
Incorporating Discourse and Syntactic Dependencies into Probabilistic
Models for Summarization of Multiparty Speech

Michel Galley

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2007

c©2007

Michel Galley

All Rights Reserved

ABSTRACT

Incorporating Discourse and Syntactic Dependencies
into Probabilistic Models for Summarization of

Multiparty Speech

Michel Galley

Automatic speech summarization can reduce the overhead of navigating through long streams of

speech data by generating concise and readable textual summaries that capture the “aboutness” of

speech recordings, such as meetings, talks, and lectures. In this thesis, we address the problem of

summarizing meeting recordings, a task that faces many challenges not found with written texts and

prepared speech. Informal style, speech errors, presence of many speakers, and apparent lack of

coherent organization mean that the typical approaches used for text summarization are generally

difficult to apply to speech. On the other hand, meetings provide a rich source of structural and

pragmatic information that presents many research opportunities.

In this work, we illustrate how techniques that exploit automatically derived pragmatic and

syntactic structures can help create summaries that are more on-target and readable than those pro-

duced by current state-of-the-art approaches. We present a conditional Markov random field model

for summary sentence selection that exploits long-distance dependencies between pragmatically re-

lated utterances, such as between a question and its answer, or an offer and its acceptance. These

dependencies are automatically inferred by a probabilistic model of interpersonal interaction, and

are instrumental in achieving accuracies superior to competitive approaches. We also investigate

the problem of rendering errorful and disfluent meeting utterances into sentences that are readable,

pertinent, and concise. We present a trainable syntax-directed sentence compression system that

automatically removes information-poor phrases and clauses from the syntax tree of each input sen-

tence. A novel aspect of this sentence compression approach lies in its use of Markov synchronous

context-free grammars, which provide a probabilistic decomposition of deletion rules into lexico-

syntactic sub-structures more amenable to robust estimation. This sentence compression technique

was effectively applied to both speech and written texts, and produces sentences that were judged

more grammatical than those generated by previous work.

Contents

1 Introduction 1

1.1 Approach Overview and Thesis Organization . 3

1.2 Thesis Contributions . 5

2 Corpora 8

2.1 The ICSI Meeting Corpus . 8

2.1.1 Transcription and Meta-Data . 9

2.1.2 Audio Channels and Acoustic Features 10

2.1.3 Dialog Act and Dialogic Pair Annotation 11

2.1.4 Agreement and Disagreement Annotation 12

2.1.5 Content Selection Annotation . 12

2.1.6 Sentence Compression and Revision Annotation 13

2.2 NIST, CMU, and AMI Meeting Corpora . 19

2.3 The Switchboard Corpus . 20

2.4 The Ziff-Davis Corpus . 20

3 Utterance Selection 22

3.1 Introduction . 22

3.1.1 Notations and Preliminary Remarks . 24

3.2 Dialogic Pairs . 25

3.2.1 Linguistic Background . 25

3.2.2 Automatic Identification . 26

3.2.3 Features . 28

i

3.2.4 Results . 30

3.3 Conditional Random Fields . 31

3.3.1 Parameter Estimation and Probabilistic Inference 33

3.4 Applications . 34

3.4.1 Generic Utterance Selection . 34

3.4.1.1 Motivation . 35

3.4.1.2 Probabilistic Ranking . 36

3.4.1.3 Features . 38

3.4.1.4 Evaluation . 41

3.4.1.5 Results . 44

3.4.2 Agreement and Disagreement Classification for Summarization 50

3.4.2.1 Problem Statement . 51

3.4.2.2 Features . 51

3.4.2.3 Empirical Study . 51

3.4.2.4 Classifier . 54

3.4.2.5 Results . 55

3.5 Conclusion . 56

4 Sentence Compression 57

4.1 Preprocessing . 62

4.1.1 Syntactic Parsing of Conversational Speech 63

4.2 Synchronous Grammars for Sentence Compression 65

4.2.1 Extracting Synchronous Grammars . 66

4.2.2 A Generative Model . 68

4.2.2.1 Lexicalized Head-Driven Markov Model 69

4.2.2.2 Conditioning Variables and Smoothing 73

4.2.3 Discriminative Framework . 75

4.2.3.1 Features . 76

4.2.4 Decoder . 77

ii

4.3 Evaluation Metrics . 78

4.3.1 Word Error Rate . 78

4.3.2 BLEU . 79

4.4 Results . 79

4.4.1 Written Texts . 80

4.4.2 Conversational Speech . 87

4.5 Related Work . 91

4.5.1 Sentence Compression . 91

4.5.2 Machine Translation . 94

4.6 Conclusion . 95

5 Integration and Error Analysis 96

5.1 Automatic Speech Recognition . 96

5.2 Removing Edited Words from Disfluent Utterances 100

5.2.1 Distribution of Repairs . 102

5.2.2 Baseline Approach . 102

5.2.3 Improvements over Baseline . 105

5.2.4 Results . 107

5.3 Content Selection . 108

5.3.1 Automatic Utterance Segmentation . 109

5.3.2 Results . 109

5.4 Utterance Compression . 111

5.4.1 Evaluation . 112

5.4.2 Results . 114

6 Final Discussion 116

6.1 Contributions . 116

6.1.1 Utterance Selection . 116

6.1.2 Utterance Compression . 117

iii

6.1.3 Integration . 118

6.2 Deliverables . 118

6.3 Limitations and Future Work . 119

A Penn Treebank Tags 123

B Annotation Guidelines for Sentence Compression 126

B.1 Overview . 126

B.2 Summarization in Stages . 129

C Sample Outputs 137

C.1 Ziff-Davis . 137

C.2 ICSI Meeting Corpus . 142

Bibliography 164

iv

List of Figures

2.1 Sentence compression annotation interface. 17

3.1 A skip-chain CRF with edges between utterances of the same dialogic pair. 32

3.2 Summarization content units of the ICSI meeting corpus. 42

3.3 ROC curve comparing skip-chain CRF with linear-chain CRF. 48

3.4 Correlation plot between correct and approximate posteriors. 49

4.1 Full sentence and a summary sentence containing a minor rewording. 67

4.2 Syntax tree of the disfluent Switchboard sentence. 70

4.3 Motivating example for bi-lexical dependencies in sentence compression. 74

5.1 Illustration of the minimum edit distance dynamic programming algorithm to find

the minimum-WER sentence in a lattice. 98

5.2 Lattice minimum word error as a function of the threshold on lattice density. 99

5.3 Structure of a self-repair. 101

5.4 A self-repair with an approximate copy. 106

5.5 ROC curve comparing different levels of automation in utterance selection. 110

5.6 Motivating example for compression word error rate (CWER). 112

B.1 The three panels of the revision interface. 127

B.2 The annotation pane. 128

B.3 Reparanda, interruption points, and repairs. 131

B.4 Self-repairs. 131

v

B.5 Filler words. 132

B.6 Hedges. 132

B.7 Summarization stages. 133

B.8 Summarization stages. 134

B.9 Insertions and substitutions. 135

B.10 Improve style and fluency in the revision annotation interface. 135

B.11 Removal of self-repairs, filler, and hedge words. 136

vi

List of Tables

2.1 Excerpt of an anonymized transcription of the ICSI Meeting corpus. Dashes are

used to represent various forms of disfluencies: (1) a dash at the end of a turn repre-

sents an abandoned utterance; (2) a dash appended to the end of a token represents a

word fragment (e.g., “l-”); (3) a dash in the middle of a turn represents a short pause

(as in, e.g., “But - General”) which often precedes a self-repair (Shriberg, 1994). . . 10

2.2 Statistics on the content selection annotation. 13

2.3 Sample abstractive summary of the ICSI meeting corpus. 14

2.4 Annotation stages in sentence compression. 16

2.5 Inter-labeler agreement in sentence compression on the development set of the ICSI

meeting corpus. 18

2.6 Inter-labeler agreement in sentence compression on the test set of the ICSI meeting

corpus. 18

3.1 Features for dialogic pair identification (ranking features). 29

3.2 Features for dialogic pair identification (classification features). 30

3.3 Results for dialogic pair identification. 30

3.4 Contingency table displaying ranking and classification predictions for dialogic act

identification. 31

3.5 Snippet of a meeting displaying three dialogic pairs. 35

3.6 Contingency tables illustrating the statistical correlation arising from dialogic pairs. 36

3.7 Features for extractive summarization. 39

vii

3.8 Some content selection features found helpful on the ICSI corpus. 45

3.9 Results for content selection by feature set. 46

3.10 F1 scores for content selection on the test set of the ICSI meeting corpus with dif-

ferent graphical model structures. 47

3.11 F1 scores for content selection on the test set of the ICSI meeting corpus with dif-

ferent ranking approaches. 48

3.12 Features for agreement and disagreement classification. 52

3.13 Empirical distributions for some agreement and disagreement dependencies (previ-

ous tag, consistency, and symmetrical). The empirical prior for the agreement tag is

p(AGREE) = .188 and the disagreement tag is p(DISAGREE) = .106. 53

3.14 Agreement/disagreement classification accuracies with 3 classes. 55

3.15 Agreement/disagreement classification accuracies with 4 classes. 56

4.1 Excerpt of an extractive summary of a meeting. 58

4.2 Parsing results on the Switchboard corpus. 64

4.3 Cumulative number of training sentence pairs and number of SCFG productions

acquired from Ziff-Davis. 66

4.4 Word error rates on the Ziff-Davis development set for different Markov structures. 81

4.5 Word error rates on the Ziff-Davis development set for different head-modifier an-

notations. 82

4.6 Coverage analysis for the lexicalized Markov SCFG model. 83

4.7 Classification accuracies, precision, recall, and F1 scores for the most frequently

deleted categories. 84

4.8 Human evaluation on the Ziff-Davis test set. 85

4.9 Sentence compressions for the test set of the Ziff-Davis corpus. 86

4.10 Word error rates on the ICSI development set for different Markov structures. . . . 87

4.11 Word error rates on the ICSI development set with different head-modifier annotations. 88

4.12 Results for discriminative training. 88

viii

4.13 Sentence compressions for the test set of the ICSI meeting corpus (first 8 compres-

sions). 90

4.14 Sentence compressions for the test set of the ICSI meeting corpus (sample errors). . 91

5.1 Decoder and lattice word error rates on sentence compression test and development

sets. 100

5.2 Distribution of repairs in Switchboard. 102

5.3 Word edit distance between interregnum and repair. 103

5.4 POS edit distance between interregnum and repair. 103

5.5 Features for disfluency removal. 104

5.6 Results for edited word detection on the development of the Switchboard corpus. . 105

5.7 Results for edited word detection on the test set of the Switchboard corpus. 107

5.8 The four experimental setups for the evaluation of content selection. 108

5.9 F1 scores for content selection on the test set of the ICSI meeting corpus for varying

degrees of automation. 110

5.10 The four experimental setups for the evaluation of sentence compression. 111

5.11 Compression word error rates (CWER) on the ICSI development set. 114

5.12 Compression word error rates of the generative model on the ICSI test set. 115

A.1 Clause-level tags of the Penn Treebank. 124

A.2 Phrase-level tags of the Penn Treebank. 124

A.3 Word-level tags of the Penn Treebank. 125

C.1 Sentence compressions for the Ziff-Davis test set. 137

C.2 Sentence compressions for the test set of the ICSI meeting corpus. 142

ix

Acknowledgments

I am eternally grateful to my advisor, Kathy McKeown, for her thoughtful guidance and constant

encouragement. She gave me ample freedom in pursuing my ideas, while helping me situate my

work in a broader context. She shaped the way I write and do research at a very deep level. I would

also like to thank the other members of my thesis committee—Michael Collins, Daniel Ellis, Julia

Hirschberg, and Owen Rambow—for the remarkable breadth and depth of their feedback, and for

many thought-provoking questions. I am particularly indebted to Julia Hirschberg for her sound

advice and constructive criticism, and to Michael Collins for discussions that have greatly improved

this work (especially in the machine learning aspects). It was also a great pleasure to have Owen

Rambow and Daniel Ellis in my committee; this work benefited substantially from their expertise

in computational models of syntax and in speech recognition.

I would like to express my appreciation and gratitude to all my friends and colleagues at

Columbia for their help, ideas, and good work: Regina Barzilay, Hrvoje Benko, Fadi Biadsy, Sasha

Blair-Goldensohn, Gabor Blasko, Pablo Duboue, Noémie Elhadad, David Elson, Frank Enos, Elena

Filatova, Agustı́n Gravano, Luis Gravano, Nizar Habash, Gabriel Illouz, Martin Jansche, Min-Yen

Kan, Judith Klavans, Alexander Koller, Jackson Liscombe, Sameer Maskey, Smaranda Muresan,

Shmuel Popper, Dragomir Radev, Andrew Rosenberg, Barry Schiffman, Advaith Siddharthan, Kapil

Thadani, and Stephen Wan. Special thanks to my officemates, for both providing a sounding board

for ideas and for many coffee and tea breaks: Alpa Jain, Amélie Marian, Ani Nenkova, Carl Sable,

David Evans, and Panagiotis Ipeirotis.

Interactions with people outside Columbia have also influenced my research. I am particularly

indebted to Kevin Knight and Daniel Marcu, who were not only thoughtful, insightful, and fun

x

mentors, but who also had great influence on the way I think as a scientist. My special thanks to

Alexandros Potamianos and Eric Fosler-Lussier, my two first research supervisors, for their support

and patience, and for inspiring me to grow as a researcher. I have also greatly enjoyed conversa-

tions with Hongyan Jing, Jeff Kuo, Imed Zitouni, Joseph Olive, Chin-Hui Lee at Bell Labs; with

Deepak Ravichandran, Mark Hopkins, Steve DeNeefe, Philipp Koehn, Franz Och, Jonathan Graehl,

Alexander Fraser, Chin-Yew Lin, Marcello Federico, David Kauchak, Michael Fleischman, Lara

Taylor, Liang Zhou, Ignacio Thayer, Radu Soricut, Ulf Hermjakob, Dragos Munteanu, and Madhur

Ambastha at ISI; with Wei Wang and Greg Langmead at Language Weaver.

To my friends who helped me remain sane during my graduate school years (listed here in the or-

der we first met): Laurent, Pascal, Alexandre, Larry, Connie, Andrew, Aurélia, Latifa, George, Min,

Pablo, Smara, Noémie, Dave Evans, Daniel, Dimitris, Vassilis, Alkmini, Nadja, Deepak, Haruka,

Dave Kauchak, and Liang. Thanks in particular to my friends Pablo and Smara, whose continued

presence and support helped me find the strength to stay the course during difficult times. I am

infinitely indebted to both of them.

