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Abstract

Prosody Modeling in Concept-to-Speech

Generation

Shimei Pan

With the development of speech recognition and synthesis technology, speech in-

terfaces for practical applications are in high demand. For applications like spoken

dialogues systems, where not only the waveform but also the content of a system’s

query/response have to be generated automatically, a Concept-to-Speech system

is needed. One key module in a Concept-to-Speech system is prosody modeling.

It determines how prosody (intonation), the suprasegmental aspect of speech that

communicates the structure and meaning of utterances, should be represented and

generated automatically. Since prosody directly affected by the meaning and struc-

ture of the sentences automatically produced by a natural language generator; at

the same time, it also has significant influence on the naturalness and effectiveness

of the speech synthesized, its performance is critical to the success of a Concept-

to-Speech system where both natural language generation and speech synthesis are

used together to generate the final spoken output.



In this thesis, I focus on two aspects of the prosody modeling process. First,

I explore novel features that are available during natural language generation, such

as the meaning, structure, and context of sentences, and demonstrate how these

features are related to prosody, based on empirical evidences derived from anno-

tated speech corpora. Second, I propose a new prosody modeling approach that

automatically combines different natural language features for prosody prediction.

More specifically, I designed an augmented instance-based learning algorithm that

makes use of the natural prosody in human speech to produce natural and vivid

synthesized speech. Our subjective evaluation demonstrates the effectiveness of

this approach. I implement the prosody modeling system for a medical application

called MAGIC.
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Chapter 1

Introduction

1.1 The Need for Concept-to-Speech Generation

People have envisioned using speech to enable human-machine communication for

several decades. Recently, with the development of speech understanding and pro-

duction technology, speech interfaces for practical applications are commonplace.

For example, computer systems use voice interfaces for information services, includ-

ing providing airline ticket information, stock market information, and personal

banking or credit information. Some of these applications have brought financial

benefits for the businesses involved. At the same time, they also stimulate new

demands for better speech understanding and production technology. There is still

considerable room for further improvement for both speech understanding and pro-

duction. For example, the error rate for speech recognition in unrestricted domains

is frequently too high for spoken language systems to be used effectively, while the

intelligibility and naturalness of synthesized speech is not good enough to be widely

accepted by users. In this thesis, I will address several research issues in automatic
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speech production.

Typical speech production systems can be divided into two types: Text-

to-Speech (TTS) systems and Concept-to-Speech (CTS) systems. For the past

decades, TTS has been the main research focus in speech production. In a TTS

system, spoken utterances are automatically produced from online text. For exam-

ple, a TTS system can be used to read email or news stories. However, for appli-

cations, such as spoken dialogue systems, where not only the sound but also the

content of a sentence has to be generated automatically, a CTS system is needed. A

CTS system takes concepts or semantic representations, such as database entities,

templates or logical forms, as input, and transforms them first into grammatical

sentences, and subsequently, into natural and coherent spoken utterances.

In recent years, CTS research has grown rapidly. More and more CTS appli-

cations have been developed for different applications and some of them have been

put into practical use, such as the Philips train timetable information system for

intercity trains in both Germany and Switzerland, Nuance’s Better Banking sys-

tem as well as its travel planning system, and Speechwork’s United Airline ticket

reservation system. CTS systems potentially may also be used to customize and

summarize sports, financial or weather information for drivers in moving vehicles.

More generally, CTS systems provide a natural communication channel for infor-

mation systems, allowing a hands-free and eyes-free environment.



3

1.2 Concept-to-Speech Generation

1.2.1 CTS Components

The task of transforming concepts into speech is difficult even for human beings.

For example, in public speaking, given a topic and raw materials, determining how

to communicate them clearly and smoothly is not a trivial task. In general, the

speaker has to decide what to include, find out the relations between different

materials, and decide how to organize them in a logical way. Once the content and

high level structuring are decided, she has to make more fine-grained decisions, such

as how to choose wording to make the presentation clear. She may also need to

rehearse several times to make sure that the main points are highlighted, the pace is

appropriate, and the rhythm is pleasant. Speaking in a conversational environment

may require less preparation. However, a speaker still has to decide what to say,

and how to say it in a natural, coherent, and clear fashion.

Systematically developing a Concept-to-Speech system to automatically trans-

form concepts into speech is a complicated process. As in human spoken language

production, a CTS system also has to make decisions on the content, the structur-

ing of the content, the wording, the pronunciation, and the rhythm of speech. In

order to facilitate CTS development, a full-fledged CTS system can be partitioned

into five main modules: a content planner, a sentence planner, a surface realizer, a

prosody generator, and a speech synthesizer. Figure 1.1 shown these CTS modules

in a pipeline.

A content planner decides what information needs to be communicated as

well as the high level structuring of the conveyed information. There are many
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Speech

Prosody Generation

Speech Synthesis

  Content Planning

Sentence Planning

Surface Realization

Concept

Figure 1.1: Main CTS Modules

constraints affecting content planning, such as the communicative goal and the end

user. For example, given certain information, a system may summarize it, convey

it, highlight it or illustrate it. Different communicative goals will result in different

presentation plans. The information included in a summary will be different from

that in an illustration. The preference of an end user will also affect content plan-

ning. For example, in a medical domain, given a disease, a patient may want to

know what the disease is, how this happened, and how people with similar diseases

feel, etc. But a doctor might want to know how to diagnosis the disease, whether

there is a new treatment, and what are the possible complications associated with

the disease. As a result, the presentation for a patient will be different from that

for a doctor. Another property of content planning is that it is language indepen-

dent. Different languages or even different media, can share the same presentation

plan. For example, in our multimedia presentation generation system [Dalal et al.,

1996], a speech and a graphics generator share the same high level plan for their
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presentation. After content planning, the intermediate representation may include

discourse structure and discourse relations.

Unlike content planning, which is mostly language independent, a sentence

planner decides how to use appropriate semantic structure and wording to com-

municate input concepts. Therefore, it relies mostly on linguistic knowledge, such

as grammatical and lexical knowledge. Since a sentence planner primarily uses

linguistic knowledge, it can be done in a more domain independent fashion.

In sentence planning, based on the meanings of, and the relations between,

input concepts, a system may first assign appropriate semantic roles for each input

concept, and then the semantic structure of a sentence can be constructed. Once the

semantic structure is chosen, the system may consult a concept-indexed lexicon, and

decide which words, or phrases can best communicate the input concepts. Lexical

selection is primarily influenced by the input concepts, the discourse context, as

well as the end user. For example, if the end user is a doctor, the presentation may

include many abbreviations so that communication is concise. However, medical

terms and abbreviations can be difficult for a patient to understand if she does

not have medical knowledge. Therefore, if possible, the system should avoid using

abbreviations if the same information is presented to a patient.

Sentence planning is less domain-dependent than content planning. Never-

theless, due to its requirement for extensive linguistic knowledge as well as real

world knowledge, so far, no reusable sentence planner is currently available in the

public domain. After sentence planning, the intermediate representation may in-

clude semantic roles and semantic constituent structures.

A surface realizer uses an English grammar, transforming a lexicalized se-
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mantic structure into a syntactic structure, linearizing the structure, and handling

morphology and function word generation. The features available after surface re-

alization may include syntactic constituent structure, syntactic function (subject,

object, complements etc.), and part-of-speech. Other information, such as the lex-

ical word, word position and distance, can be easily computed from a string of

words.

There are several surface realizers available in the public domain, such as

FUF/SURGE [Elhadad, 1993; Robin, 1994], KPML [Matthiessen and Bateman,

1991] and RealPro [Lavoie and Rambow, 1997]. Because of the availability of

these systems, a generation system developer can focus more on the application-

dependent part of the system for new applications.

In general, the same text can be spoken in many different ways: the speaking

rate can be higher or lower, words can be emphasized or de-emphasized, and extra

pauses can be inserted at different locations. These variations affect the meaning

of utterances and the ways in which listeners interpret them. These variations

are generated in a CTS system by the prosody modeling component. A prosody

modeling system makes decisions on the variations of a collection of speech features

relating to how sentences are spoken, such as pitch, loudness, tempo, and rhythm.

It is one of the major CTS components that affect the naturalness and intelligibility

of synthesized speech. In general, proper prosodic variations make speech sound

clear, easy to understand, and vivid. In contrast, inappropriate prosodic variations

make the speech unnatural, hard to understand, and sometimes even misleading.

Finally, a speech synthesizer takes the words in a sentence as well as their

prosodic assignments as input, and produces the synthesized speech signal. A
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Text
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Text−to−Speech

Sentence Planning

Surface Realization

  Content Planning

Concept Speech Synthesis

Prosody Generation

Figure 1.2: Traditional CTS Architecture

speech synthesizer makes decisions on how to pronounce words in a given con-

text, how to generate a sequence of acoustic-phonetic units given its pronunciation,

how to realize the fundamental frequency contour, duration, and pauses given the

prosody assignments, and how to synthesize the final waveform. Right now, most

general-purpose speech synthesizers have been developed for TTS systems.

1.2.2 CTS System Architecture

Traditionally, CTS generation was done in two separate stages: text generation

or natural language generation (NLG), which includes the first three components,

and Text-to-Speech, which includes the last two components. In such a system, the

text generator first produces grammatical sentences from concepts, then a Text-to-

Speech synthesizer produces speech from the text. Most spoken dialogue systems,

such as TOOT [Litman et al., 1998; Litman and Pan, 1999], Elvis [Walker, 2000],

and the CMU communicator [Rudnicky et al., 1999], employ this architecture for

spoken language generation. As shown in Figure 1.2, the interface between the

text generator and the TTS system contains only text. This architecture has its
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advantages. Both text generation and TTS have been studied for decades and there

are reusable components in both areas. Thus, in such a CTS system, in addition to

text generation and Text-to-Speech, no extra effort is required for NLG and TTS

integration. Although this architecture is simple and convenient, it suffers major

drawbacks, as described by Zue [Zue, 1997]:

“Currently, the language generation and text-to-speech components on the

output side of conversational systems are not closely coupled; the same text is gen-

erated whether it is to be read or spoken. Furthermore, current systems typically

expect the language generation component to produce a textual surface form of a sen-

tence (throwing away valuable linguistic and prosodic knowledge) and then require

the text-to-speech component to produce linguistic analysis anew. Clearly, these two

components would benefit from a shared knowledge base.”

In general, sentences need to be understood before they can be spoken prop-

erly. The TTS component needs to know the meaning and the structure of the text

before it can decide how to communicate them in speech. For example, discourse

context influences the accentual patterns of speech.

(1) Q: Who went to Columbia University?

A: MARY went to Columbia University.

(2) Q: Which University did Mary go to?

A: Mary went to COLUMBIA University.

In this example, depending on the question, the same answer may have different

accentual patterns. In the first example, since Mary is the focus, it gets emphasized.

In the second example, Columbia is the focus and it is emphasized instead. In order

to identify the focus of an utterance, the TTS component employed by such a CTS
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system has to conduct text analysis, such as discourse, semantic, and syntactic

analysis. With existing text understanding technology, however, these tasks are

extremely difficult, if not impossible. As a result, some information that is critical

for speech synthesis is missing in such an uncoupled CTS system. The inability to

recover useful information in TTS is one of the main problems this type of CTS

system suffers.

In a CTS system, sentences are automatically generated from deep discourse,

semantic, and syntactic representations, and thus, theoretically, a CTS system is

able to accurately realize the underlying intention and meaning of a generated

sentence. Thus, no text analysis is necessary if the integration is done properly. In

order to make this information available for speech synthesis, the interface between

text generation and speech synthesis should include not only the text but also the

associated discourse, semantic, and syntactic information. This requires a richer

and more structured representation for the integration interface.

Overall, there are two major concerns in CTS integration: usability and

reusability. On the one hand, the structured linguistic data has to be represented

in the interfaces so that it is usable during speech synthesis. On the other hand,

in both language generation and speech synthesis, there are some reusable compo-

nents. The main concern for reusability is to leverage existing technology so that

new CTS systems do not need to be designed from scratch.

In terms of reusability, the text-based uncoupled CTS architecture is the

highest because of its ability to effectively reuse existing natural language generation

and TTS components. It, however, scores the lowest in the usability measure

because much useful structural information is missing in speech synthesis, which
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leads to low synthesis quality.

In this thesis, I propose a CTS architecture, shown in Figure 1.3 which has

both high usability and reusability. On the one hand, it can effectively reuse existing

natural language generation and speech synthesis technology. On the other hand,

the structural information produced by the natural language generator is kept in

the interface and therefore, is available for speech synthesis. In [Pan and McKeown,

1997], we proposed a Speech Integration Markup Language (SIML) to represent the

interface between text generation and speech synthesis. This markup language can

represent not only the text, but also discourse, semantic, and syntactic structures.

Further more, since the definition of the markup language follows the Standard

Generalized Markup Language (SGML) specifications, it makes the integration of

different CTS components easier.

In addition, for CTS systems, the production of natural, intelligible speech

depends in part on the production of proper prosody, variations in pitch, tempo, and

rhythm. Prosody modeling depends on associating variations of prosodic features

with changes in structure, meaning, intent, and context of the language spoken.

For CTS systems employing the proposed architecture, such information is readily

available when language is produced from concepts and a prosody modeling com-

ponent needs to be designed specifically to take advantage of the availability of this

information. Since prosody modeling is one of the main research foci in the thesis,

in the following, I briefly describe some of the research issues in designing a prosody

modeling component for CTS generation.
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Figure 1.3: The New CTS Architecture

1.3 CTS Prosody Modeling Issues

Prosody modeling decides what and how features produced by a natural language

generator affect prosodic variations. Since the performance of prosody modeling

is critical to speech synthesis quality, whether a prosody modeling component can

effectively make use of information produced during language generation is vital

for the performance of a Concept-to-Speech system.

Prosody modeling is a complex process. For example, prosody is inextricably

linked to many discourse, semantic, and syntactic features. At the same time, not

all discourse, semantic, and syntactic features affect prosody. As a result, how to

identify useful natural language features for prosody prediction is one of the main

foci in prosody modeling.

Unlike the features generated by a natural language generator, which are

well-defined given a natural language generator, there are also features, such as the

semantic weight of a word, that are not directly represented in typical text gener-

ation systems. However, their usefulness in prosody modeling has been suggested

in the literature. In order to investigate their influence on prosody modeling, one
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of the research foci in this research is to first systematically model these features,

and then empirically verify their usefulness in prosody prediction.

Prosody itself is a very complicated phenomenon. It correlates with many

acoustic features, such as pitch, intensity, duration, speaking rate, and pause. How

to represent these features in a systematic and meaningful way is also a main

research issue in prosody modeling. In the thesis, a standard prosody annotation

framework for American English, the ToBI prosody labeling convention, is used as

the representation scheme of prosodic features. A detailed description of the ToBI

convention is given in Chapter 2.

In addition to the issues in identifying and representing natural language and

prosodic features, how to build a computational model to predict prosodic features

based on natural language features is another important research issue. Predicting

prosodic variations is hard due to the interactions among language features as well

as the interactions among prosodic features. In natural speech, several prosodic

decisions may be made simultaneously and the decision on one prosodic feature

may affect the decision on another. For example, where to put the main stress of a

sentence may be affected by prosodic phrasing as well as the accentual patterns of

adjacent words. Thus, how to take care of the interactions among different language

and prosodic features in prosody modeling is another important research issue to

be addressed in prosody modeling.

Once a prosody modeling system is built, it is also important to know

whether one system is better than another so that the improvement of a new sys-

tem can be measured. Therefore, system evaluation is a critical topic in prosody

modeling.
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In summary, when building a prosody modeling system, four basic issues

need to be resolved: natural language feature identification and modeling, prosodic

feature representation, prosodic feature prediction, and system evaluation. Because

ToBI is adopted for prosodic feature representation, the main foci of this study are

the remaining three topics.

1.4 Application

The CTS system developed in this study was tested as part of MAGIC, a multi-

media presentation generation system for cardiac intensive care [Dalal et al., 1996].

MAGIC is able to produce a coordinated speech and graphics presentation on a pa-

tient’s post-operative status, using the patient’s record in a large medical database.

The patient’s record includes critical events that occur during a bypass operation,

vital signs, medical history, related lab results, and treatment received. Typically,

the semantics of and the relationships between database entities are unambiguously

defined when the database is created. Given this information as input, the CTS

generator of MAGIC automatically produces briefings on a patient’s post-bypass

status in spoken language.

1.5 Contributions

The main contribution of this thesis is on automatic prosody modeling for Concept-

to-Speech generation. More specifically,

1. I systematically identify and model a wide range of natural language features

available in CTS for prosody prediction. Through this investigation, I iden-
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tify a few new features, such as word informativeness, word predictability,

and syntactic function, that are useful for prosody modeling. Some of these

features have not been empirically verified before and have not been incorpo-

rated in existing prosody modeling systems.

2. I design an instance-based prosody modeling algorithm that has better perfor-

mance than existing generalization-based prosody modeling approaches. Based

on a set of pre-annotated training instances, this new approach can be used to

systematically combine language features from a stream of words and predicts

all the prosodic features associated with all the words simultaneously.

3. The CTS prosody modeling system proposed has been implemented and tested

for MAGIC, a multimedia presentation generation system for intensive care.

MAGIC provides not only a context for this investigation but also a platform

for testing and verifying the adequacy and significance of the proposed CTS

prosody modeling system when it is applied in a real world application.

Overall, the work presented in this thesis addresses several main issues in

Concept-to-Speech prosody modeling. This will impact both CTS system design

as well as CTS prosody modeling.

1.6 Thesis Overview

Chapter 2 provides essential background information of this work. It defines main

concepts used in the dissertation. It also reviews the most relevant theoretical

and empirical work in this area. The related work is documented in four parts:
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intonation theories and the ToBI annotation standard, the relationship between

prosody and various linguistic features, typical text generation systems and existing

Concept-to-Speech systems.

Chapter 3 provides an overview of the prosody modeling architecture as

well as main research issues in prosody modeling. For each of the main issues, it

discusses its importance, possible solutions, the approach employed in the study,

and justifications for choosing this approach. A brief description of the speech and

text corpora used for this study is also included in this chapter.

Since prosody modeling is the main topic of the thesis, in addition to Chap-

ter 3, four more chapters are used to describe this process. Three of the four

chapters describe how to identify and model different features available in NLG

for prosody modeling. Chapter 4 focuses on the sentential features represented in

the SURGE surface realizer. Main features covered in this chapter include part-

of-speech, syntactic/semantic constituent boundary, syntactic/semantic constituent

length, syntactic functions, semantic roles, word, and surface position. Chapter 5 fo-

cuses on deep semantic and discourse features. Main features covered in the chapter

include semantic type, semantic abnormality, and discourse given/new. Chapter 6

focuses on the features that are not typically represented in a text-based natural

language generation system and therefore, must be statistically modeled using a

text corpus. Main features covered in this chapter include word informativeness

and word predictability.

In addition, Chapter 7 discusses an instance-based prosody modeling ap-

proach as well as experiments conducted for system evaluation.

Finally, Chapter 8 summarizes the thesis work and points out limitations as
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well as future directions of this work.
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Chapter 2

Background

In this chapter, I provide an overview of the theories and systems closely related

to the main research issues discussed in the dissertation. To facilitate the explana-

tion, in section 2.1, I first define terms used throughout the dissertation. Once the

meaning of each term is clarified, in section 2.2, I give an overview of the theoretical

background of prosody. Basically, the described intonation theories form the foun-

dation of the syntax and semantics of English intonation and ToBI is a practical

prosody labeling guideline that grew out of these theories. In addition, since identi-

fying and modeling language features produced by a natural language generator and

then predicting prosodic variations using these features are the main research foci

of the dissertation, the remainder of the related work section is organized around

these two topics. Section 2.3 describes typical language features that were previ-

ously found useful for prosody prediction. Section 2.4 describes the availability of

typical language features in natural language generation. Finally, since most au-

tomatic prosody modeling work described in the literature concentrates on TTS,

in section 2.5, I focus on prosody modeling in the context of Concept-to-Speech
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generation.

2.1 Definitions

Since the dissertation is about Concept-to-Speech and prosody modeling, the first

two concepts to be introduced are Concept-to-Speech and prosody. A Concept-to-

Speech generator, also called Data-to-Speech, Message-to-Speech, and Meaning-to-

Speech generator, is a computational system that automatically produces spoken

language (including the content and the associated speech signals) from a semantic

representation. In Chapter 1, I explained that typical input to a Concept-to-Speech

system may include database entities, templates, and first-order predicates. The

main functions of a Concept-to-Speech system include selecting and organizing con-

tent, selecting words and sentence structures, generating grammatical sentences,

predicting prosodic variations, and synthesizing speech signals. Since prosody pre-

diction is one of the main tasks in CTS generation, in the following, I will concen-

trate on prosody and main prosodic features. Prosody is unique to spoken language.

It concerns the way in which spoken utterances are acoustically realized to express a

variety of linguistic or paralinguistic features. Prosody is physically realized as vari-

ations of a set of parameters: pitch, duration, intensity, pause, and speaking rate.

In synthesized speech, prosody has to be automatically generated. The process of

constructing computational models to automatically produce appropriate prosodic

variations for synthesized speech is called prosody modeling. The prosody modeling

component in a Text-to-Speech system predicts prosody from text. In contrast, the

prosody modeling component in a Concept-to-Speech system infers prosody from

natural language features. Sometimes, people distinguish prosody from intonation.
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For the purpose of this study, I use them interchangeably.

Prosody performs several functions in speech communication, such as sig-

naling meaningful units, communicating emphases, and expressing speaking style.

One of the primary acoustic correlates of prosody is the fundamental frequency con-

tour or F0 contour. Basically, F0, an abbreviation for fundamental frequency, is a

function of the vibration of the vocal cords. It is the lowest frequency component

in a complex sound wave.

In addition, various discrete intonational features can be abstracted from

the F0 contour. For example, according to [Pierrehumbert, 1980], Pitch accent is

associated with a significant excursion of the F0 contour. It may mark the lexical

item with which it is associated as prominent. It often aligns with a stressed syllable

in a word.

In addition to accenting, prosody also can be used to group words into

meaningful units. Prosodic phrasing refers to the process that divides a com-

plex spoken utterance into smaller prosodic units. In addition to pitch varia-

tions, other prosodic features, such as pauses and phrase-final syllable lengthen-

ing, may also signal the boundary of a prosodic unit [Streeter, 1978; Lea, 1980;

Wightman, 1991].

Moreover, in this dissertation, the term, natural language features or lan-

guage features, refers to general linguistic features, such as discourse, semantic, and

syntactic features, that are shared by both spoken and written language. Features

that are specific to speech, such as prosodic features, are called speech features. In

contrast, features that are specific to the written language, such as font size, are

called textual features.
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So far, I have defined Concept-to-Speech, prosody, and some related terms. In

the following, I will introduce the main theories of prosody in which a compositional

explanation of the semantics and syntax of English intonation is proposed.

2.2 Prosody Theories and ToBI

In general, prosody consists of both a phonological and a phonetic aspect. The

phonological aspect is characterized by discrete, abstract units and the phonetic

aspect is characterized by continuously varying acoustic correlates. For example,

intonation is primarily associated with the fundamental frequency contour, thus,

it can be represented quantitatively or phonetically, as a continuously varying F0.

However, directly mapping this quantification onto the meaning or structure of

spoken utterances can be difficult. In contrast, a phonological representation of

prosody allows infinite variability in the F0 contour to be mapped onto a finite

set of discrete intonational features. Since it is a general characterization of the

phonetic representation of prosody and at the same time it is more closely related

to the semantics or pragmatics of speech, a phonological representation provides

a meaningful intermediate layer between acoustic signals and the structure and

meaning of speech. Since the phonological model proposed by Pierrehumbert [1980]

is one of the most influential and commonly accepted models for English, it is the

main focus in the following discussion.

According to [Pierrehumbert, 1980], there are two levels of prosodic phrasing

in English: intonational phrases and intermediate phrases. In general, a spoken

utterance may consist of one or more intonational phrases. An intonational phrase

in turn consists of one of more intermediate phrases, plus a high (H%) or low(L%)
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Figure 2.1: Pierrehumbert’s Intonation Grammar

boundary tone. An intermediate phrase itself consists of one or more pitch accents

plus a high (H-) or low (L-) phrase accent. Figure 2.1 illustrates the composition

of a well-formed intonational phrase in Pierrehumbert’s system. By identifying the

ways in which pitch accents, phrase accents, and boundary tones can be combined

to compose well-formed intonation contours, Pierrehumbert has essentially defined

the syntax of English intonation.

To facilitate the formulation of a prosody labeling standard so that different

research sites may share prosodically transcribed databases, a group of researchers

from various disciplines, such as linguistics and computer science, designed the

ToBI annotation convention [Silverman et al., 1992; Pitrelli et al., 1994] based in

part on Pierrehumbert’s model, for transcribing an agreed-upon set of prosodic

elements. A full ToBI transcription includes four tiers: tones, breaks, orthography,

and miscellaneous. The tonal and break tier represent the core prosodic analysis.

The tonal tier depicts the type and location of pitch accents. Five types of pitch
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accent are represented in the ToBI for standard American English: H*, L*, L*+H,

L+H*, and H+!H*. According to ToBI [Beckman and Hirschberg, 1993; Beckman

and Elam, 1994]:

1. H* is a clear tone target on the accented syllable that is in the upper part of

a speaker’s pitch range for the phrase. This includes tones in the middle of

the pitch range, but precludes very low F0 targets. It corresponds to H* and

H*+L in Pierrehumbert’s six-accent inventory.

2. L* is a clear tone target on the accented syllable that is in the lowest part of

the speaker’s pitch range. Phonetically, it is realized as a local F0 minimum.

3. L*+H is a low tone target on the accented syllable which is immediately

preceded by relatively sharp rise to a peak in the upper part of the speaker’s

pitch range.

4. L+H* is a high pitch target on the accented syllable which is immediately

preceded by relatively sharp rise from a valley in the lowest part of the

speaker’s pitch range.

5. H+!H* is a clear step down onto the accented syllable from a high pitch

which itself cannot be accounted for by an H phrasal tone ending the preced-

ing phrase or by a preceding H pitch accent in the same phrase; only used

when the preceding material is clearly high-pitched and unaccented.

Phrase accents and boundary tones are the other prosodic features repre-

sented in the tonal tier. In ToBI, a phrase accent controls the pitch contour be-

tween the last pitch accent, the nuclear accent, and the end of an intermediate
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phrase. It can be either high (H-) or low (L-). Boundary tones appear at the end

of intonational phrases and may also be either high (H%) or low (L%).

The break index tier describes the relative levels of disjuncture between

orthographic words, acoustically signaled by a combination of F0, duration, and

optional pauses. Break indices are defined based in part on the work of [Price et

al., 1991]. Five levels of disjunctures are defined in ToBI:

• 0 indicates a (lack of) juncture before or after a cliticized word, often a

function word that forms a single accentual unit with a neighboring content

word (e.g. gonna).

• 1 indicates a typical word boundary.

• 2 indicates a boundary between a perceived grouping of words between a word

boundary and an intermediate phrase boundary in perception of juncture.

• 3 indicates an intermediate phrase boundary.

• 4 indicates an intonational phrase boundary.

In addition to the intonation grammar, Pierrehumbert and Hirschberg [1990]

also proposed a compositional theory for the meaning of intonational contours.

They claim that intonation is used by speakers to specify a particular relation-

ship between the propositional content realized in an intonational phrase and the

mutual beliefs of participants in the current discourse. The major support of this

compositional approach to intonational meaning comes from an examination of

how the different pitch accents are interpreted. According to [Pierrehumbert and

Hirschberg, 1990],
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• An H* accent in general conveys that items made salient by the H* are to be

treated as new in the discourse. More generally, it suggests that the speaker

intends to instantiate the open proposition in the hearer’s mutual belief space.

• An L* accent suggests that the speaker intends to mark the accented items

salient but these items are not to be instantiated in the open proposition that

is to be added to the hearer’s mutual belief.

• Both L*+H and L+H* are employed by the speaker to convey the salience

of some scale linking the accented item to other items salient in the hearer’s

mutual beliefs.

• Both H*+L and H+L* are employed by the speaker to indicate that support

for the open proposition’s instantiation with the accented items should be

inferred by the hearer, from the hearer’s representation of the mutual beliefs.

