottom of the SDP (used to say append).

5002 e Removed Also.

5003 ¢ Added text to Require and Proxy-Require sections, making it a SHOULD to retry the request without
5094 the unsupported extension.

5095 e Added text to section on 415, saying that UAC SHOULD retry the request without the unsupported
5096 body.

5007 e Added text to section on CANCEL and ACK, clarifying much of the behavior.
5098 e Modified Content-Type to indicate that it can be present even if the body is empty.
5099 e From tags mandatory

5100 ¢ Old text said that if you hang up before sendingfK, you need not send th&CK. That is wrong.
5101 Text fixed so that adCK is always sent.

5102 e Old text said that if you never got a response taNMITE, the UAC should send both aNVITE and
5103 CANCEL. This doesn’t make sense. Rahter, it should do nothing and consider the call terminated.

Various Authors Expires April 2002 [Page 153]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5104 e Added text that says pending requests are responded to with a 4B¥ E & received.

5105 e Updated section 2.2, so that its clear tBaintact is not used wittBYE.

5106 ¢ Clarified Via processing rules. Added text on handling loops when proxies route on headers besides
5107 the request URI. Added text on handling case when sent-by contains a domain name. Added text to
5108 6.47 on opening TCP connections to send responses upstream.

5109 e Clarified that a 1xx with an unknown xx is not the same as the 100 response.

5110 e Removed usage @®etry-After in REGISTER.

5111 ¢ Clarified usage of persistent connections.

5112 e Clarified that servers supporting HTTP basic or digest in rfc2@UBT be backwards compatible
5113 with RFC 2069.

5114 e Clarified thatACK contains the same branch ID as the request its acknowledging.

5115 e Added definitions for spiral, B2BUA.

5116 e Rephrased definitions for UAC, UAS, Call, call-leg, caller, callee, making them more concrete.

5117 e URL comparison ignores parameters not present in both URLs only for unknown parameters.

5118 e Clarified that * inContact is used only irREGISTER with Expires header zero. Mentioned * case

5119 in section onContact syntax.

5120 ¢ Removed text that says a UA can inse€antact in 2xx that indicates the address of a proxy. Not

5121 likely to work in general.

5122 e Removed SDP text about aligning media streams within a media type to handle certain crash and
5123 restart cases.

5124 e Receiving a 481 to a mid-call request terminates that call leg. Agreed upon at IETF 49.

5125 ¢ Introduced definition of regular transaction - niivVITE exceptingACK andCANCEL.

5126 ¢ Clarified rules for overlapping transactions.

5127 e Forking proxiesmusT be stateful (used to sayHouULD). Proxies that send requests on multicast
5128 MUST be stateful (used to say nothing)

5129 e Text added recommending that registrars authorize that entkyoim field can register address-of-
5130 record in theTo field.

5131 e Forwarding of non-100 provisionals upstream in a proxy changed $neouLD to MUST.

5132 e Removed PGP.

Various Authors Expires April 2002 [Page 154]

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

31

Changes Made in Version 04

Removed Unsupported as a request header from Table 3.

Clarified SDP procedures for changing IP address and port. Specifically, spelled out the duration for
which a UA needs to received media on the old port and address.

Added text in the SDP session which recommends that the answerer use the same ordering of codecs
as used on the offer, in order to help ensure symmetric codec operation under normal conditions.

Fixed bug in the example in the SDP section, where the new media line was listed at the top. Should
have been the bottom.

Authorization credentials are cached based on the URL offthbeader, not the entireo header as
10.48 implied.

Section 10.31, orProxy-Authenticate, indicated that a server responds with a 401 if the client
guessed wrong. This is incorrect. It should be 407.

Section 10.14, removed motivational text ab@antact allowing an INVITE to be routed directly
between end systems, since its confusing. Some have interpreted to meRedbad-Route is
ignored wherContact is present.

Added reference to SCTP RFC.
Updated 2.2 to allow non-SIP URLs @PTIONS and 2xx toOPTIONS.
Fixed example in 20.5. AddediCK for 487, and addedlo tag to 487 response.

Clarified further URL comparisons. Its only URL parameters without defaults that are ignored if not
present in both URLSs.

Section 1.5.2, UDP mandatory for all. TCP isaouLD for UA, MUST for proxy, registrar, redirect
servers.

Brought syntax foiContact, Via, and the SIP URL into alignment between the text and postscript
versions.