Finally, this work would not have been possible without the love, support, and encouragement of

my family. I dedicate this dissertation to them. To my parents Claire and Gérard for their constant

support and understanding. To my wife Tomoko for keeping me happy. To Benno for fond and

lasting memories—I miss you.

xi

To my parents and my wife.

To Benno, in memoriam.

xii

Chapter 1 1

Chapter 1

Introduction

Text summarization is increasingly becoming a mature field, with well established methods for

aggregating information sources such as news articles. Summarization enables users to reduce

reading time and to digest large amounts of textual information. Information sources are often

long and repetitive, and the production of generic summaries that synthesize relevant and important

information offers many practical benefits, and it was shown to significantly increase effectiveness

of real users in various fact-gathering tasks (McKeown et al., 2005).

While previous summarization techniques were mainly applied to newswire texts, this thesis

addresses the problem of summarizing meeting recordings. We believe meetings are a particularly

promising application area, since such social gatherings are widespread in all spheres of public

life, e.g., in academia, businesses, and social organizations. Meetings are critical opportunities for

group members to share information, learn from others, solve problems, and make decisions that

move a group forward. However, as meetings generally require significant investments of time, it is

important to plan, organize, and conduct meetings as efficiently as possible. In such a setting, any

effective means to access and navigate previous meetings could constitute great time savings, and

be instrumental in making future meetings more productive.

We envision many practical usages that can be drawn from the ability to identify relevant and

important information in meeting transcripts. One possibility is to use a meeting browser that seam-

lessly integrates (e.g., with hyperlinks between sentences) short summaries, summaries of passages

CHAPTER 1. INTRODUCTION 2

corresponding to particular topics, and full transcripts. Summaries, or minutes of meetings aim

to answer general questions such as: What was the purpose of the meeting? What matters were

discussed? What problems were solved during the meeting? What is to be accomplished?

The use of document summarization techniques is particularly desirable when faced with speech

documents such as meeting transcriptions, since these documents are particularly difficult to navi-

gate. As opposed to their written counterparts, spoken documents lack structural elements like title,

chapters, sections, and paragraphs that can ease the task of the reader. In most cases, transcripts are

just long streams of words, and segmentation into turns often does not correspond to well-formed

sentences. For meetings of one or more hours, the navigation of meeting transcripts of this nature

can be really burdensome. Furthermore, because meetings are often informal and conversational, it

is generally difficult to predict important information based on its relative position in a document,

and simple document skimming strategies, such as reading a handful of lead sentences, rarely pro-

vides a good understanding of the document (as opposed to, e.g., newswire texts, in which the first

paragraph often covers the main point of a story).

Speech summarization presents many research opportunities not found in the text summariza-

tion field. Additional information can be extracted from the speech signal, such as pitch, energy, and

pausal duration. Meetings also present a rich source of structural and pragmatic information unique

to multi-party speech; a main focus in our work examines how structural information derived from

the verbal exchange between speakers can be exploited to improve a trainable summarizer.

While speech summarization presents new research opportunities, it also presents many difficul-

ties. Speech summarization in general, and meeting summarization in particular faces various issues

not found in written texts, and these make the automatic summarization task extremely challenging.

Several factors make it difficult to produce coherent and fluent summaries: informal style, presence

of many speakers, absence of punctuation and other recognizable elements of document structure,

and often apparent lack of coherent organization. Furthermore, meetings are notoriously hard to

recognize automatically (the word error rate on the meeting corpus (Janin et al., 2003) studied in

this thesis is 37.7%). In many cases, this means that approaches used for text summarization are

problematic with conversational speech. The most widely used approach to text summarization—

sentence extraction—may be a relatively poor choice when applied to noisy input. Indeed, disflu-

encies, ungrammatical constructions, and other speech errors are frequent in spontaneous speech,

CHAPTER 1. INTRODUCTION 3

and make it difficult to directly re-use transcription utterances to create summaries. The task of au-

tomatically rendering disfluent and errorful utterances into utterances that are readable and concise

is thus of great practical interest, and a significant portion of this thesis is dedicated to this problem.

This problem is often termed sentence compression.

We now give an overall outline of the thesis and of our approach to meeting summarization, and

then overview our main contributions.

1.1 Approach Overview and Thesis Organization

For our purposes, it is convenient to divide the meeting summarization problem into two subtasks

that are largely independent: content selection, i.e., identifying a set of salient utterances that is a

practical substitute for the entire meeting transcription; sentence compression, i.e., correcting the

various nonfluencies typical of conversational speech, and operating below the sentence level to fur-

ther remove unimportant lexical material. These two tasks are respectively addressed in Chapter 3

and Chapter 4. Prior to them, we describe the ICSI meeting corpus in Chapter 2, on which most of

our experiments on content selection and sentence compression were applied. In the same chapter,

we also describe related speech and text corpora that were used to train auxiliary resources—such as

a syntactic parser for conversational speech—and to compare our approaches to other genres (such

as written texts).

In Chapter 3, we address the problem of selecting relevant and important utterances to build a

summary. Since an objective in summarization is to build summaries that are coherent and cohesive,

it is important to account for certain pragmatic constraints in the process of building summaries, and

avoid, for instance, building a summary that contains a question without its answer. Thus, a special

interest in this chapter is to provide computational means of identifying long-distance dependencies

between pragmatically related utterances, such as question-answer and offer-accept pairs, which are

sometimes termed dialogic pairs. In conversations with many participants, utterances of a dialogic

pair are often not adjacent, because of intervening utterances produced by other speakers, such as

backchannels and unrelated threads of conversation. Chapter 3 presents an approach to automati-

cally identifying such dialogic pairs, and describes their use in two content selection classification

tasks. In both cases, our approach to content selection relies on probabilistic graphical models, in

CHAPTER 1. INTRODUCTION 4

which dialogic pairs provide means to establish long-distance probabilistic dependencies between

utterances. In the first task, we treat content selection as a binary classification problem, where each

utterance is classified either as summary or non-summary. In the second application, we go beyond

this generic content selection scheme and address the problem of identifying agreements and dis-

agreements, which in turn could be used to produce summaries of the main points of the meeting

that were agreed or disagreed.

In Chapter 4, we investigate the problem of rendering errorful and disfluent meeting utterances

into utterances that are readable and concise. Our goal is to remove disfluencies, content-poor

phrases such as “you know” and “I mean”, and also to discard longer phrases and clauses that

are both unimportant and syntactically optional. We take an approach to utterance compression

that capitalizes primarily on syntactic structure, and more specifically synchronous context-free

grammars extracted from parallel texts of document-abstract pairs. Our approach to compression is

divided into three steps: (1) we identify and correct self-repairs in the input utterance; (2) we parse

the remaining words; (3) we apply syntactic compression rules automatically derived from parallel

texts to reduce the sentence. To generate better compressions, we also explore other models and

information sources, such as n-gram language models and tf.idf scores. This chapter also presents

results on compressing written texts, in order to better compare our approach to previous work

(which was almost exclusively applied to texts).

In order to enable better error analyses, we decided in Chapters 3 and 4 to fully automate only

those pre-processing steps that pertain to our summarization work (e.g., dialogic pair identification),

and steps for which no human annotation is available (e.g., syntactic parsing), and assumed accurate

inputs in two other cases (i.e., we used reference transcriptions instead of ASR output, and reference

disfluency annotation instead of relying on automatic disfluency removal). However, Chapter 5

evaluates a fully automated and integrated system for content selection and sentence compression.

We assess the overall scalability of our selection and compression models by applying them to

automatic speech recognition (ASR) outputs, and ensure that all preprocessing steps (e.g., automatic

disfluency removal, segment boundary detection, and induction of all features) are fully automatic.

In the same chapter, we also analyze performance on mildly errorful transcriptions, with word error

rates lower than those of current state-of-the-art ASR systems. This enables us to determine to

what extent our sentence compression would scale assuming significant future advances in speech

CHAPTER 1. INTRODUCTION 5

recognition. Finally, Chapter 5 also describes our experiments on automatically identifying edited

words within self-repairs, such as “why didn’t he?” in the sentence “why didn’t he? – why didn’t

she stay home?”. Since our method for removing edited words using shallow features achieves

state-of-the-art performance without any reliance on syntactic information, we always attempt to

remove edited words as a pre-processing step to our syntax-based model for sentence compression.

This thesis contains three appendices: in Appendix A, we include a list of syntactic labels

used to represent the syntactic deletion rules of Chapter 4, along with definitions and examples.

We believe this appendix may be helpful to some readers not familiar with the Penn Treebank

annotation (Marcus et al., 1994). In Appendix B, we provide the full annotation guidelines provided

to annotators who created reference compressions of meeting utterances. In Appendix C, we provide

sample summaries generated by the utterance compression component.

1.2 Thesis Contributions

In this thesis, we make advances in meeting summarization by exploiting structural properties spe-

cific to multi-party speech, and by extending text summarization techniques to make them generally

applicable to a difficult genre of multi-party informal speech. Overall, this thesis illustrates how

techniques that exploit automatically derived pragmatic and syntactic structures can help create

summaries that are more on-target, coherent, and readable.

• Utterance selection: We present a conditional random field (CRF) model for content selec-

tion that explicitly represents long-distance dependencies between utterances of a meeting,

in order to exploit the strong statistical correlation between dialogic pairs (e.g., question-

answer). To identify these pairs, we present a discriminative model that identifies them with

85.3% accuracy. We show that these pairs are in turn helpful to the content selection task, and

empirical evaluations show that CRF models with long-distance edges representing dialogic

pairs clearly outperform linear-chain CRF models exploiting only local context. As an inter-

mediate step in our approach, we evaluate different solutions to the class imbalance problem

arising in this summarization task. For this, we evaluate different probabilistic methods to ex-

tract the k most probable utterances, such as maximum a posteriori (MAP) and sum-product

inference, and show that the latter approach significantly outperforms the former one. In the

CHAPTER 1. INTRODUCTION 6

generic content selection task, our best model reaches 92.9% of human performance, and out-

performs our best-performing linear-chain CRF model (1.4% absolute increase in F1-score).

In the agreement/disagreement classification task, long-distance pragmatic dependencies en-

coded into discriminative models provide a 1.3% absolute increase in classification accuracy

over our best non-relational model.

• Utterance compression: To alleviate data sparseness issues pertaining to many previous syn-

tax models for sentence compression, we introduce Markov synchronous context-free gram-

mars (SCFG) for sentence compression. These grammars offer a probabilistic decomposition

of deletion rules into lexical-syntactic sub-structures more amenable to robust estimation.

They also enable the incorporation of a flexible amount of lexical dependencies and tree in-

ternal annotation, which are critical to accurately determine whether a given syntactic phrase

is optional (as “like any other product” in the sentence “they sold it like any other product”) or

mandatory (as in “it looks like any other product”). We also present a novel approach for ex-

tracting synchronous context-free grammar (SCFG) compression rules from parallel corpora

of documents and summaries that have been parsed. The approach exploits the minimum tree

edit distance alignment between the syntax tree of the full sentence and the one of the sum-

mary sentence. This extraction approach significantly improves upon previous work, which

only exploited 1.75% of a standard document-abstract corpus (Ziff-Davis). Since we are

able to exploit 25% of the Ziff-Davis corpus, this tree-to-tree alignment method substantially

benefits our lexicalized Markov SCFG models. Finally, we also present a discriminative train-

ing framework in which the parameters of different models—e.g., n-gram language models,

tf.idf scores, sentence length, ASR confidence scores—are directly optimized for compres-

sion quality, either through maximum-BLEU training or minimum-WER training.

• Correcting speech repairs: We present a linear-chain CRF model for disfluency removal

that achieves very competitive performance on a standard test set of the Switchboard corpus.

Our classifier’s strength lies in its use of hundreds of features that are aimed at identifying the

lexical repeats that are generally associated with self-repairs, i.e., it contains many predicative

features that ask whether any pair of words within a window of 5-6 tokens are the same, have

the same part-of-speech, or have the same suffix. While the performance of our classifier

CHAPTER 1. INTRODUCTION 7

(.794 F -score on edited-word retrieval, and an overall .979 accuracy) is slightly lower than

the best performance on the same test set that is known to us (Johnson and Charniak, 2004),

our method is much simpler to implement, and is computationally much more efficient.

• Integration and evaluation: We present a fully automated meeting summarization system

for utterance selection and sentence compression, which is applicable to real automatic speech

recognition output. In contrast to most other works in natural language processing applied to

spoken documents, we provide error analyses on fully automatically recognized texts. We

also carry out analyses on transcriptions with varying degrees of recognition errors, rang-

ing from fully accurate transcriptions to real ASR outputs. We find that our approaches to

summarization scale relatively well on ASR transcripts.

Chapter 2 8

Chapter 2

Corpora

This chapter provides an overview of the various corpora used to train and test the summarization

components described in this thesis. Our work in this thesis was primarily applied to the ICSI

Meeting corpus (Janin et al., 2003), which is described in Section 2.1. We review other meeting

corpora in Section 2.2, such as meetings from CMU (Waibel et al., 2001), NIST (NIST, 2004a),

and AMI (Carletta et al., 2005). In Section 2.3, we present the Switchboard corpus (Godfrey et

al., 1992), whose treebank and disfluency annotations are used to train and test a syntactic parser

(Charniak, 2000) and a model to identify and correct repairs. In Section 2.4, we finally present

the Ziff-Davis corpus, a corpus that has been extensively studied in previous work on sentence

compression. Ziff-Davis comprises a large collection of technical articles and their corresponding

abstractive summaries, and is used in this thesis to compare our approach to prior work.

2.1 The ICSI Meeting Corpus

The ICSI Meeting Corpus (Janin et al., 2003) is a corpus of 75 research meetings, representing

about 72 hours of speech, that were recorded at the International Computer Science Institute (ICSI)

at UC Berkeley between 2000 and 2002. These meetings are all “naturally-occurring”, in the sense

that they would have taken place anyway, and their style is quite conversational and informal. The

number of participants in these meetings ranged from 3 to 10, and averaged 6. The total number of

unique speakers is 60, including a large number (26) of non-native English speakers.

These recordings consist primarily of regular meetings of three research groups at ICSI: (1) 15 Even

CHAPTER 2. CORPORA 9

Deeper Understanding (EDU) meetings, concerned with natural language processing and neural

theories of language; (2) 29 Meeting Recorder (MR) meetings, concerned with the ICSI corpus it-

self; (3) 23 Robustness (RO) meetings concerned with environmental issues in speech recognition.

While a few speakers regularly appear in both MR and RO meetings, participants of EDU meetings

were not involved in any other meetings of the corpus.1

2.1.1 Transcription and Meta-Data

Human word-level orthographic transcriptions are available for all meetings of the ICSI corpus. All

meetings were transcribed using a professional transcription service, and a senior transcriptionist

later verified the entire transcription.