To explain the meaning of phrase accents, Pierrehumbert and Hirschberg

also proposed that:

• An H- phrase accent signals that the current phrase should be taken as part

of a larger composite interpretive unit with the subsequent phrase.

• An L- phrasal tone emphasizes the separation of the current phrase from a

subsequent phrase.

For boundary tones, they also suggested that:

• An H% boundary tone indicates that the speaker wishes the hearer to inter-

pret an utterance with particular attention to subsequent utterances.
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• An L% conveys no such deictic meaning and indicates that the current ut-

terance may be interpreted without respect to subsequent utterances.

In terms of combinations of phrase accent and boundary tone, they suggested

that:

• the L-H% contour typifies continuation rises, which speakers use to indicate

that they intend to continue speaking.

• the H-H% contour is a typical contour of yes-no questions in English.

• the H-L% contour typically ends statements which add supporting details to

previous statements.

• the L-L% contour fails to make forward reference. It is usually found at the

end of a declarative sentence or a discourse segment.

Since the features defined in ToBI are the target prosodic features to be

predicted from a set of natural language features in our system, in the following, I

will describe some previous work that investigates the relationship between natural

language features and prosodic features.

2.3 Prosody and its Correlated Language Fea-

tures

Functionally, prosody can be used to indicate segmentation and saliency. For ex-

ample, prosody can structure a discourse into topics and segment [Silverman, 1987;

Hirschberg and Grosz, 1992]; disambiguate syntax [Price et al., 1991; Wightman et
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al., 1991; Hunt, 1994]; draw attention to salient information [Bolinger, 1958; Ladd,

1996]; communicate information status [Chafe, 1976; Prince, 1981; Brown, 1983;

Prince, 1992], and distinguish statements from questions [Liberman and Sag, 1974;

Menn and Boyce, 1982; Eady and Cooper, 1986]. Acoustically, each prosody func-

tion is realized through one or several acoustic cues. For example, the acoustic cor-

relates of prosodic phrasing may include pitch range, tone, segmental lengthening

in phrase-final syllables, and pause. Similarly, emphasis is typically communicated

by accenting, increasing volume, lengthening vowels, and inserting extra pauses.

The relationship between prosody and various natural language features has

been one of the research topics in phonology, psycholinguistics, speech analysis,

and speech synthesis. Studies conducted in these areas have suggested many useful

correlations that are the main candidate prosody predicting features in the study.

In the following, I will introduce some previous work on prosody modeling, focusing

on pitch accent and prosodic phrase boundary prediction. I will first briefly describe

some natural language features that were previously considered useful for prosody

prediction. Then I will concentrate on several representative prosody predicting

systems that employ these features.

Pitch accent placement is one of the most widely studied prosodic phenom-

ena. It was found to be affected by many natural language features such as syn-

tactic, semantic, and discourse factors. For example, word class was found to be

strongly correlated with accenting [Hirschberg, 1993; Altenberg, 1987]. Content

words, such as nouns and adjectives, are more likely to be accented than function

words, such as articles and prepositions. Since it is relatively easy to infer word

class from a text, it has been used in almost all the existing TTS pitch accent
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prediction systems [Klatt, 1987; Hirschberg, 1993; Black, 1995; Sproat, 1997].

In addition, syntactic structures are also thought to be one of the factors in-

fluencing accent placement [Chomsky and Halle, 1968; Liberman and Prince, 1977;

Liberman, 1975]. For example, Liberman and Prince [1977] proposed a “metrical

grid”theory to account for the relative prominence of words and syllables in an

utterance. A metrical grid describes a binary phonological tree whose branches are

assigned either strong or weak. The assignments of strong and weak are primarily

based on the syntactic constituent structure of an utterance.

In addition to syntactic features such as part-of-speech and syntactic struc-

ture, pitch accent is also found to be affected by discourse features, such as the

communication of contrastiveness [Bolinger, 1961], focus [Jackendoff, 1972; Rooth,

1985], and given/new [Chafe, 1976; Halliday and Hassan, 1976; Clark and Clark,

1977; Prince, 1981; Brown, 1983; Prince, 1992]. For example, Terken and Hirschberg [1994]

found that if a given expression keeps the same grammatical role and surface po-

sition as its antecedent expression in its immediate context, it is unlikely to be

accented. However, if there is a change in both grammatical function and sur-

face position, it is more likely to be accented. Contrastive accent is another well-

known phenomenon which links pitch accent to discourse relations [Bolinger, 1961;

Schmerling, 1976; Prevost, 1995]. For example, if an entity is in contrast with an-

other entity in the prior discourse, even though it is given, it still can be accented,

as in the following example:

• Q: Do you know whether this word should be accented or de-accented?

• A: It should be accented.

In the answer, although accented is old information, since it is in contrast with



28

another discourse entity de-accented, it is still accented.

Moreover, the placement of a pitch accent was also found to be affected by

discourse structure and discourse relations. [Nakatani, 1998] proposed an empir-

ically motivated theory based on the “discourse focusing nature of pitch accent”.

According to [Nakatani, 1998], accenting a referring expression is considered an in-

ference cue to shift attention or to mark the global introduction of a referent; lack

of accent serves as an inference cue to maintain attentional focus or global referent.

As a result, both global discourse structures and local focus changes can all be used

to predict accent placement.

So far, I have given a brief description on typical natural language features

that may be useful for accent prediction. In the following, I will describe how they

were used in typical accent prediction systems.

To compare the difference among these systems, I describe each system along

six dimensions: the predicted variables (the target prosodic features to be predicted

by a system), predicting variables (the language features employed to predict the

target prosodic features), the corpora (the training/testing data for constructing

and evaluating a prosody prediction model), source of the predicting variable (the

means for obtaining the predicting variables), prosody modeling methods (the ap-

proaches for mapping predicting variables to predicted variables), and the system

performance. In general, the reported evaluation results do not directly reflect

the relative performance of different systems because they are affected by various

factors, such as the corpus used (whether it consists of prepared or spontaneous

speech), the predicted variables (whether the classification of the target feature is

coarse-grained or fine-grained), the evaluation standard (whether one or more gold
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standards are used), and the performance metrics (whether they are accuracy-based

or precision-based).

In one of the early investigations that used corpus data to derive accent

prediction models, Altenberg [1987] relied primarily on word class information.

His analysis was conducted on a portion of the London-Lund speech corpus which

consists of prepared and partly scripted monologue. The corpus was manually

annotated with fine-grained part-of-speech information. Based on the distribution

of stressed words across different word classes, Altenberg constructed several stress

assignment rules which achieved 62% coverage and 92% success rate on the data

set. Even though this work was intended to be used for TTS, since it assumed

perfect word class information that is only possible in CTS systems, it applies more

to CTS than TTS systems.

In addition to part-of-speech, a more comprehensive accent prediction model

for TTS systems was proposed in [Hirschberg, 1993]. In this study, the accent status

of a word is classified into three categories: accented, deaccented but not cliticized,

and cliticized. In order to do this, Hirschberg relied on a set of surface features

such as part-of-speech and word position, as well as discourse information, such as

given/new, local and global focus, and contrast. Among these features, part-of-

speech was obtained from a POS tagger [Church, 1988], discourse information was

derived based on a discourse analysis algorithm. In addition, since the assignment of

pitch accent can be affected by prosodic phrasing, she also incorporated the location

and type of the prior and next prosodic phrase boundary. Overall, two prosody

modeling approaches were tested: a rule-based and a decision-tree based approach.

The rule-based system employed manually constructed accent prediction rules while
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the decision-tree based system employed a machine learning tool, Classification

and Regression Tree (CART) [Breiman et al., 1984], to automatically build accent

prediction models from training data. Moreover, the accent assignment for complex

noun phrases was based on [Sproat, 1990]. The experiments were conducted on four

different data sets: a citation-form speech corpus (utterances without context), two

broadcast news speech corpora, and a spontaneous speech corpus. The performance

of the prediction models was fairly good. The rule-based system achieved 79%-85%

on the read speech corpora and 98.3% on the citation sentences. The automatically

trained decision tree model achieved 76.5%-85% on various read and spontaneous

speech corpora.

Unlike [Altenberg, 1987; Hirschberg, 1993] where accent assignment was con-

ducted for each word, [Ross and Ostendorf, 1996] predicted accent locations for each

syllable to capture early and double accent. Similar to the predicting features used

in [Hirschberg, 1993], they also incorporated features like part-of-speech, number

of syllables since the last accent, and given/new. Since accent assignment was

done at the syllable level, they also added features like the lexical stress defined

in a dictionary. To take the interactions between accent placement and prosodic

phrase boundary into consideration, they also incorporated manually-annotated

prosodic phrase boundaries. Thus, the real TTS performance should be lower than

that reported because perfect prosodic phrase boundary prediction currently is

impossible. A different machine learning approach which combines decision tree

and Markov modeling was used to automatically derive prediction models from a

broadcast news corpus. During system evaluation, if only a target gold standard

was given, the best prediction model achieved 87.7% accuracy. However, if multiple
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gold standards were given and the system output was compared with the closest

gold standard, its performance was 89.3%. Interestingly, the performance of a sim-

ple content/function word-based model was also fairly good. It achieved 85.2% and

87.1% accuracy respectively.

In addition to pitch accenting, prosodic phrasing is another widely studied

prosodic phenomenon [Liberman and Prince, 1977; Beckman and Pierrehumbert,

1986; Ladd, 1986]. Although prosodic phrasing was shown to be related to and

therefore can be partially predicted by, syntactic structure, it is widely accepted

that traditional syntactic phrase boundaries do not directly correspond to prosodic

phrase boundaries [Steedman, 1991; Bachenko and Fitzpatrick, 1990]. For example,

1. (This is the man) (who has three daughters).

2. (I prefer) (strawberry ice-cream).

In the first example, “the man” is more likely to be in the same prosodic unit with

the previous verb. This pattern is different from its syntactic structure in which

“the man” is combined with the following relative clause to form an NP. Similarly,

in the second example, the verb “prefer” is more likely be in the same prosodic

unit with the previous pronoun “I”. This is different from its syntactic grouping in

which the verb “prefer” is combined with the following NP “strawberry ice-cream”

to form a “VP”.

Since syntactic structure can not account for all the variations in prosodic

phrasing, other factors have also been suggested. For example, constituent length,

surface position [Bachenko and Fitzpatrick, 1990] and part-of-speech [Wang and

Hirschberg, 1992; Ostendorf and Veilleux, 1994; Taylor and Black, 1998] have all
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been used in prosodic phrase boundary prediction. In the following, I will focus on

a few representative prosodic phrase boundary prediction systems for TTS.

In early work by [Altenberg, 1987], grammatical structure, POS, and word

position were used to predict the boundaries of prosodic units. These features were

hand labelled; thus they are accurate. In contrast, the predicting variables in some

other systems were derived from practical text analysis tools. Thus, the reported

results can be realistically expected in a TTS setting. For example, in [Bachenko

and Fitzpatrick, 1990], syntactic structure, adjacency to verb, left-to-right word or-

der, and syntactic constituent length, were all used to determine prosodic phrasing

for citation form sentences. All these features were either obtained directly from

the text or inferable using a standard syntactic parser [Hindle, 1983]. Later, all

the features were combined in several carefully constructed rules. For example,

part-of-speech and syntactic structure were first used to group words into phono-

logical words and subsequently, into phonological phrases. Phonological phrases

are the smallest phonological units in this analysis. Then, the salience rules were

applied to merge phonological phrases to create larger prosodic phrases. During

evaluation, the rules were tested on two corpora. They correctly predicted 16 out

31 primary phrase boundaries and 11 out of 26 secondary phrase boundaries in one

of the corpora. They also correctly predicted 12 out of 14 primary boundaries in

another corpus.

Recently, people have tried various machine learning techniques to automat-

ically construct prosodic phrase boundary prediction models based on annotated

training corpus. For example, [Wang and Hirschberg, 1992] used CART trees to

automatically predict intonational phrase boundaries from a set of surface features,
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such as POS, utterance length, distance to start and end of an utterance, and syn-

tactic constituent structure (smallest, largest constituent that dominate a word).

Since accent placement may interact with prosodic phrase boundary decisions, they

also incorporated the output of an accent prediction system [Hirschberg, 1990a].

The evaluation was conducted on 298 sentences from a spontaneous corpus. The

result was encouraging. The system achieved over 90% accuracy on the corpus.

In addition, a different machine learning approach was proposed in [Osten-

dorf and Veilleux, 1994]. In this study, a hierarchical stochastic model was used to

predict the placement of major and minor breaks in a read speech corpus. Basi-

cally, each level of the hierarchy was modeled as a sequence of subunits at the next

level. The lowest level of the hierarchy represents factors such as syntactic branch-

ing and prosodic constituent length. The syntactic information was obtained from

a skeletal parser and the POS assignment was based on table look-up from lists of

function words. Finally, different performance measures were used for evaluation.

For example, given multiple human verbalizations of the same utterances, if the

closest human assignment was used as the gold standard, the system achieved 81%

correct and 4% false prediction. If the system output was compared with each of

the human assignments separately, the average performance was 70% correct and

5% false detection.

Sometimes, even with a few simple features, a system still can achieve rea-

sonable performance. For example, POS was the only feature used in [Taylor and

Black, 1998] in break location prediction. In this study, given a read speech cor-

pus, a HMM-based prediction model with the best test setting was able to correctly

identify 79% of the breaks in a test corpus. The overall system accuracy was 86.6%.
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In addition to accenting and prosodic phrasing, other prosodic features, such

as pitch range, and speaking rate, were also found to be correlated with different

language features. For example, increasing pitch range indicates the start of a

new topic [Silverman, 1987]. [Hirschberg and Grosz, 1992; Hirschberg et al., 1995;

Nakatani, 1997] also found that several prosodic features were associated with the

discourse structures modeled based on [Grosz and Sidner, 1986].

The approach I adopted in this thesis shares some commonalities with the

above systems. Similar to [Wang and Hirschberg, 1992; Hirschberg, 1993; Ross and

Ostendorf, 1996; Ostendorf and Veilleux, 1994], I use machine learning to auto-

matically construct prosody prediction models based on annotated speech corpus.

Corpus-based machine learning approach is flexible because t can adapt to a differ-

ent corpus with a different speech style more easily. Moreover, since some prosodic

phenomena are not well-understood, through machine learning, we may be able to

gain new insights into new prosody patterns. I also employ some existing features

proposed in these studies, such as part-of-speech, given/new, and surface position.

However, there are main differences too. Unlike [Wang and Hirschberg, 1992;

Hirschberg, 1993; Ross and Ostendorf, 1996; Ostendorf and Veilleux, 1994] where,

a general prosody prediction model is first extracted from the training instances

and then during prediction, each individual instance is ignored and only the gener-

alized prediction model is used for prediction, the instance-based prosody modeling

approach I proposed relies heavily on individual instances during prediction. In

addition, most of the features investigated in this thesis are motivated by a real

CTS system. Due to their unavailability, many of these features have not been

investigated empirically in previous systems



35

In order to demonstrate typical discourse, semantic, and syntactic features

available for CTS prosody modeling, I briefly describe how these features are repre-

sented and generated in NLG systems. I will focus on domain-independent natural

language features.

2.4 Natural Language Generation and Prosody

Many preliminary natural language generation systems use either canned text or

templates in text generation. They do not systematically produce intermediate

representations, such as the semantic and syntactic structure of a sentence. Since

the main purpose of this section is to demonstrate typical discourse, semantic, and

syntactic features produced during different stages of natural language generation,

I will concentrate on systems that conduct deep natural language generation (i.e.

plan content of speech).

As I mentioned in Chapter 1, there are three major function modules in a

natural language generator: a content planner, a sentence planner and a surface

realizer. The Content planner makes decisions on what content is relevant to a

communication goal. It also makes tactical decisions, such as how to organize the

content so that the high level communicative goal can be achieved in a coherent

way. Two typical content planning approaches are used in prior natural language

generation systems. One is the schema-based approach [McKeown, 1985; Rambow

and Korelsky, 1992; Paris, 1993] and the other is based on Rhetorical Structure

Theory (RST) [Mann and Thompson, 1987].

Schemas represent common patterns of discourse strategies which can be

nested and filled to produce coherent paragraphs. In the TEXT system developed
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as a biologist
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his main work was
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3. But in his five himself as a
geologist

4. and he saw
His work contributed5. 

be viewed now

significantly to the

evidence

field

Geologist
1. Darwin as a

concession

evidence

evidence

Figure 2.2: A RST Representation of a Discourse Segment

by McKeown [1985], during content planning, the language generator can produce

coherent, well-organized text based on schemas as well as discourse focuses.

The second approach, the Rhetorical Structure Theory (RST)-based ap-

proach [Hovy, 1988; 1993; Moore and Paris, 1993], is also commonly used in con-

tent planning. Rhetorical structure is a recursive structure representing relations

between various levels of information units. Each rhetorical relation contains a

nucleus, which is the primary material and zero or more satellites which are the

auxiliary material supporting the nucleus. Typical rhetorical relations include elab-

oration, concession and cause/result. During content planning, a system may em-

ploy a top-down goal-oriented hierarchical planner with the rhetorical relation def-

initions as its plan operators. Figure 2.4 shows a discourse segment used by Mann

to illustrate a RST-based discourse representation.

In addition to discourse structures and discourse relations, which are essential

during content planning, other discourse features, such as whether an entity is

discourse-old or new or whether it is in contrast with another entity in the prior

discourse stretch, also can be modeled specifically during content planning [Prevost,
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1995].

The next two modules, the sentence planner and the surface realizer, con-

struct and realize grammatical sentences. Basically, a sentence planner selects

words and semantic structures to fit information into sentence-sized units. It

performs functions such as clause aggregation and lexical choice [Elhadad, 1993;

Shaw, 1998; Mellish, 1988; Robin, 1994; Dalianis, 1999]. After sentence planning,

a generation system produces a lexicalized semantic/syntactic representation of a

sentence which is later transformed into grammatical sentences by a surface realizer.

Since surface realization relies primarily on linguistical knowledge, several general-

purpose surface realizers, such as SURGE [Elhadad, 1993], KPML [Matthiessen

and Bateman, 1991] and RealPro [Lavoie and Rambow, 1997] are available in the

general domain.

So far, different semantic and syntactic formalisms were employed in different

surface realization systems. For example, SURGE [Elhadad, 1993; Robin, 1994] is

based in part on Systemic Functional Grammar (SFG) [Halliday, 1985]. In addition,

NIGEL [Bateman, 1988], an English generation grammar used in KPML, also em-

ploys systemic functional formalism. Figure 2.3 shows the systemic grammar-based

representation of a sentence “The car is expensive”in SURGE.

Unlike SURGE and KPML, which primarily employ systemic functional rep-

resentations as their input, the other general-purpose surface realizer, RealPro, em-

ploys syntactic specifications that are based on the deep syntactic structures used

in the Meaning-Text Theory [Lavoie and Rambow, 1997]. This representation has

several salient features: it is an ordered lexicalized tree with labeled nodes and

arcs; it is encoded as a dependency structure; therefore, there are no non-terminal
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Cat ap
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Carrier
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Figure 2.3: A Systemic Representation Used in SURGE

SEE [question: +]

(I boy [number:pl]

(ATTR THIS1)

II Mary [class:proper_noun])

Figure 2.4: The Input Representation of RealPro

nodes and all nodes are labeled with lexemes; the arcs in the tree are syntactic rela-

tions, rather than conceptual or semantic relations; only meaning-bearing lexemes

are represented and not function words. When RealPro receives such a represen-

tation, it performs syntactic realization, such as transforming abstract syntactic

specifications of natural language sentences into their corresponding surface forms.

Figure 2.4 shows an input representation for RealPro which corresponds to the sen-

tence “Does these boys see Mary”. In this representation, “( )” is used to specify the

scope of dependency while “[ ]” is used to specify features associated with a lexeme.

I, II and ATTR are abbreviations for “subject”,“object”, and “modification”.

Although different generation systems employ different semantic/syntactic

formalisms in representing sentence structures, they do produce many similar fea-
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tures. For example, part-of-speech information is generally available in these sys-

tems. In addition, most of them also construct the syntactic structure of a sentence.

The syntactic function (subject, object etc.) of a syntactic constituent is also com-

monly available in language generation and all of them can be useful for prosody

prediction.

2.5 CTS Prosody Modeling

The field of Concept-to-Speech generation is still in its infancy with very few peo-

ple working on systems that deal with all aspects of producing spoken language

utterances. In terms of natural language generation, many CTS systems rely on

canned text/speech, or pre-defined templates [Glass et al., 1994; Litman et al.,

1998]. Template-based systems support fast implementation. They are most effec-

tive when sentences are fairly regular in structure. Most of the time, templates are

used only for text generation; however, there are a few systems that use templates

for speech generation. For example, the message templates used in WHEELS [Yi,

1998] have slots pointing to descriptions of speech segments with pre-selected into-

nation. During generation, the speech segments are concatenated to produce not

only the content of a sentence, but also the speech.

Unlike template-based systems, more sophisticated Concept-to-Speech sys-

tems employ a generation grammar to systematically produce structures, text and

speech [Fawcett, 1990; Teich et al., 1997; Prevost, 1995]. For example, [Teich et al.,

1997] augmented the systemic functional representations used in the original KPML

generation environment with intonation specifications so that both text and into-

nation can be processed systematically using the same underlying representation.
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Similarly, Prevost [1995] employed a generation architecture based on Combinato-

rial Categorical Grammar (CCG) [Steedman, 1985] to provide a uniform platform

to represent information structure (e.g. theme/rheme), syntactic structure, as well

as phonological structure.

To date, only a few CTS systems address the problem of prosody modeling.

Moreover, almost all the existing systems use manually crafted rules [Monaghan,

1991; Prevost, 1995; Danlos et al., 1986; Davis and Hirschberg, 1988; Young and

Fallside, 1979]. For example, syntactic information was the main predictor for

accent and prosodic phrase boundary assignment in early CTS systems [Young and

Fallside, 1979; Danlos et al., 1986]. In [Young and Fallside, 1979], words with certain

grammatical classifications (principally nouns and verbs) were stressed. Similarly,

the placement of a word group boundary depends on the syntactic structure of the

utterance as well as the length of the word group.

Later, other CTS systems incorporated semantic and discourse features.

In [Davis and Hirschberg, 1988], accent assignment was based on the given/new

status and the pre-defined domain-specific salience for certain object or modifier

types. In terms of prosodic phrase boundary prediction, the pre-determined into-

national phrasing and the associated phrase accent and boundary tone were repre-

sented in a description schema, a template-like structure which consists of constant

parts and slots that hold variables. Since some of the features, such as the salience

of an object and description schema, are domain-specific, these prosodic rules can

be hard to reuse in a new application.

The effects of various semantic, discourse, and pragmatic features on prosody

prediction were tested in another CTS system called Bridge [Monaghan, 1994].
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The input for Bridge’s intonation model included features generated by a dialogue-

generating system called Jam [Carletta, 1990]. During prosody generation, the

accentability of a word was determined by four factors: linear order, part-of-speech,

semantic weight of a word, and givenness. Among these features, semantic weight

is defined to account for some common deaccented content words. The system

introduced a special semantic empty class in which content words like man, person,

thing, matter, place, do, and go are clustered. The overall accentability of a word

was computed as the product of the effects of each individual factor on a word’s

accentability.

Since Concept-to-Speech systems in general have access to all the contex-

tual, semantic, pragmatic, and discourse knowledge, it seems that CTS prosody

prediction can be done easily. In practice, however, things are more complicated.

For example, the effects of various syntactic, semantic, discourse, and pragmatic

information on prosody are still not well understood. Things become more compli-

cated when the interactions between different language and prosodic features are

taken into consideration. So far there are dew agreed-upon rules that map syntax,

semantics, and discourse to prosody. Even there are such rules, it is unclear how

well they can cover natural prosodic phenomena. Thus, unlike most of the CTS

prosody systems described above, I do not use manually crafted rules. Instead, I use

machine learning to empirically investigate the relationship between each candidate

feature and prosody. I also propose a new instance-based framework to dynami-

cally construct prosody prediction models based on pre-annotated speech corpus.

In addition, I also introduce a few new features that have not been explored in

previous CTS systems.
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2.6 Summary

In this chapter, I have described the related terms and background research that are

closely related to the research foci of the dissertation. I defined the main terms used

throughout the dissertation. I also gave detailed descriptions of Pierrehumbert’s

intonation theory as well as the ToBI prosody annotation conventions. In addi-

tion, I provided an overview on the useful language features for prosody prediction.

Many of them were represented either directly or indirectly in generation systems

and therefore are available for CTS prosody modeling. Overall, CTS systems pro-

vide a test environment where rich discourse, semantic, and syntactic features can

be produced at different stages of language generation, and in which their impact

on prosody modeling can be explored. In addition, when the interactions between

different language features are taken into consideration, the task of building a com-

prehensive prosody model for CTS prosody generation is not trivial. Thus, simple

manually-crafted rules may not be sufficient. This motivated us to investigate new

CTS prosody modeling approaches. All of these issues will be discussed in the rest

of the dissertation.
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Chapter 3

Prosody Modeling: Overview

3.1 Introduction

The performance of CTS prosody modeling is primarily determined by two factors:

the availability of various language features, and the prediction algorithms that use

those features for prosody prediction. In this chapter, I address some important

prosody modeling issues around these two aspects. At the same time, I also explain

how those issues are handled in the thesis.

The rest of the chapter is organized into three sections. Section 3.2 addresses

the main prosody modeling issues in the dissertation. In this section, I explain why

certain natural language features are investigated in the thesis (Section 3.2.1). I also

discusses the pros and cons of different prosody modeling approaches (Section 3.2.2).

In addition, I explain the difference between several typical prosody evaluation

methods (Section 3.2.3). In the next two sections, I describe the CTS prosody

modeling architecture designed for MAGIC (Section 3.3) as well as the text and

speech corpora used in the study (Section 3.4).
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3.2 Main Prosody Modeling Issues

3.2.1 Prosody Predicting Features

Why Natural Language Features? In principle, a prosody modeling system should

have access to all the features that affect prosody. Missing features may prevent

the system from modeling prosody accurately. For example, a speaker’s emotional

status, the processing capability of the speaker and listener, as well as regularities

of a language may all affect prosody [Cahn, 1998]. However, incorporating all the

features in a prosody modeling system requires all of them to be modeled specifically

in a natural language generator. So far, none of the existing NLG systems can model

all these features in a domain independent way. Since most general-purpose NL

generators primarily model language features, in this study, I focus on the influence

of general linguistic features, such as discourse, semantic, and syntactic constraints.

Why SURGE features? When investigating typical syntactic and semantic

features, I focus on features produced by SURGE, a widely used, general-purpose

natural language surface generation system. There are several reasons for choos-

ing SURGE features. First, the features represented in SURGE are general and

domain-independent. Therefore, unlike CTS systems using domain-specific fea-

tures, it is possible to reuse a SURGE-based prosody prediction model from one

application to another. Second, SURGE is a practical natural language generation

tool. Unlike prosody prediction systems that rely on hand-annotated features, the

performance of a SURGE-based prosody prediction system is realistic and can be

expected by most CTS systems employing general-purpose natural language gen-

eration. Finally, SURGE features were originally designed for and motivated by
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the text generation task. The representations of SURGE features are pre-defined

and not specifically tuned for speech or prosody generation. Thus, it provides an

unbiased practical environment for exploring the influence of various natural lan-

guage features on prosody modeling. Since SURGE encodes a set of comprehensive

domain independent syntactic and semantic features, the performance of a prosody

modeling system using existing SURGE features can serve as a baseline for most

CTS systems that use general-purpose natural language generation tools.

Why Deep Semantic and Discourse Features? In addition to the SURGE

features that are mostly at the sentence level, I also incorporate features at the

discourse and deep semantic level. Since these features are fairly hard to infer from

a text, I call them deep semantic and discourse features. The most important reason

to incorporate these features is that certain deep language features, such as whether

a condition is abnormal or not, are almost impossible to infer from a text and

therefore are only available in CTS systems. Since they are CTS specific features,

their usefulness in prosody modeling has not been empirically verified before in TTS

systems. Overall, the effects of deep semantic and discourse features on prosody

prediction may represent the most significant difference between CTS and TTS

prosody modeling. In addition, even though some of the features such as discourse

given/new, are well-known prosody predictors and have been incorporated in TTS

systems, since TTS systems use approximated information while CTS systems use

accurate information, this may still have impact on their final performance. Thus,

the other reason to incorporate these features is to investigate whether accurate

CTS features make any difference in the final prediction performance.

