\section{Canceling a Request}

\label{sec:canceling}

%jdr – there is an awful dependency here. Canceling sort of depends on

% the transaction section. Proxies depend on the cancel section. The

% termination section also depends on cancel. This would force a bottom

% up organization, which I am trying to avoid

The previous section has discussed general UA behavior for generating requests, and processing responses, for requests of all methods. In this section, we discuss a general purpose method, called {\CANCEL}.

The {\CANCEL} request, as the name implies, is used to cancel a previous request sent by a client. Specifically, it asks the user agent server to cease processing the request, and generate an error response to that request. {\CANCEL} has no effect on a request that has already been responded to. Because of this, it is most useful to {\CANCEL} requests which can take a long time to respond to. For this reason, {\CANCEL} is most useful for {\INVITE} requests, which can take a long time to generate a response. In that usage, a UAS that receives a {\CANCEL} request for an {\INVITE}, but has not yet sent a response, would ``stop ringing'', and then respond to the {\INVITE} with a specific error response (a 487).

Cancel requests can be constructed and sent by any type of client, including both proxies and user agent servers. Section \ref{sec:terminate} discusses under what conditions a UAC would {\CANCEL} an {\INVITE} request, and Section \ref{sec:proxy} discusses proxy usage of {\INVITE}.

Because a stateful proxy can generate its own {\CANCEL}, a stateful proxy also responds to a {\CANCEL}, rather than simply forwarding a response it would receive from a downstream element. For that reason, {\CANCEL} is referred to as a ``hop-by-hop'' request, since it is responded to at each stateful proxy hop.

\subsection{Client Behavior}

\label{sec:canceluac}

The following procedures are used to construct a {\CANCEL} request. The \header{Request-URI}, \header{Call-ID}, \header{To}, the numeric part of \header{CSeq} and \header{From} header fields in the {\CANCEL} request {\MUST} be identical to those in the request being cancelled, including tags. A {\CANCEL} constructed by a client {\MUST} have only a single \header{Via} header, whose value matches the top \header{Via} in the request being cancelled. Using the same values for these headers allows the {\CANCEL} to be matched with the request it cancels (Section \ref{sec:canceluas} indicates how such matching occurs). However, the method part of the \header{Cseq} header {\MUST} have a value of {\CANCEL}. This allows it to be identified and processed as a transaction in its own right (See Section \ref{sec:transactions}).

Once the {\CANCEL} is constructed, the client {\SHOULD} check whether any response (provisional or final) has been received for the request being cancelled (herein referred to as the “original request”). The {\CANCEL} request {\MUSTNOT} be sent if no provisional response has been received, rather, the client {\MUST} wait for the arrival of a provisional response before sending the request. If the original request has generated a final response, the {\CANCEL} {\SHOULDNOT} be sent, as it is an effective no-op, since {\CANCEL} has no effect on requests which have already generated a final response. When the client decides to send the {\CANCEL}, it creates a client transaction for the {\CANCEL}, and passes it the {\CANCEL} request along with the destination address, port and transport. The destination address, port, and transport for the {\CANCEL} {\MUST} be identical to those used to send the original request.

\motivation{If it was allowed to send the {\CANCEL} before receiving a response for the previous request the server could receive the {\CANCEL} before the original request.}

Note that both the transaction corresponding to the original request and the {\CANCEL} transaction will complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a response. If there is no final response for the original request in T3 seconds, the client {\SHOULD} then consider the original transaction cancelled and {\SHOULD} destroy the client transaction handling the original request.

\subsection{Server Behavior}

\label{sec:canceluas}

The {\CANCEL} method requests that the TU at the server side cancel a pending request with the same \header{Call-ID}, \header{To}, \header{From}, top \header{Via} header and \header{Request-URI} and \header{CSeq} (sequence number only) header field values.

The processing of a {\CANCEL} request at a server depends on the type of server. A stateless proxy will forward it, a stateful proxy might respond to it and generate some {\CANCEL} requests of its own, and a UAS will respond to it. See Section \ref{sec:proxy-cancel-processing} for proxy treatment of {\CANCEL}.

When a UAS receives a {\CANCEL}, it looks for any server transactions which were created by requests with the same \header{To}, \header{From}, \header{Call-ID}, \header{Cseq} numeric value, \header{Request-URI} and top \header{Via} header. If no matching transactions are found, the {\CANCEL} is responded to with a 481 (Call Leg/Transaction Does Not Exist).

If the transaction for the original request still exists, the behavior of the UAS on receiving a {\CANCEL} request depends on whether it has already sent a final response for original request. If it has, the {\CANCEL} request has no effect on the processing of the original request, no effect on any session state, and no effect on the responses generated for the original request. If the UAS has not issued a final response for the original request, it immediately responds to the original request with a 487 (Request Terminated).

The {\CANCEL} request itself is answered with a 200 (OK) response in either case. Once the response is constructed it is passed to the server transaction for the {\CANCEL} request.