Transcriptions incorporate punctuation, word fragments (e.g., “l-”), restarts (“-”), and pauses

(“[pause]”). The original transcription also contains contextual comments about various speech

and non-speech events (laughs, coughs, door slams, lip smack, etc.), but for the purpose of our

experiments, all comments except laughs (“[laugh]”) were ignored. This is motivated by the fact

that speech recognition outputs generally do not contain most of these events. Table 2.1 provides an

excerpt of a meeting.

All meetings were automatically recognized using the SRI-ICSI (Mirghafori et al., 2004) speech

recognition system, a recognizer that was primarily trained on conversational telephone speech

(CTS). We overview this recognizer in Section 5.1, before presenting results for content selection

and sentence compression for different levels of transcription quality. In the case of sentence com-

pression, we evaluate four different levels: (1) the transcript with punctuation and mixed case;

(2) ASR-like transcripts, which are all lowercase, without punctuation, and without word frag-

ments (3) ASR transcripts produced by the SRI-ICSI recognizer; (4) ASR oracle transcripts that are

slightly less errorful than real ASR outputs.

A peculiar characteristic of the ICSI corpus is the presence of a “digits” section at the beginning

or the end of almost each meeting. Participants were asked to read digits, in order to collect data

for far-field signal speech recognition. Since these sections were not removed prior to summariza-

tion, the utterance selection component (Chapter 3) incorporates “digits” features to automatically

identify and remove them (for instance, one feature counts the number of digits in each utterance).

1Except in one case where a regular participant of MR and RO meetings attended the beginning of an EDU meeting.

CHAPTER 2. CORPORA 10

Speaker Transcription

me013 So that’s about eight per minute [laugh] .

fe008 But a thousand events in twelve minutes - , that’s -

mn005 Yeah , [pause] but -

mn005 Yeah .

fe016 But that can include taps .

me013 Uh . Yeah .

mn005 But - General .

fe008 Well , but a thousand taps in eight minutes is a l- in twelve minutes is a lot .

Table 2.1: Excerpt of an anonymized transcription of the ICSI Meeting corpus. Dashes are used

to represent various forms of disfluencies: (1) a dash at the end of a turn represents an abandoned

utterance; (2) a dash appended to the end of a token represents a word fragment (e.g., “l-”); (3)

a dash in the middle of a turn represents a short pause (as in, e.g., “But - General”) which often

precedes a self-repair (Shriberg, 1994).

We believe it to be appropriate to include such corpus-specific features, since they are only aimed

at removing utterances that would normally not occur in a meeting. This is the only case of corpus-

dependent processing in this thesis.

2.1.2 Audio Channels and Acoustic Features

All meetings took place in a conference room at ICSI. Meetings were recorded using simultaneously

up to 10 head-worn microphones and four omni-directional PZM table microphones (Janin et al.,

2003), and the waveform of each microphone was stored in a separate file (down-sampled to 16 kHz

and reduced to 16 bits). Audio files range in length between 17 and 103 minutes.

In our experiments on content selection, feature extraction for a given speaker always relied on

the recording of his or her head-worn microphone. In the rare cases when it was not available, we

relied on the PZM microphone that is the closest to the center of the table (D3 according to the

seating chart provided with the ICSI corpus).

Participants sometimes exercised their rights to have portions of the audio recording deleted.

CHAPTER 2. CORPORA 11

This happened, for instance, in segments containing utterances of people’s names. While speaker

identifiers were anonymized, the occurrences of people’s names in the transcription and audio were

only deleted at the participants’ explicit request. To satisfy such requests, the unwanted portions of

the audio were “bleeped”, and corresponding segments of the transcriptions were deleted.

In this thesis, acoustic features were extracted using Praat (Boersma and Weenink, 2006), a

program for speech analysis with scripting functionalities. For each segment, we extracted features

such as minimum, maximum, and average F0 and energy (more details are available in Chapter 3).

F0 contours were stylized using Praat’s built-in stylizer, and all features values were normalized by

speaker. When Praat failed to produce a feature value, or when processing bleeps, missing features

were set to the mean value of the given feature.

2.1.3 Dialog Act and Dialogic Pair Annotation

We used the ICSI Meeting Recorder Dialog act (MRDA) corpus (Shriberg et al., 2004) for our exper-

iments on content selection. Dialog act (DA) labels describe the pragmatic function of utterances,

and an utterance may be classified as a STATEMENT, as an OFFER, as a ACCEPT, etc. This auxiliary

corpus consists of over 180,000 human-annotated dialog act labels, and inter-labeler agreement was

considered substantial (Cohen’s κ statistic is .8). This corpus also contains the annotation of adja-

cency pairs, sometimes also termed dialogic pairs (DP). Dialogic pairs provide information about

speaker interaction, and reflect the structure of conversations as paired utterances (e.g., APOLOGY-

DOWNPLAY and OFFER-ACCEPT). In this corpus, each dialogic pair is represented as a pair of

utterance indices. The labeling of dialogic pairs is used in our work to automatically determine the

addressee of a given utterance (the DP identifier described in Subsection 3.2), and is instrumental in

automatically determining the structure of probabilistic graphical models, as explained in Chapter 3.

The dialog act and dialogic pair annotation for the ICSI Meeting corpus is described in more detail

in (Shriberg et al., 2004; Dhillon et al., 2004).

Note that, while we sometimes refer to dialogic pairs using pairs dialog act labels (such as

OFFER-ACCEPT), we actually do not attempt to predict these DA categories. As we will see in

Section 3.2.2, we treat the problem of automatically identifying dialogic pairs as follows: given

the index of utterance B, find the index of the preceding utterance A, so that (A,B) constitutes a

dialogic pairs. To establish that the speaker of utterance B addresses the speaker of A, we do not

CHAPTER 2. CORPORA 12

need to know that, for example, A is an offer and B is an accept (while such information would

be useful, automatically identifying such tags is generally considered a very difficult problem—the

best performance on the ICSI corpus that is known to us is 66% classification accuracy (Ji and

Bilmes, 2005)).

2.1.4 Agreement and Disagreement Annotation

The work on agreement and disagreement identification described in Chapter 3 is meant to illustrate

the use of our model of interpersonal interaction in other classification tasks related to summariza-

tion. Following (Hillard et al., 2003), our work relies on the annotation of the utterances of seven

meetings with one of the four categories: AGREE, DISAGREE, BACKCHANNEL, and OTHER.2

Backchannels (e.g., “uh-huh” and “okay”) were treated as a separate category, since they are gen-

erally used by listeners to indicate they are following along, while not necessarily indicating agree-

ment.

As it was done (Hillard et al., 2003), these meetings were segmented into “spurts”, defined as

periods of speech that have no pauses greater than 0.5 second, and each spurt was labeled with

one of the four categories. Hillard et al.’s motivation for using spurt segmentation as a unit of

analysis lies in the fact that it is automatic, and as opposed to other types of segmentation, it is

particularly easy to produce automatically. The annotation collected by (Hillard et al., 2003) consists

of 1795 hand-labeled spurts, to which 8094 automatically labeled spurts were added sometimes

added to the training data.3 The proportion of class labels in the hand-labeled data is the following:

9.42% are agreements, 6.24% are disagreements, 22.8% are backchannels, and 61.6% are others.

According to (Hillard et al., 2003), inter-labeler reliability estimated on 500 spurts with two labelers

was considered fair, since the kappa coefficient (Cohen, 1960) was 0.63.

2.1.5 Content Selection Annotation

To train and evaluate the content selection system of Chapter 3, we used a corpus of extractive

summaries produced at the University of Edinburgh (Murray et al., 2005b). Statistics about this

corpus are displayed in Table 2.2. For each of the 75 meetings, human judges were asked to select

2Part of these annotated meetings were provided by the authors of (Hillard et al., 2003).

3Hillard used an unsupervised clustering strategy to generate these labels (Hillard et al., 2003).

CHAPTER 2. CORPORA 13

Train Test

Meetings 69 6

Ref./meeting 1 3-5

Dialog act units 103,534 7,966

Length (% of words) 18.6% 19.1%

Length (% of DA units) 9.54% 9.70%

Table 2.2: Statistics on the content selection annotation: number of meetings per set, number of

reference summaries per meeting, number of dialog act units, and average lengths expressed as

percentages of words and DA units. Note that, if we take into account multiple references, the test

set comprises a total of 28,519 DA units.

transcription utterances segmented by DA in order to build reference extractive summaries. This

resulted in summaries whose length averaged 18.8% of the original documents in number of words,

and 9.57% in number of DA units. No strict limit on length was imposed on the annotators. Inter-

labeler agreement was measured using six meetings that were summarized by multiple coders, and

resulted in a kappa score of .323. While this level of agreement is quite low, this situation is not

uncommon to summarization, since there may be many good summaries for a given document; a

main challenge lies in using evaluation schemes that properly account for this diversity.

The Edinburgh summarization corpus also contains 61 abstractive summaries, which are made

of four sections: “abstract”, “decisions”, “problems”, and “progress and achievements”. It would

potentially be interesting to use these abstracts in future research in abstractive summarization.

However, these abstracts were not used in our work due to their relatively high abstraction level

(see Table 2.3). Indeed, these summaries seldom re-use phrases of the original transcriptions, and

it would be quite unreasonable to envision the automatic production of such summaries from noisy

conversational transcripts.

2.1.6 Sentence Compression and Revision Annotation

In order to train a sentence compression system able to process meeting transcripts, we super-

vised the annotation of 2409 sentences drawn from 14 meetings of the ICSI corpus. Three native

speakers of American English—a freelance magazine editor, a graduate student in physics, and an

CHAPTER 2. CORPORA 14

ABSTRACT

The Berkeley Meeting Recorder group discussed research aims and corresponding concerns for future

data collection. It was agreed that a substantial amount of meeting data is required from different domains,

and comprising several speakers, to perform the types of discourse and acoustic analyses desired. Ongoing

efforts by speaker mn005 to automatically detect regions of speaker overlap were considered. It was

suggested that speaker mn005 focus on a small set of acoustic parameters, e.g. energy and harmonics-

related features, to distinguish regions of overlap from those containing the speech of just one speaker.

Disk space issues were discussed.And, finally, the problem of speaker anonymization was explored.

DECISIONS

Recordings must be of existing meetings that are conducted in English. Participants should ideally con-

sist of professors and doctoral students, but no undergraduate students, who are willing to record their

meetings at ICSI. The Meeting Recorder corpus should comprise data from a large number of speakers

representing different domains. Attempts should also be made to optimize the speaker population for

generating good language models. Speaker me011 will pursue volunteers from the Haas Business School

to record their weekly meetings at ICSI. A tentative decision was made to offer participants a recorded

version of their meeting on a cd rom once the transcript screening phase is complete for that meeting.

PROGRESS AND ACHIEVEMENTS

Research aims and corresponding concerns for future data collection were discussed. A student researcher

will be working with speaker fe016 to investigate different strategies for automatically summarizing meet-

ings, and identifying discussional ’hotspots’. Efforts by speaker mn005 are ongoing to detect regions of

speaker overlap in the signal. A total of 230 regions of overlapping speech have been manually tran-

scribed for a subset of meeting data. Supervised clustering and neural networks are being considered

as means for classifying overlap. It was suggested that speaker mn005 focus on a small set of acoustic

parameters, e.g. energy and harmonics-related features, to use the mixed signal to distinguish regions of

overlap from those containing the speech of just one speaker. Future work may also involve focussing

on additional signals, and using a Markov model to analyze acoustic parameters over larger time frames.

Beam-forming was suggested as an alternate method of detecting overlapping speech. Efforts are ongoing

to select an optimal method for anonymizing speakers. More disk space is gradually being made available

for the storage of new Meeting Recorder data.

Table 2.3: Abstractive summary for one of the meetings of the ICSI meeting corpus (Bmr006). Each

abstractive summary contains four sections: Abstract, Decisions, Progress and Achievements, and

Problems (the last one is omitted here because of space constraints).

CHAPTER 2. CORPORA 15

undergraduate student in journalism—were hired for the task. The work represented a total of 166

person-hours, i.e., each annotator spent on average 4 minutes per sentence.

The annotators were asked to remove disfluencies and unimportant information in order to create

summary sentences that are concise and pertinent, while preserving as much of their grammaticality

and original meaning as possible. For each meeting, annotators were given access to a human

extractive summary taken from the set of human extractive summaries described in 2.1.5, and were

asked to annotate sentences of the extractive summary in sequential order.4 In order to enable

an understanding of each original sentence in its context, annotators always had access to the full

transcription from which the extractive summary was drawn. As shown at the top of Figure 2.1,

annotators were able to access four different panes: (1) the “annotation” pane, in which they are

supposed to mark words for deletions; (2) the “transcription” pane, in which the current utterance is

displayed in its original context in the full transcription; (3) the “extractive summary” pane, in which

the current utterance is displayed within the extractive summary; (4) the “abstractive summary”

pane, which contains compressions for all sentences that have already been processed by the same

annotator.

As other summarization tasks, sentence compression is a subjective task, since annotators often

do not agree on what is important or salient in texts. In order to maximize inter-labeler agreement,

we developed annotation guidelines that provide specific instructions on what types of textual units

should be discarded if deemed unnecessary. The annotation protocol was divided into multiple

stages, where each stage corresponded to a specific type of editing (e.g., remove all hedges such

as “I think” and “I believe”). Note that annotators always had the choice to retain any textual

units they thought were important. For instance, the deletion of hedges was discouraged when the

annotators felt that the mitigation or weakening effect of any given hedge is important to convey in

the summary. The full annotation guidelines are provided in Appendix B, of which we now give a

brief overview.

The seven annotation stages are listed in Table 2.4, which result in eight different levels of com-

pression. Annotators were also specifically asked to ensure that the result of each annotation stage

4The 14 meetings annotated for sentence compression are the following: Bed004, Bed009, Bed010, Bed016,

Bmr001, Bmr005, Bmr006, Bmr007, Bmr013, Bmr019, Bmr023, Bns002, Bro008, and Bro018. Bmr005 and

Bed009 were annotated by two subjects, and were used respectively as development and test set.

CHAPTER 2. CORPORA 16

Stage/Transcript %ratio Edit type Edits

0 100 - none (full utterances)

1 89.6 delete remove repairs

2 82.9 delete remove fillers and parentheticals

3 79.3 delete remove hedges

4 64.2 delete remove unimportant information (1)

5 53.1 delete remove unimportant information (2)

6 54.0 free editing make sentence grammatical

7 53.2 free editing make sentence fluent and concise

Table 2.4: Annotation stages for the compression ICSI meeting sentences. Note that edits in the last

column are cumulative, e.g., transcript-3 neither contains repairs, fillers, parentheticals, nor hedges.