Why Statistical Features? In addition to features typically represented in
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a text generation system, I also incorporate several new features which are not

explicitly modeled in existing NLG systems, but have potential influence on prosody

modeling. These features, such as the semantic weight and the predictability of a

word, are originally motivated by linguistic literatures. But so far there is no

empirical work that verifies their usefulness in prosody prediction.

The General Feature Analysis Procedure In order to study the influence of

various language features on prosody, I follow a generic feature identification and

modeling procedure. First, a set of candidate features is chosen. The selection

of candidate features is based on linguistic observation, intuition, and previous

research. If a candidate feature is available in the SURGE generator, a program

is devised to automatically extract the feature from the language generator. If a

candidate feature is not available in SURGE, a computational model is designed to

compute it statistically from a text corpus.

Once all the language features are either extracted or specifically modeled,

the next step is to find out whether all of them are useful for prosody modeling.

Since prosody is a complicated phenomenon, it is unclear which language features

affect prosody and how. Therefore, identifying useful features for prosody model-

ing not only helps us understand prosody better, but also facilitates the creation

of an effective practical prosody prediction model. In this study, the usefulness of

a feature is investigated empirically using pre-annotated speech corpora. For each

investigated feature, a proper statistical test is chosen to analyze the correlation

between each individual language feature and prosodic feature. Based on the test

result, if a language feature is significantly correlated with a prosodic feature, then

there is a better chance for the language feature to be a useful prosody predictor.
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If the association is not significant, then the chance is slim. Even when a statistical

test shows significant correlation, it is still possible that the correlation is mainly

due to sample size. In general, an association is stronger if it tested significant with

a smaller data set. Therefore, even positively identified associations may still be

too weak to be useful in prosody prediction. To further verify the usefulness of a

language feature in prosody prediction, I also used machine learning to automat-

ically build prediction models to discover how each language feature can be used

to predict different prosodic features. Since at this stage, I am more interested in

understanding the correlation between a language and a prosodic feature, I used a

classification-based rule induction system to build the prediction model automati-

cally. Since the resulting prediction model includes a set of ordered if-then rules,

these automatically learned rules can be inspected directly and interesting patterns

can be discovered.

3.2.2 Prosody Prediction Approaches

During feature identification and modeling, the primary focus is on the influence

of each individual feature in prosody modeling. Because the predictive power of

different language features can overlap, features tested useful individually may be

ineffective when tested collectively. Therefore, systematically combining different

language features for prosody modeling is an important issue to be addressed. In

this study, two machine learning approaches are used to combine various language

features for prosody prediction.

Similar to most of the work described in Chapter 2, I use a generalization

based machine learning system for prosody modeling. At the same time, I also
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propose an instance-based prosody modeling approach. In instance-based learning,

prediction is based on the similarity between an input and pre-stored training in-

stances. If an input can match an annotated training instance closely, the prosody

assignment for the matching instance will be used for the input. Generalization is

delayed until no good match can be found for an input. Instance-based approaches

are different from generalization-based approaches. For generalization-based learn-

ing, during training, the system creates a general prediction model, which may only

include a few rules in a rule-based system, or a few parameters in a statistical-based

system. During prediction, the system only uses the general model and totally

ignores each individual training example. An advantage of employing an instance-

based approach is that it does not require as much data as the generalization-based

approaches, as long as unseen data is sufficiently close to the examples in the train-

ing corpora. For example, in a restricted domain, a training corpus might only

contain 20 different examples and these 20 sentences do not share any common

patterns. With this amount of data and this level of inconsistency, a traditional

generalization-based system may not be able to learn meaningful prosodic pat-

terns. However, if we know in advance that in this domain, the unseen data will

be very close to those 20 examples, the instance-based approach can still have rel-

atively good performance. Of cause, if sufficiently large amount of data exists, the

instance-based approach can also perform better due to higher hit rate and better

generalization performance.

Because of the interactions between different prosodic features as well as in-

fluences from neighboring words, I chose to model all the prosodic features of all the

words in a sentence simultaneously. I employed a prosody modeling approach where
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all the words in an input sentence will be used to match against pre-annotated sen-

tences in the training corpus. If a good match is found, all the prosodic features

of all the words in the input sentence will be assigned simultaneously. In this way,

the interaction among different prosodic features of one word as well as the interac-

tions of the prosodic features of different words are captured naturally. If no good

match can be found, a generalization will be performed. The system automatically

matches an input sentence against combinations of different sentence segments. A

sentence segment may be a word, a phrase or a sequence of words. The matching

sentence found by the system may consist of several sentence segments from several

places in the speech corpora. This approach has many advantages over traditional

rule-based or decision tree-based approaches. For example, traditionally, a prosody

modeling system predicts one prosodic feature at a time. As a result, separate rule

sets or decision trees are used to predict different prosodic features, such as pitch

accent and prosodic phrase boundary. The interaction between pitch accent and

prosodic phrase boundary was handled indirectly. For example, pre-determined

pitch accent assignment can be used as a separate predictor for prosodic phrase

boundary prediction [Wang and Hirschberg, 1992]. Using an instance-based ap-

proach, once a matching instance is found from the training corpus, both pitch

accent and prosodic phrase boundary are modeled simultaneously and the consis-

tency between them is guaranteed. As a result, the interaction between pitch accent

and boundary tone is captured naturally. In addition, traditionally, prosodic as-

signments for different words were done one at a time in rule-based or decision tree

based systems. For example, the pitch accent assignment of one word is done sep-

arately from the accent assignment of its neighboring words. The influence of the
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accent assignments of context words was captured indirectly, such as incorporating

context words as additional predictors in prosody prediction. Using the proposed

approach, searching is done globally and matching is conducted for a string of words

simultaneously; therefore, the influence of context is captured naturally. Overall,

with such a prosody modeling approach, a system tends to produce more vivid and

fluent speech output.

A similar instance-matching based approach was used in [Taylor, 2000]. How-

ever, Taylor did not predict prosodic structure in this study. The prosodic structure

of a sentence was assigned by the NLG component based on the rules proposed

in [Liberman, 1975]. Once an utterance’s prosodic as well as other phonological

information were decided, the instance-matching algorithm used them as input to

locate and concatenate similar speech segments in the corpus to generate the speech

wave.

3.2.3 Prosody Evaluation

There are two main approaches for prosody evaluation: objective and subjective

evaluation. In a typical objective evaluation, the existence of a single gold standard

is assumed [Wang and Hirschberg, 1992; Hirschberg, 1993; Nakatani, 1998]. Most

of the time, the prosody of human-produced speech is used as the gold standard

and a system’s output is compared with such a standard. If the system output

is consistent with the gold standard, the system wins a point. Otherwise, it loses

a point. The main drawback of this approach is that it is questionable whether

there exists a gold standard for prosody assignment or not. For example, given the

same sentence, different speakers, or even the same speaker in different occasions
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may produce different prosodic variations. Therefore, several gold standards may

co-exist. Without taking intra- and inter-speaker variations into consideration,

objective evaluation is inaccurate [Ross and Ostendorf, 1996].

New evaluation approaches have been proposed to alleviate the problem

in objective evaluation. For example, in [Ross and Ostendorf, 1996; Ostendorf

and Veilleux, 1994], in order to take allowable variability into consideration, they

propose using multiple gold standards, which are different verbalizations of the

same sentence, for evaluation. Given multiple gold standards, they score the system

output based on the closest matching standard. This approach, however, requires

more annotated data than the first one. Since prosody labeling, such as ToBI

labeling, is very time consuming, in practice, this may prevent us from conducting

this type of evaluation on a large scale. Another drawback of this approach is

that it is difficult to conduct such evaluation for spontaneous speech because of the

difficulties in instructing different speakers to give exactly the same speech (with

exact wording), especially when the speech consists of long discourse segments. If

the speech is well prepared and rehearsed to ensure that different speakers will

say exactly the same text, then it won’t be spontaneous speech. In general, for

spontaneous speech, there is no guarantee that two people will say exactly the

same content over a period of time.

Subjective evaluation is another widely used prosody evaluation method. It

does not require a gold standard. It primarily relies on a subject’s intuition about

different types of speech. In subjective evaluation, subjects, usually native speakers

of a language, are asked to listen to speech synthesized with different prosodic

assignments and then rate them. The prosody of speech with a higher rating is
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consider better than that with a lower rating. The main problem with subjective

prosody evaluation is the difficulty in isolating prosodic effects from other factors to

ensure that a subject ranks the voice based on its prosody, not other uncontrolled

factors. For example, bad pronunciation, bad acoustic realization, as well as bad

prosody may all affect a subject’s perception of synthesis quality. If one speech

sample is rated as poor, it is unclear whether it is due to bad prosody or other

factors. In addition, since in the thesis, I want to focus on a system’s performance

in predicting abstract prosody labels, the acoustic realization model in a speech

synthesizer may not be able to realize discrete prosodic specifications (like the ToBI

annotations) accurately. Even with perfect discrete prosody assignment, the output

speech may still sound bad. Another drawback of subjective evaluation is that

unlike quantitative evaluation, subjective evaluation may not be sensitive to small

improvements. For example, if a pitch accent prediction system is able to improve

its performance by five percent, this improvement can be quantitatively significant.

However, a human subject may not be able to detect such an improvement based

on overall synthesis quality unless hundreds or thousands of test utterances are

presented to the subjects.

Although not ideal, both subjective and objective evaluation were widely

adopted in previous prosody evaluations. In [Hirschberg, 1993; Nakatani, 1998;

Taylor and Black, 1998], the gold standard-based objective evaluation were used.

Subjective evaluation was also used in [Ross and Ostendorf, 1996]. In my the-

sis, both subjective and objective evaluation are employed to serve different pur-

poses. When investigating the influence of each individual feature, I primarily rely

on objective evaluation because of the difficulties in subjectively detecting subtle
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prosodic changes resulting from the change of a single linguistic feature. After

all the input features are combined to predict all the prosodic features, I primar-

ily use subjective evaluation to measure the overall system performance. Multiple

gold standard-based objective evaluation was not used because of the difficulties in

obtaining enough annotated materials.

3.3 CTS Prosody Modeling Architecture

Natural
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Language
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Synthesis

Speech

Feature

Text

ToBI Features

FD

Text
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Prosody Predictors
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Figure 3.1: Prosody Modeling Architecture

Figure 3.1 shows a prosody modeling architecture which is designed to handle

the CTS prosody modeling issues described in Section 3.2. There are three major

components in such a system: feature identification, feature modeling, and prosody

prediction. The input to the feature identification module is the language structure

produced by an NLG system. For the MAGIC CTS system, all the language fea-

tures investigated are represented in a Functional Description(FD) [Elhadad, 1993;

Robin, 1994]. Based on the FD, the system decides which language features to

extract and how to represent them. In addition to features produced by the NLG

component, the feature modeling module computes new features which are not di-
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rectly represented in a typical NLG system, such as word informativeness and word

predictability. The feature modeling component takes text in the text corpus as

input and infers a set of language features statistically. The third component, the

prosody prediction module, takes the features identified by both the feature iden-

tification and feature modeling components and systematically derives a prediction

model which makes use of the correlations between identified language features and

prosody.

In this CTS prosody modeling architecture, two language resource are used:

a text corpus and two annotated speech corpora. The text corpus is primarily

used by the feature modeling component to statistically compute new language

features. The speech corpora are used by all the three main components. For

example, the feature identification and feature modeling components use this corpus

to assess whether a language feature is correlated with a prosodic feature. In

addition, the speech corpora contain the training instances that are used by the

prosody prediction component to conduct instance-based learning. The output of

the prosody prediction component is an abstract prosodic annotation defined by

the ToBI convention [Silverman et al., 1992; Pitrelli et al., 1994]. Finally, the text

produced by the NLG system, as well as the ToBI labels generated by the prosody

prediction component are sent to a speech synthesis component to generate the

final speech. The speech synthesis component used in MAGIC is Bell Labs’ TTS

system [Sproat, 1997] because it accepts an intonation specification similar to ToBI.

In MAGIC, the TTS’s internal prosody decisions are bypassed and replaced with

MAGIC’s own prosody decisions. But the TTS’s remaining components, such as

pronunciation, and acoustic realization, are reused.
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3.4 Corpora

Two speech corpora and one text corpus, both from the medical domain of MAGIC,

were collected. The speech corpora consist of one multi-speaker spontaneous cor-

pus, containing twenty segments and totaling fifty minutes, and one read corpus of

five segments, read by a single speaker and totaling eleven minutes. The sponta-

neous corpus was collected in the cardiac Intensive Care Unit (ICU) of New York

Presbyterian Hospital. Right after bypass surgery, an Operation Room (OR) doc-

tor accompanies a bypass patient to the cardiac ICU. After arriving in the ICU, the

doctor gives a briefing on the patient’s pre-, during- and post- operative status to

the nurses and residents in the ICU so that the patient can be properly taken care

of during those critical post-operation hours. When giving the briefing, the doctor

uses the patient’s record printed from the hospital’s online database, displayed in

tabular forms. The spontaneous speech is mostly monologue. Figure 3.2 shows an

excerpt from the spontaneous corpus 1:

The spontaneous corpus features filled pauses, which are breaks expressed

by un, um and uh, hesitation pauses, which are breaks occurring within a syntactic

unit, such as the uh between “a fifty year old male with” and “adenocarcinoma ...”

shown in Figure 3.2, and repairs, such as “... uh no nodes. no positive nodes ...”

shown in Figure 3.2. However, since the spontaneous speech reflects the common

practice that happens almost everyday in the cardiac ICU, the speech is natural

and the intention of the speech as well as the emotion of the speaker are preserved

in spontaneous speech.

1Since it is a speech transcript, the punctuations were added subjectively by the transcriber.
In addition, all the excerpts shown here have been sanitized to protect a patient’s identity and
privacy.
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“... Un Mr. Johnson is a fifty year old male with uh adenocarcinoma of the esophagus. He had
an upper endoscopy on the eleventh of May which showed a nodule at the uh eg junction, un with
uh severe dysplasia, but without invasion, and uh no nodes, no positive nodes. Uh the patient is
presenting a plate with some very very slight dysphagia with solids. And this was discovered on a
routine check up by his physician. Un now the patient’s status post ...”.

Figure 3.2: A Segment of the Spontaneous Speech Corpus

The read speech corpus was collected in an office environment. First, the

MAGIC NLG component automatically produced several patient’s reports using

real patients’ medical records in the hospital’s on-line database. The output text

was first sanitized, replacing patient identity, such as name, with generic informa-

tion. Then a domain expert was asked to read the text. Each text segment may

be read several times if disfluency happens. Figure 3.3 shows an excerpt from the

read corpus.

“John Herman is a fifty one year old male patient of Dr. Smith undergoing CABG. His medical
history includes allergy to penicillin and congestive heart failure. He is seventy seven kilograms
and one hundred seventy three centimeters. The patient is thirty minutes post bypass and will be
arriving in the unit shortly. His infusion lines include an arterial line in his left arm and an IV
in each arm. Drips in protocol concentrations include Levophed, Nitroglycerine, Cisatracurium,
Midazolam and Fentanyl. He received three units of cell savers ...” .

Figure 3.3: A Segment of the Read Speech Corpus

In contrast to the spontaneous corpus, the read speech corpus is more struc-

tured, fluent, and has fewer filled pauses, repairs etc.. However, the read speech

corpus is less natural because the reading material was artificially created and the

environment setting was unreal. Thus, the intention and the emotion of the writer,

which is the MAGIC system in this case, may or may not be accurately communi-

cated by the speaker during reading.

The speech corpora were first transcribed orthographically and then into-

nationally, using the ToBI convention for prosodic labeling of standard American
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English [Silverman et al., 1992]. After ToBI labeling, each word in the corpora was

also annotated with language features, such as part-of-speech and word informa-

tiveness.

Table 3.1 shows a segment of the annotated read speech corpus. All the

language features were either automatically extracted from the MAGIC natural

language generator, or computed automatically from a text corpus. All the prosodic

features were manually annotated by a ToBI expert2. The definition of each feature

will be given in detail in Chapter 4, 5, and 6.

1 care noun subject classifier c-care-plan wb 1 7.111648 h* 1 npa nbt
2 plan noun subject classifier c-care-plan aclb 2 6.2643504 h* 1 npa nbt
3 b noun subject head c-care-plan aparb 3 8.21026 h* 4 l- l%
4 is verb predicate c-need wb 1 3.8158112 na 1 npa nbt
5 needed verb predicate c-need sb 5 6.6008224 h* 4 l- l%

Table 3.1: A Segment of the Annotated Read Speech Corpus

Since the spontaneous speech corpus was not generated by an automatic

natural language generator, except for surface information, such as words and their

positions, all the deep semantic and syntactic information are missing. Thus, for the

spontaneous corpus, except for the part-of-speech information, which is manually

tagged3, all the other features, such as word informativeness, and word predictabil-

ity, are statistically computed from a text corpus. Table 3.2 shows a segment of the

final annotated spontaneous speech corpus. All the prosodic features were manually

annotated by the same ToBI expert.

2“na” means “no accent”, “npa” means “no phrase accent” and “nbt” means “no boundary
tone”.

3I didn’t use a part of speech tagger because the tags used by a POS tagger are different from
the ones used by the SURGE generator. To be consistent with the POS tags used in the read
speech corpus, I manually tagged the corpus.
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he pronoun 3.630408 -1.154500 na 0 npa nbt
is verb 3.8158112 -1.301100 na 0 npa nbt
a article 3.8158112 -0.507300 na 0 npa nbt
sixty cardinal 6.130819 -3.432800 h* 0 npa nbt
six cardinal 5.2924895 -1.145000 h* 0 npa nbt
year adj 5.60757 -2.528600 na 0 npa nbt
old adj 5.7679133 -0.095300 na 3 l- nbt
patient noun 5.214528 -3.226400 h* 4 h- l%

Table 3.2: A Segment of the Annotated Spontaneous Speech Corpus

As I mentioned before, a text corpus is used to compute the new features that

are not directly represented in a typical text generation system. Since the system

is built in the medical domain, a general text corpus, such as the news corpus, may

not be appropriate to model domain specific information accurately. For example,

a news corpus is unlikely to have special medical terms. So I chose a text corpus

which is available in the hospital. The text corpus consists of 3.5 million words from

7375 discharge summaries of patients who had undergone surgery. Although the

speech corpora only cover cardiac patients, the text corpus covers a larger group of

patients and the majority of them have also undergone cardiac surgery. Since this

is the closest text corpus available for this study, our feature modeling is primarily

based on the text corpus. Figure 3.4 shows an excerpt from the text corpus.

“... He was in his usual state of health until several months ago, when he developed increasing
shortness of breath and chest pain, radiating down his left arm. After a 2D echocardiogram
revealed inferolateral hypokinesis and an exercise stress test was positive, he was referred for
cardiac catheterization. The cardiac catheterization was performed one week prior to admission
and revealed severe proximal coronary artery disease in the right coronary artery, left circumflex,
left anterior descending coronary artery, D1 and OM with an ejection fraction of 55% ...”

Figure 3.4: A Segment of the Text Corpus

Since the text corpus is only used to statistically model language features,

no corresponding prosodic annotation is available for this corpus.
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3.5 Summary

To take full advantage of a CTS system, a CTS prosody modeling component should

be able to make good use of the language features produced during natural language

generation. In particular, it should be able to identify useful language features

represented in a natural language generator and model new features which have not

been directly incorporated in a typical language generation system. In addition,

given a set of useful language features, the system also needs to systematically

combine them in prosody prediction. In the following, I will explain in detail how

these issues are handled in MAGIC’s prosody modeling component. In particular,

I will discuss how existing natural language generation features, such as deep and

surface syntactic, semantic and discourse features, are investigated for their roles

in CTS prosody modeling; how new features, such as semantic informativeness and

word predictability are discovered and modeled for prosody prediction; and how

a new instance-based prosody modeling approach can help improve the prosody

modeling performance.
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Chapter 4

Modeling SURGE Features for

Prosody Modeling

As I discussed in Chapter 2, different language features are produced by different

components of a natural language generator. For example, discourse structures and

rhetorical relations are created during content planning, while sentence structures

and syntactic information are constructed during sentence planning and surface

realization. In this chapter, I focus on the sentential syntactic/semantic features

represented in a general-purpose natural language surface generator, SURGE, and

I will demonstrate how surface syntactic/semantic features represented in SURGE

are related to prosodic variations.

SURGE (Systemic Unification Realization Grammar of English) [Elhadad,

1993; Robin, 1994] is a syntactic realization grammar which provides a unification-

based computational framework that integrates complementary aspects of several

linguistic theories. The overall organization of the grammar and the core of the

clausal and nominal sub-grammars are based on [Halliday, 1994] and [Winograd,
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1983]. SURGE’s treatment for the semantic aspects of the clause, long distance

dependency, and many linguistic phenomena are mainly based on [Fawcett, 1987;

Pollard and Sag, 1994; Quirk et al., 1985]. Today, SURGE is one of the most

comprehensive grammars of English available for language generation.

The input to SURGE is a partially lexicalized thematic tree that specifies the

semantic roles, open-class lexical items and top-level syntactic categories. Given

such input, the SURGE system constructs corresponding syntactic structures, con-

trols syntactic paraphrasing and alternations, provides ordering constraints, propa-

gates agreements, selects closed-class words, and performs syntactic inference. The

SURGE output, given as a Functional Description (FD), encodes rich syntactic,

semantic, and lexical knowledge in recursive sets of attribute value pairs. The

FD is then linearized into a string of words in the final stage of natural language

generation.

Since SURGE is an independently motivated grammatical realization front-

end for text generation, it provides a set of theoretically motivated syntactic and

semantic constraints that are available in a practical text generation system. Since

it is not specifically tailored for spoken language generation or prosody modeling,

SURGE provides a sample of representative features which can be realistically ex-

pected by a CTS system that employs domain-independent, general-purpose surface

generators. In addition, due to their inaccessibility, some SURGE features, such

as semantic roles and syntactic/semantic constituent structures, have not been ex-

tensively investigated for the purpose of prosody modeling. Thus, investigating the

usefulness of SURGE features in CTS prosody modeling represents an important

step toward building a general CTS prosody modeling system.
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((cat simple−clause)

      

                    (synt−funct subj−comp)

      (head ((cat noun) (synt−funct head)(generic−cat np)

                          (generic−cat det)

   (attribute ((lex "expensive") (cat simple−ap)                     (generic−cat ap)

 (mood declarative)  (insistence no) (polarity positive)   (tense present)) (generic−cat clause)

   (event

   (aspect event) (simple yes) (verb−aspect root)   (particle none)))

   (subject−clause infinitive) (object−clause none)   (cat simple−verb−group)

 (partic   ((carrier  ((lex "car") (cat common) (synt−funct subject)

      (np−type common) (person third)      (countable yes) (number singular)      (definite yes)))

   (lex "be") (proc   ((type ascriptive) (mode attributive)   (voice active)

     ((cat verb) (tense present) (lex "be")))

                 (generic−cat noun) (lex "car")))

                          (det ((cat article) (lex "this")))))

                    (head ((cat adj) (lex "expensive")))))))

      (determiner ((cat demonstrative−det)

Figure 4.1: A Simplified Final FD

Figure 4.1 shows a simplified SURGE FD. Most SURGE features to be in-

vestigated are automatically extracted from such an FD. Since only sentences in

the read speech corpus have FDs because they were produced by the MAGIC lan-

guage generator which employs SURGE, in this investigation, only the read speech

corpus is used. Seven SURGE features are investigated in total: word class, syntac-

tic/semantic constituent boundary, the length of the syntactic/semantic constituent,

syntactic function, semantic role, the lexical form of a word, and the surface posi-

tion of a word. Among all the features, word class (or part-of-speech), a word itself

and its position in a sentence are among the most widely used language features in

existing prosody modeling systems (mostly in TTS) because they are easily acces-

sible from a text. By incorporating these typical TTS features, I want to ensure

that the resulting CTS prosody model has reasonably wide coverage and therefore,

reasonably high performance. In addition to features which are easily accessible

from a text, the remaining four features, the syntactic/semantic constituent bound-

ary and its associated constituent length, the syntactic function and the semantic

role information, are rarely studied in a TTS setting because so far they can not

be reliably derived from a text automatically.
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However, not all SURGE features are investigated here. For example, at the

clause level, a sentence is associated with features like “mood”, and “insistence”.

The feature “mood” decides whether a clause is declarative, interrogative, or imper-

ative etc. The feature “insistence” decides whether the main verb of a clause should

be emphasized, such as whether to use the auxiliary verb “do” in “I do love her”.

In principle, all these features can be useful for prosody modeling. For example,

it is generally known that the contour of a declarative utterance is different from

that of an interrogative. Since in the read speech corpus, all these features have the

default value in all sentences (e.g. only declarative sentences are involved and no

sentences with emphasized verbs), their usefulness in predicting prosodic features

can not be verified using the current data. As a result, these features are excluded

from this investigation.

By investigating various SURGE features, I will demonstrate how they are

related to CTS prosody prediction. I start with a description of each feature.

4.1 Feature Description

4.1.1 Word Class

Word class information (or Part-of-Speech) is one of the most widely used predictors

in prosody modeling [Hirschberg, 1993; Taylor and Black, 1998; Altenberg, 1987;

Bachenko and Fitzpatrick, 1990]. In a SURGE FD, word class is encoded in the

CAT feature. As shown in Figure 4.2, each constituent in an FD is characterized by

a feature of the form (CAT category-name). In this example, the CAT for the entire

sentence is simple-clause. Each clause consists of a process, which corresponds to
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the main verb, and several participants, the bounded arguments of the verb. In this

example, the CAT for the process is simple-verb-group. In addition, it is common

for the first participant, and simple-ap for the second participant. In all examples

so far, all the CATs categorize high level constituents. For lexicalized constituents,

their CAT features are equivalent to their part-of-speech.

((cat simple−clause)

      

                    (synt−funct subj−comp)

      (head ((cat noun) (synt−funct head)(generic−cat np)

                          (generic−cat det)

   (attribute ((lex "expensive") (cat simple−ap)                     (generic−cat ap)

 (mood declarative)  (insistence no) (polarity positive)   (tense present)) (generic−cat clause)

   (event

   (aspect event) (simple yes) (verb−aspect root)   (particle none)))

   (subject−clause infinitive) (object−clause none)   (cat simple−verb−group)

 (partic   ((carrier  ((lex "car") (cat common) (synt−funct subject)

      (np−type common) (person third)      (countable yes) (number singular)      (definite yes)))

   (lex "be") (proc   ((type ascriptive) (mode attributive)   (voice active)

     ((cat verb) (tense present) (lex "be")))

                 (generic−cat noun) (lex "car")))

                          (det ((cat article) (lex "this")))))      (determiner ((cat demonstrative−det)

                    (head ((cat adj) (lex "expensive")))))))

Figure 4.2: The Category Information in an FD

In the FD shown in Figure 4.2, the part-of-speech of this is article, it is noun

for car, verb for is, and adjective for expensive. Overall, there are nine different

types of part-of-speech in the read speech corpora: noun, verb, adjective, adverb,

article, conjunction, pronoun, cardinal, and preposition1.

4.1.2 Syntactic/Semantic Constituent Boundary and Length

The next two SURGE features investigated are the syntactic/semantic constituent

boundary (SSCB) and the associated semantic/syntactic constituent length (SSCL).

For each sentence generated, SURGE defines a hierarchical constituent structure.

As shown in Figure 4.3, at the highest level, a clause can have a process, cor-

1The CAT feature SURGE assigned for words like “Dr.” in “Dr. Smith” is phrase. Since
phrase is an uncommon part-of-speech, to avoid confusing, it is tagged as a noun in the corpus.
This only affects a few instances in the corpus.
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Describer2

Participant1 Process Participant2

Qualifier1 Qualifier2

Clause

Process

John Herman is a fifty one year old male patient of Dr. Smith undergoing CABG.