Updated the text in section 6 which said that the ordering of header fields follows HTTP, with the
exception ofVia, where order matters. However, the HTTP spec says that order matters, so this
sentence is redundant and confusing. The sentence was removed.

Added e lines to SDP examples in the Examples section.

RewroteAllow discussion, more formally defining its semantics and usage cases.

Updated text on 604 status, to indicate that its based oRé&ugiest-URI, not theTo.

Added response registrations to IANA considerations. Provided more details on registration process.

Clarified that only a UAS rejects a request becausdthig doesn’t match a local value.

Various Authors Expires April 2002 [Page 155]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5165 e Clarified that stateless proxies need to route based on static criteria only.
5166 e Proxy and UACCANCEL generation upon 2xx, 6xx if it forked is nowsadioULD; used to be a1AY .

5167 e Added text saying that a UASHoULD send aBYE if it never gets arACK for a 2xx establishing a
5168 call Ieg.

5169 e Added text saying that a UASHOULD send a rdNVITE if it never gets anACK for a 2xx to a
5170 re INVITE.

5171 e Added text on 503 processing, indicating that a client should try a different server when receiving a
5172 503, and that a proxy shouldn’t forward a 503 upstream unless it can't service any other requests.

5173 e Removed motivational text in Section 10.43Via headers since its not consistent with the text before

5174 It.

5175 e Changed IPSec reference to RFC2401, from RFC1825.

5176 e Updated retransmission defininition in 17.3.4 to be consistent with the rest of the spec.
5177 ¢ Softened the language for insertion of the transport param in the record-route. Specifically, it can be
5178 inserted in private networks where it is known apriori that the specific transport is supported.

5179 e Updated definition of B2BUA.

5180 e Added text to section on 420 processing, which mandates that the client retry the request without
5181 extensions listed in thensupported header in the response.
5182 e Allow Authentication-Info header to be used for HTTP digest.

ss 32 Changes Made in Version 05

5184 e Updated Table 2 to reflect thEtror-Info is a response header in 3xx-6xx responses (it was previously
5185 listed as a request header).

5186 ¢ RemovedNVWW-Authenticate as a request header from Table 3. Authentication of responses is now
5187 done according to RFC2617.

5188 e Updated theAccept, Accept-Encoding and Accept-Language sections. More details on precise

5189 semantics for the various requests and responses is now provided. Presence of these headers is now
5190 a sHouLD for INVITE and 2xx toINVITE when a non-default value is present. Extra emphasis is
5191 placed on including théccept-Language in INVITE and 2xx in order to support internationaliza-

5192 tion. Usage of these three header€INCEL has been removed since it makes no sense.

5193 e Generalized local outbound processing rules in Section 16.4.1 to cover the case where the UAS is
5194 using a local outbound proxy which was not in the initial call setup path.

5195 e Updated record-routing section, so that a proxy can insert a transport param if it knows that the proxy
5196 on one side supports the specific transport (the previous text required the proxy to know whether the
5197 proxies on both sides supported the specific transport).

Various Authors Expires April 2002 [Page 156]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5198 e AddedAuthentication-Info to Section 10.

5199 ¢ Clarified the meaning of Table 2 for responses.

5200 e Updated Table 1 to reflect that maddr is no longer mandatoReitord-Route.

5201 ¢ Updated Table 3 so that header fields in respons@€tare never listed as optional, mandatory, etc.

5202 - only not applicable. This is because responsesA& are not allowed. Also improved wording in

5203 Section 5.1.1 to clarify that thereusT NOT be responses t&CK.

5204 e Updated SRV procedures. Old text said to treat a failure to contact a server as a 4xx, which would
5205 stop the SRV processing. But, this is not so. Sentence was stricken.

5206 e Updated 12.1 to clarify that 2xx INVITE respons@s ST contain session descriptions.

5207 e ChangedJser-Agent to a request header in Table 3.

5208 e Updated SDP section, so that a UA cannot change the SDP when it gelfd\élTd= with no SDP.

5209 ¢ Clarified Appendix B that a unicast offerusT have a unicast response.

5210 e Clarified that any request can be record-routed, but it may not be used by the UA, depending on the
5211 method.

5212 e non-2xx responses IOIVITE no longer retransmitted over TCP.