“ratio” refers to the ratio between the length of the transcription and the length of transcript-0 (note

that length slightly increases in Stage 6, since the correction of grammar often require adding new

words to the sentence).

yields a sentence that is as grammatical and consistent with the original meaning of the sentence as

possible (since input sentences were not always grammatical, their compressions sometimes yielded

ungrammatical sentences that could not be fixed before stage 6). In each of the first five stages, the

annotator decided for each word whether or not it should be deleted. Once a word is removed in

one of these five stages, it cannot be re-introduced in one of the subsequent stages.

Figure 2.1 displays how the process of removing words was implemented in an online graphical

user interface: the annotator can select any range of words to be deleted, which then appear in red.

These words are then marked for deletion and no longer appear in the subsequent stages.

In the first stage, annotators were asked to remove edited words in self-repairs, e.g., “why didn’t

he?” in the utterance “why didn’t he? why didn’t she stay home?”. In the second stage, fillers (e.g.,

“um”, “uh”) and parentheticals (e.g., “I mean”) are removed. Stage 3 corresponds to hedges, such

as “I think” and “I believe”. Stages 4 and 5 are admittedly the most subjective ones, since annotators

are then asked to remove unimportant information. We decided to break down this summarization

annotation into two, since we thought that multiple stages would provide us greater freedom to build

reference summaries with different levels of compression. We defined these two annotation tasks as

CHAPTER 2. CORPORA 17

Figure 2.1: Sentence compression annotation interface.

follows:

• Stage 4: remove words or phrases that provide no or little factual information;

• Stage 5: remove any information that is not critical to the overall meeting summary.

We did not exploit the two last stages in our work, but nevertheless describe them here for

completeness. Our decision to append revision stages after all compression stages was mostly driven

by the fact that we are not dealing with arbitrary revisions, but only with deletions. In stage 6,

annotators were asked to make each sentence grammatical, by allowing them to perform any kind

of re-writing.5 In stage 7, annotators were given the freedom to perform any kind of editing as

to make the end result as fluent, concise, and pertinent as possible. This stage effectively allows

certain types of condensations not possible in other stages, e.g., rewriting “a few weeks ago” into

“recently”.

We now analyze inter-labeler agreement on two meeting summaries (Bmr005 and Bed009) that

were compressed by two different annotators, which are presented in Tables 2.5 and 2.6. These

two annotators were the same in both cases. The tables analyze the level of agreement between

5While it may seem more sensible to put correction of grammar (stage 6) before all other stages, this would have meant

that our sentence compression system would learn how to perform other corrections—such as removing unimportant

information—from texts that are always grammatical, yet the input at run time often includes ungrammatical sentences.

CHAPTER 2. CORPORA 18

1→3 1→4 1→5

ratio of retained words (human-1) .852 .713 .542

ratio of retained words (human-2) .881 .640 .549

κ .747 .525 .529

κmax .874 .833 .987

Table 2.5: Inter-labeler agreement in sentence compression on the development set of the ICSI

meeting corpus (Bmr005). x→y refers to the transformation from transcript-x to transcript-y,

which are defined in Table 2.4.

1→3 1→4 1→5

ratio of retained words (human-1) .895 .810 .632

ratio of retained words (human-2) .919 .711 .575

κ .695 .528 .555

κmax .851 .732 .881

Table 2.6: Inter-labeler agreement in sentence compression on the test set of the ICSI meeting

corpus (Bed009).

CHAPTER 2. CORPORA 19

different stages shown in Table 2.4, e.g., “1→ 5” refers to the transformation of a relatively fluent

utterance (stage 1) into an utterance that has been significantly shortened (stage 5). In each case,

we indicate how much text was retained by human-1 and human-2, and the level of inter-labeler

agreement computed with Cohen’s κ (Cohen, 1960). κ scores respectively average .721, .526, .542

for the three tasks, which suggests that the level of agreement is moderate according to Landis and

Koch (1977) (they consider .41 as the minimum that suggests moderate agreement, and .61 as a

minimum to substantial agreement). Since there seems to be more agreement between stage 1 and

5 than between stage 1 and stage 4, the sentence compression task evaluated in Chapters 4 and 5

corresponds to the latter case (1→ 5).

In the sentence compression task, a relatively low κ score (e.g., .528) may not necessarily mean

the two judges do not agree on what is important. In some cases, it might be due to a disagreement

on how much to delete. To help give a sense of how to weight the two sources of disagreement,

we also provide the maximum obtainable kappa score κmax given the number of words that were

selected by each annotator. For instance, the transformation from transcript-1 to transcript-4 yields

κ = .528 while κmax = .732. Since the difference between κ and κmax is relatively small compared

to the other cases, we might hypothesize that a major source of disagreement in this case was how

much to reduce sentences.

2.2 NIST, CMU, and AMI Meeting Corpora

The increased level of interest in meeting processing and recent meeting recognition task evalua-

tions (NIST, 2004b) spurred the emergence of additional meeting corpora. The CMU/ILS corpus

(Waibel et al., 2001) contains 18 transcribed meetings that were either naturally occurring (research

group meetings) or artificial (game playing tasks, military strategic exercises, discussions of general

topics including news (Burger et al., 2002)). The NIST pilot corpus (NIST, 2004a) consists of 19

transcribed meetings, a mix of real meetings (staff regular meetings, technical presentations, plan-

ning events) and scenario-driven meetings (game playing, focus groups discussions about general

subjects such as news events and movies).

The AMI corpus contains meetings recorded at IDIAP (McCowan et al., 2003) and the Univer-

sity of Edinburgh (Hain et al., 2005; Carletta, 2006) representing about 100 hours of meeting time.

CHAPTER 2. CORPORA 20

Some are naturally occurring (research meetings), others are elicited, e.g. task-oriented meetings

where participants play different roles in design teams (see (Carletta et al., 2005)), and informal

discussions about freely chosen subjects (e.g. discussions about recent travels, last books and pa-

pers read, and movies).6 Rich transcription (RT) NIST evaluations (NIST, 2004b) rely on the ICSI,

CMU, and NIST data, and define standard test sets for these corpora.

These meetings are not used in our work, due to the lack of annotation to either train or test a

summarization system.

2.3 The Switchboard Corpus

Switchboard is a corpus of spontaneous conversations that comprises 2,430 telephone exchanges

between unacquainted adults (Godfrey et al., 1992). From the corpus, 400 conversations have been

annotated with disfluencies and syntactic structure (phrase-structure trees), and incorporated into

the third release of the Penn Treebank (Marcus et al., 1994). We use this corpus to train a classi-

fier that corrects self-repairs (Section 5.2) and a syntactic parser adapted to conversational speech

(Section 4.1.1).

2.4 The Ziff-Davis Corpus

In Chapter 4, we not only analyze the performance of our sentence compression system on conver-

sational speech, but also on written texts. Since previous work in sentence compression was mostly

applied to written texts, we believe it is interesting to establish comparisons between the two genres.

To train the syntax-directed sentence compression model described in Chapter 4, we used the

Ziff-Davis corpus (Harman and Liberman, 1993), a collection of newspaper articles announcing

computer products. In our experiments, we used 24,985 document-abstract pairs drawn from the

Ziff-Davis corpus.7 These abstracts contain 149,576 sentences, which represent about 3.3 million

words. Full documents contain 1,407,049 sentences, which represent about 32.3 million words.

Since our sentence compression component requires sentence pairs to be aligned in order to extract

6The current release is available from: http://mmm.idiap.ch

7The full corpus contains 39,060 documents. The 14,075 documents not used in our work did not contain any abstracts.

CHAPTER 2. CORPORA 21

compression rules, we automatically aligned these abstract sentences to full document sentences.

Since we are mostly interested in sentence pairs that do not involve a significant amount of re-

wording, a good criterion to match sentences between documents and abstracts is the minimum

edit distance (Levenshtein, 1966). Specifically, each abstract sentence is aligned to the document

sentence that minimizes the edit distance between the two.

While (Knight and Marcu, 2000) took a similar approach to identifying sentence pairs, their

extraction of sentence pairs was limited to pairs that do not contain any insertion or substitution

between from the full sentence to the abstract sentence. As a result, Knight and Marcu could only

exploit 1,087 such paired sentences in the entire Ziff-Davis corpus, which represents a recall of

only 1.75%.8 We go a step further by extracting sentence pairs that contain a mild amount of

rewording, and allow any number of deletions and up to 7 word substitutions between the full sen-

tence and the summary sentence (which provides a total of 17,019 sentence pairs, of which 16,787

are used for training). Our motivation in doing this is to address the general lack of appropriate

training resources in sentence compression by incorporating training material that may not be as

good as sentence-compression pairs, but that nevertheless can help collecting statistics of word and

constituent deletions. In Section 4.2.1, we will present a method for extracting grammatical com-

pression rules that takes significant advantage of these thousands of extra sentences.

8We refer here to the coverage of 1.75% reported by (Daumé III and Marcu, 2004). In fact, these 1,087 sentences

represent only 0.72% of the 149,576 abstract sentences we were able to extract from the corpus. We assume this difference

might be due to some discrepancies between our corpus pre-processing stages and the ones used by (Knight and Marcu,

2000).

Chapter 3 22

Chapter 3

Incorporating Discourse Structure into

Probabilistic Sequence Models for

Utterance Selection

3.1 Introduction

The purpose of content selection is to reduce the input speech to a set of utterances that capture

what is important in the source transcription. Since most meeting transcripts are lengthy—14,000

words on average—this can significantly reduce user reading time.

There has been a large body of work in content selection for text summarization (Mani and

Maybury, 1999), with applications to many text domains, primarily newswire data. Several re-

searchers have also addressed the problem of summarizing speech in domains such as broadcast

news (Barzilay et al., 2000; Zechner and Waibel, 2000a; Hori et al., 2002; Maskey and Hirschberg,

2005) and voicemail (Koumpis and Renals, 2000; Koumpis and Renals, 2003b), but applications to

meetings are relatively few (Murray et al., 2005a; Galley, 2006; Murray and Renals, 2006). We be-

lieve, however, that many factors make meeting summarization interesting. Meetings present a rich

source of structural and pragmatic information that makes summarization of multiparty speech quite

unique. Such information sources include time, duration, and identity of the speaker, and enable

fine-grained pragmatic analyses to identify turn-taking events that are helpful cues to conversational

CHAPTER 3. UTTERANCE SELECTION 23

structure (Sacks, Harvey et al., 1974; Schegloff and Sacks, 1973).

A fundamental element of conversational structure is the adjacency pair (Schegloff, 1968), also

known as dialogic pair (DP) (Harris, 2005), a concept drawn from the conversation analysis lit-

erature. DPs are pairs of utterances such as QUESTION-ANSWER or REQUEST-GRANT, in which

the second utterance is said to be conditionally relevant to the first. Our analyses of patterns in the

verbal exchange between participants found that dialogic pairs have particular relevance to sum-

marization. As described in Subsection 3.4.1, we found that there is a strong statistical correlation

between the two elements of a dialogic pair in summarization, and that one element of a pair (e.g.,

REQUEST) is unlikely to be included if the other element (e.g., GRANT) is not present in the sum-

mary. The motivation for using dialogic pairs in summarization is two-fold: (1) by accounting for

the local structure of discourse, we expect to improve content selection accuracy by exploiting sta-

tistical dependencies between pragmatically-related utterances; (2) by penalizing the removal of an

utterance pragmatically linked to a summary utterance, we hope to generate summaries that sound

more coherent and natural (qualities that are however not accounted for in automatic evaluation

metrics).

In this chapter, we investigate the question of how to incorporate such discourse-level depen-

dencies into probabilistic classifiers for content selection. State sequence Markov models—such

as hidden Markov models (HMM) (Rabiner, 1989) and conditional Markov models (Ratnaparkhi,

1996; McCallum et al., 2000; Lafferty et al., 2001)—have been highly successful in many classifi-

cation tasks in speech and natural language processing. This is also the case in summarization, e.g.,

Conroy et al. (2004) built an HMM-based summarizer that consistently ranked among the top sys-

tems in recent Document Understanding Conference (DUC) evaluations. However, these sequence

models only encode local (n-th order Markov) dependencies between utterances to be labeled. In

multiparty speech, the two elements of a dialogic pair are generally arbitrarily distant. Hence, such

models can only poorly account for dependencies underlying DPs in summarization, and are prone

to overfitting with large Markov orders.

To address these limitations, we construct a conditional Markov random field (CRF) (Lafferty

et al., 2001) whose structure not only reflects dependencies between the current utterance and its

predecessor, but also explicitly represents dependencies between arbitrarily-distant pragmatically-

related utterances, such as a QUESTION-ANSWER pair. In our work, we show that a CRF model

CHAPTER 3. UTTERANCE SELECTION 24

incorporating long-distance edges representing dialogic pairs achieves the highest accuracy in our

experiments and reaches 92.9% of human performance.

In the second part of this chapter, we also investigate the use of dialogic pairs as a tool for

structural prediction in more complex summarization tasks. In many applications and summariza-

tion settings, we may have prior knowledge and assumptions about the kind of information the user

would want to retrieve, e.g., all statements that were agreed or disagreed by other speakers. To

illustrate the benefit of a probabilistic model that explicitly represents dependencies among dialogic

pairs, we address the problem of identifying agreements and disagreements, and show that these

probabilistic models outperform competitive counterparts that only contain local structure (i.e., 1st

order Markov structure).

This chapter is organized as follows. In Section 3.2, we provide linguistic background on di-

alogic pairs, then describe and evaluate an approach for automatically identifying such pairs. In

Section 3.3, we present probabilistic graphical models exploiting the dependency structure between

adjacent sentences and non-local discourse relations such as dialogic pairs. In Section 3.4, we

present two sequence classification tasks that make use of dialogic pairs: content selection and

agreement and disagreement classification.

3.1.1 Notations and Preliminary Remarks

In this chapter, we address sequence labeling tasks for multiparty speech such as meetings. Each

sequence corresponds to a single meeting or conversation, and we assume we are provided with a

segmentation u = (u1 . . . uT) into utterances, and that each utterance is associated with a given

input xt and a label yt we are attempting to predict. We define the following notation for the

remaining part of this chapter:

• ut identifies the t-th utterance of the conversation, where 1 ≤ t ≤ T . ut is defined as a

quadruple ut = (t, st, et, pt), where st and et respectively refer to the start and end time of ut

(both expressed in seconds), and pt ∈ P is a nominal attribute that uniquely identifies one of

the M speakers or participants in the conversation; for instance, P = {alice, bob, chris}.