Participant2( )

Classifier Head

Sentence (Clause)

Det         List      Head           List

Describer1

Figure 4.3: The Syntactic/Semantic Constituent Boundaries

responding to the main event or relation, which is eventually realized as a verb.

Each process is associated with its bounded arguments called participants, as well

as several unbounded arguments, called circumstantials, which are versatile and

can attach to processes of virtually any type. In general, participants cannot be

moved around in the clause without affecting the other elements and they cannot

be omitted from the clause while preserving its grammaticality, while circumstan-

tials can. In addition, circumstantials are usually sentence modifiers, modifiers of

sentences. In contrast, the modifier of a process itself is called predicate modifier.

Thus, semantically, a predicate modifier modifies only the verb of a clause whereas

a sentence modifier (or circumstantial) modifies the whole clause. For example,

(1) John kissed her on the cheek.

(2) John kissed her on the platform.

In the first example, semantically, kissed and on the cheek are closely related and

on the cheek is a modifier of the verb itself, so it is a predicate modifier. However,

in the second sentence, kissed and on the platform semantically are not directly

related and on the platform is a modifier of the whole clause, so it is a sentence
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modifier.

In addition, each constituent may have one or more embedded lower level

constituents. For example, a participant may consist of noun phrases. A noun

phrase, in general, may have a head, a determiner-sequence, zero or more pre-

modifiers, and zero or more post-modifiers. In SURGE, the pre-modifiers are further

categorized as describers or classifiers. The difference between a describer and a

classifier is mostly semantic and it can be tested using the following criteria: a

classifier cannot be used as the complement of an ascriptive clause while a describer

can. In the following example:

(1) a New York cop

(2) a beautiful girl

New York in the first example is a classifier because “A cop is New York” does not

make sense. In contrast, beautiful in the second example is a describer because it

is reasonable to say “A girl is beautiful”.

In addition, the post modifier of a noun phrase is called a qualifier. A qualifier

can be a prepositional phrase, or a relative clause. The determiner-sequence of a

noun phrase may include possessors, cardinals, and ordinals.

In order to represent such a hierarchical constituent structure and explore

its effects on prosody prediction, I modeled two new features: syntactic/semantic

constituent boundary, and the length of such a constituent. I call them syntac-

tic/semantic constituents because in general, they are similar to syntactic con-

stituents. For example, a participant usually can be mapped to a syntactic con-

stituent like subject or object. Similarly, a circumstantial can be mapped to another

syntactic constituent adverbial. However, the distinctions between some of the con-
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stituents are mostly semantic. For example, both a classifier and describer can

map to the same syntactic constituent. The difference between them, as I ex-

plained before, is semantic. Similarly, the difference between a predicate modifier

and a sentence modifier is also primarily semantically-based.

Overall, 20 syntactic/semantic boundary types were defined, corresponding

to the constituents types that were just identified. These are shown in Table 4.1.

Labels Definition Examples

sb sentence boundary (John Herman is a patient).
bcb, acb before or after a clause John Herman is a patient (undergoing CABG).
blib, alib before or after a list item John Herman is a (80 year old) (male) patient.
bcirb, acirb before or after a circumstantial (Before induction), the patient had hypertension.
bpmb, apmb before or after a predicate modifier John kissed her (on the cheek).
bqub, aqub before or after a qualifier John Herman is a patient (of Dr. Smith).
bparb, aparb before or after a participant (John Herman) is (an old patient).
bclb, aclb before or after a classifier John is a (New York) cop.
bdeb, adeb before or after a describer John is a (handsome) guy.
bpob, apob before or after a possessor John likes (his) new shirt.
wb word boundary (John) (is) (a) (handsome) (guy).

Table 4.1: Definitions for Different Syntactic/Semantic Constituent Boundaries

One complication in assigning syntactic/semantic constituent boundaries is

that each location may represent multiple constituent boundaries. For example, all

the boundaries in a sentence are word boundaries. In most cases, each boundary can

be both the end of a previous constituent and the start of the following constituent.

To further complicate the situation, one constituent may be embedded in another.

If a boundary marks the end of a higher level constituent, it is very likely that it also

marks the end of an embedded constituent. In the sentence shown in Figure 4.3, the

boundary between Smith and undergoing can be a bqub because undergoing CABG

is a qualifier. It also can be a blib and alib because Dr. Smith and undergoing

CABG form a qualifier list. It also can be a bcb because undergoing CABG is an
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embedded clause. In addition, it is also an aparb because patient in the main clause

is the logical subject (participant) of the embedded sentence. Finally, it is also a

wb.

In order to assign a unique value for each position, I define an order of

precedence for all the boundaries; the most significant boundary will be used as

the final and unique assignment for each location. The precedence was heuristi-

cally defined based on the hierarchical structure of a non-recursive clause (a clause

without any embedded clauses). In such a hierarchy, a clause is the highest level

constituent: therefore, a boundary marking the beginning or end of a clause, the bcb

or acb, is the most significant boundary in a clause. Within a clause, circumstan-

tials are the least bounded constituents; therefore, the circumstantial boundary is

considered more significant than others, such as participant and predicate-modifier

boundaries. Since participants are the most bounded arguments which form part of

the core sentence structure, while predicate modifiers are optional, the predicate-

modifier boundaries are considered more significant than participant boundaries.

In addition, many high-level semantic constituents, such as participants or circum-

stantials, may consist of syntactic constituents, such as noun phrases. Within each

noun phrase, post-modifier boundaries, such as bqub or aqub, are considered more

significant than pre-modifier boundaries, such as classifier boundaries, or describer

boundaries. Both classifier and describer boundaries are considered more promi-

nent than determiner boundaries, such as possessor boundaries. The placement of

list boundary in the precedence list is tricky. A clause may consist of a circumstan-

tial list, participant list, classifier list, describer list, and qualifier list. So, it can

be as significant as a circumstantial boundary, a participant boundary, a classifier
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boundary, a describer boundary, or a qualifier boundary. Currently, I rank it af-

ter a clause boundary and before a circumstantial boundary, because commas are

commonly placed after list items and make the boundary more significant than any

other clause-internal boundaries. Finally, a sentence is the largest unit in this anal-

ysis and may consist of one or more clauses. Thus, the boundary that marks the

end of a sentence is consider the most significant in the precedence list. If nothing

else applies, a word boundary is assumed. Table 4.2 summarizes the precedence

defined for all the syntactic/semantic constituent boundaries in the read speech

corpus. Based on this ordering, the boundary between Smith and undergoing in

Figure 4.3 should be a bcb. If several boundaries with the same precedence are

assigned to the same location, the first one encountered during a left to right scan

is kept. For example, in the same sentence, the boundary between old and male

should be a alib because it occurs earlier than blib during a left to right scan.

Rank Names Level

9 sb sentence
8 bcb, acb clause
7 alib, blib list
6 acirb, bcirb circumstantial
5 apmb, bpmb predicate modifier
4 aparb, bparb participant
3 aqub, bqub qualifier
2 aclb, bclb, adeb, bdeb pre-modifier
1 apob, bpob possessor
0 wb word

Table 4.2: Precedence Among Syntactic/Semantic Constituent Boundaries

The next feature, syntactic/semantic constituent length is the number of

words associated with a syntactic/semantic constituent. For example, since the

final syntactic/semantic constituent boundary between Smith and undergoing is a

bcb, the corresponding constituent length should be the number of words associated
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with the clause, which is two. The syntactic/semantic constituent boundary and

its associated constituent length after each word in the sentence “John Herman is

a fifty one year old male patient of Dr. Smith undergoing CABG.”are shown in

Table 4.3.

Word Boundary Length

John wb 1
Herman aparb 2
is bparb 12
a blib 4
fifty wb 1
one aclb 2
year wb 1
old alib 4
male alib 1
patient blib 3
of wb 1
Dr. wb 1
Smith alib 3
undergoing bcb 2
CABG sb 15

Table 4.3: An Example of the Syntactic/Semantic Constituent Boundary and
Length Assignment

4.1.3 Syntactic Function

 (generic-cat ap)   (head ((cat adj) (lex "expensive")))))))

 (insistence no) (generic-cat clause)  (tense present)) (polarity positive)  

 (generic-cat noun) (lex "car")))      (head ((cat noun) (synt-funct head)

((cat simple-clause)

 (det ((cat article) (lex "this")))))

 (proc   ((type ascriptive) (mode attributive)   (voice active)

 (mood declarative)

   (lex "be")

                    (synt-funct subj-comp)

   (subject-clause infinitive) (object-clause none)    (cat simple-verb-group)
   (event

   (aspect event) (simple yes) (verb-aspect root)    (particle none)))
 (partic   ((carrier  ((lex "car") (cat common) (synt-funct subject)

      (determiner ((cat demonstrative-det)
      (np-type common) (person third)      (countable yes) (number singular)      (definite yes)))

   (attribute ((lex "expensive") (cat simple-ap)

(generic-cat np)

(generic-cat det)

     ((cat verb) (tense present) (lex "be")))

Figure 4.4: Syntactic Functions in an FD

Syntactic function is another feature directly encoded in the SURGE gener-
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ation grammar. In a SURGE FD, the syntactic function of a constituent is encoded

in the Synt-Funct feature. As shown in Figure 4.4, the constituents of an FD may

contain a feature of the form (Synt-Funct synt-funct-type). In the read speech

corpus, there are a total of seven syntactic functions: subject, object, subj-comp,

classifier, head, pred-adjunct, and sent-adjunct. In addition to subject, object and

subj-comp, which are common syntactic function types, classifier is one of the syn-

tactic functions defined in SURGE for pre-modifiers in a noun phrase. Head is the

syntactic function of the center word which encodes the most critical information

of a constituent; for example, it usually corresponds to the head noun in a noun

phrase or the head adjective in an adjective clause. Pred-adjunct is the syntactic

function for predicate-modifiers while sent-adjunct is the syntactic function for sen-

tence modifiers. In addition, SURGE defines additional syntactic function types,

such as iobject, dative, by-object, which do not appear in the read speech corpus.

In addition, since in SURGE, processes, which encode information about the verbs,

do not have a corresponding Synt-Funct feature, a new syntactic function, predicate

was introduced to characterize the syntactic function of verbs in a process.

Herman had two CABG operations in 1998.

Subject Predicate Object Sentence-adjunct

HeadHeadClassifier

John

Sentence

Figure 4.5: A Hierarchical Representation of Syntactic Function

In addition, as shown in Figure 4.5, a SURGE FD encodes a hierarchical

syntactic constituent structure. In the example shown in Figure 4.5, “CABG”
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is a “classifier” of the noun phrase “CABG operations” while at the same time,

“CABG operation” is the “object” of the sentence. Therefore, the syntactic function

of “CABG” is a combination of two elements: “object” and “classifier”. More

precisely, “CABG” is the “classifier” of the “object” of the sentence.

To encode this information in my experiments, the syntactic function of a

word is represented as a path from the root to the word, including the syntactic

functions of all the intermediate constituents. For example, the syntactic function

of “CABG” in the example should be “Object Classifier”.

4.1.4 Semantic Role

                    (synt−funct subj−comp)

      (head ((cat noun) (synt−funct head)

((cat simple−clause)

 (det ((cat article) (lex "this")))))

 (mood declarative)  (insistence no) (polarity positive)   (tense present)) (generic−cat clause)
   (attribute ((lex "expensive") (cat simple−ap)  (generic−cat ap)

      (determiner ((cat demonstrative−det)
      (np−type common) (person third)      (countable yes) (number singular)      (definite yes)))

 (partic   ((carrier  ((lex "car") (cat common) (synt−funct subject)

   (event
   (subject−clause infinitive) (object−clause none)    (cat simple−verb−group)

   (aspect event) (simple yes) (verb−aspect root)   (particle none)))

 (proc   ((type ascriptive) (mode attributive)   (voice active)   (lex "be")

(generic−cat np)

(generic−cat det)

     ((cat verb) (tense present) (lex "be")))

 (generic−cat noun) (lex "car")))

  (head ((cat adj) (lex "expensive")))))))

Figure 4.6: The Semantic Roles in an FD

When I described the syntactic/semantic constituent structure that SURGE

employs to represent its sentence structure, I explained that a clause may con-

sist of a process, zero or more participants, zero or more circumstantials, and zero

or more predicate modifiers. In addition, SURGE also assigns a semantic role to

each constituent. For example, the process, which corresponds to the main verb

of a sentence, can be further categorized into different types. The basic process

type in SURGE include a material process, a mental process, a verbal process, an
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ascriptive process, a possessive process, or a locative process. Similarly, a partic-

ipant can be further categorized as an agent, an affected, a created, a processor,

a phenomenon, a sayer, an addressed, a verbalization, a carrier, an attribute, an

identified, an identifier, a possessor, a located, or a location. Similarly, circumstan-

tials may also have different semantic roles such as location, origin, distance, time,

duration, frequence, purpose, behalf, reason, accompaniment, manner, means, etc.

In addition, the semantic roles played by a predicate modifier may include location,

direction, destination, duration, manner, means, instrument etc.

�������������������� ������ �� ������

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

Around induction, he was anesthetized with five milligrams of midazolam.

Sentence (Clause)

Circumstantial−time  Affected Material                PredModifier−Instrument

Figure 4.7: The Semantic Role information in an FD

In this study, semantic roles were first extracted from an FD. Since SURGE

FD encodes a hierarchical syntactic/semantic constituent structure, similar to a

word’s syntactic function, for each word in an utterance, its semantic role assign-

ment also corresponds to a sequence of semantic roles associated with the con-

stituents on the path from the root to the word. For example, if a word belongs to

a constituent that is an “affected” of an “identifier”, the semantic role of the word

is “identifier affected”. Given the sentence in Figure 4.7, the semantic roles of all

the words in the sentence are shown in Figure 4.4. The prefix c- in the table stands

for circumstantials and p- stands for “predicate-modifier”.
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Word Semantic Role

around c-time
induction c-time
he affected
was material
anesthetized material
with p-instrument
five p-instrument
milligrams p-instrument
of p-instrument
midazolam p-instrument

Table 4.4: Semantic Roles Extracted from an FD

4.1.5 Word and Surface Position

Words and their surface positions are the most easily accessible features for both

CTS and TTS prosody modeling. For example, according to [Sproat, 1994], the

word pie usually is a good candidate for receiving a pitch accent. If it appears,

it almost always receives a pitch accent. Because of this, the lexical property of

a word can be useful in prosody prediction. A word’s position in a sentence is

also widely used for prosody prediction. For example, different measures of word

location in a sentence have been incorporated in [Wang and Hirschberg, 1992] for

prosodic phrase boundary prediction.

4.2 The Analysis

Since the corpus is too small to learn fine-grained prosodic classification, a binary

classification is conducted for each prosodic feature. For pitch accent prediction,

each word is classified as either accented or not; all accent types are collapsed into

the value ‘accented’. For phrasal prediction, each word boundary is classified as

either a significant or an insignificant prosodic phrase boundary, according to two
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different generalizations of break index information: Break index (1) considers all

the break indices that are equal to or greater than 3 as significant (intermediate

and intonational phrase boundaries). Break index (2) classifies only level 4 break

indices (intonational phrase boundaries) as significant. In phrase accent prediction,

I predict whether a phrase accent is H- or L-. Similarly, boundary tone prediction

predicts whether a boundary tone is H% or L%.

To discover whether a language feature is correlated with a prosodic feature,

I employed formal statistical correlation tests. If the results showed a statistically

significant correlation, I employed a classification-based rule induction system to au-

tomatically derive rules which characterize these association patterns. These rules

not only can be inspected to gain more insight into different prosodic phenomena,

but also can be used to predict prosodic assignment. Finally, each prediction model

was compared with a majority class baseline model. For pitch accent prediction, the

baseline model predicts that each word is accented. For the break index model, the

baseline predicts ‘no significant boundary’ at each potential boundary location. For

the phrase accent and boundary tone models, the baseline models always predict

L- and L%, the most frequent classes in the corpus. If any of the learned prediction

models achieve significant improvement over the baseline model, the tested SURGE

feature is considered a promising candidate for CTS prosody modeling.

In the following, first I describe how statistical correlation analyses were

conducted to test the correlation between each SURGE and each prosodic feature.

For all the statistical analyses conducted in the study, I use a significance threshold

of 0.05.
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4.2.1 Correlation Analysis

In this study, the Chi-square test [Conover, 1999] was applied to test the corre-

lation between each prosodic and categorical SURGE feature while Spearman’s

test [Conover, 1999] was applied to each prosodic and ordinal SURGE feature2.

For categorical features like semantic/syntactic constituent boundary(SSCB), since

I also defined an order among them, in addition to the Chi-square test, I also ap-

plied Spearman’s test to determine its correlation with different prosodic features.

However, I did not apply the Chi-square test to semantic role and phrase accent

type, semantic role and boundary tone type or word and different prosodic features

because the resulting contingency tables are too sparse to support an accurate test.

The final test results are shown in Table 4.5.

Features Test Pitch Accent Break Index1 Break Index2 Phrase Accent Boundary tone
ρ p-val ρ p-val ρ p-val ρ p-val ρ p-val

POS χ2 na < 0.01 na < 0.01 na < 0.01 na < 0.01 na < 0.01
SSCB Spearman 0.08 < 0.01 0.58 < 0.01 0.58 < 0.01 -0.24 < 0.01 -0.12 < 0.01
SSCL Spearman -0.05 < 0.11 0.48 < 0.01 0.47 < 0.01 -0.18 < 0.01 -0.38 < 0.01
SynFunc χ2 na < 0.01 na < 0.01 na < 0.01 na < 0.05 na < 0.01
SemRole χ2 na < 0.01 na < 0.01 na < 0.01 na na na na
Position Spearman 0.06 < 0.05 0.19 < 0.01 0.20 < 0.01 -0.07 < 0.13 -0.04 < 0.41

Table 4.5: Summary: The Correlations Between SURGE Features and Prosody

The test results shown in Table 4.5 indicate that word class, semantic/syntactic

constituent boundary(SSCB), syntactic function, and semantic role are significantly

correlated with all the tested prosodic features. Except for pitch accent, seman-

tic/syntactic constituent length(SSCL) is also significantly correlated with all the

2In the Spearman’s test, all the prosodic features were assigned a binary value. For example,
1 was assigned to all the accented words and 0 was assigned to words without an accent. In
addition, 1 was assigned to significant prosodic phrase boundaries and 0 was assigned to the other
boundaries. For phrase accent and boundary tone, 1 was assigned to both H- and H% and 0 was
assigned to both L- and H%.



77

other tested prosodic features. In addition, word position is significantly correlated

with pitch accent placement as well as break index assignment. In addition to sta-

tistical significance, the Spearman’s test also reports the correlation coefficient ρ,

which gives us more information about the polarity and strength of this correla-

tion. Among all the correlations tested significant using the Spearman’s test, some

of them are positive, such as SSCB and pitch accent, SSCB and break index, SSCL

and break index, word position and pitch accent, and word position and break in-

dex. Positive correlations indicate that the values of two tested variables increase

or decrease together. For example, a positive correlation between SSCB and break

index suggests that significant semantic/syntactic constituent boundaries are more

likely to associate with significant prosodic phrase boundaries. Similarly, a positive

correlation between SSCB and pitch accent indicates that pitch accents are more

likely to associate with words before a significant semantic/syntactic constituent

boundary. In addition, the correlation tests also reveal significant negative corre-

lations, such as SSCB and phrase accent, SSCB and boundary tone, SSCL and

phrase accent and SSCL and boundary tone. Negative correlations indicate that

the values of one tested variable increase as the values of the other decrease. For

example, the negative correlation between SSCB and boundary tone indicates that

a L% boundary tone is more likely to appear at a significant SSCB while a H%

boundary tone is less likely to appear at a significant SSCB. In addition, since the

absolute value of ρ is an indication of the strength of the association, it seems the

correlations between SSCB and break index, SSCL and break index, SSCL and

boundary tone are among the strongest.



78

4.2.2 Learning Prosody Prediction Rules

Based on the preliminary correlation analyses using the Chi-square and Spearman’s

test, all the SURGE features investigated are significantly correlated with one or

more prosodic features. In addition, based on the results drawn from Spearman’s

test, some of these associations are stronger, some of them are weaker. Stronger

correlations are more likely to be useful in prosody prediction. However, in the Chi-

square tests, a small p-value may sometimes result from large sample size. Thus,

in addition to the statistical association tests, new experiments were conducted

to verify the usefulness of different SURGE features in prosody prediction. In

these experiments, a machine learning tool, RIPPER [Cohen, 1995], was used to

automatically derive individual prosody prediction models from the speech corpus.

RIPPER is a classification-based rule induction system. From annotated examples,

it derives a set of ordered if-then rules, describing how one or several input features

can be used to predict an output feature.

In the following, I will first report on the performance of each RIPPER

learned prediction model. In each model, except for the SSCB+SSCL model, one

individual SURGE feature is used to predict each prosodic feature separately. The

reason for combining SSCB and SSCL is that SSCL is the length of the constituent

indicated by an SSCB. Thus, only after SSCL is combined with SSCB does its

semantics become well-defined. The results presented were obtained through 5-

fold cross validation. Table 4.6 shows the performance of each prosody prediction

model. For each prediction model, I list the average accuracy of the model based

on 5-fold cross validation, the relative error reduction over the baseline, the con-

fidence interval reported by RIPPER, as well as the statistical significance of the
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improvement over the corresponding baseline using the Chi-square test.

Model Measure POS SSCB SynFun SemRole Word Position
SSCL

Baseline 62.15% 62.15% 62.15% 62.15% 62.15% 62.15%
Pitch Accuracy 76.31% 66.27% 72.36% 65.75% 82.58% 61.12%
Accent Reduction 37.41% 10.88% 26.97% 9.51% 53.97% -2.75%

Conf. ±0.24% ±1.29% ±0.99% ±1.42% ±0.87% ±2.53%
P-value < 0.01 = 0.04 < 0.01 = 0.08 < 0.01 = 0.64
Baseline 62.23% 62.23% 62.23% 62.23% 62.23% 62.23%

Break Accuracy 69.01% 85.49% 70.13% 65.84% 80.26% 65.15%
Index1 Reduction 17.95% 61.58% 20.92% 9.56% 47.74% 7.73%

Conf. ±1.96% ±0.51% ±0.78% ±1.67% ±1.30% ±1.13%
P-value < 0.01 < 0.01 < 0.01 = 0.08 < 0.01 0.16
Baseline 69.44% 69.44% 69.44% 69.44% 69.44% 69.44%

Break Accuracy 69.44% 88.07% 74.85% 67.81% 82.75% 68.84%
Index2 Reduction 0% 60.96% 17.70% -5.30% 43.55% -1.96%

Conf. ±2.02% ±1.09% ±0.62% ±0.87% ±0.73% ±2.23%
P-value < 0.96 < 0.01 < 0.01 < 0.43 < 0.01 < 0.79
Baseline 71.82% 71.82% 71.82% 71.82% 71.82% 71.82%

Phrase Accuracy 72.05% 71.36% 71.82% 71.83% 72.05% 71.82%
Accent Reduction 0.82% -1.63% 0% 0.04% 0.82% 0%

Conf. ±1.91% ±1.77% ±1.98% ±1.30% ±2.27% ±1.98%
P-value = 0.99 = 0.94 = 0.94 = 0.94 = 0.99 = 0.94
Baseline 74.16% 74.16% 74.16% 74.16% 74.16% 74.16%

Bound Accuracy 74.15% 78.66% 74.14% 74.42% 74.70% 74.14%
ary Reduction -0.04% 17.41% -0.08% 1.01% 2.09% -0.08%
Tone Conf. ±1.91% ±1.65% ±2.14% ±1.94% ±1.71% ±2.14%

P-value = 0.93 = 0.18 = 0.93 = 0.99 = 0.93 = 0.93

Table 4.6: Summary: The Different Prediction Models Learned by RIPPER

Based on the results shown in Table 4.6, most of the investigated SURGE

features, such as part-of-speech, SSCB and SSCL, syntactic function, and the word

itself are quite useful in predicting pitch accent and break index assignment. The

RIPPER learned pitch accent prediction models that incorporate these features

have significantly better performance than the baseline models (P < 0.05). In terms

of break index prediction, except for part-of-speech, these features also significantly

improve performance for both break index (1) and break index (2) prediction. In

addition, the accent and break index (1) model that incorporates semantic role also

achieve marginal improvement over the baseline models (P < 0.1). However, in

terms of phrase accent and boundary tone prediction, most SURGE features tested
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do not show much predictive power. The only model which shows some promise is

the SSCB+SSCL boundary tone prediction model. It achieves 17.41% relative error

reduction, even though the improvement is not statistically significant (P = 0.18).

With a larger database (currently, there are only 356 intonational phrase boundaries

in the corpus), I expect that this performance may improve. In terms of error

reduction, the SSCB+SSCL break index (1) and (2) prediction models are the

best (61.58% and 60.96%). Other models which also achieved significant error

reduction include the word-accent model (53.97%), the word-break index (1) and

(2) model (47.74% and 43.55%), the POS-accent model (37.41%), and the syntactic

function-accent model (26.97%). From the data, I also found that the effectiveness

of these features in break index (1) prediction is consistently better than that in

break index (2) prediction. It may be due to the fact that detailed syntactic and

semantic information is more helpful in predicting fine-grained prosodic phrasing

(intermediate phrase v.s. intonational phrase). In the following, I inspect some of

the patterns learned by RIPPER.

4.2.3 Patterns learned by RIPPER

Most patterns learned in the POS-accent prediction model are consistent with pre-

vious findings. For example, the model accents content words like nouns, adjec-

tives, adverbs, cardinals while deaccenting function words like articles, conjunc-

tions, prepositions and pronouns. Thus, in general, it follows the content/function

word distinction. However, there is one exception to this. Verbs, which are content

words, are not accented, according to the POS pitch accent model.

In addition, the only meaningful rule (other than the default) learned by the
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POS-break index (1) model predicts a significant prosodic phrase boundary after

a noun, which is an interesting finding. The POS-break index (2) model failed to

learn any useful rule. It is essentially the same as the baseline model.

In addition, the main rules learned by the SSCB+SSCL break index (1) pre-

diction model include “placing a significant prosodic phrase boundary at a sentence

boundary”, or “placing a significant boundary after a list item”. The rules also pre-

dict a significant boundary before or after a circumstantial, a predicate modifier,

a participant, a qualifier, a classifier, a describer and a possessor whose length is

greater than or equal to two. In terms of the rules learned for break index (2), the

rules place an intonational phrase boundary at the end of a sentence whose length

is greater than two words, or at the end of a list item whose length is equal to one,

or at the end of a qualifier whose length is greater than one, or at the end of a

circumstantial whose length is greater than one, or at the end of a list item whose

length is greater than two, or at the end of a participant whose length is greater

than three.

Syntactic function also proves to be a good predictor for both pitch accent

and break index prediction. In pitch accent prediction, the model deaccents words

whose syntactic function is neither the head nor the classifier of an object or subject.

It also deaccents words whose syntactic function is either a predicate or a clause-

conj. In break index prediction, the rules learned for break index (1) and (2) are

the same. The main rules assign a significant prosodic phrase boundary after both

an object head and subj-comp head. It is interesting to notice that both object and

subject-compliment usually are the second argument of a sentence; therefore, they

commonly occur later than subject in a sentence. Subject head does not have the
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same property.

The word itself also proves to be a good predictor for both accent and break

index prediction. Typical words that are deaccented in the model include “the”,

“of”, “and”, “in” as well as “units”, “level”, “incision”, “savers”. Since the perfor-

mance of this model is the best among all the accent prediction models investigated,

it seems to suggest that for a CTS application like MAGIC, since it is only created

for a limited domain, specific features like word can be quite effective in prosody

prediction.

4.3 Summary

In this chapter, I primarily investigated the sentential semantic, syntactic and sur-

face features and their effects on prosody prediction. The modeling of semantic

and syntactic features are based on a general-purpose natural language generator

SURGE. I investigated how typical information represented in such a system helps

CTS prosody modeling.