5213 ¢ Removed lower bound on T1 and T2 in private networks, which can use lower values. Furthermore,

5214 T1 can be smaller on the public Internet if proper RTT estimation is used.

5215 e UAS Cannot send BYE for a call leg until it receive\CK, in order to eliminate a race condition

5216 betweerBYE and 200 OK.

5217 e Support of CR or LF alone as line terminators, as opposed to CRLF, is no longer required.

5218 e Client behavior on receipt of a 3xx to IBVITE is now specified, and it is no longer forbidden to

5219 generate a 3xx. This is needed to maintain the idempotentM\AITE, as a proxy might redirect

5220 without knowing its a 3xx.

5221 e CANCEL cannot be sent before a 1xx is received, in order to eliminate race condition between request
5222 andCANCEL.

5223 e Termination of the client and server transactions is now based entirely on timeouts, rather than re-
5224 transmission counters, in order to unify TCP and UDP behavior. Timeout values scale as a function

5225 of the RTT estimate, defined as T1. For reliable transports, many of these timers are now set to zero.
5226 Many timeouts differ than in bis-04.

5227 e Added a working RTT estimation algorithm using tfiénestamp header, and specified it to be

5228 compliant to RFC 2988.

5229 e UAS accepting requests with unknown schemes in the URI ifthigeld is now aRECOMMENDED

5230 instead ofsHouLD. This reflects the fact that processing a request whemdlield doesn’'t match is

5231 a matter of policy.

Various Authors Expires April 2002 [Page 157]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5232 e Bodies are now allowed in any request and response, incl@ikigCEL, although there may not be

5233 any semantics associated with that.

5234 e Supporting ofINVITE without SDP is now a1usT (no strength was previously specified).

5235 e Registration procedures for visiting, which had a few sentences in bis-04, have been removed. Roam-
5236 ing is a complex issue, and should be treated elsewhere.

5237 e Bis-04 mandated that a 2xx responsdRIBGISTER contain expire<Contact parameters indicating

5238 the expiration time of a contact. This behavior has now been made consistent with requests, so that
5239 the expiration time of a contact is the same in either case: the expires param is used first if present,
5240 then theExpires header if present, else one hour for SIP URLSs.

5241 e Action parameter in contact registrations is deprecated.

5242 e 2xx to REGISTER MUST contain current contacts. This was justouLD in bis-04.

5243 e Multicast operation radically changed. Now, the treatment is no different than unicast. That is, only
5244 the first non-1xx response to a multicast request will be used. This is a natural consequence of the
5245 layering now applied to the protocol. This still enables anycast types of functions, mirroring the real
5246 usage of registrar discovery.

5247 e To completely separate transport rules from transaction rules, the rule in bis-04 that said a UAC
5248 SHOULD keep a connection opened until a response is received, has been turned into a timer recom-
5249 mendation. Specifically, the spec now says thatREs OMMENDED that connections be kept opened

5250 for a minimum interval of sufficient duration to guarantee, with high probability, that responses are
5251 sent over the same connections as a request.

5252 ¢ Re-use of existing connections for new requests to the same address and poREBI@MMENDED,

5253 it was only amAY in bis-04.

5254 ¢ Modification of headers below th&uthorization header by proxies is no longer disallowed, since the

5255 only mechanism that useklthorization in that way, PGP, has been deprecated previously.

5256 e Authentication of registrations NnORECOMMENDED; no strength was defined previously.

5257 e Registering of new headers with IANA is na8HOULD; no strength was defined previously.

5258 e Proxy aggregation of challenges nowgaouLD; no strength was defined previously.

5259 e Server support of basic authentication downgraded fserauLD to MAY .

5260 e UAC resubmitting requests with credentials after a challenge upgradedviromo SHOULD.

5261 e TLS is nowRECOMMENDED as the transport layer security for SIP signaling.

5262 e UA recursion on a redirect is nogHOULD; no strength was assigned previously.

5263 e UA reuse of headers in a recursed request is 8B@ULD; no strength was assigned previously.

5264 e Security considerations added foall-Info andAlert-Info.

Various Authors Expires April 2002 [Page 158]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

5265 e Proxies no longer forward a 6xx immediately on receiving it. Instead, (BANCEL pending

5266 branches immediately. This avoids a potential race condition that would result in a UAC getting a
5267 6xx followed by a 2xx. In all cases except this race condition, the result will be the same - the 6xx is
5268 forwarded upstream.