• xt ∈ Rn is an n-dimensional input vector corresponding to ut = (t, st, et, pt), and that is

extracted from the audio channel of participant pt on the interval [st, et]. The input vector xt

CHAPTER 3. UTTERANCE SELECTION 25

represents words, durations, and acoustic features such as pitch and energy, but also structural

and duration features not directly observable from the channel (e.g., a predicate that is true if

and only if pt−1 = pt). Typically, many components xt are simple boolean-value functions.

• (bi, ai) ∈ D identifies a dialogic pair, where ai ∈ A and bi ∈ B are respectively the indices

the first and second element of the DP and satisfy ai < bi. The sets A ⊂ {1 . . . T} and

B ⊂ {1 . . . T} are indices of all utterances that are first and second dialogic pair elements,

respectively. Since no two DPs share the same second element (e.g., an answer generally

does not address more than one question), the binary relation D = {(bi, ai)}D
i=1 is functional,

and we can define the function a : B → A satisfying a(bi) = ai for all (bi, ai) ∈ D.

• yt is the label to predict. In Section 3.4.1, yt ∈ {+1,−1} indicates whether or not ut is part

of the summary. In Section 3.4.2, yt ∈ {AGREE, DISAGREE, BACKCHANNEL, OTHER}

specifies the pragmatic role of ut.

The term utterance in this chapter is purposely ambiguous, since the notation presented here

will be used interchangeably for different definitions of segmental units. In content selection (Sec-

tion 3.4.1), utterances map to dialog act (DA) units (Allen and Core, 1997), because our utterance

selection annotation is defined in terms of manually annotated DA segments. In agreement and

disagreement classification (Section 3.4.2), the reference agreement and disagreement annotation

(Hillard et al., 2003) is defined in terms of a silence-based segmentation (any pause of .5 seconds or

more is treated as a boundary). However, nothing would prevent us from using different unit types,

such as dialog turns, breath groups, and intonational phrases. In the chapter on system integration

(Chapter 5), we will also rely on automatically-generated segments.

3.2 Dialogic Pairs

3.2.1 Linguistic Background

Adjacency pairs (Schegloff, 1968) or dialogic pairs (DP) (Harris, 2005) are fundamental units of

conversational organization, in that they give coherence to the speech by identifying who is to

speak and by defining a set of expected continuations in the conversation. A dialogic pair is said

to consist of two parts (later referred to as A and B) that are ordered and produced by different

CHAPTER 3. UTTERANCE SELECTION 26

speakers. The first part makes the second one immediately relevant, as a question does with an

answer, or a request does with a grant. Since most of the descriptive literature applies to two-

party interaction, some authors further define dialogic pair as a pair of adjacent utterances (hence,

the term adjacency pair). This requirement is problematic in many respects (Levinson, 1983):

even when DPs are not directly adjacent, the same constraints between pairs and mechanisms for

selecting the next speaker remain in place (e.g., the case of embedded question and answer pairs).

The relaxation on a strict adjacency requirement is particularly important in interactions of multiple

speakers, since other speakers have more opportunities to insert utterances between the two elements

of the DP construction (e.g., interrupted, abandoned or ignored utterances; backchannels; DPs with

multiple second elements, e.g., a question followed by answers of multiple speakers).1 As noted

previously, it is generally assumed that no two DPs share the same B part (e.g., no two questions

were simultaneously answered by the same utterance), even though a few such rare cases emerged

in the DP annotation.

The percentage of DPs labeled in our data that do not appear as adjacent utterances is 69.6%,

which provides good reasons for explicitly modeling such dependencies in our graphical model

structures. Since such non-adjacent cases are particularly frequent, the problem of identifying them

automatically becomes non-trivial. The next subsection describes a model for DP identification that

significantly outperforms a quite competitive baseline.

3.2.2 Automatic Identification

The task of dialogic pair identification can be quite naturally formulated as a ranking problem, other-

wise also known in machine learning as ordinal regression (McCullagh, 1980; Cliff, 1996; Crammer

and Singer, 2001). Ranking or re-ranking techniques have found many usages in human language

technologies, including speech recognition (Ostendorf et al., 1991), information retrieval (Herbrich

et al., 1998), syntactic parsing (Collins, 2000), machine translation (Och and Ney, 2002), and ques-

tion answering (Ravichandran et al., 2003), where re-ranking algorithms are typically used to find

an optimal hypothesis within an N -best list generated by a baseline system.

1Since the very reason for explicitly incorporating these discourse dependencies into our graphical model structures

lies in the fact that such sentence pairs are often not adjacent, we use the term dialogic pair instead of adjacency pair to

avoid any confusion, even though the former term is relatively new and much less used in the descriptive literature.

CHAPTER 3. UTTERANCE SELECTION 27

The problem is to identify, for a given index bt, the index or rank at, so that (bt, at) identifies

a dialogic pair. Since not every utterance is a second element of a dialogic pair, we must also

determine whether the utterance of index bt is member of B. To cope with this possibility, we let the

ranking model hypothesize a special null symbol ∅, so we define our ranking problem as follows: for

any given utterance index t, we seek to determine the class at ∈ {∅, 1, . . . , t−1}, so that (t, at) ∈ D

if t ∈ B, and at = ∅ otherwise.

We use log-linear models, more commonly known in NLP as maximum entropy models (Berger

et al., 1996), to directly estimate the conditional probability p(at|x, t). It allows us to combine two

types of feature functions, which we term ranking features and classification features. Ranking

feature functions, as in (Och and Ney, 2002), can take non-zero values for any number of ordinal

classes. For instance, a particularly helpful ranking feature for DP identification is one that returns

the word-vector cosine similarity between the two utterances identified by index t and class label

at, and capitalizing on the fact that the two utterances of a dialogic pair tend to have many words in

common:

f1(x, t, at) =

 cos(x(t), x(at)) if at 6= ∅

0 otherwise

Conversely, classification features can take non-zero values for only one class, and represent

characteristics of a particular class to predict. Many log-linear classifiers in NLP only rely on

classification features, for instance in part-of-speech tagging (Ratnaparkhi, 1996), where a helpful

feature to predict the class DT or determiner is one that returns 1 if the current word is the. In

the case on DP identification, we use classification features to distinguish between the class ∅ and

others. A particularly helpful classification feature returns the number of words in the sentence if

the class label is ∅, exploiting the fact that utterances that are not second elements tend to be longer

than others:

f2(x, t, at) =

 length(x(t)) if at = ∅

0 otherwise

These two types of feature functions are then combined to define a single model, in which

classification features compete against ranking features to increase the likelihood of the class ∅,

and ranking features increase the likelihood of any given ordinal label to compete against all other

classes. Given these J feature functions fj(x, t, at) and J model parameters Λ = (λ1, ..., λJ), the

CHAPTER 3. UTTERANCE SELECTION 28

probability of at ∈ At = {∅, 1, . . . , t− 1} according to our model is

pΛ(at|x, t) =
1

ZΛ

(
x, t

) exp
(J∑

j=1

λjfj(x, t, at)
)

,

where the partition function ZΛ(x, t) is defined as

ZΛ

(
x, t

)
=

∑
a′t ∈At

exp
(J∑

j=1

λjfj(x, t, a′t)
)

.

To find the most probable class ât, we use the following decision rule:

ât = arg max
a′t ∈At

{
pΛ(a′t|x, t)

}
= arg max

a′t ∈At

{ J∑
j=1

λjfj(x, t, a′t)
}

Finally, to train the parameters Λ of the model, we use the generalized iterative scaling algorithm

(Darroch and Ratcliff, 1972; Ratnaparkhi, 1998) as implemented in YASMET (Och, 2003). To

reduce overfitting, we use a Gaussian prior of .3 (Chen and Rosenfeld, 1999). We use the same

smoothing techniques for all log-linear models described later in this thesis.

3.2.3 Features

We now describe the features of the log-linear model described in the previous subsection. Ranking

features, i.e., those that may take non-zero values for ordinal classes {1, 2, ...} are listed in Table 3.1.

Note that each of these features characterizes a given utterance A (the utterance of index at) and

B (utterance of index t) in order to establish whether or not they constitute a dialogic pair. This

is in contrast with classification features explained later, which characterize B alone in order to

determine if any property of B suggests that B is not part of a dialogic pair. Among ranking features,

structural features encode some helpful information regarding ordering and overlap of utterances.

For instance, a particularly helpful feature is the count the number of utterances between A and B,

since this number is typically low.

Classification features, which may take non-zero values only for class ∅, are listed in Table 3.2.

Classification features that are good predictors include structural features to determine whether the

current utterance and its immediate predecessor are produced by the same speaker, which typically

suggests the current utterance is not in a dialogic pair.

CHAPTER 3. UTTERANCE SELECTION 29

Structural features:

· number of speakers taking the floor between A and B

· number of utterances between A and B

· number of utterances of speaker B between A and B

· do A and B overlap?

Duration features: (time expressed in seconds)

· duration of A

· if A and B do not overlap: time separating A and B

· if they do overlap: duration of overlap

· seconds of overlap with any other speaker

· speech rate in A

Lexical features:

· number of words in A

· number of content words in A

· ratio of words of A (respectively B) that are also in B (respectively A)

· ratio of content words of A (respectively B) that are also in B (respectively A)

· cosine similarity between A and B

· number of n-grams present both in A and B (for n ranging from 2 to 4)

· first and last word of A

· number of instances in A of cue words listed in (Hirschberg and Litman, 1994)

· does A contain the first/last name of speaker B?

· does B contain the first/last name of speaker A?

Table 3.1: Features for dialogic pair identification (ranking features). A refers to the candidate ut-

terance that may constitute the first element of a dialogic pair, and B identifies the current utterance.

CHAPTER 3. UTTERANCE SELECTION 30

Structural features:

· number of consecutive utterances of the current speaker immediately before B

· number of consecutive utterances of the current speaker immediately after B

Duration features:

· duration of B

· speech rate in B

Lexical features:

· number of words in B

· number of content words in B

· first and last word of B

· number of instances in B of cue words listed in (Hirschberg and Litman, 1994)

Table 3.2: Features for dialogic pair identification (classification features).

Feature sets Accuracy

Baseline 73.8%

Lexical 79.4%

Structural and durational 83.6%

All 85.3%

Table 3.3: Results for dialogic pair identification.

Since lexical features cause the total number of features to be very large, we used forward

feature selection (John et al., 1994) with cross-validation on the training data to remove many first-

word and last-word features that occur infrequently and that are typically uninformative for the task

at hand. Lexical features that remained after feature selection include mainly function words, in

particular sentence-initial indicators of questions (“where”, “when”, etc.).

3.2.4 Results

We used the labeled dialogic pairs of 75 meetings described in Section 2.1.3. 60 were used for

training, 10 for development, and 6 for testing instances. Note that we use here the same test set as

in content selection used later in this chapter and described in Section 2.1.5. Table 3.3 displays the

details of our results. Classification accuracy with all features is 85.27%, while the majority class

CHAPTER 3. UTTERANCE SELECTION 31

PREDICTED

ât ∈ {1 . . . T}

ât = at ât 6= at ât = ∅

T
R

U
E at ∈ {1 . . . T} 1168 77 735

at = ∅ − 681 7481

Table 3.4: Contingency table displaying ranking (ât ∈ {1 . . . T}) and classification (ât = ∅ or not)

accuracies.

baseline, which always hypothesizes no dialogic pair (i.e., at = ∅), achieves 73.8%. We note that,

while lexical features alone provide only 79.4% accuracy, they provide a significant return when

added to other features (85.3%).

Table 3.4 displays the contingency table for the predictions of the model with all features. This

table shows the details for three types of mispredictions. The model may incorrectly hypothesize

that utterance B is not part of any dialogic pair (this happens in 735 cases). It may also hypothesize

that it is in a DP while it isn’t (681 cases). Finally, it may identify an incorrect first element A of

the dialogic pair (only 77 cases).

3.3 Conditional Random Fields

We base our approach to classifying utterances for content selection on conditional Markov random

fields (CRF) (Lafferty et al., 2001), which are undirected graphical models trained to maximize the

conditional probability of the output y given the input x. CRFs have achieved empirical successes

in various tasks in NLP, bioinformatics, and computer vision. While they have been primarily

applied to sequence labeling tasks, recent applications of CRFs also include more complex structural

prediction problems, such as classification on tree and graph structures (see (Sutton, 2006) for an

overview). One type of CRF model that is particularly relevant to our problem is the skip-chain

CRF, a model that extends linear-chain CRFs by taking into account probabilistic dependencies

between distant entities (Sutton and McCallum, 2004; Finkel et al., 2005). This type of model has

been used in named entity recognition—the task of classifying entities either a person, organization,

etc.—to exploit the statistical dependencies between identical proper nouns in the input, which are

CHAPTER 3. UTTERANCE SELECTION 32

S
ta
te
m
en
t

x 1
x 2

x 3
x 4

x 5
B
ac
kC
ha
nn
el

S
ta
te
m
en
t
S
ta
te
m
en
t
S
ta
te
m
en
t

y 1
y 2

y 3
y 4

y 5

Figure 3.1: A skip-chain CRF with edges between utterances of the same dialogic pair.

often classified the same way (e.g., “Speaker Nancy Pelosi” and “Pelosi”).

Our approach to content selection uses a skip-chain CRF model. As shown in Figure 3.1, the

graphical representation of a skip-chain CRF incorporates two types of edges: linear-chain edges,

which connect adjacent utterances, and skip-chain edges, which connect pairs of utterances classi-

fied as dialogic pairs (in the pre-processing step described in Section 3.2.2). The model is defined

using two potential functions Φ and Ψ, where Φ represents features defined over adjacent utter-

ances (i.e., linear-chain edges) and Ψ represents features over dialogic pairs (i.e., skip edges). The

probabilistic representation of the model is as follows:

pΛ(y|x) ∝
T∏

t=1

Φ(yt−1, yt,x, t)
∏

(b,a)∈D

Ψ(ya, yb,x, a, b) (3.1)

Since skip-chain CRFs are implemented as log-linear models, each potential factorizes accord-

CHAPTER 3. UTTERANCE SELECTION 33

ing to a set of features fj and gj and weights Λ = {{λk}, {µk}}:

log Φ(x, yt−1, yt, t) =
J∑

j=1

λjfj(x, yt−1, yt, t)

log Ψ(x, ya, yb, a, b) =
J ′∑

j=1

µjgj(x, ya, yb, a, b)

Linear-chain feature functions fj represent local dependencies that are consistent with a 1st-

order Markov assumption. For instance, in the case of generic content selection, one such function

is a predicate that is true if and only if the previous utterance is included in the summary, the current

one is not included, and both are uttered by the same speaker:

f1(x, yt−1, yt, t) =

 1 if yt−1 = +1 and yt = −1 and pt−1 = pt

0 otherwise

This feature allows us to effectively capture the tendency that the second consecutive utterance of

the same speaker has less chances of being included than the first one. Given a set of dialogic pair

indices D = {(b, a)}, skip-chain feature functions gj exploit dependencies between variables that

are arbitrarily distant in the chain. For instance, the observation that OFFER-ACCEPT pairs, as other

DPs, are often linked in summaries is encoded as a skip-chain feature predicate:

g1(x, ya, yb, a, b) =

 1 if ya = +1 and yb = +1 and wt,1 = “sure′′

0 otherwise

where wt,1 represents the first word of utterance ut (here, a “sure” identifying the acceptance).