Overall, based on the analysis results summarized in Table 4.5, most seman-

tic, syntactic and surface features tested show significant correlation with pitch

accent placement, break index, phrase accent and boundary tone assignment. More-

over, based on Table 4.6, by incorporating different semantic, syntactic and surface

futures, different prosody prediction models were able to improve the performance

of pitch accent and break index prediction significantly over the baseline models. On

the other hand, even some features show significant correlation with phrase accent

and boundary tone assignment, most of the prediction models were unable to learn

useful patterns. None, but one of the learned prediction models, the SSCB+SSCL
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boundary tone prediction model, achieved some improvement over the majority-

based baseline (17.4%). This prediction model suggested placing a H% tone after a

single-word list item. Overall, it seems that more features are needed to account for

the variations in the phrase accent and boundary tone assignment. For example,

sentence type may be a good predictor of phrase accent and boundary tone. In

addition, in our corpus, some variations in phrase accent and boundary tone may

be due to intra speaker variation or factors that are not modeled.

Although the representation of these features may not be ideal for prosody

prediction because more fine-grained word class information may be more helpful

in prosody prediction, since SURGE is an independently motivated language gen-

eration system, it nonetheless provides valuable information on the typical features

a practical CTS system which employs general-purpose NL generators could expect

for its prosody modeling.
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Chapter 5

Deep Semantic and Discourse

Features

In addition to the SURGE features, which are mostly at the sentence level, an

NLG system also produces deep semantic and discourse features. These features

are much harder to extract from a text, and therefore, primarily available to CTS

systems and not to TTS systems. In this section, I explore three such features:

semantic type, given/new, and semantic abnormality.

5.1 Feature Description

5.1.1 Semantic Type

One knowledge resource used by the MAGIC NL generator is its domain ontology.

This encodes the semantic types of different concepts in the domain. When a pa-

tient’s medical record is received, the system first instantiates the domain ontology
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...

...

c-animatedc-status ...c-receive

c-humanc-med-status

c-patientc-postcabg-status ...

...

               c-has-attribute  c-human-activity   ...  c-abstract c-physical

c-thing

c-state    c-event    c-entity

 ...

 ...

...

Figure 5.1: A Segment of the MAGIC Ontology

with a patient’s data. As a result, the instantiated ontology contains not only the

data in the medical record but also their associated semantic types as well as their

relations with the other concepts in the domain. Figure 5.1 shows a segment of the

MAGIC domain ontology.

To explore the usefulness of semantic types in prosody modeling, a script

was designed to automatically extract the most specific semantic type of a concept

from a MAGIC output FD. For example, in the following sentence “John Herman

is a fifty one year old male patient of Dr. Smith undergoing CABG”, “John Her-

man” has a semantic type of “c-name”1 The semantic type of “is” is “c-is-a”. In

addition, “c-age”, “c-gender”, “c-patient”, “c-name” and “c-operation” are the se-

mantic types for “fifty one year old”, “male”, “patient”, “Dr. Smith”, and “CABG”

respectively. In general, all the words realizing an input entity have the semantic

type of that entity. If a word does not belong to any of the input data, it is assigned

a special semantic type.

Since the same semantic type may be shared by different surface words (for

1The prefix c- is used to distinguish the concept “name” with the word “name”.
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example, the semantic type for both male and female is c-gender), the semantic

type provides a level of generalization over surface realization and it may be useful

for prosody modeling. Intuitively, we may expect that words sharing the same

semantic type may also share similar prosodic properties. For example, “male”

and “female” are more likely to have similar accentual patterns as “male” and

“hypertensive”, which do not share the same semantic type.

5.1.2 Given/New

The second feature I explored is a word’s given/new status. As [Prince, 1981; 1992;

Brown, 1983] have pointed out, there are various methods of ascertaining what

should be regarded as given or new. Based on Prince, an entity can be discourse-

old (new) if it has (not) been activated in the prior discourse stretch; or it can

be hearer-old (new) if a speaker presumes that a hearer knows (does not know)

the information; or inferable, if it is recoverable from a hearer’s background or

conversational environment. Because the current MAGIC NL generator does not

model hearer old/new, or inferable status, in the following analysis, I focus on the

discourse given/new distinction. Since discourse given/new is not easy to parse from

a text, only a few TTS systems to date incorporate such a feature [Hirschberg, 1993].

Moreover, TTS given/new status is mostly inferred based on lexical repetition while

in MAGIC, since each concept has an unique concept id, its given/new status is

automatically produced based on concept repetition.

Since the given/new distinction primarily involves content words, in the

given/new analysis, only the content words were examined. For example, if a con-

cept is given, then all the content words realizing that concept are given. Similarly,
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all the content words realizing a new concept are new.

5.1.3 Semantic Abnormality

Another type of deep semantic information is semantic abnormality. In MAGIC,

semantic abnormality was defined as the unexpectedness of medical events or condi-

tions. Compared with other features investigated in this study, semantic abnormal-

ity defined in this way is clearly domain-dependent. For example, for the general

population, blood pressure of 170/100 is considered high and therefore, abnormal.

However, patients who need cardiac surgery usually have severe heart problems,

so for them such a value may be considered relatively normal. Furthermore, if a

patient’s condition is unexpectedly good or bad, both are categorized as abnormal.

Identifying abnormality in general is non-trivial. In MAGIC, this task is performed

by domain experts.

5.2 Analysis

In this section, I investigate the usefulness of semantic type, given/new, and se-

mantic abnormality in prosody prediction. Similar to the previous chapter, I use

both statististical correlation tests as well as RIPPER to analyze the relationship

between prosody and these deep semantic and discourse features. Since the anal-

ysis of semantic abnormality in prosody modeling is quite new and, thus far, this

feature is not modeled in the MAGIC NL generator, only manually annotated ab-

normality information is used for the current study. Since the investigation led us

to study a new set of prosodic features, I will discuss the prosodic correlates of
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Variables Chi-squared df p-value

Given/New and Pitch Accent 54.32 1 p < 0.01
Given/New and Break Index(1) 41.20 1 p < 0.01
Given/New and Break Index(2) 33.66 1 p < 0.01
Given/New and Phrase Accent 1.12 1 p < 0.30
Given/New and Boundary Tone 1.96 1 p < 0.17

Table 5.1: The Correlations between Given/new and Prosody

semantic abnormality separately from semantic type and given/new. Also, when

exploring semantic type, since there are a total of 62 different semantic types in the

read speech corpus, the contingency tables for semantic type and different prosodic

features are too sparse to apply the Chi-square test properly. Thus, only RIPPER

is used for this analysis. Both the correlation test and RIPPER are used for the

given/new analysis.

5.2.1 Correlation Analysis for Given/new

To test the correlation between discourse given/new and pitch accent, I used the

Chi-square test. Table 5.1 shows that discourse given/new is significantly correlate

with pitch accent and break index with p < 0.01. However, since given/new does

not significantly correlated with phrase accent and boundary tone prediction, in

the following analyses, I will only focus on pitch accent and break index prediction.

5.2.2 RIPPER Analysis for Semantic Type and Given/New

The machine learning experiments whose results are shown in Table 5.2 indicate

that semantic type is a useful predictor for pitch accent and break index predic-

tion. Models with semantic type information achieved significant improvement over
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the baseline models in accent and break index prediction. However, even though

the correlation results seem to suggest that discourse given/new is significantly as-

sociated with pitch accent and break index prediction, the RIPPER experiments

did not confirm this. It may be that the current data set is too small to draw a

conclusion.

Model Measures Semantic Type Given/New

Baseline 62.15% 79.03%
Pitch Accuracy 70.21% 79.03%
Accent Err. Reduction 21.29% 0%

Conf. Int. ±1.46% ±0.66%
P-value P < 0.01 P = 0.95
Baseline 62.23% 53.20%

Break Accuracy 70.99% 56.62%
Index(1) Err. Reduction 23.19% 7.1%

Conf. Int. ±1.86% ±0.69%
P-value P < 0.01 P = 0.19
Baseline 69.44% 59.08%

Break Accuracy 75.28% 59.08%
Index(2) Err. Reduction 19.11% 0%

Conf. Int. ±0.72% ±2.10%
P-value P < 0.01 P = 0.96

Table 5.2: Summary: The Different Prediction Models Learned by RIPPER

5.2.3 Semantic Abnormality and Prosody

To empirically investigate how semantic abnormality is related to prosody, a por-

tion of the spontaneous speech corpus was used. Based on ToBI break indices,

utterances in the corpus were first separated into intermediate (minor) phrases.

As a result, the basic units in this study are intermediate phrases. Then a doc-

tor was asked to categorize whether the information conveyed in each intermediate

phrase was abnormal (1) or not (0). Sometimes, the doctor assigned a single tag to

several adjacent intermediate phrases because each phrase by itself did not contain

enough information to make a judgment. The final corpus includes 784 intermediate
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phrases, 114 of which are categorized as abnormal, and all of which are annotated

with both semantic abnormality and ToBI prosodic features.

5.2.3.1 Prosodic Features

Based on informal observations, semantic abnormality may be associated with a

combination of prosodic features that appear to be intended to draw the listener’s

attention to the information being conveyed. For example, in addition to ToBI

features, speaking rate, pitch range, and F0 changes can all be used to highlight

unusual information in speech. A speaker may increase or decrease her speaking

rate. In addition, expanded pitch range, increase in loudness, and increase in the

number of accented items, and more frequent pauses often appeared to be associated

with information the speaker wished to make more prominent. So, these features

were the candidates for our investigation.

Of all the features I investigated, some of them, such as HiF0, the break

index before, the break index after, and accent probability, are derived from ToBI

annotations. The HiF0 of an intermediate phrase is defined as the maximum F0

within the most prominent pitch accent in an intermediate phrase which contains

a high (H) tone. It is a more robust measure of a speaker’s pitch range than

the highest F0 value of an intermediate phrase. The next two features, the break

index before and after an intermediate phrase, measure the strength of the prosodic

phrase boundary preceding or ending an intermediate phrase. By definition, their

values can only be 3 or 4. The next feature, the accent probability, is defined as

the percentage of words that are accented in an intermediate phrase. In addition

to these ToBI-based features, 3 additional acoustic features, average speaking rate,
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Prosodic Features ρ P-value

Speaking Rate 0.02 0.60
HiF0 0.13 < 0.01

RMS total 0.0022 0.96
F0 total 0.12 < 0.01

Break Index Before -0.08 0.05
Break Index After 0.086 0.04
Accent Probability -0.04 0.32

Table 5.3: Abnormality and Prosodic Features.

RMS total, and F0 total, were also investigated. The average speaking rate is

measured as the number of syllables per second of an intermediate phrase. Both

the RMS total and F0 total are automatically computed from wave files for each

intermediate phrase. Intuitively, we may expect that low speaking rate, high HiF0,

high RMS and F0 total, larger break index before and after a phrase, and high

accent probability may signal abnormality. Finally, to reduce the influence of inter-

speaker variations, I normalized those speaker-dependent features such as speaking

rate, HiF0, RMS total and F0 total, before conducting the empirical analysis. I use

a quite crude method for normalization. First, I compute the average value for each

feature in each speech file. For example, in terms of pitch range, I compute the

average HiF0 as the speaker-specific reference value. Then, the normalized value is

the ratio between the real value and the average value.

To understand how prosodic features are associated with abnormality, I per-

formed a set of correlation analyses based on Spearman’s rank-based correlation

test. The test results shown in Table 5.3 present the correlation coefficient ρ and

its associated statistical significance p-value for each feature.

The test results demonstrate that HiF0, F0 total, Break Index Before, and

Break Index After are significantly correlated with abnormality with p− value <=
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0.05. Since their correlation coefficients are positive, higher HiF0, higher F0 total

and more significant break index afterwards are more likely to co-occur with ab-

normal information (ρ > 0). However, for break index before, although it shows a

certain degree of correlation, the association is negative (ρ < 0), which means the

break index is less significant before phrases containing abnormal information. This

result is not what I expected because intuitively we might think that significant

prosodic phrase boundaries should be associated with important information.

To explain the negative correlation between break index before and abnor-

mality, I re-examine the data. After analyzing the corpus, it seems that the negative

correlation is a result of using break index in simultaneously conveying several kinds

of information, such as information structure, semantic/syntactic structure, as well

as information importance. In the corpus, many sentences follow the following pat-

tern: theme + rheme. Theme is the current topic as well as the connector to the

context. In contrast, rheme communicates new information about a theme. Thus,

based on the definition of abnormality, rhemes should be considered more impor-

tant. Here is an utterance from our corpus: “(He is uh) (a heavy alcohol drinker)”.

“He is uh” is the theme, and “a heavy alcohol drinker” is the rheme. Prosodically,

the utterance consists of two intermediate phrases: “He is uh” and “a heavy al-

cohol drinker”. Since the boundary before “He is uh” is a sentence boundary, its

break index is almost always “4”. While the break index before “a heavy alcohol

drinker” usually is less significant (can be either “3” or “4”). In term of semantic

abnormality, however, the first phrase was labeled as normal and the second one

was abnormal. Thus, there exists a mild negative correlation between abnormality

and the break index.
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Moreover, the strength of a break index is also affected in part by an ut-

terance’s semantic and syntactic structure. Based on our corpus, a significant

prosodic phrase boundary is often associated with a significant syntactic and se-

mantic constituent boundary. For example, a sentence boundary is often signaled

by a significant prosodic phrase boundary (100% in the break index1 model). Cir-

cumstantial boundaries are also frequently communicated by a significant prosodic

phrase boundary (100% in the break index1 model). In contrast, the prosodic

phrase boundary associated with a word boundary usually is insignificant (only has

6.43% chance to be significant in the break index1 model). After analyzing the

corpus, it seems that significant prosodic phrase boundaries that are not licensed

by the utterance’s syntactic/semantic structure may signal abnormality.

To verify that not only the absolute break index but also the break index

difference are important in conveying abnormality, I conducted a set of experi-

ments. Before proceeding with the statistical analysis, I manually cleaned all the

utterances in the corpus. All the disfluencies and repairs were removed and the

clean corpus contained only grammatical sentences or sentence segments. Then

I assigned a semantic/syntactic constituent boundary (SSCB) to all locations be-

tween two adjacent words. The index of SSCB was decided based on the rank of

each SSCB. Finally the difference between the break index used by the speaker and

its semantic/syntactic boundary index was computed. Based on this information, I

tested two new variables: the boundary difference before and after an intermediate

phrase. Table 5.2.3.1 shows the results of the correlation tests.

Based on the results, the boundary difference before a phrase is significantly

associated with abnormality. The larger the difference is, the more likely it will be
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Prosodic Features ρ P-value

Boundary Difference Before 0.125 P < 0.01
Boundary Difference After -0.04 P = 0.29

Table 5.4: Abnormality and Index Difference.

followed by a piece of abnormal information. The other new feature, the boundary

difference after a phrase, however, does not seem to signal abnormality. I speculate

that the above association patterns may be due to the nature of the speech corpus.

Usually, the doctors do not intentionally draw attention before abnormal informa-

tion. However, the doctors may unintentionally pause before abnormal information

to think about the content, even though it may occur at an “inappropriate” place

for a pause, such as after an article. This may explain why significant break index

difference before is a good predictor of abnormality.

5.3 Summary

In this chapter, I investigated three additional features: semantic type, discourse

given/new and semantic abnormality. Even with only limited data, the results

suggest that semantic types are useful for both pitch accent and break index pre-

diction. In addition, semantic abnormality is also significantly associated with a

set of prosodic features, such as break index difference, HiF0 and total F0. Finally,

the results did not confirm the usefulness of discourse given/new. This may also

be due to the sparse data problem.



95

Chapter 6

Modeling Features Statistically

for Prosody Prediction

In the previous chapters, I described empirical results on the effects of features

from a natural language generator on prosody prediction. In this section, I expand

the discussion to cover a few new features. As I stated before, the main reason for

modeling features not covered by existing NLG systems is to improve a language

generator’s capability in producing spoken language. Since many existing language

generation tools are designed for text generation, they do not specifically model

features that affect mainly speech features, such as pronunciation and prosody.

In this chapter, I focus on two such features which have the potential to

affect prosody prediction: the semantic informativeness and the predictability of

a word. Since the usefulness of these features in prosody modeling, pitch accent

in particular, has been previously suggested [Bolinger, 1958; 1972b; 1972a; Ladd,

1996], in this chapter, I focus on empirically investigating the usefulness of these

features in pitch accent prediction.
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The procedure used to define or compute these features is quite different

from what I used in the previous chapters. Otherwise, I adopted a similar routine

to examine their usefulness in pitch accent prediction. I use both statistical tests as

well as RIPPER to analyze the influence of these features in pitch accent prediction.

Overall, three corpora are used in the study: the text corpus, which is used to

statistically define, or compute the new features; the read and spontaneous corpora,

which are used to empirically verify their usefulness in pitch accent prediction.

Again, the focus of this investigation is on pitch accent placement.

6.1 Word Informativeness

Linguists have speculated that relative informativeness, or semantic weight of a

word can influence accent placement. Ladd [1996] claims that “the speakers as-

sess the relative semantic weight or informativeness of potentially accentable words

and put the accent on the most informative point or points” (ibid, pg. 175).

He also claims that “if we understand relative semantic weight, we will auto-

matically understand accent placement” (ibid, pg. 186). Bolinger [1958; 1972b;

1972a] also stated “My position was–and is– that the location of sentence accents

is not explainable by syntax or morphology .... I have held, with Hultzen 1956,

that what item has relatively stronger accent in the larger intonational pattern is

a matter of information, not of structure....” He also uses the following examples

to illustrate the phenomenon:

1. He was arrested because he KILLED a man.

2. He was arrested because he killed a POLICEMAN.
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The capitalized words in the examples are accented. In the first example, man is

semantically empty relative to kill; therefore, the verb kill gets accented. However,

in the second example, policeman is semantically rich and is accented instead.

However, different theories, not based on informativeness, were proposed to

explain the above phenomenon. For example, Bresnan’s [1971] explanation is based

on syntactic function. She suggests that man in the above sentence does not get

accented because man and other words like guy or person or thing form a category

of “semi-pronouns”. Similarly, in [Monaghan, 1994], a special class was created for

semantically empty content words for pitch accent prediction.

While researchers have discussed the possible influence of semantic informa-

tiveness, there has been no known empirical study of the claim nor has this type of

information been incorporated into computational models of prosody. In this work,

I employ two measurements of informativeness. First, I adopt an information-based

framework [Shannon, 1948], quantifying the “Information Content (IC)” of a word

as the negative log likelihood of a word in a corpus. The second measurement

is TF*IDF (Term Frequency times Inverse Document Frequency) [Salton, 1989;

1991], which has been widely used to quantify word importance in information

retrieval tasks. Both IC and TF*IDF are well established measurements of infor-

mativeness and therefore, good candidates to investigate. The results of this study

show that word informativeness not only is closely related to word accentuation,

but also provides new power in pitch accent prediction. The experimental results

suggest that information content is a valuable feature to be incorporated in speech

synthesis systems.
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In the following sections, I first define IC and TF*IDF. I then describe a set

of experiments conducted to study the relation between informativeness and pitch

accent. I explain how machine learning techniques are used in the pitch accent

modeling process. The results show that:

• Both IC and TF*IDF scores are strongly correlated with pitch accent assign-

ment.

• IC is a more powerful predictor than TF*IDF.

• IC provides better prediction power in pitch accent prediction than previous

techniques.

The investigated pitch accent models can be easily adopted by both CTS and TTS

systems.

6.1.1 Definitions of IC and TF*IDF

Following the standard definition in information theory [Shannon, 1948; Fano, 1961;

Cover and Thomas, 1991] the IC of a word is

IC(w) = −log(P (w))

where P (w) is the probability of the word w appearing in a domain and P (w) is

estimated as: F (w)
N

where F (w) is the frequency of w in the corpus and N is the

accumulative occurrence of all the words in the corpus. Intuitively, if the probability

of a word increases, its informativeness decreases and therefore it is less likely to be

an information focus. Similarly, it is therefore less likely to be communicated with

pitch prominence.
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TF*IDF is defined by two components multiplied together. TF (Term Fre-

quency) is the word frequency within a document; IDF (Inverse Document Fre-

quency) is the logarithm of the ratio of the total number of documents to the

number of documents containing the word. The product of TF*IDF is higher if a

word has a high frequency within the document, which signifies high importance

for the current document, and low dispersion in the corpus, which signifies high

specificity. In this research, I employed a variant of TF*IDF score used in SMART

[Buckley, 1985], a popular information retrieval package:

(TF*IDF)wi,dj
=

(1.0 + log Fwi,dj
) log

N

Nwi√√√√ M∑
k=1

((1.0 + log Fwk,dj
) log

N

Nwk

)2

where Fwi,dj
is the the frequency of word wi in document dj, N is the total number

of documents, Nwi
is the number of documents containing word wi and M is the

number of distinct stemmed words in document dj.

IC and TF*IDF capture different kinds of informativeness. IC is a metric

global in the domain of a corpus and each word in a corpus has a unique IC score.

TF*IDF captures the balance of a metric local to a given document (TF) and a

metric global in a corpus (IDF). Therefore, the TF*IDF score of a word changes

from one document to another (different TF). However, some global features are

also captured by TF*IDF. For example, a common word in the domain tends to

get a low TF*IDF score in all the documents in the corpus.

In order to empirically study the relations between word informativeness

and pitch accent, both the read and spontaneous speech corpora as well as the



100

text corpus are used1. The orthographic transcripts of the speech corpora as well

as the text corpus are used to calculate the IC and TF*IDF scores. First, all

the words in the text corpus as well as the speech transcripts are processed by a

stemming model so that words like receive and receives are treated as one word.

I employ a revised version of Lovins’ stemming algorithm [Lovins, 1968] which

is implemented in SMART. Although the usefulness of stemming is arguable, I

choose to use stemming because I think, for example, receive and receives may be

equally likely to be accented. Then, IC and TF*IDF are calculated. After this,

the effectiveness of informativeness in accent placement is verified using the speech

corpora. Each word in the speech corpora has an IC score, a TF*IDF score, a part-

of-speech (POS) tag and a pitch accent label. Both IC and TF*IDF are used to test

the correlation between informativeness and accentuation. POS is also investigated

by RIPPER in automatic pitch accent modeling.

6.1.2 Experiments

I conducted a series of experiments to determine whether there is a correlation

between informativeness and pitch accent and whether informativeness provides an

improvement over other known indicators on pitch accent, such as part-of-speech.

6.1.2.1 Ranking Word Informativeness in the Corpus

Table 6.1 and 6.2 show the most and least informative words in the corpus. The

IC order indicates the rank among all the words in the corpus, while TF*IDF

order in the table indicates the rank among the words within a document. The

1In this study, only a subset of the spontaneous speech corpus as well as a subset of the text
corpus were used due to the availability of the data at the time the experiments were conducted
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Rank IC Most Informative IC Least Informative

1 zophrin with
2 name1 on
3 xyphoid patient
4 wytensin in
5 pyonephritis she
6 orobuccal he
7 tzanck for
8 synthetic no
9 Rx day
10 quote had

Table 6.1: IC Most and Least Informative Words

Rank TF*IDF Most Informative TF*IDF Least Informative

1 your and
2 vol a
3 tank the
4 sonometer to
5 papillary was
6 pancuronium of
7 name2 with
8 name3 in
9 incomplete old
10 yes year

Table 6.2: TF*IDF Most and Least Informative Words

document was picked randomly from the corpus. In general, most of the least

informative words are function words, such as with or and. However, some content

words are selected, such as patient, year, old. These content words are very common

in this domain and are mentioned in almost all the documents in the corpus. In

contrast, the majority of the most informative words are content words. Some of

the selections are less expected. For example your ranks as the most informative

word in a document using TF*IDF. This indicates that listeners or readers are

rarely addressed in the corpus. This word appears only once in the entire corpus.
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6.1.2.2 Testing the Correlation of Informativeness and Accent Predic-

tion

Feature Correlation Coefficient Significance Level

TF*IDF ρ = 0.29 p < 0.01
IC ρ = 0.34 p < 0.01

Table 6.3: The Correlation of Informativeness and Accentuation

In order to verify whether word informativeness is correlated with pitch

accent, I employ Spearman’s rank correlation coefficient ρ and associated test

[Conover, 1999] to estimate the correlations between IC and pitch prominence as

well as TF*IDF and pitch prominence. As shown in Table 6.3, both IC and TF*IDF

are closely correlated to pitch accent with a significance level p < 0.01. Because

the correlation coefficient ρ is positive, this indicates that the higher the IC and

TF*IDF are, the more likely a word is to be accented.

6.1.2.3 Learning IC and TF*IDF Accent Models

The correlation test suggests that there is a statistically significant correlation be-

tween informativeness and pitch accent. In addition, I also want to show how

much performance gain can be achieved by adding this information to pitch accent

models. To study the effect of TF*IDF and IC on pitch accent, I use RIPPER

to learn models that predict the effect of these indicators on pitch accent. The

results were reported based on cross-validation. In this experiment, the predictors

are IC or TF*IDF, and the response variable is the pitch accent assignment. Once

a set of RIPPER rules are acquired, it can be used to predict which word should

be accented in a new corpus.
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Models RIPPER Performance

Baseline 52.02%
TF*IDF Model 65.66%

IC Model 70.06%
function/content model 69.42

Table 6.4: Comparison of the IC, TF*IDF Models with the Baseline Model

I also use a majority-based baseline model where all words are assigned a

default accent status (accented). 52% of the words in the corpus are actually

accented and thus, the baseline has a performance of 52%. The results in Table 6.4

show that when TF*IDF is used to predict pitch accent, performance is increased

over the baseline of 52% to 65.66 % . In the IC model, the performance is further

increased to 70.06%. Two conclusions can be drawn from the results. First, both

IC and TF*IDF are effective in pitch accent prediction. All the improvements over

the baseline model are statistically significant with p < 0.01. Second, the IC model

is more powerful than the TF*IDF model. It out performs the TF*IDF model

with p < 0.01 for the RIPPER model. The low p-values show the improvements

achieved by the IC models are significant. Since IC performs better than TF*IDF in

pitch accent prediction, I choose IC to measure informativeness in all the following

experiments.

I also compared the IC and TF*IDF model with the Function/Content

model. In the Function/Content model, all the content words are accented while

function words are not. The Function/Content model is a simple yet effective model

and has been employed in speech synthesis systems before. The comparison shows

that the performance of the IC model is better than that of the Function/Content

models. However the significance of the difference needs to be tested in a larger
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corpus. The performance of the TF*IDF model is significantly lower than that of

the Function/Content models with P¡0.01. I can conclude from this comparison

that the IC model is as effective as the function/content model in pitch accent pre-

diction. However, the TF*IDF model is slightly worse than the Function/Content

model.

6.1.2.4 Incorporating IC in Reference Accent Models

In order to show that IC provides additional power in predicting pitch accent than

current models, I directly compare the influence of IC with that of other reference

models. In this section, I describe experiments that compare IC alone against a

part-of-speech (POS) model for pitch accent prediction and then compare a model

that integrates IC with POS against the POS model. Finally, anticipating the pos-

sibility that other features within a traditional TTS in combination with POS may

provide equal or better performance than the addition of IC, I carried out experi-

ments that directly compare the performance of Text-to-Speech (TTS) synthesizer

alone with a model that integrates TTS with IC.

In most speech synthesis systems, part-of-speech (POS) is the most effective

feature in pitch accent prediction. Therefore, showing that IC provides additional

power over POS is important. In addition to the importance of POS within TTS

for predicting pitch accent, there is a clear overlap between POS and IC. I have

shown that the words with highest IC usually are content words and the words with

lowest IC are frequently function words. This is an added incentive for comparing

IC with POS models. Thus, I want to explore whether the new information added

by IC can provide any improvement when both of them are used to predict accent
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assignment.

Models RIPPER Performance

IC Model 70.06%
POS Model 70.52%

POS+IC Model 73.71%

Table 6.5: Comparison of the POS+IC Model with the POS Model

Models RIPPER Performance

TTS Model 71.75%
TTS+IC Model 72.75%
POS+IC Model 73.71%

Table 6.6: Comparison of the TTS+IC Model with the TTS Model

As shown in table 6.5, the performance of the POS model is 70.52% , which is

comparable with that of the IC model. This comparison further shows the strength

of IC because it has similar power to POS in pitch accent prediction and it is easy

to compute. When the POS models are augmented with IC, the POS+IC model

performance is increased to 73.71%. The improvement is statistically significant

with p = 0.01 which means the new information captured by IC provides additional

predicting power for the POS+IC models. These experiments produce new evidence

confirming that IC is a valuable feature in pitch accent modeling.