5269 e The term call-leg has been eliminated from the spec; a more generic term, dialog, is used in its place.
5270 e For SRV processing, subsequent requests with the €attdD (as opposed to the same transaction
5271 in bis-04) are sent to the same server.

5272 e SRV processing generalized to deal with the fact that the default port is transport dependent.

5273 e Per IESG request, draft-ietf-sip-serverfeatures has been integrated into bis.

5274 e Per IESG request, draft-ietf-sip-100rel will be integrated into bis. This is marked with a placeholder
5275 in this dratft.

5276 e The BNF has been converted from implicit LWS to explicit LWS.

5277 e Caching of responses in a proxy to avoid redoing location server lookups used tsHx@uaD.
5278 Caching behavior for responses is now fully encapsulated in the transaction processing.
5279 e Proxy usage of SRV in processiipute headers upgraded froeHOULD to MUST.

=0 33 Changes Made in Version 06

5281 e The two states of a dialog are now called early and confirmed.

5282 e CANCEL requests now carriRoute header fields.

5283 e Changes section in -05 forgot to mention the removal oBheryption andResponse-Key headers.

5284 These were removed since the only mechanism that used them, PGP, had already been deprecated. As
5285 such, they were effectively “garbage collected”.

5286 e Updated error in transaction definition. ACK-2xx is a separate transaction, ACK for non-2xx is part

5287 of the same transaction.

5288 e Changed "Contact-Length” typo to "Content-Length” in various sections, including throughout the

5289 Examples section.

5290 e Changed Table 3 entry for Record-Route and Route for REGISTER from "0” for optional to "-” for
5201 Not Allowed.

5202 e Changed Table 3 entry for Route for ACK, BYE, CANCEL, INVITE, and OPTIONS from "0” for

5203 optional to "c” for conditional, depending on whether a route set has been defined for the dialog or
5294 the response code.

5205 e Updated Figure 5 - adding missing label on “calling” to “completed” transition.

5296 ¢ Fixed errored transport example from Section 19.2.1.

Various Authors Expires April 2002 [Page 159]

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Clarified that 17.2.3 and 17.1.3 are rules that define retransmissions.

fixed reported bugs in bnf (missing productions, bad tex markup), etc. Added new SWS production
to have an LWS which allows zero spaces, and used that With any separators. Removed the # rule.

ACK for non-2xx has to have the sarf®ute as the request its acknowledging. The text formerly
said that theACK MUST NOT containRoute, this has now radically changed tusT haveRoute if
the request its cancelling had one.

Clarified that stateless proxies apply Route processing logic to CANCEL requests.
Emphasized that escaping in the hostname portion of SIP URIs is not currently allowed.

Added discussion on when configuration changes affect the ability of a proxy to forward requests
stateful or statelessly.

Explicitly stated that a proxy may add a Record-Route header field value to any request
Added discussion on the use of To tags in hop-hop responses at a proxy

Relaxed text concerning proxies forwarding CANCELs when a matching response context can't be
found to allow the CANCEL to be processed statefully.

Changed references to "short” form of SIP headers to "compact” form.
Changed Date example to a valid date.

Clarified howACK gets from transport to UAS core.

Adding missing “SIP/2.0" to firsREGISTER in the examples section.

Fixed bug in 17.2.3 which said that &CK matched a server transaction if ti&eq method (not
number) matched that of tHBIVITE. It should be the reverse - number, not method.

Fixed bug in 22.15 where it saldontent-Length instead ofContent-Type.
Incorporated draft-ietf-sip-100rel-04 into bis.

Reliability of provisional responses now only defined for provisional respond®&8vid E, although
extension methods can allow its usage. This is becBE®CK needs to be sent within the context
of a dialog, and only responsesIVITE establish dialogs.

Can no longer send a reliable provisional response after a final response; its nhot compatible with the
transaction machines, which generally assume no provisionals after a final.

Proxy behavior for reliable provisional responses no longer defined separately; the spec states that it
simply acts as a uas.

Scope of record-route headers for a reliable provisional response is now the dialog rather than the
particular request.

ExamplePRACK flows were lost when incorporating into bis.

Various Authors Expires April 2002 [Page 160]

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

34

Formal IANA registration of “100rel” option tag.
If reliable provisional response gets RRACK after 32*T1, UAS sends 5xx to original request.
Recommended UA behavior for caching credentials.

Included guidelines for devices presenting pre-configured credentials vs. prompting end users to
provide credentials for a specific realm.