Note that all these feature functions are automatically constructed from input vector xt. If n is

the length of each input (or observation) vector xt and m is the number of classes, then the model

contains m2n linear-chain feature functions and m2n skip-chain feature functions. Since m = 2 in

our case, the total number of features is eight times the number of observations.

3.3.1 Parameter Estimation and Probabilistic Inference

We now discuss how to estimate the parameters Λ of a log-linear CRF model. We are given a training

set D = (x(i),y(i))
N

i=1, and estime model parameters Λ by optimizing the posterior probability

log p(Λ|D).

CHAPTER 3. UTTERANCE SELECTION 34

2

While inference in highly connected graphs is generally intractable, the fact that long-distance

edges or skip edges in our graphs rarely span more than 10 utterances makes it possible to train

these models using exact probabilistic inference.3 However, this is often prohibitively expensive. In

the case of generic content selection, our only two successful runs using the junction tree algorithm

required six days to train. Hence, we relied on approximate inference with loopy belief propagation

(unless otherwise noted).

3.4 Applications

We present two applications of sequence models with dialogic pair edges: in the first (Section 3.4.1),

labels to predict are simple {+1,−1} predictions for generic content selection. In Section 3.4.2,

each label (e.g., AGREE) has a specific pragmatic function. Such labels could in turn be used to

create more targeted summaries, such as one made of agreements, disagreements, and consensus.

3.4.1 Generic Utterance Selection

We now describe how probabilistic approaches described in Section 3.3 are being applied to con-

tent selection for meeting summarization. This subsection is organized as follows. We start by

providing an empirical study that demonstrates that utterances linked together by dialogic pair de-

pendencies have summary labels that are statistically highly correlated (Subsection 3.4.1.1). In

Subsection 3.4.1.2, we then describe the class imbalance problem that arises in our sequence classi-

fication task, and we describe different solutions that are evaluated later in this section. In Subsec-

tion 3.4.1.4, we present and discuss summarization evaluation metrics. We present our results on

this content selection task in Subsection 3.4.1.5.

2This is done using GRMM (Sutton, 2006), a tool for learning graphical models with arbitrary structure. GRMM

implements several probabilistic inference engines for general graphs, such as the junction-tree algorithm (Lauritzen and

Spiegelhalter, 1988; Jensen et al., 1990), loopy belief propagation (Murphy et al., 1999), and Gibbs sampling.

3Triangulated graphs produced here have clique sizes no larger than 7, which yield tables of size 128 (in the case of

binary predictions).

CHAPTER 3. UTTERANCE SELECTION 35

Time Speaker DP Transcript

1480.85-1493.91 1 A are - are those d- delays adjustable? see a lot of people who

actually build stuff with human computer interfaces understand

that delay, and - and so when you - by the time you click it it’ll

be right on because it’ll go back in time to put the -

1489.71-1489.94 2 yeah.

1493.95-1495.41 3 B yeah, uh, not in this case.

1494.31-1495.83 2 B it could do that, couldn’t it.

1495.1-1497.07 4 B we could program that pretty easily , couldn’t we?

Table 3.5: Snippet of a meeting displaying three dialogic pairs, where a question (A) initiates three

responses (B). Sentences in italic are not present in the reference summary. The skip-chain CRF

structure corresponding to this snippet is displayed in Figure 3.1.

3.4.1.1 Motivation

Pragmatic influences can become quite complex in the case of dialogues or correspondences, espe-

cially when they involve multiple parties. In the case of summarization of conversational speech,

Zechner (2002) found, for instance, that a simple technique consisting of linking together questions

and answers in summaries—and thus preventing the selection of orphan questions or answers—

significantly improved their readability according to various human summary evaluations. In email

summarization (Rambow et al., 2004), Shrestha and McKeown (2004; 2007) obtained good perfor-

mance in the automatic detection of question-answer pairs, which can help produce summaries that

highlight or focus on the question and answer exchange. In a combined chat and email summa-

rization task, a technique (Zhou and Hovy, 2005) for identifying dialogic pairs and appending any

relevant responses to topic-initiating messages was instrumental in outperforming two competitive

summarization baselines.

The need to model pragmatic influences, such as between a question and an answer, is also

prevalent in meeting summarization. In fact, question-answer pairs are not the only discourse re-

lations that we need to preserve in order to create coherent summaries, and, as we will see, most

instances of DPs would need to be preserved together, either inside or outside the summary. Ta-

ble 3.5 displays a DP construction with one statement (A part) and three respondents (B parts). This

example illustrates that the number of turns between constituents of DPs is variable and thus difficult

CHAPTER 3. UTTERANCE SELECTION 36

Linear-chain edges yt = +1 yt = −1

yt−1 = +1 529 7742

yt−1 = −1 7742 116040

Skip-chain edges yb = +1 yb = −1

ya = +1 6792 2191

ya = −1 1479 121591

Table 3.6: Contingency tables: while the correlation between adjacent labels yt−1 and yt is not

significant (χ2 = 2.3, p > .05), empirical evidence clearly shows that ya and yb (where (b, a) ∈ D)

influence each other (χ2 = 78948, p < .001).

to model with standard sequence models. This example also illustrates helpful features discovered

in this work. First, many speakers respond to A’s utterance, which is generally a strong indicator

that the A utterance should be included. Secondly, while DPs are generally characterized in terms of

pre-defined dialog acts, such as OFFER-ACCEPT, we found that the type of dialog act has much less

importance than the existence of a speaker-address relation between each pair of utterances (DPs

in the data represent a great variety of DA pairs, including many that are not characterized as DPs

in the literature—e.g., STATEMENT-STATEMENT in the table). Since DAs seem to matter less than

dialogic pairs, our aim is more to automatically identify and exploit such pairs rather than make any

attempt to predict dialog act labels.

The intuition that the summarization labels (+1 or −1) are highly correlated with DPs is con-

firmed in Table 3.6. While contiguous labels yt−1 and yt seem to seldom influence each other, the

correlation between DP elements ya and yb is particularly strong, and they have a tendency to be

either both included or both excluded. Note that the second table is not symmetric, because the data

allows an A part to be linked to multiple B parts, but not vice-versa. While counts in Table 3.6 reflect

human labels, we only use automatically predicted (a, b) pairs in the experiments of the remaining

part of this section. To find these pairs automatically, we use the probabilistic ranker described in

Section 3.2.2, which achieves an 85.3% accuracy (Galley et al., 2004b).

3.4.1.2 Probabilistic Ranking

We now discuss the problem of building a summary from the predictions of a probabilistic model

such as skip-chain CRF. As we will see in Section 3.4.1.5, using the {−1, 1} label predictions

CHAPTER 3. UTTERANCE SELECTION 37

of CRF models—i.e., finding the maximum a posteriori (MAP) assignment of the model—leads

to significantly sub-optimal results, which is partially explained by the class imbalance problem.

A highly skewed class distribution usually causes classifiers to predict the majority class dispropor-

tionally more often than the minority class. This is due to the fact that most classifiers are designed

to maximize accuracy, either explicitly by minimizing Hamming loss (or 0/1 loss) or by optimizing

objective functions related to the 0/1 loss (e.g., log-loss for log-linear models (Darroch and Ratcliff,

1972) and hinge-loss for support-vector classifiers (Vapnik, 1998)). It turns out that the classifica-

tion task discussed here is severely affected by this class imbalance problem: while our training

data contains 9.54% positive instances, our probabilistic models typically only classify about 3-5%

of instances as positive.

This problem is actually very common, and existing literature presents several solutions to the

class imbalance problem (Japkowicz, 2000), including upsampling the minority class (Ling and Li,

1998), downsampling the majority class (Kubat and Matwin, 1997), combining upsampling and

downsampling (Chawla et al., 2002), and cost-sensitive learning (Domingos, 1999; Elkan, 2001;

Gross et al., 2007; Sen and Getoor, 2006), most of which are not directly applicable to structural

prediction problems like ours (where labels to be classified are not independent and identically-

distributed).

A more fundamental issue is that it is generally not known in advance what should be the

length of a summary. This length often reflects user’s preference and is generally hard to know in

advance. While our training data contains about 9.5% of positive instances, we would like to be

able to generate summaries of different lengths, e.g., 5%, 20% or 50% without having to train many

different models tuned for different lengths. This is in contrast to most other classification tasks in

NLP, e.g., part-of-speech tagging, for which class distributions do not dramatically change between

training and testing.

A solution to these problems is to treat content selection as a ranking problem, i.e., use posterior

probability estimates produced by the model to select the k most probable utterances in order to

create a summary, where k is only known at run time. We compare three different approaches to

selecting utterances:

• sum-product ranking: Use sum-product inference (Cowell et al., 1999), a general form of

the forward-backward algorithm (Rabiner, 1989), to select the top-k utterances according to

CHAPTER 3. UTTERANCE SELECTION 38

p(yt = 1|x).

• max-product ranking: Use MAP inference (also known as max-product and max-propagation

inference (Cowell et al., 1999)), a general form of the Viterbi algorithm (Viterbi, 1967), to

select the top-k utterances according to the local probability estimate of yt = 1 computed

during MAP inference.4

• max-product prediction: Select ŷ = arg maxy p(y|x). This is our baseline (non-ranking)

approach, which simply uses the MAP assignment provided by the model in order to generate

a summary.5

In our experiments, we will compare these three approaches to selecting summary utterances,

and evaluate two inference engines, loopy belief propagation (BP) and the junction tree algorithm.

Note that, in the case of loopy BP, sum-product and max-product inference is approximate. Loopy

BP is the application of the standard BP algorithm (Pearl, 1988) to graphs with cycles. While BP

is exact in the case of tree-based graphical models (e.g., chains), it is not only approximate in the

case of general graphs, but also not guaranteed to converge. However, researchers have found that

loopy BP generally converges for low-treewidth graphs (Murphy et al., 1999) (like ours), a finding

that was confirmed in our case.

3.4.1.3 Features

We started our analyses with a large collection of features found to be good predictors in either

speech (Inoue et al., 2004; Maskey and Hirschberg, 2005; Murray et al., 2005b) or text summariza-

tion (Mani and Maybury, 1999). Our goal is to build a very competitive feature set that capitalizes

on recent advances in summarization of both genres. Table 3.7 lists some important features.

There is strong evidence that lexical cues such as “significant” and “great” are strong predictors

in many summarization tasks (Edmundson, 1968). Such cues are admittedly quite genre specific,

4This probability can be written p(yt = 1|x, ŷ−t), where ŷ−t denotes the MAP configuration without its t-th com-

ponent.

5In the case of very short target lengths, it may happen that the produced summary is longer than the target. Since we

can’t use any probabilities to break ties, we remove summary utterances—starting from the end of the document—until

the constraint on length is satisfied.

CHAPTER 3. UTTERANCE SELECTION 39

Lexical features:

· n-grams (n ≤ 3)

· number of words

· number of digits

· number of consecutive repeats

Information retrieval features:

· max/sum/mean frequency of all terms in ut

· max/sum/mean idf score

· max/sum/mean tf.idf score

· cosine similarity between word vector of ut with centroid of the meeting

· scores of LSA with 5, 10, 50, 100, 200, 300 dimensions

Acoustic features:

· seconds of silence before/during/after the turn

· speech rate

· min/max/mean/median/stddev/onset/outset f0 of utterance ut, and of first and last word

· min/max/mean/stddev energy

· .05, .25, .5, .75, .95 quantiles of f0 and energy

· pitch range

· f0 mean absolute slope

Duration and structural features:

· duration of the previous/current/next utterance

· relative position within meeting (i.e., index t)

· relative position within speaker turn

· large number of structural predicates, i.e. “is the previous utterance of the same speaker?”

· number of DPs initiated with utterance ut (ut is the A part)

Discourse features:

· lexical cohesion score (for topic shifts) (Galley et al., 2003)

· first and second word of utterance, if in cue word list

· number of pronouns

· number of fillers and fluency devices (e.g., “uh”, “um”)

· number of backchannel and acknowledgment tokens (e.g., “uh-huh”, “ok”, “right”)

Table 3.7: Features for extractive summarization. Unless otherwise mentioned, we refer to features

of utterance ut whose label yt we are trying to predict.

CHAPTER 3. UTTERANCE SELECTION 40

so we did not want to commit ourselves to any specific list, which may not carry over well to our

specific speech domain; instead, we automatically selected a list of 200 n-grams (n ≤ 3) based on

information gain using 10-fold cross-validation on the training data.6 Other lexical features include:

the number of digits mentioned,7 which is helpful for identifying sections of the meetings where

participants collect data by recording digits; the number of repeats, which may indicate the kind of

hesitations and disfluencies that negatively correlates with what is included in the summary.

The information retrieval feature set contains many features that are generally found helpful in

summarization, in particular tf.idf and scores derived from centroid methods. In particular, we used

the latent semantic analysis (LSA) features discussed in (Murray et al., 2005b), which attempt to

determine sentence importance through singular value decomposition, and whose resulting singular

values and singular vectors can be exploited to associate with each utterance a degree of relevance to

one of the n LSA dimensions or “concepts” of the meetings. We used the same scoring mechanism

as (Murray et al., 2005b), though we extracted features for many different n values.

Acoustic features extracted with Praat (Boersma and Weenink, 2006) were normalized by speaker,

and include features derived from the F0 contour, energy, and duration. Structural features listed in

Table 3.7 are those computed from the sequence model before decoding, e.g., the duration that sep-

arates the two elements of a DP. Finally, discourse features represent predictors that may substitute

for DA labels (e.g., cue words). While DA tagging is not directly our concern, it is presumably help-

ful to capitalize on discourse characteristics of utterances involved in dialogic pairs, since different

types of dialog acts may be unequally likely to appear in a summary.

6Specifically, we computed the information gain of the binary attribute X with respect to the binary class attribute Y .

X is positive for a given utterance if and only if the given n-gram appears in the utterance, and Y determines whether or

not the utterance is included in the summary. We scored each n-gram by information gain I(Y ; X) = H(Y)−H(Y |X)

using 10-fold cross validation, and selected the 200 n-grams that had the highest average rank. This restriction to 200

n-grams prevents overfitting the data.