I also tried another reference model, Text-to-Speech (TTS) synthesizer out-

put, to evaluate the results. The TTS pitch accent model is more comprehensive

than the POS model. It has taken many features into consideration, such as dis-

course and semantic information. It is well established and has been evaluated

in various situations. In this research, I adopted Bell Laboratories’ TTS system

[Sproat, 1997; Olive and Liberman, 1985; Hirschberg, 1990b]. I ran it on the speech
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transcript to get the TTS pitch accent assignments. Comparing the TTS accent as-

signment with the expert accent assignment, the TTS performance is 71.75% which

is lower than the POS+IC model. I also tried to incorporate IC in the TTS model.

A simple way of doing this is to use the TTS output and IC as predictors and train

them with the data. The obtained TTS+IC model achieves marginal improvement.

The performance of TTS+IC model increases to 72.75%, which is lower than that

of the POS+IC models. I speculate that this may be due to the corpus I used. The

Bell Laboratories’ TTS pitch accent model is trained in a totally different domain,

and the medical corpus seems to negatively affect the TTS performance (71.75%

compared to 80% to 85%, its normal performance [Hirschberg, 1993]). Since the

TTS+IC models involve two totally different domains, the effectiveness of IC may

be compromised. If this assumption holds, I think that the TTS+IC model will

perform better when IC is trained together with the TTS internal features on the

corpus directly. But since this requires retraining a TTS system for a new domain

and it is hard to conduct such an experiment, no further comparison was conducted

to verify this assumption.

Although TF*IDF is less powerful than IC in pitch accent prediction, since

they measure two different kinds of informativeness, it is possible that a TF*IDF+IC

model can perform better than the IC model. Similarly, if TF*IDF is incorporated

in the POS+IC model, the overall performance may increase for the combined

POS+IC+TF*IDF model.

The performance of TF*IDF+IC and POS+IC+TF*IDF model is 70.42%

and 74.20% respectively, which are not almost the same as the original models.

This result seems to suggest that IC is the dominant predictor when both IC and
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TF*IDF are presented. It is further confirmed when the RIPPER learned rules were

inspected. For the TF*IDF+IC model, of all the 76 rules produced by RIPPER

during cross-validation, only 3.9% rules use TF*IDF and only 1.8% of the conditions

include TF*IDF score. However 100% rules use IC and 98.2% conditions include

IC. Similarly for the POS+IC+TF*IDF model, of all the 72 rules learned during

cross-validation, TF*IDF is only used in one rule in one condition, IC is used in

86.1% of the rules and 67.9% of the conditions and POS is used in 72.2% of the

rules and 31.3% of the conditions. This result shows that TF*IDF is not very useful

when IC is presented in pitch accent prediction.

6.1.3 Summary and Discussion

In this section, I have provided empirical evidence for the usefulness of informative-

ness for accent assignment. Overall, there is a positive correlation between indica-

tors of informativeness, such as IC and TF*IDF, and pitch accent. The more infor-

mative a word is, the more likely that a pitch accent is assigned to the word. Both

of the two measurements of informativeness improve over the baseline performance

significantly. I also show that IC is a more powerful measure of informativeness

than TF*IDF for pitch accent prediction. Later, when comparing IC-empowered

POS models with POS models, I found that IC enables additional, statistically

significant improvements for pitch accent assignment. This performance also out-

performs the TTS pitch accent model. Overall, IC is not only effective, as shown

in the results, but also relatively inexpensive to compute for a new domain.

IC does not directly measure the informativeness of a word. It measures

the rarity of a word in a corpus. That a word is rare doesn’t necessarily mean
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that it is informative. Semantically empty words can be ranked high using IC as

well. For example, CABG is a common operation in this domain. CABG is almost

always used whenever the operation is mentioned. However, in a few instances,

it is referred to as a CABG operation. As a result, the semantically empty word

(in this context) operation gets a high IC score and it is very hard to distinguish

high IC scores resulting from this situation from those that accurately measure

informativeness and this causes problems in precisely measuring the IC of a word.

Similarly, misspelled words also can have high IC score due to their rarity.

A second issue concerns the use of the TF*IDF score for this application.

TF*IDF should rank topic related words higher. Topic words identified in this

way have a high frequency in the current document (high TF) and low occurrence

in other documents (high IDF score). However, topic words are not necessarily

communicated by pitch prominence. On the contrary, each time a word is repeated

in a document (increased TF), the information gain becomes less and less. As a

result, it is less likely associated with pitch accent. If this assumption is true, I

speculate that IDF alone can be used instead and it might out-perform TF*IDF in

predicting accent.

Another issue concerns the reduction of noise in calculating IC or TF*IDF.

For example, if took and take are treated as two different words, the IC score will be

over-stated and TF*IDF score can be either over-stated or under-stated. Therefore,

a better morphology module can help reduce this type of noise.

IC may not be perfect for quantifying word informativeness. However, even

with a perfect measurement of informativeness, there are still many cases where

this information by itself would not be enough. For example, each word only
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gets a unique IC score regardless of its context; yet it is well known that context

information plays a role in accentuation. As a result, it is also interesting to find

out how IC interacts with other features in accent prediction.

6.2 Word Predictability

In this section, I investigate how another feature, word predictability, influences

whether it should be accented or not. Modeling word predictability can be very

complicated. For example, discourse context, conversation environment, sentence

structure, as well as the background shared between a speaker and listener may all

affect the predictability of a word. In this study, I focus on the influence of a word’s

local context on accent prediction. More specifically, I focus on the influence of the

neighboring words. Results of experiments on two transcribed speech corpora in a

medical domain show that such predictability information is a useful predictor of

pitch accent placement.

6.2.1 Motivation

Previous researchers have speculated that word predictability affects accent assign-

ment. For example, Bolinger argued that the relatively more unpredictable items

in an utterance are more likely to be accented [Bolinger, 1972b; 1972a]. Some

examples which can support this claim are listed in the following:

1. a POINT to make

2. a point to ELUCIDATE
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In the first example, the verb make is relatively predictable from POINT; therefore,

POINT receives the primary accent. In contrast, the verb ELUCIDATE is relatively

hard to predict from point, it receives the primary stress instead.

James Marchand [Marchand, 1993] also notes how word predictability, mea-

sured by word collocations, affect accent placement. He states familiar collocations

change their stress, witness the American pronunciation of ‘Little House’ [in the

television series Little House on the Prairie], where stress used to be on HOUSE,

but now, since the series is so familiar, is placed on the LITTLE. That is, for col-

located words, stress shifts to the left element of the compound. In other words,

since “LITTLE” and “house” have co-occurred many times, house becomes rela-

tively predictable, therefore does not receive primary accent any more. However,

there are numerous counter-examples: consider apple PIE, which retains a right

stress pattern, despite the collocation. Similarly in the following examples:

1. FIFTH street

2. fifth AVENUE

both Fifth Street and Fifth Avenue are two roads in New York City. Fifth Avenue

is more famous and thus frequently mentioned. In these two examples, the more

predictable word, such as AVENUE retain the primary accent while the less pre-

dictable word street does not receive a primary accent. So, the extent to which

word predictability affects accent patterns is still unclear.

Despite some preliminary investigation [Liberman and Sproat, 1992], word

predictability, or word collocation information has not, to my knowledge, been suc-

cessfully used to model pitch accent assignment; nor has it been incorporated into
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any existing speech synthesis systems for accent prediction. In this paper, I empir-

ically verify the usefulness of word predictability for accent prediction. In Section

6.2.2, I present a short description of the predictability measures investigated. Sec-

tion 6.2.3 to 6.2.6 describe the analyses and machine learning experiments in which

I attempt to predict pitch accent placement. In Section 6.2.7 I sum up the results.

In the following, I focus on empirically investigating whether word pre-

dictability, based on a word’s local context, affects its accent patterns. More specif-

ically, in the following, I focus on how word predictability influences whether nouns

are accented or not.

Determining which nouns are accented and which are not is challenging,

since part-of-speech information cannot help here. So, other accent predictors must

be found. There are some advantages in looking only at one word class. The

interaction between part-of-speech and word predictability is eliminated, so that

the influence of word predictability is easier to identify. It also seems likely that

word predictability may have a greater impact on content words, like nouns, than

on function words, like prepositions. Thus, focusing on nouns seems a reasonable

starting point. Again, in this study, I used only binary accent/deaccent decisions.

6.2.2 Word predictability Measures

I used three measures of word predictability to examine the relationship between

word predictability and accent placement: word N-gram predictability, mutual in-

formation, and the Dice coefficient. Both mutual information [Fano, 1961] and the

Dice coefficient [Dice, 1945] are two standard measures of collocation. In general,

mutual information measures uncertainty reduction or departure from indepen-
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dence. The Dice coefficient is a collocation measure widely used in information

retrieval [Salton and McGill, 1983]. In general there is some correlation between

word collocation and word predictability. For example, if two words are collocated,

then it will be easy to predict the second word from the first. Similarly, if one word

is highly predictable given another word, then there is a higher possibility that

these two words are collocated. Therefore, collocation measures, such as mutual

information and Dice coefficient, can be used as measures of word predictability.

N-gram word predictability has been widely used in language modeling for speech

recognition. In the following, I will give detailed definitions of each.

6.2.2.1 N-gram Predictability

Statistically, Ngram word predictability is defined as the log conditional probability

of word wi, given the previous words wi−1, wi−2...:

Pred(wi) = log(Prob(wi|wi−1wi−2...wi−n)

Depending on the number of context words involved, N-gram predictability be-

comes unigram predictability if n=0, or bigram predictability if n=1 or trigram

predictability if n=2. N-gram predictability directly measures the likelihood of

seeing one word, given the occurrence of zero or several previous words. N-gram

predictability has two forms: absolute and relative. Absolute predictability is the

value directly computed from the formula. For example, given four adjacent words

wi−1, wi, wi+1 and wi+2, if I assume bigram predictability Prob(wi|wi−1) = 0.0001,

Prob(wi+1|wi) = 0.001, and Prob(wi+2|wi+1) = 0.01, the absolute bigram pre-

dictability will be -4, -3 and -2 for wi, wi+1 and wi+2. The relative predictability

is defined as the rank of absolute predictability among words in a constituent. In
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the same example, the relative bigram predictability will be 1, 2 and 3 for wi, wi+1

and wi+2, where 1 is associated with the word with the lowest absolute predictabil-

ity. In general, the higher the rank, the higher the absolute predictability. Except

in Section 6.2.6, all the predictability measures mentioned in this paper use the

absolute form.

I used the text corpus to compute N-gram word predictability for our med-

ical domain. Three N-gram predictability measures were computed: unigram pre-

dictability, bigram predictability, and trigram predictability. In the following anal-

ysis, I focus on bigram predictability because both mutual information and Dice

coefficient only use one context word. When calculating the word bigram pre-

dictability, I first filtered uncommon words (words occurring 5 times or fewer in

the corpus) then used the Good-Turing discount strategy to smooth the bigram.

Finally I calculated the log conditional probability of each word as the measure of

its bigram predictability.

6.2.2.2 Mutual Information

Two different measures of mutual information were used for word collocation: point-

wise mutual information, which is defined as :

I1(wi−1; wi) = log
Pr(wi−1, wi)

Pr(wi−1)Pr(wi)

and average mutual information or expected mutual information, which is defined

as:

I2(wi−1; wi) =

Pr(wi−1, wi) log
Pr(wi−1, wi)

Pr(wi−1)Pr(wi)
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+Pr(wi−1, wi) log
Pr(wi−1, wi)

Pr(wi−1)Pr(wi)

+Pr(wi−1, wi) log
Pr(wi−1, wi)

Pr(wi−1)Pr(wi)

+Pr(wi−1, wi) log
Pr(wi−1, wi)

Pr(wi−1)Pr(wi)

The same text corpus was used to compute both mutual information measures.

Only word pairs with bigram frequency greater than five were retained.

6.2.2.3 The Dice Coefficient

The Dice coefficient is defined as:

Dice(wi−1, wi) =
2 × Pr(wi−1, wi)

Pr(wi−1) + Pr(wi)

Here, I also use a cutoff threshold of five to filter uncommon bigrams.

Although all these measures are correlated, one measure can score word pairs

quite differently from another. Table 6.7 shows the top ten most predictable words

for each metric.

bigram-Pred I1 I2 Dice

chief complaint polymyalgia rheumatica The patient greenfield filter
cerebrospinal fluid hemiside stepper present illness Guillain Barre

folic acid Pepto Bismol hospital course Viet Nam
periprocedural complications Glen Cove p o Neo Synephrine

normoactive bowel hydrogen peroxide physical exam polymyalgia rheumatica
uric acid Viet Nam i d hemiside stepper

postpericardiotomy syndrome Neo Synephrine coronary artery Pepto Bismol
Staten Island otitis media postoperative day Glen Cove
scarlet fever Lo Gerfo saphenous vein present illness

pericardiotomy syndrome Chlor Trimeton medical history chief complaint

Table 6.7: Top Ten Most Collocated Words for Each Measure

In the bigram predictability top ten list, I have pairs like scarlet fever where

fever is very predictable from scarlet (in the corpus, scarlet is always followed by
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fever), thus, it ranks highest in the predictability list. Since scarlet can be difficult

to predict from fever, these types of pairs will not receive as high score using mutual

information (in the top 5% in I1 sorted list and in the top 20% in I2 list) and Dice

coefficient (top 22%). From this table, it is also quite clear that I1 tends to rank

uncommon words high. All the words in the top ten I1 list have a frequency less

than or equal to seven (remember, I filter all the pairs occurring fewer than six

times).

Of the different metrics listed in table 6.7, only bigram predictability is a

unidirectional measure. It captures how the appearance of one word affects the

appearance of the following word. In contrast, the other measures are all bidirec-

tional measures, making no distinction between the relative position of elements of

a pair of collocated items. Among the bidirectional measures, point-wise mutual

information is sensitive to marginal probabilities Pr(wordi−1) and Pr(wordi). It

tends to give higher values as these probabilities decrease, independently of the

distribution of their co-occurrence. The Dice coefficient, however, is not sensitive

to marginal probability. It computes conditional probabilities which are equally

weighted in both directions [Smadja et al., 1996].

This can be shown by applying a simple transformation:

Dice(wordi−1, wordi) =

2
1

Pr(wordi−1|wordi)
+ 1

Pr(wordi|wordi−1)

Average mutual information measures the reduction in the uncertainty, or en-

tropy, of one word, given another, and is totally symmetric. Since I2(wordi−1;

wordi)=I2(wordi;wordi−1), the uncertainty reduction of the first word, given the

second word, is equal to the uncertainty reduction of the second word, given the
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first word. Furthermore, because I2(wordi; wordi−1) = I2(wordi;wordi−1), the un-

certainty reduction of one word, given another, is also equal to the uncertainty

reduction of failing to see one word, having failed to see the other.

Since there is considerable evidence that prior discourse context, such as pre-

vious mention of a word, affects pitch accent decisions, it is possible that symmetric

measures, such as mutual information and the Dice coefficient, may not model ac-

cent placement as well as asymmetric measures, such as bigram predictability. Also,

the bias of point-wise mutual information toward uncommon words can affect its

ability to model accent assignment, since, in general, uncommon words are more

likely to be accented [Pan and McKeown, 1999; Cahn, 1998]. Since this metric dis-

proportionately raises the mutual information for uncommon words, making them

more predictable than their appearance in the corpus warrants, it may predict that

uncommon words are more likely to be deaccented than they really are. As a result,

I speculate that ngram-based predictability model may have an edge over the other

measures. In the following, I am going to empirically investigate the usefulness of

these predictability measures on accent prediction.

6.2.3 Statistical Analyses

In order to determine whether word predictability is useful for pitch accent predic-

tion, I first employed Spearman’s rank correlation test [Conover, 1999].

In this experiment, I employed a unigram predictability-based baseline model.

The reason for choosing this as the baseline model is not only because it is context

independent, but also because it is effective. In the previous study on word infor-

mativeness, I showed that when word informativeness is used individually, it is as
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powerful a predictor as part-of-speech. When jointly used with part-of-speech infor-

mation, the combined model can perform significantly better than each individual

model. Since unigram predictability is essentially the same as the information-

based metrics of word informativeness, unigram predictability model shares the

same property. Since unigram predictability is context independent. By comparing

other predictors to this baseline model, I can demonstrate the impact of context,

measured by word predictability, on pitch accent assignment.

Table 6.8 shows that for the read speech corpus, unigram predictability, bi-

gram predictability and mutual information are all significantly correlated (p <

0.01) with pitch accent decision.2 However, the Dice coefficient shows only a trend

Corpus Read Spontaneous
r p-value r p-value

Baseline (unigram) r = −0.166 p < 0.01 r = −0.02 p = 0.39
bigram Predictability r = −0.236 p < 0.01 r = −0.36 p < 0.01

Pointwise Mutual Information r = −0.185 p < 0.01 r = −0.177 p < 0.01
Dice Coefficient r = −0.079 p < 0.07 r = −0.094 p < 0.01

Table 6.8: Correlation of Different Predictability Measures with Accent Decision

toward correlation (p < 0.07). In addition, both bigram predictability and (point-

wise) mutual information show a slightly stronger correlation with pitch accent

than the baseline. When I conducted a similar test on the spontaneous corpus, I

found that all but the baseline model are significantly correlated with pitch accent

placement. Since all three models incorporate a context word while the baseline

model does not, these results suggest the usefulness of context in accent prediction.

Overall, for all the different measures of word predictability, bigram predictability

explains the largest amount of variation in accent status for both corpora. I con-

ducted a similar test using trigram predictability, where two context words, instead
2Since pointwise mutual information performed consistently better than average mutual infor-

mation in the experiment, I present results only for the former.
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of one, were used to predict the current word. The results are slightly worse than

bigram predictability (for the read corpus r = −0.167, p < 0.01; for the sponta-

neous r = −0.355, p < 0.01). The failure of the trigram model to improve over

the bigram model may be due to sparse data. Thus, in the following analysis, I

focus on bigram predictability. In order to further verify the effectiveness of word

predictability in accent prediction, I will show some examples in the speech corpora

first. Then I will describe how machine learning helps to derive pitch accent pre-

diction models using this feature. Finally, I show that both absolute predictability

and relative predictability are useful for pitch accent prediction.

6.2.4 Word Bigram Predictability and Accent

In general, nouns, especially head nouns, are very likely to be accented. However,

certain nouns consistently do not get accented. For example, Table 6.9 shows some

collocations containing the word cell in the speech corpus. For each context, I list

the collocated pair, its most frequent accent pattern in the corpus (upper case indi-

cates that the word was accented and lower case indicates that it was deaccented),

its bigram predictability (the larger the number is, the more predictable the word

is), and the frequency of this accent pattern, as well as the total occurrence of the

bigram in the corpus. In the first example, cell in [of ] CELL is very unpredictable

Word Pair Pred(cell) Freq

[of] CELL -3.11 7/7
[RED] CELL -1.119 2/2
[PACKED] cell -0.5759 4/6
[BLOOD] cell -0.067 2/2

Table 6.9: Bigram Predictability and Accent for cell Collocations

from the occurrence of of and always receives a pitch accent. In [RED] CELL,
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[PACKED] cell, and [BLOOD] cell, cell has the same semantic meaning, but differ-

ent accent patterns: cell in [PACKED] cell and [BLOOD] cell is more predictable

and deaccented, while in [RED] CELL it is less predictable and is accented. These

examples show the influence of context and its usefulness for bigram predictability.

Other predictable nouns, such as saver in CELL saver usually are not accented

even when they function as head nouns. Saver is deaccented in ten of the eleven

instances in the speech corpus. Its bigram score is -1.5517, which is much higher

than that of CELL (-4.6394 to -3.1083 depending upon context). Without pre-

dictability information, a typical accent prediction system is likely to accent saver,

which would be inappropriate in this domain.

6.2.5 Learning Accent Prediction Models

Both the correlation test results and direct observations provide some evidence on

the usefulness of word predictability. But I still need to demonstrate that this

feature can be successfully used in automatic accent prediction. In order to achieve

this, I used machine learning to automatically build accent prediction models using

bigram word predictability scores.

I used RIPPER to explore the relations between predictability and accent

placement. The training data includes all the nouns in the speech corpora. The

independent variables used to predict accent status are the unigram and bigram

predictability measures, and the dependent variable is pitch accent status. I used

a majority-based predictability model as the baseline (i.e. predict accented).

In the combined model, both unigram and bigram predictability are used

together for accent prediction. From the results in Table 6.10, the bigram model
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Corpus Predictability Model Performance Conf. P-value

baseline model 81.98% na na
unigram model 82.86% ± 0.93 0.74

Read bigram model 84.41% ± 1.10 0.32
unigram+bigram 85.03% ± 1.04 0.31
baseline model 70.03% na na
unigram model 72.22% ± 0.62 0.19

Spontaneous bigram 74.46% ± 0.3 < 0.01
unigram+bigram 77.43% ± 0.51 < 0.01

Table 6.10: Ripper Results for Accent Status Prediction

consistently outperforms the unigram model, and the combined model achieves the

best performance. In addition, for the spontaneous corpus, both the bigram and the

combined model achieve significant improvement over the baseline. The combined

model also achieves significant improvement over the unigram model.

The improvement of the combined model over both unigram and bigram

models may be due to the fact that some accent patterns that are not captured

by one are indeed captured by the other. In the street name example, street in

phrases like (e.g. FIFTH street) is typically deaccented while avenue or lane (e.g.

Fifth AVENUE) is accented. While it seems likely that the conditional probabil-

ity of Pr(Street|Fifth) is no higher than that of Pr(Avenue|Fifth), the unigram

probability of Pr(street) is probably higher than that of avenue Pr(avenue)3. So,

incorporating both predictability measures may tease apart these and similar cases.

In Table 6.11, I present all the rules in the combined model which are auto-

matically learned by RIPPER for the spontaneous corpus.

The first rule, for example, says that if the bigram predictability score is

3For example, in a 7.5M word general news corpus (from CNN and Reuters), street occurs
2115 times and avenue just 194. Therefore, the unigram predictability of street is higher than
that of avenue. The most common bigram with street is Wall Street which occurs 116 times and
the most common bigram with avenue is Pennsylvania Avenue which occurs 97. In this domain,
the bigram predictability for street in Fifth Street is extremely low because this combination never
occurred, while that for avenue in Fifth Avenue is -3.0995 which is the third most predictable
bigrams with avenue as the second word.
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no-accent → bi − pred >= −2.5309 and uni − pred <= −4.6832
no-accent → bi − pred >= −2.3666 and uni − pred <= −3.6605
no-accent → bi − pred >= −1.524 and bi − pred <= −1.0512
no-accent → bi − pred >= −0.5759 and bi − pred <= −0.1673
default accent

Table 6.11: RIPPER Rules for the Combined Model

greater than or equal to -2.5309 and the unigram predictability is less than or equal

to -4.6832, then predict that this word is deaccented. Since these rules are ordered,

the next rule only applies to words which are not covered by all the previous rules.

If a word is not covered by any of the rules, the word will be accented, according

to the default rule.

6.2.6 Relative Predictability

In the previous analysis, I showed the effectiveness of absolute word predictability. I

now consider whether relative predictability is correlated with a larger constituent’s

accent pattern. The following analysis focuses on accent patterns of non-trivial base

NPs.4 For this study I labeled base NPs by hand. For each base NP, I calculate

which word is the most predictable and which is the least. I want to see, when

comparing with its neighboring words, whether the most predictable word is more

likely to be deaccented. As shown in Table 6.12, the “total” column represents the

total number of most (or least) predictable words in all baseNPs5. The next two

columns indicate how many of them are accented and deaccented. The last column

is the percentage of words that are accented. Table 6.12 shows that the probability

4Non-recursive noun phrases containing at least two elements.
5The total number of most predictable words is not equal to that of least predictable words

due to ties.
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Model Predictability Total Accented Word Not Accented Accentability

unigram Least Predictable 1206 877 329 72.72%
Most Predictable 1198 485 713 40.48%

bigram Least Predictable 1205 965 240 80.08%
Most Predictable 1194 488 706 40.87%

Table 6.12: Relative Predictability and Accent Status

of accenting a most predictable word is between 40.48% and 45.96% and that of a

least predictable word is between 72.72% and 80.08%. This result indicates that

relative predictability is also a useful predictor for a word’s accentability.

6.2.7 Summary

In this section, I have investigated several word predictability measures for pitch

accent prediction. The initial hypothesis was that word predictability affects pitch

accent placement, and that the more predictable a word is in terms of its local

lexical context, the more likely it is to be deaccented. In order to verify this claim, I

estimated three predictability measures: N-gram predictability, mutual information

and the Dice coefficient. I then used statistical techniques to analyze the correlation

between different word predictability metrics and pitch accent assignment for nouns.

The results show that, of all the predictability measures I investigated, bigram word

predictability has the strongest correlation with pitch accent assignment. Based

on this finding, I built several pitch accent models, assessing the usefulness of

unigram and bigram word predictability — as well as a combined model — in accent

predication. The results show that the bigram model performs consistently better

than the unigram model, which does not incorporate local context information.

However, the combined model performs best of all, suggesting that both contextual

and non-contextual features of a word are important in determining whether or not
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it should be accented.

6.3 Word Informativeness and Word Predictabil-

ity

In the word informativeness study, I focussed on the fact that words with high

frequency are semantically less informative than low frequency words, and thus

possibly less likely to be accented. In the predictability experiments, I also found

that words, such as nouns, that are highly predictable from context are less likely

to be accented. As I mentioned before, using the word frequency model as a metric

of word informativeness (although this is independently motivated by information

theory) is essentially the same as using the unigram model, a model proposed sep-

arately as a special metric of word predictability. Basically, more frequent words,

or less informative words, are more predictable in a domain. Thus, both word fre-

quency and word predictability actually are variants of the same basic account: a

measure of the predictability of a word within a particular context. In the word

predictability study, I also show that a combined model with both word unigram

predictability and bigram predictability have the best performance in accent pre-

diction. This may be due to the fact that a model combining both unigram and

bigram word predictability is a more accurate metric of word predictability, there-

fore, a better predictor of accent placement. One consequence of the generalization

may lead us to pursue a more comprehensive word predictability-based accent pre-

diction model, which may include additional information, such as the property of

the word itself, as well as the influence of both local and global context.
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Chapter 7

Combining Language Features in

Prosody Prediction

Once a set of discourse, syntactic, semantic and lexical features are derived, they

can be used in prosody prediction. Traditionally, there are two types of prosody

prediction approaches: one employs manually-crafted rules; the other uses automat-

ically derived prediction models. Manually-crafted rules were used in early speech

synthesis systems. They were constructed by linguists based on informal observa-

tions. For example, early TTS systems employed simply rules, such as accenting

content words, de-accenting function words, and using punctuation as a guide to

phrase final prosody [Allen et al., 1987]. However, constructing, maintaining, and

evaluating manually crafted rules are difficult and time-consuming. Later on, ma-

chine learning-based approaches gained popularity and they usually performed bet-

ter than manually-crafted models. For example, various learning techniques were

explored to automatically construct prosody models from pre-annotated speech

corpus. In [Hirschberg, 1993; Wang and Hirschberg, 1992], Classification and Re-
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gression Trees (CART) [Breiman et al., 1984] were automatically constructed from

training corpora to predict pitch accent and intonational phrase boundaries. In

addition, [Nakatani, 1998; Pan and McKeown, 1999] used classification-based rule

induction for pitch accent prediction. Hidden Markov Modeling (HMM) was also

employed by [Pan and McKeown, 1999; Taylor and Black, 1998] for pitch accent and

prosodic phrase boundary prediction. Despite the difference in these approaches,

they share a common property: the final prediction is based on a general model

which only includes a set of rules, or parameters abstracted from individual exam-

ples. Each individual observation is ignored in prediction. Unlike these approaches,

instance-based approaches concentrate on individual examples. The generalizations

are conducted on the fly during prediction. In this chapter, I focus on two machine

learning approaches that combine various language features in prosody modeling.

One represents the traditional generalization-based approach. I use RIPPER to

automatically derive prosody prediction rules from a set of training examples. The

main reason to incorporate RIPPER results is to illustrate and analyze the prosodic

patterns discovered by RIPPER. On the other hand, I also propose a new instance-

based prosody modeling approach. Unlike RIPPER, in instance-based learning,

there is no prediction model to inspect. Therefore, it is hard to gain linguistic

insight from doing this. However, it has better prediction performance, which is

the ultimate goal for most CTS systems.