Added section on Stateless UAS Behavior, clarifying secure handling of unauthenticated requests to
prevent potential DoS threat.

Provided motivation for aggregation of challenges in the Security Considerations, and made the be-
havioral language there more specific.

Provided guidelines for the construction of realm strings for authentication.

Changed concept of protection domain for SIP so that it is no longer defined by both a Request-URI
and a realm - it is now only defined by a realm.

Reversed opinion on whether the URI parameter in a Digest Authorization header should be quoted
or not - we now assert that it should NOT be quoted.

Put in some text encouraging UACs not to resubmit rejected credentials when re-challenged.

Added falsification of source IP address to the Via denial of service attack case.

Provided canonical MD5 hash for an empty message body to be used in Digest integrity calculation.
Added security considerations for the CANCEL and ACK methods.

Deprecated and removed Basic auth scheme. Proxies MUST NOT accept or request Basic.
Strengthened language regarding the sending of the “qop” parameter - receipt of cnonce is based on

uqopn.

Acknowledgments

We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions.
Detailed comments were provided by Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan, Cdric
Fluckiger, Yaron Goland, Bernie Hneisen, Phil Hoffer, Christian Huitema, Jean Jervis, Gadi Karmi, Peter
Kjellerstedt, Anders Kristensen, Jonathan Lennox, Gethin Liddell, Keith Moore, Vern Paxson, Moshe J.
Sambol, Chip Sharp, Igor Slepchin, Eric Tremblay., and Rick Workman.

Brian Rosen provided the compiled BNF.

This work is based, inter alia, on [44, 45].

Various Authors Expires April 2002 [Page 161]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

s 3D Authors’ Addresses

s3s9 Authors addresses are listed alphabetically for the editors, the writers, and then the original authors of RFC
s30 2543,

s3s1 Jonathan Rosenberg

sz dynamicsoft

s3e3 72 Eagle Rock Ave

s364 East Hanover, NJ 07936

s USA

sse6 electronic mail;jdrosen@dynamicsoft.com

sse7 Henning Schulzrinne

s3es Dept. of Computer Science

sse0 Columbia University

ssr0 1214 Amsterdam Avenue

ssi New York, NY 10027

sz USA

s373 electronic mail:schulzrinne@cs.columbia.edu

s34 Gonzalo Camarillo

5375 Ericsson

ssze - Advanced Signalling Research Lab.

sar7 - FIN-02420 Jorvas

sszs Finland

sare electronic mail:Gonzalo.Camarillo@ericsson.com

sss0 Alan Johnston

s WorldCom

sss2 100 South 4th Street

sse3 St. Louis, MO 63102

sags USA

s electronic mail:alan.johnston@wcom.com

ssss JOn Peterson

ssg7 - NeuStar, Inc

s 1800 Sutter Street, Suite 570

s3s0 Concord, CA 94520

ss0 USA

s301 electronic mail;jon.peterson@neustar.com

sz Robert Sparks

s303 dynamicsoft, Inc.

s34 5100 Tennyson Parkway

5305 Suite 1200

s Plano, Texas 75024

ss7 USA

s electronic mail:rrsparks@dynamicsoft.com

Various Authors Expires April 2002 [Page 162]

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

Mark Handley
ACIRI
electronic mail:mjh@aciri.org

Eve Schooler

Computer Science Department 256-80
California Institute of Technology
Pasadena, CA 91125

USA

electronic mail:schooler@cs.caltech.edu

References

[1] R. Pandya, “Emerging mobile and personal communication systdEEE Communications Maga-
zing Vol. 33, pp. 44-52, June 1995.

[2] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol
(RSVP) — version 1 functional specification,” Request for Comments 2205, Internet Engineering Task
Force, Sept. 1997.

[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.

[4] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request for Com-
ments 2326, Internet Engineering Task Force, Apr. 1998.

[5] M. Handley, C. Perkins, and E. Whelan, “Session announcement protocol,” Request for Comments
2974, Internet Engineering Task Force, Oct. 2000.

[6] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Inter-
net Engineering Task Force, Apr. 1998.

[7] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

[8] H. Schulzrinne and J. Rosenberg, “SIP: Session initiation protocol — locating SIP servers,” Internet
Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol — HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

[10] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”
Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

[11] T. Berners-Lee, L. Masinter, and M. McCabhill, “Uniform resource locators (URL),” Request for Com-
ments 1738, Internet Engineering Task Force, Dec. 1994.