7As mentioned in Section 2.1.1, meetings of the ICSI corpus include artificial “digits” sections, in which meeting

participants take long turns to read digits. We believe it is appropriate to include such corpus-specific features, since they

are only aimed at removing utterances that would generally not appear in meetings that are fully naturally occurring.

CHAPTER 3. UTTERANCE SELECTION 41

3.4.1.4 Evaluation

Summarization evaluation is a difficult problem and there is no broad consensus on how to best per-

form this task. Two metrics have become quite popular in summarization, and particularly in multi-

document summarization of news articles, namely ROUGE (Lin, 2004) and the Pyramid method

(Nenkova and Passonneau, 2004b). ROUGE and Pyramid are techniques looking for content units

of the hypothesis or peer summary that also appear in one or more reference or model summaries.

In the case of ROUGE, content units to match are represented as n-grams. In the Pyramid

method, content units are represented with phrases or clauses that are considered by humans to have

the same meaning (e.g., “called that non-overlap” and “cases where the transcribers said there was

only one person talking here” in Figure 3.2 were deemed to represent the same content unit). Both

Pyramid and ROUGE assess the quality of a peer by measuring the degree of overlap in content

units between peer and summaries. Since peer summaries are typically built from different sources

written by different authors, and that model summaries themselves are written by different abstrac-

tors, it is generally unlikely that a peer and a model summary will have more than a few sentences

in common. In this context, it seems natural to judge the similarity between a peer summary and a

set of models by attempting to match content units that appear in both.

Our situation is however quite different from multi-document summarization. In our case, all

model summaries of a given document are utterance extracts of the very same input document,

and the situation (common to multi-document summarization) that some propositional content is

expressed in many different ways in the model summaries generally does not occur. In our own

annotation of three meetings with summarization content units (SCU) as defined in (Nenkova and

Passonneau, 2004a), we found that repetitions and reformulations of the same information are par-

ticularly infrequent, and that textual units that express the same content among model summaries are

generally originating from the same document sentences, as can be seen in Figure 3.2. For instance,

the SCUs mention#4, mention#5, mention#8, and mention#9 are all expressed the same way in the

model summaries of the meeting Bmr019 (the fact that the expression in mention#4 is repeated

four times indicates that all four annotators agreed that “the next thing we had on the agenda was

something about alignment” should be included in the summary). In our annotation of three test-set

meetings (Bmr019, Bmr005, Bed009), we identified 621 different SCUs. 564 of them (90.8%) have

only one wording (as, e.g., mention#4), 46 of them (7.4%) have two different wordings (as, e.g.,

CHAPTER 3. UTTERANCE SELECTION 42

Figure 3.2: Summarization content units (SCU) of the ICSI meeting corpus (Bmr019). An SCU

represents a grouping of textual units drawn from model summaries that express the same meaning.

Since propositional content is seldom reformulated within the same meeting transcription, most

SCUs are expressed with only one expression (e.g., the SCU mention#5).

CHAPTER 3. UTTERANCE SELECTION 43

mention#3), and 11 of them (1.7%) have three or more different wordings.8

Because of this lack of repetition and reformulation, we believe it is reasonable rely only ex-

act matches to score peer summaries against model summaries, which allows us to sidestep the

labor-intensive part of SCU annotation as defined in (Nenkova and Passonneau, 2004b). We thus

use standard information retrieval metrics of precision, recall, and F1, where a peer sentence is

deemed relevant if its exact match is included in the model summary. Since all test meetings pro-

vide multiple model summaries, precision and recall are averaged over all model-peer pairs, and

F1 is the weighted harmonic mean of average precision and average recall. Note finally that, prior

to evaluating any peer summary, each summary (including model summaries) is converted from a

sequence of utterance-level binary predictions to a sequence of word-level binary predictions, and

that our evaluation is based on the latter representation. This is essentially to address the problem

that the utterance segmentation used by the summarization system may differ from the utterance

segmentation of model summaries. While, in this chapter, we slightly simplify the summarization

problem by providing the reference utterance segmentation (i.e., DA segmentation) to the summa-

rizer, Chapter 5 presents evaluations where the segmentation by utterances is fully automated. Since

this segmentation is errorful and often differs from the reference DA segmentation, it is impossible

to compare binary predictions at the utterance level, thus we need to assess binary predictions at the

word level. We now precisely define the two evaluation metrics used in the two next subsections:

F-measure and ROUGE.

F-measure In this evaluation, the peer summary H extracted from a given meeting is represented

as a sequence of binary predictions (h1, . . . , hw), where w is the number of words in the meeting,

and where hj indicates whether the j-th word of the meeting was selected by the underlying content

selection system. Each model summary Mi (among a set of k model summaries {Mi}k
i=1) is also

represented as a binary sequence (mi,1, . . . ,mi,w). We then define the average precision P of peer

summary H as follows:

P =

∑k
i=1

∑w
j=1 [[hj = +1]][[hj = mi,j]]∑k
i=1

∑w
j=1 [[hj = +1]]

8Note that it never occurred that a given verbalization of an SCU would appear in different locations of the same

meeting. In other words, if verbalizations are the same (as in mention#4), it means that all of them are drawn from the

same utterance in the original transcript.

CHAPTER 3. UTTERANCE SELECTION 44

where [[x]] is a variant of the Kronecker delta function, which returns 1 if and only if the predicate

x is true, and 0 otherwise. The average recall R can be computed as follows:

R =

∑k
i=1

∑w
j=1 [[hj = +1]][[hj = mi,j]]∑k

i=1

∑w
j=1 [[mi,j = +1]]

Note that, if the number k of model summaries is 1, the above expressions are respectively equal to

standard precision and recall in information retrieval. F-measure is then be computed as follows:

F1 =
2 PR

P + R

Note also that average precision as computed here is proportional to summarization accuracy (Zech-

ner and Waibel, 2000b), except that we do not divide average precision scores by the maximum

achievable precision.

ROUGE ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is an evaluation metric

(Lin, 2004) inspired by BLEU (see Section 4.3) that calculates n-gram overlaps between a peer

summary and a set of model summaries. Given a peer summary H and a set of k model summaries

{Mi}k
i=1, ROUGE-n is defined as:

ROUGE−n =

∑k
i=1

∑
g∈gramn(Mi)

count(g,Mi,H)∑k
i=1

∑
g∈gramn(Mi)

count(g,Mi)

where gramn(S) is the set of all n-grams contained in summary S (where S may be either a peer

or model summary), count(g,M) is the count of the n-gram g in model M , and count(g,M,H) is

the maximum between the number of occurrences of g in M and the number of occurrences in H .

3.4.1.5 Results

We follow (Murray et al., 2005b) in using the same six meetings as test data, since each of these

meetings has multiple reference summaries. The remaining 69 meetings were used for training,

which represent in total more than 103,000 training utterances (or DA units), of which 9,887 are

positives (9.54%). The multi-reference test set contains more than 28,000 instances. More statistics

regarding these transcripts, including inter-labeler agreements, are presented in Section 2.1.5.

The goal of a preliminary experiment was to devise a set of useful predictors from the initial full

set of features. We performed feature selection by incrementally growing a log-linear model using

CHAPTER 3. UTTERANCE SELECTION 45

FEATURES F1

1 duration .246

2 100-dimension LSA score .268

3 duration of ut−1 .275

4 duration between ua(t) and ut (where (t, a(t)) ∈ D) .281

5 mean of IDF scores of content words in ut .284

6 relative position of ut in the meeting .286

7 number of DPs initiated at ut .288

8 duration of ut+1 .288

9 number of fillers in ut .289

10 .25-quantile of energy .290

11 number of lexical repeats .292

12 lexical cohesion score produced by our topic segmenter (Galley et al., 2003) .294

13 f0 mean of last word of utterance t .294

14 50-dimension LSA score .295

15 pt = pt+1? (true if same speaker) .298

16 speech rate (words per second) .302

17 “is that” occurs in ut .303

18 “for the” occurs in ut .303

19 pt−1 = pt? (true if same speaker) .305

20 “to try” occurs in ut .305

21 “meetings” occurs in ut .305

22 “<s> and” occurs in ut .306

23 “we have” occurs in ut .306

24 “new” occurs in ut .307

25 “<s> what” occurs in ut .307

Table 3.8: Some features found helpful on the ICSI corpus, listed in the order in which they were

added during forward selection. The right column indicates the F1-score of the classifier at that

stage during feature selection. Unless otherwise noted, feature descriptions refer to the current

utterance ut.

CHAPTER 3. UTTERANCE SELECTION 46

FEATURE SET F1

lexical 36.7

IR 32.3

lexical + IR 38.7

acoustic 32.1

structural/durational 37.3

acoustic + structural/durational 37.4

all features 40.2

selected features (S) 41.0

Table 3.9: Results for content selection by feature set.

forward feature selection (John et al., 1994; Berger et al., 1996). Because of the imbalance between

positive and negative samples, we found it more effective to select candidate features by gains in

F1-measure through 5-fold cross validation on the entire training set. The increase in F1 by adding

new features to the model is displayed in Table 3.8; this greedy search resulted in a set S of 217

predictors (i.e., x has 217 dimensions).

We now analyze the performance of different sequence models on our test set. The target length

for each summary was set to 10%, 18.6%, and 30% of the number of words of the full document.

Note that 18.6% is the average (in terms of number of words) on the entire training data, and that

the average on the test data is 19.1%. In Table 3.9, we use a 1st-order CRF model to compare

our feature selection (S) against all features and various categorical groupings. Overall, we notice

lexical predictors and statistics derived from them (e.g., LSA features) represent the most helpful

feature group, though all other features combined achieve a competitive performance.

Table 3.10 displays our main results comparing the different model structures. It compares a

1st-order linear-chain CRF with two skip-chain CRF models: one that incorporates edges between

adjacent utterances (1st-order) and one that does not (0th-order). These three models were trained

with loopy belief propagation, and sum-product probabilities were used to rank sentences. In order

to assess the difficulty of content selection, we also provide human performance evaluation. Human

performance is computed by cross-validating human summaries against other human summaries.

The baseline is a lead summarizer, which adds the first words of the document until the constraint

CHAPTER 3. UTTERANCE SELECTION 47

10% 18.6% 30%

1st-order skip-chain CRF 33.2 42.4 47.3

0th-order skip-chain CRF 32.7 41.5 45.5

1st-order linear-chain CRF 32.6 41.0 44.4

baseline 12.0 20.5 25.9

human - 45.6 -

optimal 57.3 69.3 67.9

Table 3.10: F1 scores for summaries of length 10%, 18.6% (break-even point), and 30% for different

model structures.

on length has been satisfied. We see that the best model is the 1st-order skip-chain CRF model,

which explicitly represents dialogic pair dependencies, and achieves 92.9% of human performance

(at 18.6% compression). The difference between this best model and a standard linear-chain model

is 1.4%. In the table, we also provide results for “optimal” summaries, whose F1 scores are upper

bounds for each column. Section 3.4.1.4 presents a method for computing these upper bounds.

Figure 3.3 displays ROC curves, which are typically used to evaluate ranking performance. It

shows the 1st-order skip-chain CRF model and a standard linear-chain CRF. It appears that the

former is particularly more effective in the mid-range in the tradeoff between true positive rate and

false positive rate. The area under the curve (AUC) of the two models are respectively 0.760 and

0.744.

Table 3.11 displays performance for various sequence models trained using loopy belief propa-

gation (BP). We tested three criteria for selecting summary utterances at runtime, sum-product in-

ference and max-product inference (Subsection 3.4.1.2), and the classification approach that simply

uses the maximum a posteriori assignment. We find that sum-product ranking provides significantly

better results, which was confirmed in many other of our experiments.

We compare our results with loopy belief propagation against exact inference. We were able

to train our best model (order-1 skip-chain CRF) model using the junction tree algorithm, with the

exclusive access to a 4GB machine and a running time of almost a week. In comparison, exper-

iments with loopy belief propagation presented in this section all took less than six hours on the

same machine. Results with junction trees are almost indistinguishable from loopy BP in this case,

CHAPTER 3. UTTERANCE SELECTION 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True positive rate

F
al

se
 p

os
iti

ve
 r

at
e

optimal
skip−chain CRF
linear−chain CRF

Figure 3.3: ROC curve comparing skip-chain CRF model with linear-chain CRF. “optimal” refers

to the optimal summary, which may be obtained using the Pyramid method.

10% 18.6% 30%

sum-product ranking 33.2 42.4 47.3

max-product ranking 31.4 40.9 45.4

max-product prediction 24.5 24.5 24.5

baseline 12.0 20.5 25.9

human - 45.6 -

optimal 57.3 69.3 67.9

Table 3.11: F1 scores for summaries of length 10%, 18.6% (break-even point), and 30% for different

ranking approaches.

CHAPTER 3. UTTERANCE SELECTION 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JunctionTree posterior probabilities

Lo
op

yB
P

 p
os

te
rio

r
pr

ob
ab

ili
tie

s

Figure 3.4: Correlation plot between the correct and approximate posteriors. Exact probabilistic

inference (sum-product) is done with junction trees (JT) and approximate inference with loopy

belief propagation (LoopyBP). This plot shows a correlation that is strong between JT and LoopyBP

(Pearson coefficient: r = .9985).

and provided F1 scores within a margin of .03% for the three summary sizes. The correlation plot

between the predictions of the two models is displayed in Figure 3.4, and shows that the predictions

of the two systems are highly correlated.

Finally, we performed a last experiment to compare our best system against Murray et al. (2005b),

who used the same test data, but constrained summary sizes in terms of number of DA units instead

of words. Since results in (Murray et al., 2005b) were reported on ROUGE scores computed against

abstractive summaries (see Chapter 2), we use the same evaluation metric in our comparison. In

their experiments, 10% of DAs had to be selected. Our system achieves .92 ROUGE-recall, .52

ROUGE-precision, and .65 ROUGE-F-score with the same length constraint. The discrepancy be-

tween recall and precision is largely due to the fact that generated summaries are on average much

longer than model summaries (18.8% of the words vs. 3.4% of DAs), which explains why our pre-

cision is relatively low in this last evaluation. The best ROUGE-1 measure reported in (Murray et

al., 2005b) is .69 recall, which is significantly lower than ours according to confidence intervals.

CHAPTER 3. UTTERANCE SELECTION 50

3.4.2 Agreement and Disagreement Classification for Summarization

One of the main features of meetings is the occurrence of agreements and disagreements among

participants. Often meetings include long stretches of controversial discussion before some consen-

sus decision is reached. Our goal is automated summarization of multi-participant meetings and we

hypothesize that the ability to automatically identify agreement and disagreement between partici-

pants will help us in the summarization task. For example, a summary might resemble “minutes”

of meetings with major decisions reached (consensus) along with highlighted points of the pros

and cons for each decision. Towards this end, we now present a method to automatically classify

utterances as agreement, disagreement, or neither.