In the following, I will compare these two approaches in more detail and

illustrate why the instance-based approach is effective in CTS systems.
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7.1 A Comparison of Rule-based and Instance-

based Approach

7.1.1 Generalized Rule Induction

Generalized rule induction allows us to test and identify the influence of specific

features on prosody. It learns rules that quantify the correlation between one or

more linguistic and prosodic features, where the rules generalize across many exam-

ples. Because we have consistently seen examples of the influence multiple times,

reliability is higher. However, because the rule generalizes over many examples,

some of the variations may be lost when instances are grouped together if there are

too many variations or the training data are not sufficient. Therefore, only when

the training data are relatively large, or the examples are quite consistent, will

rule induction-based approaches be used effectively. However, since labeling data

is very time consuming, to have a sufficient amount of data to train a fine-grained

prosody model is always difficult. But rule-based approaches also have its advan-

tages. Since the resulting rules are understandable, researchers can inspect the

results to either confirm or contradict linguistic judgments. Thus, the results not

only provide a computational model which can be used to improve speech quality

in actual systems, they also provide insight into our understanding of how prosody

is determined.
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7.1.2 Instance-based Prosody Modeling

In contrast to generalized rule induction, prosody prediction in instance-based

prosody modeling is based on similar pre-stored instances in the speech corpus

instead of rules that generalize across many instances. Given a sentence for synthe-

sizing, the system will find the best matches from the prosodically tagged corpus,

and the prosodic features of the given sentence are assigned based on the matching

sentence or sentence segments. With limited amount of training data, usually we

can do more with instance-based approach than with rule-based approaches.

The proposed instance-based prosody modeling approach also introduces

some augmentations over the traditional instance-based framework. First, it cap-

tures the co-occurrence of the prosodic features of many words at a time. Once

a match is found, all prosodic features associated with all the words are selected.

Thus, in this approach, many features, both input and output, are modeled simulta-

neously. Moreover, most existing prosody modeling approaches use a fixed window

to model context influence. It is hard to capture long-distance dependencies with a

fixed window unless the window size is very large. In the proposed instance-based

approach, the number of words which can be modeled at a time can vary signif-

icantly, from a single word to sentences with many words. Another advantage of

instance-based prosody modeling is its ability to keep specificity. Generally, a sen-

tence can be verbalized in several equally appropriate ways. Speech with variation

sounds more vivid and less repetitive.

Despite the advantages, an instance-based approach works well only when

new sentences are relatively similar to the sentences stored in the training corpus.

If the system cannot find good matches from the training corpus most of the time,
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the strength of this approach diminishes. For most existing CTS systems, this

approach can work quite well. Most generation systems are designed for a specific

application and the language generator usually produces sentences with a limited

vocabulary. Even with a small training corpus, the system still can have many

good matches, which makes the instance-based approach effective and attractive.

For example, MAGIC employs a flexible advanced sentence generator that produces

different sentence structures using opportunistic clause aggregation [Shaw, 1998].

Even in MAGIC, given two randomly selected system-generated patient reports,

about 20% of the sentences and 80% of the vocabulary overlap.

Second, most existing systems predict one prosodic feature at a time. For

example, in most existing systems [Taylor and Black, 1998; Black, 1995], different

models were constructed to predict pitch accent and prosodic phrase boundary

separately. Employing separate prediction models may cause problems because of

the interactions among the prosodic assignments of one word. For example, if a

word has a boundary tone assignment H%, usually it implies that the break index

after it should be 4. With separate prediction models, it will be harder to ensure the

consistency between different prosodic assignments of the same word. To alleviate

this problem, people have proposed to use prosodic features as predicting variables

in predicting other prosodic features. For example, [Wang and Hirschberg, 1992]

uses pitch accent assigned by an accent prediction system [Hirschberg, 1990a] for

prosodic phrase boundary prediction. Similarly, [Hirschberg, 1993] uses prosodic

phrase boundary predicted by a prosodic phrasing system [Wang and Hirschberg,

1992] for pitch accent prediction. In order to use these approaches, a preliminary

version of the accent or prosodic phrase boundary prediction system is needed to



129

start the process. In addition, to get the best possible results, several iterations of

the same process may be needed. Moreover, since none of the prosody prediction

system is perfect, due to prediction errors, it is still possible that some interactions

between pitch accent and prosodic phrase boundary are not captured, and thus

the consistency between them is not guaranteed. Therefore, incorporating prosodic

features as predicting variables will not solve the problem entirely.

So far, there is not much effort in predicting multiple prosodic features simul-

taneously. Since the proposed approach tries to adopt all the prosodic assignments

of a word simultaneously, this type of interaction is captured naturally.

7.2 RIPPER-based Prosody Modeling

In this section, I describe the use of RIPPER to build a comprehensive model in

which different discourse, semantic, syntactic and lexical features are combined to

predict different prosodic features. Since most of the features investigated before

were produced by the MAGIC NL generator, and only the read speech corpus

contains them, this investigation concentrates on the read speech corpus. Thus,

features such as semantic abnormality, which are tagged only for the spontaneous

corpus, are not included in this study. In addition, based on our previous investiga-

tion, most features I investigated do not have significant influence on phrase accent

and boundary tone prediction; thus, in this section, I only focus on pitch accent and

break index prediction. For both features, only a binary classification is conducted.

Overall, except for semantic abnormality, all the other features are included in

this study: word class, SSCB, SSCL, syntactic function, semantic role, word, word

position, semantic type, given/new, word informativeness and word predictability.
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Table 7.1 shows the performance of each prediction model measured as the average

accuracy after 5-fold cross validation. In addition, I also list the performance of

the baseline model as well as a reference model for each prosodic feature. The

reference model represents the best individual model applied to the same data set.

Finally, I also conducted Chi-square test to verify whether the difference between

the reference and the combined model is statistically significant.

Model Baseline Ref. Model Comb. Model Conf. Int. P-value

Pitch Accent 62.15% 82.58%(Word) 84.64% ±0.62% P=0.20
Break Index(1) 62.23% 85.49%(SSCB/SSCL) 89.44% ±1.31% p < 0.01
Break Index(2) 69.44% 88.07%(SSCB/SSCL) 90.39% ±0.42% p=0.08

Table 7.1: Ripper Results for the Combined Model

The results shown in Table 7.1 indicate that the combined model achieves

some improvement over the reference model for both accent and break index pre-

diction. In addition, the improvement for break index (1) prediction is statisti-

cally significant with p < 0.01. For break index (2), the improvement is marginal

(p = 0.08)

In the following I show the rule-sets learned by RIPPER for pitch accent

and break index prediction. Table 7.2 shows the RIPPER learned accent predic-

tion model. In this figure, “na” means “no pitch accent” and “ac” means “accent”.

In addition, “IC” measures the informativeness of a word, “”SSCB” is the syntac-

tic/semantic constituent boundary following the word, “SSCL” is the constituent

length associated with the SSCB following the word and “lex” is the word itself.

Of all eleven features investigated, seven features appear in the final accent

prediction model: IC is in five of the eight rules, bigram in four of the eight rules,

Given/new in two of the eight rules, SSCL, SSCB and Lex, all in one of the eight

rules. One surprise is that POS, one of the most frequently used features for accent
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na → IC <= 4.84296, Givennew = NA (236/29).
na → IC <= 3.87297(36/13).
na → bigram >= −0.3163, IC <= 5.60757 (14/4).
na → bigram >= −1.6556, bigram <= −0.9253, SSCL >= 2 (40/21).
na → bigram >= −2.2713, IC <= 5.43767, Position >= 10 (23/10).
na → bigram >= −2.5537, IC <= 6.26435,Givennew = NA, SSCB = wb (12/0).
na → Lex = level (10/4).
default ac (643/70).

Table 7.2: The Combined Pitch Accent Prediction Model

mb → SSCL >= 2, IC >= 5.76791, Position >= 4 (210/16).
mb → SSCB = alib, POS = noun, Position <= 18 (80/1).
mb → SSCL >= 2, SyntFun = sent − adjunct head (31/0).
mb → SSCL >= 3, bigram <= −1.3011 (30/17).
mb → Lex = bypass (12/9).
mb → SSCB = aparb, IC >= 6.26435 (21/3).
mb → SemType = c − before (4/1).
mb → Lex = included (3/1).
default nmb (677/49).

Table 7.3: The Combined Break Index (1) Prediction Model

prediction, appears in none of the rules; however, Givennew encodes some general

word class information because Givennew=NA implies that the corresponding word

is not a content word. This seems to suggest that the prediction power of POS in-

teracts with other features, such as IC, bigram etc. When all of them are combined,

POS becomes less important.

Table 7.3 shows the break index (1) prediction model learned by RIPPER. In

this model, “mb” means a significant prosodic phrase boundary (break index >= 3)

and “imb”, an insignificant boundary (break index < 3). In addition, “SyntFun”

is the syntactic function of a word and “SemType” is the semantic type of a word.

Of the 11 features investigated, nine features appear in the final break index

(1) prediction model. Among them, SSCL seems to be the most effective feature

tested (appears in three of the nine rules learned), SSCB, position, lex and IC are
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mb → IC >= 5.76791, SSCL >= 2 (216/63).
mb → Pos = noun, SSCB = alib (75/8).
mb → SSCL >= 3, SyntFun = sent − adjunct head (19/0).
mb → SyntFun = subj − comp head, SSCL >= 4 (6/1).
mb → SSCB = aparb, Givennew = new (14/3).
mb → SemRole = p time, Lex = bypass (4/1).
default nmb (733/22).

Table 7.4: The Combined Break Index (2) Prediction Model

also quite useful (appears in two of the nine rules). Part-of-speech appears in one

of the nine rules.

Table 7.4 shows the break index (2) prediction model learned by RIPPER.

Similarly, “mb” in the model means significant prosodic phrase boundary (break

index =4) and “nmb” means insignificant boundary (break index < 4). In addition,

“SemRole” means the semantic role of a word. Eight of the 11 features appear in

the final break index (2) model. Among them, SSCL, SSCB and syntactic function

appear in two of the seven rules. The other five features appear in only one rule

each. Since in general, RIPPER tries to incorporate the most effective feature in

its prediction rules, frequently used features are usually the most useful features.

Overall, it seems IC and bigram predictability, two of the newly incorporated

statistical features, are the most effective predictors for pitch accent modeling. In

addition, SSCL and SSCB, two of the SURGE features, are the most effective fea-

tures for break index prediction. In contrast, some of the detailed surface semantic

information, such as semantic roles, does not significantly affect pitch accent and

break index prediction.
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7.3 Instance-based Prosody Prediction

7.3.1 Introduction

Also known as memory-based learning, lazy-learning, or case-based reasoning, instance-

based learning is simple but appealing, both intuitively and statistically. When

you want to predict what is going to happen in the future, you simply reach into a

database of all your previous experiences, grab one or several similar experiences,

combine them and use the combination to make a prediction.

In order to illustrate how instance-based learning can be effectively used in

prosody prediction, I will first describe the main ideas in instance-based learning.

Then I will introduce an augmentation of the classic approach which is particu-

larly useful for natural language applications. I will also explain how to apply the

augmented instance-based learning in prosody modeling.

An instance in instance-based learning is often represented as a vector (f1, f2...fn)

where fi is a symbolic or numerical feature and is used to describe a particular as-

pect of the instance. Instances also can be represented in other forms, such as a

graph or a hierarchical tree structure [Taylor, 2000]. In [Taylor, 2000], the training

instance was represented as a phonological tree which includes both an utterance’s

prosodic as well as its sub-syllabic phonological structure. The following discussion

focuses on vector-based representation because it is the one used in the thesis. The

main ideas discussed here should also apply to non-vector based systems.

A training example in such a system is a feature vector labeled with the cor-

rect category. For example, in prosody modeling, a training instance includes not

only a few predicting features, such as part-of-speech and word informativeness, but
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also predicted features, such as pitch accent and break index. Since instance-based

approaches do not construct an abstract hypothesis but instead base classification

of test instances on similarity to specific training cases, training is typically very

simple: just store the training instances. Generalization is postponed until a new

instance must be classified. During prediction, a new instance’s relation to the

stored examples is examined. In the worst case, this requires comparing a test

instance to every training instance. As a result, depending on the number of train-

ing examples required in an application, instance-based methods can be slow and

therefore, performance can be a major issue in instance-based learning.

In the core of an instance-based approach is a function for calculating the

similarity (or distance) between two instances. Euclidean distance is a typical met-

ric for measuring the distance between continuous feature vectors. For discrete

features, Hamming distance can be used. In many applications, such as natural

language processing, a more specialized similarity (distance) metric may be nec-

essary to account for specific relationships among a feature’s different values. For

example, when comparing part-of-speech, a proper noun and a common noun are

probably more similar than a proper noun and a verb.

In addition, in instance-based approaches, prediction can be made based

on either the most similar example or several similar instances. In the first case,

only one instance is selected, and the system always search for the best match. If

several similar examples are selected, the final results are usually determined by K-

nearest neighbor (KNN)-based approaches. In this case, K closest training examples

are picked and the final result is assigned based on the most common category

among these nearest neighbors. When applying KNN, all K training examples
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may contribute to the final classification by casting a vote that is weighted by the

inverse square of its distance from the test example. KNN also can be used when

the predicted feature takes continuous values. In this case, the final prediction is

the average of the K nearest neighbors. Voting based on multiple neighbors helps

increase resistance to noise.

The standard distance metrics, such as Euclidean and Hamming distance,

weight each feature equally. This will cause problems if only a few of the features are

relevant to the classification task, since the method could be misled by similarity

along many irrelevant dimensions. Therefore, it would be more appropriate to

weight different features differently according to their importance in classification.

To solve this problem, several feature selection or weighting approaches have been

proposed. For example, a wrapping-based feature selection process may start with

a set of candidate features. It then applies an induction algorithm with these

features. Finally, it uses the accuracy of the results to evaluate the feature set and

decide which features are most relevant.

7.3.2 Instance-based learning: an Extension

Classic instance-based learning works well if all the instances do not have temporal

or spatial dependence. For example, the prosodic assignment of a new word can

be obtained from a similar pre-annotated word in the training corpus. In many

applications, such as in language processing, however, contextual information is

very important. Words are surrounded and influenced by context. So are sentences

and paragraphs. Thus, when a word needs to be classified, we might also want

to take its surrounding words into consideration. In the following, I describe an
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approach, a Viterbi-based beam search algorithm, which naturally incorporates the

surrounding instances during instance matching.

7.3.2.1 Parameters in Viterbi-based Beam Search

Instead of matching only one instance at a time, the following algorithm will try to

match a sequence of instances so that the best match is determined not only by the

features of the instance itself but also the features of surrounding instances within

that sequence.

Before a Viterbi-based beam search can be conducted, three parameters need

to be specified: the target cost, the transition cost, and the beam size.

The target cost (TaC) is a measure of the distance (or difference) between

two instances. If the new instance is exactly the same as a training instance, the

target cost between them will be the smallest. In general, the larger the number

is, the less similar two instances are. This concept is essentially the same as the

similarity (difference) metrics used in the classic instance-based learning. Thus,

typical distance metrics, such as Euclidean distance for continuous features, Ham-

ming distance for discrete features, as well as typical feature selection and weighting

approaches, such as wrapping, can all be applied here.

In addition, a second cost function, the transition cost (TrC), is also defined

to determine the goodness of a match in terms of a sequence of instances. Given

a sequence of instances to be classified i1, i2...in, assume jk is the best match for

instance ik. If only the target cost TaC is considered, j1, j2, ....jn should be the best

match for the entire sequence. However, in many applications, the selection of one

instance will affect the selection of another if they are dependent. Therefore, when
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context influence is taken into consideration, j1, j2..jn may not be the best choice

because other constraints may prevent placing one instance adjacent to another.

For example, to find a word sequence that matches the POS sequence “Pronoun

Verb”, both “I am” and “I is” should be equally good because they have exactly

the same POS sequence. That is, they have the same target cost. However, “I am”

is a much better choice than “I is” because of grammatical constraints in natural

language.

Transition cost can be defined either statistically or grammatically for natu-

ral language applications. In statistical-based approaches, if a transition has been

observed many times in the training data, its associated cost should be lower than

that of a transition which has never appeared in the training corpus. Thus, both

trigram or bigram-based probability may be used to define the transition cost. If a

grammar-based approach is used, non-grammatical transitions should have a high

transition cost while grammatical ones should have a low cost. In my previous

example, the transition cost between “I” and “is” should be very high to prevent

this type of ungrammatical sequence from generating.

The third parameter, the beam size, is used mainly for practical purposes.

In general, searching for the best sequence from a training corpus can be slow and

inefficient. If the number of instances in an input sequence is M, and the number

of training instances in the entire corpus is N (ignore the cost for computing target

and transition cost), the complexity of searching for an optimal solution is about

O(MN2). Since the number of instances in a training corpus can be huge, to speed

up the search, only the top K matching candidates for each input instance are

considered. Here, K is the beam size.
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Once the target cost, transition cost and beam size are determined, the

Viterbi-based beam search can find a solution in O(MK2) using dynamic program-

ming (ignoring the cost associated with sorting target cost).

7.3.2.2 The Viterbi Algorithm

The Viterbi algorithm [Forney, 1973] was initially designed for decoding prob-

lems [Viterbi, 1967]. Later, it was widely used in Hidden Markov-based approaches [Ra-

biner and Juang, 1986]. Basically, it is an inductive algorithm in which at each step

you keep the best (i.e. the one giving minimum combined cost) possible sequence

for each of the N training instances in the corpus. In this way through dynamic

programming, you finally have the best path for each of the N training instance as

the last matching instance for the desired input sequence. Out of these, the one

which has lowest cost is selected. The following algorithm describes how dynamic

programming can be used to find an optimal matching sequence in Viterbi search.

As shown in Figure 7.1, assuming there are L instances in the input sequence,

I1, I2, ....IL, and Q potential matches for each instance in the corpus, C1, C2, ...CQ.

I also denotes Vk(i) as the total cost of the best path for the prefix (X1...Xi) that

ends with the training instance Ck(k ∈ Q) for the input instance Ii (1 ≤ i ≤ L).

1. Assign an initial value for each Vk(i): Vk(1)= TaCk,1 and Vk(i, i <> 1) =0;

where TaCk,1 is the target cost between the input instance I1 and the training

instance Ck.

2. Iteration: For each i = 1...L − 1 and for each n ∈ Q recursively calculate:

Vk(i + 1) = TaCk,i+1 + Minn∈Q(Vn(i) + TrCn,k)
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Figure 7.1: The Viterbi Algorithm

Where TrCn,k is the transition cost from training instance Cn to training

instance Ck.

3. Finally, the value of total cost is Mink∈Q(Vk(L) + TaCk,L)

The best path itself can be constructed by keeping back pointers during

the recursive stage and tracing them. Because the values of O(Q.L) cells of the

matrix V is calculated with O(Q) operations per cell, the overall time complexity

is therefore O(L.Q2) and the space complexity is O(L.Q).

7.3.3 Prosody Modeling Using Instance-based Learning

So far, I have discussed the basic issues in instance-based learning. I also intro-

duced how to optimize over a sequence of instances. In the following, in order to

demonstrate how instance-based learning can be used for prosody modeling, I first
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4-3-1 he pronoun subject c-patient aparb 1 3.630408 h* 1 npa nbt
4-3-2 is verb predicate c-has-attribute bparb 8 3.8158112 na 4 h- l%
4-3-3 fifty cardinal subj-comp head c-measurement wb 1 5.571203 l+h* 1 npa nbt
4-3-4 eight cardinal subj-comp head c-measurement wb 1 5.645311 h* 1 npa nbt
4-3-5 kilograms noun subj-comp head c-measurement alib 3 7.2939696 h* 4 h- l%

Table 7.5: The Feature Vector in the Speech Training Corpus

discuss the representation of an instance in prosody modeling. Then I demonstrate

how to define the target cost, transition cost, and various distance functions to

facilitate prosody-based match. In addition, I also illustrate the process of feature

weighing and Viterbi search.

7.3.3.1 Signature Feature Vector: a Training Instance

The training instance used in prosody modeling is a word’s feature vector. It

contains a set of predicting features, describing various semantic, syntactic and

lexical aspects of a word and several predicted (response) features. In this case, the

predicted variables are the four ToBI features: pitch accent, break index, phrase

accent, and boundary tone. In contrast, the feature vector for a test instance only

contains predicting variables. Its response variables will be automatically generated

using instance-based modeling.

In this investigation, only a subset of the features explored in Chapter 4,

5, and 6 were included because at the time of this experiment, only a subset of

the features was available for the read speech corpus. In total, I employed eight

features in this investigation: word position, the word itself, part-of-speech, syntactic

function, semantic type, SSCB,SSCL, and IC. Table 7.5 shows the feature vectors

associated with the words in the sentence “He is fifty eight kilograms”. In Chapter 4,
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5, and 6, I described how these features were identified and represented. The first

eight features are predicting features. Among all these features, semantic type,

syntactic function, SSCB, and SSCL are primarily available in CTS systems. Other

features, such as word position and part-of-speech have been tried in both CTS and

TTS systems. In addition, word informativeness, even though it can be available

for both CTS and TTS systems, has not been incorporated in existing TTS or CTS

systems. As a result, the final prediction model contains rich semantic, syntactic,

and surface features.

The last four features in the feature vector are the predicted ToBI features.

Each feature can take any of the original values proposed in ToBI, thus yielding a

fine-grained model of prosody variation (six types of pitch accent, 5 types of break

index, 3 type of phrase accent and 3 types of boundary tone assignment in total).

Since the training and testing instances in the application are sequences of

words, they were represented as sequences of word feature vectors. The first feature

in each vector has the form of mm-nn-ll where mm is the document id, nn is the

sentence id, and ll is the word id. Based on this information, the system can

compute whether two words are originally adjacent to each other in the training

corpus. In general, if two words have the same document id, sentence id, and

consecutive word id, they are adjacent words. In the following analysis, I use a

sentence as the input and the prosody predicting model will return the prosodic

assignments for all the words in the sentence simultaneously.

To illustrate the process, I first describe how to define the target and transi-

tion cost between two feature vectors. Instead of heuristically assigning weights for

each feature in the target cost, I employed an automatic approach to systematically
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assign weights based on training data.

7.3.3.2 Target Cost and Transition Cost

Based on the eight predicting features, two cost functions were defined for instance

matching: target cost (TaC) and transition cost (TrC). Since the target cost is

defined as the weighted combination of each feature distance functions, in the fol-

lowing, I first define each distance function, then focus on how to assign weight for

each distance function.

Distance Functions: A distance function measures the difference between

values of a feature. Except for document id, sentence id, and word id, seven dis-

tance functions were defined for the seven predicting features: DisWord, DisPOS,

DisSynt, DisConcept, DisSSCB, DisSSCL, DisIC . Of all the distance functions, if the

feature involved is symbolic, the distance function takes binary outputs. It is 0 if

two features are the same. Otherwise, it is 1. Similarly, if the feature involved is nu-

meric, the output of the distance function are positive real numbers. It is computed

as the absolute value of their difference. For example, POS is a symbolic feature,

thus, DisPOS(noun, noun) should be 0 and DisPOS(noun, verb) should be 1. Since

IC is real, DisIC(0.15, 0.25) should be 0.1. Ideally, more sophisticated definitions of

the distance functions are needed. However, I will start with the simple case first.

Assigning Weight for Each Distance Function: To decide the relative

importance of each feature in prosody modeling, I employed an empirical-based

approach to assign a weight for each distance function. The desirable weights should

be assigned in a way so that the predicted target cost, which is a weighted sum of all

the feature distances, can closely reflect the similarity between two words’ prosodic
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properties. Since the prosodic similarity can be measured by prosodic features, I

use a metric of two words’ prosodic similarity to guide the weighting process.

In order to use two word’s prosodic similarity, a prosodic similarity met-

ric, the prosodic target cost (PTC) function was defined. PTC is the weighted

sum of the four prosodic distance functions :DisAccent, DisIndex, DisPhraseAccent,

DisBoundaryTone. Since all the prosodic features were considered as symbolic1, sim-

ilar to the distance functions defined for the target cost, each prosodic feature

distance also takes binary values. It is 0 if two features are the same and 1 if they

are different. For example, DisAccent = 0 if two accent assignments are the same.

Otherwise it will be 1.

Since the final prediction model was designed to predict all four ToBI features

simultaneously, right now, the weights in PTC are all equal to one. However, if

there is any particular reason for us to believe that one prosodic feature is more

important than another, the weigh can be adjusted accordingly. For example, it is

possible to build separate prediction models for each prosodic feature by modifying

the PTC definition to incorporate one prosodic feature at a time. As a result, the

final PTC is the sum of four distance functions. The value of PTC ranges from 0,

if all four prosodic features are the same, to 4, if none of them are the same.

I used linear regression to assign a weight for each distance function in the

target cost based on PTC. For any two instances in the training corpus, all the

distance functions in TaC as well as PTC were computed. If there are N train-

ing instances in the corpus, the number of resulting distance vectors will be N2.

Table 7.6 shows the derived distance vectors. They were automatically generated

1Break index can also be treated as a numerical variable and the same approach still applies
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0 0 0 0 0 0 0 0
1 1 1 1 1 7 0.1854032 4
1 1 1 1 1 0 1.940795 1
1 1 1 1 1 0 2.014903 0
1 1 1 1 1 2 3.6635616 3
0 0 0 0 0 0 0 0
1 1 1 1 1 7 1.7553918 4
1 1 1 1 1 7 1.8294998 4
1 1 1 1 1 5 3.4781584 1
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0.074108 1
1 1 0 0 1 2 1.7227666 4
0 0 0 0 0 0 0 0
1 1 0 0 1 2 1.6486586 3
0 0 0 0 0 0 0 0

Table 7.6: The Distance Vector for Weight Training

from the instances in Table 7.5. Based on these distance vectors, the linear regres-

sion algorithm can find a set of weights which minimize the sum of square errors

between the estimated TaC and PTC. That is, if the response and predicting vari-

ables corresponding to the ith observation are Yi, Xi1, Xi2...Xip, the fitting criterion

helps to choose a set of wj to minimize:

n∑
i=1

(Yi − (w0 +
p∑

j=1

wjXij))
2

Based on the results of linear regression, the weights for each predicting feature

after normalization are shown below:

PTC ' 0.3215 ∗ Disword − 0.2535 ∗ DisPOS − 0.0238 ∗ DisSynf

+0.2328 ∗ DisConcept + 1.1547 ∗ DisSSCB + 0.49 ∗ DisSSCL

+1.4787 ∗ DisIC + 0.6883.

The derived weights reflect the relative importance of each feature in prosody

matching. Basically, the larger the weight is, the more important it is for the
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corresponding feature to match. Features with negative weights usually are unde-

sirable because it implies that the overall cost will be lower if this feature does not

match. Based on this formula, IC and SSCB are the two most important features to

match (Their weights are 1.4787 and 1.1547 respectively). This is consistent with

the findings in Section 7.2. In addition, the weights of DisPOS and DisSynf are

negative which implies that POS or Syntactic function matching is not important,

which is also consistent with the findings in Section 7.2. After I remove both POS

and Syntactic function, here is the new regression model with only the rest of the

five features:

PTC ' 0.2163 ∗ Disword + 0.2605 ∗ DisConcept + 1.2811 ∗ DisSSCB

+0.58 ∗ DisSSCL + 1.3392 ∗ DisIC.

Similar to the original model, this new model also weight IC and SSCB as the most

important features to match.

Transition Cost: Transition cost measures the smoothness of the transi-

tion from the prosodic assignment of one word to that of another. In Section 7.3.1,

I mentioned that two typical approaches could be used to define transition cost:

one is Ngram-based, the other is grammar-based. In prosody modeling, if a bigram-

based approach is used, the transition cost can be defined as the log likelihood of

seeing the prosodic assignment of one word followed by the prosodic assignment of

another. For example if (na, 1, npa, nbt) and (H*, 3, L-, nbt) are often seen in se-

quence together, then the transition cost between a word with the first assignment

and another with the second assignment will be low. However, if, for example,

(NoAccent, 4, H-, L%) and (NoAccent, 4, L-, H%) are rarely seen together, the
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transition cost between them will be high. A bigram-based model should be rela-

tively easy to compute. But it requires a large amount of data for training, which

is difficult to obtain (our read speech corpus is fairly small).