Various Authors Expires April 2002 [Page 163]

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

[12] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Request for Comments 2279, Internet
Engineering Task Force, Jan. 1998.

[13] D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Comments 822,
Internet Engineering Task Force, Aug. 1982.

[14] A. Vaha-Sipila, “URLSs for telephone calls,” Request for Comments 2806, Internet Engineering Task
Force, Apr. 2000.

[15] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

[16] W. R. StevensTCP/IP illustrated: the protocolsvol. 1. Reading, Massachusetts: Addison-Wesley,
1994,

[17] J. C. Mogul and S. E. Deering, “Path MTU discovery,” Request for Comments 1191, Internet Engi-
neering Task Force, Nov. 1990.

[18] D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” Request for
Comments 1750, Internet Engineering Task Force, Dec. 1994.

[19] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Comments 2368,
Internet Engineering Task Force, July 1998.

[20] D. Meyer, “Administratively scoped IP multicast,” Request for Comments 2365, Internet Engineering
Task Force, July 1998.

[21] E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

[22] S. Donovan, “The SIP INFO method,” Request for Comments 2976, Internet Engineering Task Force,
Oct. 2000.

[23] J. Rosenberg and H. Schulzrinne, “An offer/answer model with SDP,” Internet Draft, Internet Engi-
neering Task Force, Oct. 2001. Work in progress.

[24] R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet Engineering
Task Force, Apr. 1992.

[25] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,” Request for Comments 2988,
Internet Engineering Task Force, Nov. 2000.

[26] T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
neering Task Force, Jan. 1999.

[27] S.Kentand R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 2401,
Internet Engineering Task Force, Nov. 1998.

Various Authors Expires April 2002 [Page 164]

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

[28] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
neering Task Force, June 1999.

[29] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An exten-
sion to HTTP : Digest access authentication,” Request for Comments 2069, Internet Engineering Task
Force, Jan. 1997.

[30] J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Security multiparts for MIME: multipart/signed and
multipart/encrypted,” Request for Comments 1847, Internet Engineering Task Force, Oct. 1995.

[31] J. Postel, “User datagram protocol,” Request for Comments 768, Internet Engineering Task Force,
Aug. 1980.

[32] J. Postel, “DoD standard transmission control protocol,” Request for Comments 761, Internet Engi-
neering Task Force, Jan. 1980.

[33] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson, “Stream control transmission protocol,” Request for Comments 2960, Internet Engi-
neering Task Force, Oct. 2000.

[34] F. Dawson and T. Howes, “vcard MIME directory profile,” Request for Comments 2426, Internet
Engineering Task Force, Sept. 1998.

[35] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” Request for Com-
ments 2849, Internet Engineering Task Force, June 2000.

[36] R. Troostand S. Dorner, “Communicating presentation information in internet messages: The content-
disposition header,” Request for Comments 1806, Internet Engineering Task Force, June 1995.

[37] R. Braden and Ed, “Requirements for internet hosts - application and support,” Request for Comments
1123, Internet Engineering Task Force, Oct. 1989.

[38] J. Palme, “Common internet message headers,” Request for Comments 2076, Internet Engineering
Task Force, Feb. 1997.

[39] H. Alvestrand, “IETF policy on character sets and languages,” Request for Comments 2277, Internet
Engineering Task Force, Jan. 1998.

[40] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Willis, J. Rosenberg, K. Summers, and
H. Schulzrinne, “SIP telephony call flow examples,” Internet Draft, Internet Engineering Task Force,
Apr. 2001. Work in progress.

[41] D. Crocker, Ed., and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for
Comments 2234, Internet Engineering Task Force, Nov. 1997.

[42] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for
Comments 1890, Internet Engineering Task Force, Jan. 1996.

[43] R. Hinden, B. Carpenter, and L. Masinter, “Format for literal IPv6 addresses in URL's,” Request for
Comments 2732, Internet Engineering Task Force, Dec. 1999.

Various Authors Expires April 2002 [Page 165]

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps January 8, 2002

[44] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experiendel. 4, pp. 99-120, June 1993. ISI
reprint series ISI/RS-93-359.

[45] H. Schulzrinne, “Personal mobility for multimedia services in the InternetZuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDNERrlin, Germany), Mar. 1996.

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Various Authors Expires April 2002 [Page 166]