Instead of using bigram-based transition cost, I defined the transition cost

function based on the word position feature in the feature vector. The intuition

is to keep the flow of the original human speech as much as possible. Basically,

the word sequence with the least disruptions is the best in terms of transition cost.

Based on this intuition, if two words are together in the corpus, the transition

between their prosodic assignments should be good. This definition facilitates the

matching of longer segments. For example, given an input sentence, if there is a

complete sentence to reuse, it will match the whole sentence. If not, it will reward

those sequences which reuse large segments because they have less disruptions, and

thus, a smaller transition cost. In order to calculate the transition cost, the first

feature in the feature vector is used. If two words have the same document id and

sentence id, and in addition, if their word ids are only different by one, they should

be adjacent words, and the transition cost between them should be 0. Otherwise,

the transition cost is 1.

7.3.3.3 The Viterbi Algorithm

For each new sentence produced by the language generator, a sequence of feature

vectors was produced. Each feature vector contains a set of features which describes

different aspects of a word. The Viterbi algorithm produces a matching sentence

by piecing together matching words from the training corpus. The resulting word
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Corpus1:After coming off bypass, he had hypotension.

Input: He’s seventy seven kilograms and one seventy three centimeters. 

Corpus3:He is fifty eight kilograms and one sixty five centimeters.

Corpus2:He is sixty seven kilograms and one hundred eighty four centimeters.

Figure 7.2: An Example of a Viterbi Search Result

sequence should minimize the sum of the combined cost (SoCC):

SoCC = Wta × TaC + Wtr × TrC

where Wta and Wtr are the weights for target cost and transition cost. Right now,

both Wta and Wtr are heuristically defined. Wta is 9 and Wtr is 1. This will guide

the algorithm towards matching words with low target cost. That is, words that

are prosodically similar to the original speech. In addition, the transition cost is

used to favor the match towards larger segments.

In order to speed up the search, the beam size is set to 20. Basically, for

each word in the input sentence, the top 20 most similar words, measured by the

target cost, were kept. Therefore, for each input word, the number of potential

matching instances is 20. The complexity of the search is O(N ∗202) which is quite

efficient. Once a matching sequence of words whose overall cost is minimum is

found, the prosodic assignments of words in the input are directly inherited from

the corresponding words in the training corpus.

Figure 7.2 shows an example of the Viterbi search results. Given an input

He’s seventy seven kilograms and one seventy three centimeters, the Viterbi algo-

rithm is able to combine three segments from three different sentences in the corpus:
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Approach pitch accent break index phrase accent boundary tone

baseline1 38.77% 54.59% 62.24% 69.39%
new test case (rule) 62.76% 77.55% 79.08% 81.12%

new test case (instance) 60.41% 78.69% 81.73% 83.76%
new test case (instance w/o exact match) 56.44% 76.24% 80.20% 86.14%

perfect match 66.67% 81.77% 84.91% 82.39%

Table 7.7: Instance-based Prosody Modeling Performance

he from sentence 1 is used to match he’s in the input; sixty seven kilograms from

sentence 2 is used to match seventy seven kilograms; and and one sixty five centime-

ters from sentence 3 is used to match and one seventy three centimeters in the input.

The prosodic assignments of the input sentence directly comes from the prosodic

assignments of the three speech segments in the corpus. That is, given an input

sentence Wi1, Wi2, Wi3...Win, if the matching word sequences from the train corpus

is Wc1, Wc2...Wcn, and its prosodic assignment is P (Wc1), P (Wc2), ... P (Wcn), then

the prosodic assignment for the input sentence is also P (Wc1), P (Wc2) ... P (Wcn),

where i represents “input”, c represents “corpus” and P (Wci) is the prosodic as-

signments of word Wci in the training corpus. Each P (Wci) is a quadruple of the

form (Accent(Wci), BreakIndex(Wci), PhraseAccent(Wci), BoundaryTone(Wci)).

7.4 Evaluating Instance-based Prosody Modeling

I evaluated the instance-based prosody modeling by randomly picking a new pa-

tient’s report produced by the MAGIC text generator. I asked the same speaker

to read it, recorded the speech, and the same ToBI expert transcribed the prosodic

features. I measured how well the new prosody assignment algorithm performs,

given the sentences in the new report as input and using the new report’s prosodic
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assignment as the gold standard. For pitch accent, six different assignments are

possible: No accent, H*, L*, L*+H, L+H*, H!+H*. For break index, 5 possible as-

signments: 0,1,2,3,4. For phrase accent, 3 possible assignments: No phrase accent,

H-, L- and for boundary tone, three possible assignments: No boundary tone, L%

and H%. For comparison purposes, I also included the rule-based prediction results

using the same fine-grained classification.

Table 7.7 shows the accuracy of the instance-based algorithm, where the

baseline is computed by assigning a majority class to all the words in the test

sentences. In pitch accent prediction, the majority class is no accent, in break

index assignment, it is “1”, in phrase accent assignment, it is “no phrase accent”

and in boundary tone assignment, it is “no boundary tone”. Overall, the instance-

based model achieves statistically significant improvement over the baseline models

for all four prosodic features using χ2 test with p < 0.01. In addition, the difference

between instance-based and rule-based learning is not statistically significant using

quantitative analysis.

Another property of the read speech corpus is that there are quite a few

repetitive instances in the corpus. For example, on average, 20.88% of the training

instances have an exact matching sentence somewhere else in the corpus. Moreover,

the system found an exact match for 55.56% of the sentences in the new patient’s

report. To investigate how this property affects the prediction results, I conducted

another experiment in which I only use sentences that do not have an exact match

in the training corpus. The final results shown in Table 7.7 do not demonstrate

any statistically significant performance changes.

The quantitative analyses shown in Table 7.7 is problematic because it does
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not take the acceptable variability of prosody in natural speech into consideration.

To give an idea about how severe the problem is, I conducted the following analysis

using a subset of the corpus. In our corpus, 20.88% of the sentences have an exact

match elsewhere in the training corpus (i.e., there were two instances of the same

sentence in the training corpus). In general, the prosodic pattern of the matching

sentences are interchangeable because it is produced by the same speaker and used

in very similar discourse contexts. However, the speaker varied his prosody from

time to time resulting in two identical sentences with different prosody. This effect

is especially significant because a fine-grained prosodic assignment is used. For

example, this system distinguishes six different pitch accent predictions. Because

H* and L+H* are different, if the system predicts H* while the speaker uses L+H*,

the system is penalized in such a case. Table 7.7 shows the agreement for sentences

with a perfect match in the training corpus, illustrating that a significant effect

was introduced by the current evaluation approach; we should have a near perfect

performance for these cases because both verbalizations are perfectly acceptable and

they were used in very similar discourse context. Based on the fixed gold standard-

based evaluation approach, however, their performance is far from perfect. For

example, only 66.67% of the accent assignments were considered correct.

In order to avoid the bias in the quantitative analyses, I used a subjective

evaluation in place of a quantitative one. In this experiment, I compared the results

of instance-based approaches with rule induction. I used RIPPER over the same set

of features used by instance based learning. In addition, in rule induction, different

rule sets were learned for each prosodic feature. In total, four prediction rule sets

were learned from the data. Since all the features used by these two approaches are
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the same, the main factor that differs is the form of learning. This also allows us to

make comparisons with a specific TTS model although experimental variables across

the TTS system and this system are not consistent. Overall, I tested three prosody

models (instance based, rule induction, and the Bell Labs’ TTS model), using the

same synthesizer (Bell Labs’ TTS version nov92) (Sproat, 1997) augmented with

different prosody models to synthesize speech.

One problem with subjective evaluation is that subjects may not be sensitive

to small prosodic changes. If different systems are rated independently, subjects

may be unaware of prosodic differences unless they are dramatic, which may lead

to inconclusive results. As a result, I decided to use a pairwise comparison between

sentences produced by the different methods. In pairwise comparison, everything

except the prosody was kept the same.

I randomly selected eight sentences from the output of MAGIC’s language

generator and for each sentence, constructed three pairs: instance-based output

versus TTS, instance-based versus rule-based output, and rule-based versus TTS

output. The resulting 24 pairs were presented in random order, with order within

pairs also randomly determined, to six native English speakers, yielding a total

of 144 pair comparisons. Subjects were asked to rank the pairs stating whether

system A is much better than B, slightly better, the same, slightly worse, or much

worse, which results in scores ranging from 5 to 1. 5 means A is much better than

B, 4 means A is slightly better than B, 3 means A and B are indistinguishable, 2

means A is slightly worse than B, and 1 means A is much worse than B. Therefore,

a score of 3 means there is no difference between A and B and any score greater

than 3 means system A is better than B.
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Experiments Instance v.s. Rule Instance v.s. TTS Rule v.s. TTS

Average score µ 3.375 3.417 3.333
Significance p=0.015 p=0.005 p=0.018

Table 7.8: Subjective Pair Evaluation

Since all the numbers in Table 7.8 are greater than three, this indicates

that in general the instance-based system performs better than both the rule-based

system and TTS while the rule-based system performs better than TTS. In order

to test whether one system is significantly better than another, I used the sign

test [Siegel and Castellan, 1988]. In the sign test, only the direction of the differ-

ence between two measures matters. For example, if a system is rated slightly or

much better than another, in both cases, they are marked as “+”. Similarly, if a

system is rated slightly or much worse than another, both are marked as “-”. Ties

are discarded in the final analysis. As shown in Table 7.8, all the differences are

statistically significant based on the sign test.

I also conducted an ANOVA (analysis of variance) test on the experiment

data, testing two additional variables: the subject and the sentence. The ANOVA

results indicate that “subject” is indeed another significant factor which affects the

rating (with p < 0.005). Based on subject feedback, it appears that some subjects

prefer the instance-based output because it is more vivid and has many prosody

variations. Others find the realization of different types of pitch accent unnatural

and therefore, prefer the more neutral ones. The ANOVA results do not show

any significant difference among different sentences. This is expected because the

sentences for the experiment were randomly selected.
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7.5 TTS versus CTS

Before I conclude the section, I want to address some issues related to whether CTS

has any advantage over TTS in prosody modeling. Our previous analyses seem to

suggest that some CTS features, such as semantic type and syntactic function,

are useful for prosody modeling. In this section, I present the results of a direct

comparison between CTS and TTS. I First define which features are considered

TTS features and which are considered CTS features.

A feature is considered a TTS feature if it is directly available in the text

or there exist matured text analysis tools that can reliably derive this feature from

the text. Another way to verify this is to check whether this feature is commonly

used in existing TTS systems. Features rarely used in existing TTS systems are

not considered typical TTS features. Based on this definition, word and its surface

position are TTS features because they are directly available in the text. Moreover,

part-of-speech and syntactic constituent structure are also TTS features because

both a POS tagger and a syntactic parser can be used to derived these features

automatically from the text.

In contrast, features such as syntactic function, semantic role, and semantic

type, even though they have been tried in TTS systems, since there is no matured

tools that can automatically derive them from the text, they are not considered

typical TTS features. In addition, these features are not commonly used in existing

TTS systems.

Based on this definition, of all the features I have investigated, I include the

word, its surface position, and POS in the TTS prediction model. Since a syntactic

parser can be used to obtain syntactic constituent structure and its length, I add two
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TTS features, syntactic constituent boundary (STCB) and its associated syntactic

constituent length (STCL) in the TTS model.

In terms of the CTS prediction model, all the features I investigated in the

thesis can be considered CTS features. However, since both word predictability and

word informativeness are not commonly used in existing TTS and CTS systems,

they are considered neither typical TTS nor typical CTS features. As a result, they

are excluded from the comparison.

In the following analyses, all the features in the TTS model are automat-

ically derived from the transcript of the read speech corpus. Both the POS and

the syntactic constituent structure are obtained using a Maximum Entropy-based

POS tagger and parser [Ratnaparkhi, 1996; 1997] (both with the state-of-the-art

performance). Two of the TTS features, STCB and STCL, are computed based on

the derived parse tree. STCB is defined as the outermost label in a bracketed lin-

earization of the syntactic constituent tree and STCL is the associated constituent

length. Overall, 16 STCB types are found in the read speech corpus: BADJP,

AADJP (before or after an adjective phrase), AADVP (after an adverbial phrase),

BNP, ANP (before or after a noun phrase), BPP, APP (before or after a proposi-

tional phrase), BPRT, APRT (before or after a particle), AQP (after a number),

BS, AS (before or after a sentence), BVP, AVP (before or after a verb phrase),

BSBAR (before an SBAR), and WB (after a word).

Since all these features are most relevant to pitch accent and break index

prediction, in the following analyses, I focus on predicting these two features. RIP-

PER is used to construct the predicting models and the results shown in Table 7.9

are based on 5-fold cross validation.
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Model Pitch Accent Break Index 1 Break Index 2

Baseline 62.15% 62.23% 69.44%
TTS 81.89 ± 1.02 % 83.78 ± 0.82% 86.61 ± 1.30%
CTS 81.27 ± 0.91% 89.01 ± 1.46% 89.79 ± 1.06%

Table 7.9: TTS versus CTS

The results in Table 7.9 indicate that for pitch accent prediction, the dif-

ference between the CTS and TTS accent models is not statistically significant.

However, for both break index 1 and break index 2 prediction, the CTS system

achieves statistically significant improvement with p < 0.01 for break index 1 and

p=0.02 for break index 2 prediction.

I speculate that the reason why CTS features do not significantly improve

pitch accent prediction is because POS, one of the most useful pitch accent pre-

dictors (when word informativeness and word predictability are not used), is more

fine-grained in TTS than in the MAGIC CTS. Since fine-grained POS may be

more effectively in accent prediction, this has some negative influence on CTS per-

formance. To verify this, I use RIPPER to build a new pitch accent prediction

model using the TTS and CTS POS respectively. Overall, there are 20 different

TTS POS and 10 different CTS POS in the read speech corpus. The comparison

results, based on 5-fold cross validation, are shown in table 7.10.

Model Baseline TTS POS CTS POS p-value

results 62.15% 70.99 ± 0.93% 66.27 ± 1.29 p=0.016

Table 7.10: TTS versus CTS POS in Pitch Accent Prediction

Based on the results, the TTS POS performs significantly better than CTS

POS (with p=0.016 using the Chi square test). However, this does not mean that

in general, TTS POS is better than CTS POS for accent prediction because in

principle, CTS can also produce accurate fine-grained POS. In the worst case, a
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CTS system always can use the parsed TTS POS information if this is desired.

The improvement of CTS over TTS on break index prediction may be due

to the confidence a system has on the accuracy of large syntactic constituents. For

TTS, since the constituent boundaries are obtained through syntactic parsing, the

larger the constituent, the lower the confidence. In contrast, a CTS system always

has accurate constituent boundary information. To verify that accurate constituent

boundary information has influence on system performance, I conducted another

experiment in which I use RIPPER to build break index prediction models using the

TTS and CTS constituent boundary and length information respectively. Table 7.11

shows the results.

Model Baseline TTS STCB+STCL CTS SSCB+SSCL p-value

break index 1 62.23% 82.32 ± 1.02% 85.49 ± 0.51 p=0.04
break index 2 69.44% 86.27 ± 0.84% 88.07 ± 1.09 p=0.21

Table 7.11: TTS versus CTS in Break Index Prediction

The results shown in Table 7.11 indicate that the difference between accurate

CTS and parsed TTS syntactic constituent information does have impact on the

performance. Moreover, the difference on break index 1 prediction is statistically

significant with p=0.04 using the Chi square test. The improvement for break index

2 prediction is marginal with p=0.21.

Since SSCB and SSCL did not account for all the improvement achieved

by CTS, other CTS features may also contribute to the overall improvement. For

example, additional CTS features chosen by RIPPER for break index prediction

include syntactic function, semantic role, given/new, and semantic type.
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7.6 Summary

In this chapter, I have explored two methods to combine linguistic features for

prosody prediction. Both results suggest that features such as IC, SSCL and

SSCB, are good prosody predictors. The final evaluation also demonstrates that the

instance-based approach is simple and effective even with very simple and straight

forward definitions of distance functions, target cost function and transition cost

function. I also expect that better performance can be achieved by refining the

definitions of cost functions and incorporating new features.

While the subjective evaluation found instance based learning to be superior

for CTS, each learning methodology has its strengths. Generalized rule induction

provides a mean to test and model linguistic intuition and the resulting set of rules

can be augmented by human expert knowledge where appropriate. When sufficient

amount of training data is available, it can perform as well as the instance-based

approach. Instance-based learning, on the other hand, retains variation since it

uses the prosody associated with specific instances and can yield better results

with a small amount of data as long as the target speech of the system is similar

to corpus examples. Furthermore, while the instance-based approaches may yield

better system performance, they do not provide linguistic insight. As a future

direction, I am also interested in investigating combining instance-based and rule-

based approaches to take the advantages of both.

I also conduct direct comparison on whether CTS can do better than TTS

in predicting prosody. Our results confirmed that the tested CTS features perform

significantly better in break index prediction than TTS features. Further analysis

is needed to verify the advantages of CTS features in pitch accent prediction.
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Chapter 8

Conclusions and Future Work

In this chapter, I conclude this work by summarizing the approaches I have taken to

automated prosody prediction. I also briefly highlight the contributions this work

brings to the area of CTS prosody modeling. Finally, I also address some of the

limitations in current approaches and discuss several future research directions.

8.1 Summary of Approach

The development of a CTS system is very demanding. Successful work within

the framework of CTS relies on the ability to integrate efforts from a number

of different areas. This work focuses on finding comprehensive and systematic

methodologies for investigating and predicting prosodic variations for CTS systems.

Compared to previous research in the area of CTS prosody generation, this work

focuses on empirically identifying and modeling different semantic, syntactic and

discourse features as well as systematically predicting prosodic features based on

pre-annotated utterances.
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This investigation is tied closely to FUF/SURGE, a widely used natural

language surface generation package. Since FUF/SURGE is an independently mo-

tivated surface generation tool, the features modeled in SURGE are linguistic-based

and can be applied to other applications. In addition, having a real CTS system

in mind when conducting the investigation, I was able to provide a realistic view

of general CTS prosody modeling performance. The features investigated in this

dissertation are mostly from SURGE, and thus are well grounded. It is reason-

able to expect that other general-purpose NLG tools may provide similar types of

information. For example, POS is usually available in most general-purpose sur-

face generation systems. Other features, such as semantic role, are also available

in other generation systems like KPML. In addition, most general-purpose surface

realizers also produce a hierarchical constituent structure. Although this might not

be exactly the same as the hierarchical constituent structure used in SURGE, it is

still possible to derive features similar to SSCB and SSCL from such a representa-

tion. Our application, MAGIC, further demonstrated the property and complexity

of a realistic CTS application. Compared with most existing CTS systems, the

generation capability of MAGIC is relatively high1. Since most features modeled in

MAGIC are domain independent, they can be applied to new applications. Over-

all, SURGE and MAGIC serve as a general and realistic environment for CTS

investigation.

Another property of this work is that I conducted empirical analysis be-

fore generation. Typical CTS systems primarily employ manually-crafted rules for

1Due to their availability, medical history and care plan information are canned in the MAGIC
output. Everything else is fully automatically generated based on sentence planning, lexical
selction and surface realization.
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prosody prediction. For example, [Prevost, 1995] used rules like “Assigning a L+H*

accent to the theme focus and H* to rheme focus”. The biggest problem with these

approaches is that they assume that the features involved and the rules used for

prosody prediction are known and their effectiveness have been verified. However,

this is not the case in reality. Prosody is a very complex phenomenon. It is influ-

enced by a large number of factors, ranging from semantic, syntactic and discourse

influence to emotion, human cognitive models, and social influence. In addition, if

the interactions among different factors are taken into consideration, there are still

many unidentified features, unverified assumptions and unresolved issues. Instead

of simply applying existing rules, I started with identifying prosody-related features

and establishing their relations to different prosody variations. As a result, I was

able to identify new features and interactions which have not been incorporated

before. Because of this, the influence of this work goes beyond CTS prosody gen-

eration itself and can be extended to speech analysis and Text-To-Speech systems.

I also employed a different CTS modeling approach which concentrates on

individual examples. Current speech synthesis systems suffer from unnatural and

monotonous voices. One reason is that their prosody prediction components rely on

a few rules or parameters generalized from a corpus. Since natural prosody is full of

rich variations and can be affected by many factors, to characterize all the variations

requires a large amount of training data, which is generally not available. As a

result, it is unavoidable that prosody produced from a few general parameters does

not have sufficient variations. In contrast, the proposed instance-based approach

focuses on reusing the prosody of natural speech. It derives prosody patterns from

similar pre-stored speech segments and then piecing them together. Thus, although
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I did not explicitly model all possible features, some of the influence may still be

implicitly captured when a large natural speech segment is reused. Subjective

evaluation also verified that prosody modeled in this way is more preferable than

that produced by a rule-based system.

In terms of CTS architecture, unlike traditional systems that adopted either

an application-dependent approach; therefore, lack of flexibility and reusability,

or a totally uncoupled architecture, which suffers from information loss; thus low

usability, I used a semi-integrated architecture that has both high usability and

reusability.

8.2 Summary of Contributions

In terms of prosody modeling, one of my main contributions is on input feature

identification and modeling.

• I systematically identified how the sentential semantic, syntactic and lexical

constraints produced by a general-purpose surface text realization system (as

exemplified by FUF/SURGE) affect prosody. Some of these features, such as

semantic/syntactic constituent boundaries and semantic roles, have not been

empirically investigated before and their effects on CTS prosody modeling

have not been confirmed empirically. Based on this study, I demonstrated

that SURGE features, such as semantic/syntactic constituent boundary and

its associated constituent length are very effective for both accent and break

index prediction. Word also proves to be a good feature to use in CTS prosody

modeling. In contrast, semantic role information does not seem to have sig-
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nificant impact on prosody prediction.

• I identified how derived new statistical surface features, such as word infor-

mativeness, and word predictability, affect prosody. I statistically modeled

these features using a larger text corpus from the same domain. I empiri-

cally verified the effectiveness of these features on prosody modeling, using

pre-annotated speech corpora. Since these are untested features, their effects

on prosody modeling have not been empirically verified in a large corpus.

Based on this investigation, I demonstrated that word informativeness and

word predictability are two of the most effective features in prosody prediction.

This finding not only can be applied in CTS systems but also is available for

general Text-to-Speech synthesis.

• I identified the influence of deep semantic and discourse features, such as se-

mantic type and semantic abnormality in prosody modeling. Some of them,

such as semantic abnormality, are also untested features and their effects

on prosody modeling have not been empirically verified on a speech corpus.

Based on this investigation, I demonstrated that semantic type is a useful

feature for prosody prediction. In addition, semantic abnormality is signifi-

cantly associated with a set of prosodic features such as break index difference

and HIF0. However, discourse given/new does not seem to have a significant

impact on the words in the corpus. This is counterintuitive given previous

results and it may have had something to do with the size of the corpus. More

analyses are needed to draw a conclusion.
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Another contribution of this work is to systematically combine input features

to predict output prosodic features.

• I designed an instance-based prosody modeling approach which combines sev-

eral input features of each word and predicts all the prosodic features asso-

ciated with all the words in an utterance simultaneously. It also conducts

generalization on the fly. If there is no sentence like the input sentence, the

system can automatically piece together different smaller segments from the

speech corpus so that the newly composed sentence not only is prosodically

similar to the input sentence, but also maintains the prosodic flow of nat-

ural speech as much as possible. This prosody modeling approach is novel,

and is different from traditional prosody modeling approaches, such as de-

cision tree-based or rule-based approaches. Based on subjective evaluation,

this instance-based model also produces better results than traditional ap-

proaches.

In addition, the CTS system proposed was designed in the context of MAGIC,

a multimedia presentation generation system for intensive care. In the MAGIC CTS

system,

• I proposed a semi-integrated flexible CTS architecture in which the autonomy

of CTS components is kept to allow easy integration so that existing language

generation and speech synthesis technology can be reused in such a system.

On the other hand, it still keeps useful semantic, syntactic and discourse

features for speech synthesis.
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Overall, the work presented in this dissertation addresses several main issues

in Concept-to-Speech generation: system architecture and prosody modeling. This

should have influence on CTS system design as well as prosody modeling in general.

8.3 Summary of Limitations and Future Work

Although I have explored many avenues from different standpoints and devised

solutions for creating better automated CTS prosody prediction systems, I believe

this work is just a small step towards further research in this area. Here, I address

several limitations of the current work and discuss some of the possible future

research directions that could eliminate these limitations.

• This approach relies heavily on manually-annotated speech corpora which

is a major limitation. Since creating sufficient prosodically labeled corpora

is always time consuming, the power of this approach is restricted by the

amount of data available. During these analyses, it was obvious that one of

the main reasons that some analysis can not be conducted fully or the effects

of certain features can not be confirmed is because of the corpus size. One

way to overcome this is to develop an automatic process which can easily

create a sufficient amount of training corpus. So far, automated prosody

labeling has only achieved limited success [Wightman and Ostendorf, 1992].

In the future, I want to focus on approaches which do not demand as much

data as the traditional approaches. Using instance-based learning is one step

further towards this direction. In addition, I want to explore the possibility

of applying unsupervised learning in prosody prediction.
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• As I have pointed out, the language features investigated so far are only a

subset of all the potentially useful prosody prediction features. In addition,

the prosodic features explored so far are the main ToBI features and they

are only a subset of all the prosodic features. Therefore, modeling and incor-

porating new language and prosodic features is also a possible direction to

pursue to improve the final synthesis quality.

• So far, the proposed CTS system contains three relatively independent compo-

nents: natural language generation, prosody modeling, and speech synthesis.

Like most pipeline-based models, the decisions made in later components will

not have any affect on the decisions made in previous ones. However, in hu-

man speech, syntax, words, pronunciation and prosody decisions are made

simultaneously and it is possible that some speech or prosodic decisions may

affect word and syntactic decisions. For example, if a person does not know

how to pronounce hypertension, he might prefer to use high blood pressure in-

stead. This is a typical example in which pronunciation decisions affect lexical

choice. In another example, the decision to use prosody to emphasize that

a certain drug is really expensive, such as in It is EXPENSIVE! may make

the lexical emphasis really in It is really expensive. redundant. Thus, in the

future, another interesting direction to pursue is the design of a non-pipeline-

based architecture in which natural language generation, prosody generation

and speech synthesis decisions may interact with each other.

• I investigated how prosody should be generated in monologue. Another typi-

cal CTS application which has gained attention recently is for conversational

systems. Basically, CTS systems are used to produce response automatically.
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Conversation speech is quite different from presentation style speech. It would

be interesting to know how prosody produced in that environment is different

from that produced in presentation style speech.

In summary, Concept-to-Speech generation offers a challenging and relatively

new field of research in intelligent user interfaces. The development of a CTS system

is very demanding. Through this study, I want to create a CTS system with the

ability to produce natural and effective speech. This could put us one step closer

to our goal which is to create a natural and effective spoken language interace

that provides users with an easier, more effective and more pleasant way to obtain

information from and communicate with computer.
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Appendix A
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ANOVA ANalysis Of Variance
CABG Coronary Artery Bypass Graft
CART Classification And Regression Tree
CCG Combinatorial Categorical Grammar
CTS Concept-To-Speech
FD Functional Description
FUF Functional Unification Formalism
HMM Hidden Markov Model
IC Information Content
ICU Intensive Care Unit
KNN K Nearest Neighbor
MAGIC Multimedia Abstract Generation for Intensive Care
NL Natural Language
NLG Natural Language Generation
OR Operation Room
POS Part-Of-Speech
PTC Prosodic Target Cost
RST Rhetorical Structure Theory
SIML Speech Integration Markup Language
SSCB Semantic Syntactic Constituent Boundary
SSCL Semantic Syntactic Constituent Length
STCB SynTactic Constituent Boundary
STCL SynTactic Constituent Length
SURGE Systemic Unification Realization Grammar of English
TF*IDF Term Frequency times Inverse Document Frequency
ToBI Tone and Break Index
TTS Text-To-Speech

Table A.1: Acronym Index
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