Previous work in automatic identification of agreement/disagreement (Hillard et al., 2003) demon-

strates that this is a feasible task when various textual, durational, and acoustic features are available.

We build on their approach by incorporating their most effective features, and show that we get

an improvement in accuracy by treating agreement and disagreement classification as a sequential

prediction problem. As for generic utterance selection, our approach first identifies dialogic pairs

as explained in Section 3.2. This allows us to acquire, and subsequently process, knowledge about

who speaks to whom. We hypothesize that pragmatic features that center around previous agree-

ments between speakers in the dialog will influence the determination of agreement/disagreement.

For example, if a speaker disagrees with another person once in the conversation, is he more likely

to disagree with him again? In this section, we model context using conditional dynamic Bayesian

networks (DBN) that explicitly represent these pragmatic dependencies.9 Our accuracy for classi-

fying agreements and disagreements is 86.9%, which is a 4.9% improvement over (Hillard et al.,

2003).

In this section, we first present the classification task, then describe the feature set, provide some

empirical evidence justifying our choice of contextual features, and finally evaluate the classifier.

9Note that this work on agreement/disagreement classification (Galley et al., 2004b) was done much earlier than our

work on generic content selection (Galley, 2006), and we did not experiment with skip-chain CRFs for agreement and

disagreement classification.

CHAPTER 3. UTTERANCE SELECTION 51

3.4.2.1 Problem Statement

In our classification problem, each utterance yt among the T utterances of a meeting must be as-

signed a tag yt ∈ {AGREE, DISAGREE, BACKCHANNEL, OTHER}. To specify the speaker of the

utterance (e.g. speaker B), the notation will sometimes be augmented to incorporate speaker iden-

tity, as with yB
t . To designate the addressee of B (e.g. listener A), we will use the notation yB→A

t .

For example, yB→A
t = AGREE simply means that B agrees with A in the utterance of index t. This

notation makes it obvious that we do not necessarily assume that agreements and disagreements are

symmetric relations. We define:

pred
Y→X

(
yB→A

t

)
as the tag of the most recent utterance before yB→A

t that is produced by Y and addresses X. This

definition will help our multi-party analyses of agreement and disagreement behaviors.

3.4.2.2 Features

Table 3.12 lists the features that were found most helpful at identifying agreements and disagree-

ments. Regarding lexical features, we selected a list of lexical items we believed are instrumental

in the expression of agreements and disagreements: agreement markers, e.g. “yes” and “right”,

as listed in (Cohen, 2002), general cue phrases, e.g. “but” and “alright” (Hirschberg and Litman,

1994), and adjectives with positive or negative polarity (Hatzivassiloglou and McKeown, 1997).

We incorporated a set of duration features that were described in the literature as good predictors

of agreements: utterance length distinguishes agreement from disagreement, the latter tending to be

longer since the speaker elaborates more on the reasons and circumstances of her disagreement than

for an agreement (Cohen, 2002). Duration is also a good predictor of backchannels, since they tend

to be quite short. Finally, a fair amount of silence and filled pauses is sometimes an indicator of

disagreement, since it is a dispreferred response in most social contexts and can be associated with

hesitation (Pomerantz, 1984).

3.4.2.3 Empirical Study

We first performed several empirical analyses in order to determine to what extent contextual in-

formation helps in discriminating between agreement and disagreement. By integrating the inter-

CHAPTER 3. UTTERANCE SELECTION 52

Structural features:

· is the previous/next utterance of the same speaker?

· is the previous/next utterance involving the same B speaker?

Duration features:

· duration of the utterance

· seconds of overlap with any other speaker

· seconds of silence during the utterance

· speech rate in the utterance

Lexical features:

· number of words in the utterance

· number of content words in the utterance

· perplexity of the utterance with respect to four language models, one for each class

· first and last word of the utterance

· number of instances of adjectives with positive polarity (Hatzivassiloglou and McKeown, 1997)

· idem, with adjectives of negative polarity

· number of instances in the utterance of each cue phrase and agreement/disagreement token listed

in (Hirschberg and Litman, 1994; Cohen, 2002)

Table 3.12: Features for agreement and disagreement classification.

CHAPTER 3. UTTERANCE SELECTION 53

p(yt|yt−1) p(yB→A
t |predB→A(yB→A

t)) p(yB→A
t |predA→B(yB→A

t))

p(AGREE|AGREE) .213 .250 .175

p(DISAGREE|AGREE) .073 .107 .088

p(AGREE|DISAGREE) .139 .087 .234

p(DISAGREE|DISAGREE) .209 .261 .128

Table 3.13: Empirical distributions for some agreement and disagreement dependencies (previous

tag, consistency, and symmetrical). The empirical prior for the agreement tag is p(AGREE) = .188

and the disagreement tag is p(DISAGREE) = .106.

pretation of the pragmatic function of an utterance into a wider context, we aim to detect cases of

mismatch between a correct pragmatic interpretation and the surface form of the utterance, e.g., the

case of weak or “empty” agreement, which has some properties of downright agreement (lexical

items of positive polarity), but which is commonly considered to be a disagreement (Pomerantz,

1984).

While the actual classification problem incorporates four classes, the BACKCHANNEL class is

ignored here to make the empirical study easier to interpret. We tested the validity of three types of

long-distance dependencies, which make the following assumptions:

1. previous-tag dependency:

a tag yt is influenced by its predecessor yt−1

2. consistency dependency:

a tag yB→A
t is influenced by predB→A

(
yB→A

t

)
, the most recent tag of the same speaker

addressing the same listener; for example, it might be reasonable to assume that if speaker B

disagrees with A, B is likely to disagree with A in his or her next speech addressing A.

3. symmetrical dependency:

a tag yB→A
t is influenced by predA→B

(
yB→A

t

)
; the assumption is that B’s decision to agree

or disagree with A may correlate with the polarity (agreement or disagreement) of what A

said last to B.

Table 3.13 presents the results of our empirical evaluation of the three assumptions. For compar-

ison, the prior distribution of classes is the following: 18.8% are agreements, 10.6% disagreements,

CHAPTER 3. UTTERANCE SELECTION 54

and 70.6% other. The table yields some interesting results, showing quite significant variations

in empirical distributions when they are conditioned on various types of contextual information.

We can see for example, that the proportion of agreements and disagreements (respectively 18.8%

and 10.6%) changes to 13.9% and 20.9% respectively when we restrict the counts to utterances

that are preceded by a DISAGREE. Similarly, that distribution changes to 21.3% and 7.3% when

the previous tag is an AGREE. The change is even more noticeable between probabilities p(yt)

and p(yB→A
t |predB→A(yB→A

t)). In 26.1% of the cases where a given speaker B disagrees with

A, he or she will continue to disagree in the next exchange involving the same speaker and the

same listener. Similarly with the same probability distribution, a tendency to agree is confirmed in

25% of the cases. The results in the last column are quite different from the two preceding ones.

While agreements in response to agreements (p(AGREE|AGREE) = .175) are slightly less probable

than agreements without conditioning on any previous tag (p(AGREE) = .188), the probability of

an agreement produced in response to a disagreement is quite high (with 23.4%), even higher than

the proportion of agreements in the entire data (18.8%). This last result would arguably be quite

different with more quarrelsome meeting participants.

The empirical distributions described here are admittedly dependent on the meeting genre and

particularly speaker personalities. Nonetheless, we believe this model can as well be used to capture

salient interactional patterns specific to meetings with different social dynamics.

3.4.2.4 Classifier

We use a conditional dynamic Bayesian network (DBN) model, which is many ways similar to max-

imum entropy Markov models (McCallum et al., 2000), except that it contains non-local dependen-

cies. This conditional model has a directed graphical representation, as opposed to the undirected

graphical models used in generic content selection.

More specifically, this DBN is parameterized as a log-linear model that estimates a probability

of each label yt given a set of observations x and the three contextual tags dt described earlier,

where:

dt = (yt−1, pred
B→A

(
yB→A

t

)
, pred
A→B

(
yB→A

t

)
)

Given J feature functions fj(yt,dt,x) and J model parameters Λ = (λ1, ..., λJ), the probability

CHAPTER 3. UTTERANCE SELECTION 55

Feature sets Accuracy

(Hillard et al., 2003) 82%

Lexical 84.95%

Structural and durational 71.23%

All 85.62%

Conditional DBN 86.92%

Table 3.14: Agreement/disagreement classification accuracies with 3 classes: AGREE, DISAGREE,

and OTHER.

defined by the model is:

pΛ(yt|dt,x) ∝ exp
(J∑

j=1

λjfj(yt,dt,x)
)

We used the generalized iterative scaling algorithm (Darroch and Ratcliff, 1972; Ratnaparkhi, 1998)

as implemented in YASMET (Och, 2003) to train this model. At test time, we search for the most

probable sequence by performing a left-to-right decoding using a beam search. The algorithm is

exactly the same as the one described in (Ratnaparkhi, 1996) to find the most probable part-of-

speech sequence.

3.4.2.5 Results

We had 8,135 utterances available for training and testing, and performed two sets of experiments

to evaluate the performance of our classifiers. In the first set of experiments, we reproduced the

experimental setting of (Hillard et al., 2003), a three-way classification (BACKCHANNEL and OTHER

are merged), and we used the same training set as (Hillard et al., 2003).

Performance is reported in Table 3.14. For the three first rows, we present the results of a log-

linear model that does not incorporate any inter-sentential dependency, and the last row provides the

accuracy of the conditional DBN classifier described in the previous subsection. In the second set of

experiments, we aimed at reducing the expected variance of our experimental results and performed

N -fold cross-validation in a four-way classification task. Table 3.15 summarizes the performance of

our classifier with the different feature sets in this classification task, distinguishing the case where

the three types of contextual labels (e.g., previous tag) are available during decoding from the case

CHAPTER 3. UTTERANCE SELECTION 56

Feature sets Unstructured model Conditional DBN

Lexical 82.62% 83.54%

Structural, durational 58.86% 62.10%

All 83.11% 84.07%

Table 3.15: Agreement/disagreement classification accuracies with 4 classes: AGREE, DISAGREE,

BACKCHANNEL and OTHER.

where they are not.

First, the analysis of our results shows that with our three local feature sets only, we obtain

substantially better results than (Hillard et al., 2003). This might be due to some additional features

the latter work didn’t exploit (e.g., structural features and adjective polarity), and to the fact that the

learning algorithm used in our experiments might be more accurate than decision trees in the given

task. Second, the table corroborates the findings of (Hillard et al., 2003) that lexical information

represents the most helpful feature set. Finally, we observe that by incorporating label-dependency

features representing pragmatic influences, we further improve the performance (about 1% in Ta-

ble 3.15). This seems to indicate that modeling label dependencies in our classification problem is

useful.

3.5 Conclusion

In this chapter, we presented a CRF model incorporating long-distance dependencies derived from

the automatic analysis of participant interaction was shown to outperform linear-chain CRF mod-

els, despite the incorporation in all cases of the same competitive set of predictors resulting from

cross-validated feature selection. Compared to a 1st-order CRF model, the skip-chain CRF model

provides a 1.4% increase in F1-score. Our best performing system reaches 92.9% of human perfor-

mance, and scales relatively well on automatic speech recognition output.

We have also shown how identification of dialogic pairs can help representing pragmatic depen-

dencies between agreement and disagreement labels. Classifiers implementing graphical models

with these dependencies yielded a substantial improvement (1.3% to reach a 86.9% accuracy in

three-way classification).

Chapter 4 57

Chapter 4

Syntax-Directed Sentence Compression

Approaches to summarization that rely exclusively on sentence extraction may perform reasonably

well with written texts, but they often fail to produce effective summaries when applied to spo-

ken documents, and, in particular, multi-party speech. As can be seen in Figure 4.1, sentences

in conversational speech tend to be fragmentary and disfluent, and automatic speech recognition

(ASR) introduces many errors. Lack of fluency and readability is particularly severe in meetings,

because of their informal nature and high degree of overlapping speech. Furthermore, ungrammati-

cal sentences occur relatively frequently since participants are generally not professional speakers,

as opposed to other speech domains (e.g., broadcast news).

A sentence such as the one included in Figure 4.1 is clearly far too disfluent and verbose to be

really useful for the purpose of summarization, which is to provide a quick overview of each meet-

ing. To improve the readability of extractive summaries, we empower our summarization system

with the ability to delete sub-sentential textual units, such as words, phrases, and clauses, a task

that is generally termed sentence compression (Jing, 2000; Knight and Marcu, 2000; Daumé III and

Marcu, 2002; Reizler et al., 2003; Dorr et al., 2003; Turner and Charniak, 2005).

While sentence compression has been primarily applied to written texts, we believe meeting

transcriptions stand to benefit from sentence compression to a much greater extent than well-formed

texts. In meetings, we have many opportunities to remove unnecessary material from transcriptions,

e.g., by correcting self-repairs (Shriberg, 1994), deleting fillers (e.g., “uh” and “um”), parentheticals

(e.g., “I mean”), hedges (e.g., “I think” and “kind of”), general extenders (e.g., “and so forth” and

“or something like that”) (Overstreet, 1999), tag-questions (e.g., “isn’t it?”), and “semantically

CHAPTER 4. SENTENCE COMPRESSION 58

(Human) Well, I ju- I was just thinking, with reference to uh, things that have - that bear on the content or the

status relations, would be the things - without being exhaustive, by any means, but just like I said, if there’s a k- a

certain topic that comes up in the meeting, and that knowing their relationship will clarify it, or [pause] if there’s

a certain dynamic that comes up - so, I mean, a person is asked a whole bunch of questions, more than you’d

usually think they’d be asked, and it turns out it’s because he’s being prepared for a job interview or something

like that, then it’s useful to know that - that relationship.

(ASR) But I was just thinking with reference to of things that have that they’re on the content or the status

relations would be the things without being exhausted by any means you just like a say that there’s a a certain

topic it comes up in the meeting and that knowing their relationship clarified or if there’s certain dynamic the

comes up so I mean person is asked a whole bunch of questions more than you usually think they’d be asked

it turns out is because it’s being prepared for job interview or something like at that is useful to know that that

relationship

Table 4.1: A short excerpt of an extractive summary illustrating the inappropriateness of relying

on sentence extraction alone in meeting summarization. The upper summary (human) is extracted

from a human transcript, while the lower one contains the corresponding output of a state-of-the-

art automatic speech recognition (ASR) system. This excerpt is taken from one of the 75 human

extractive summaries created at University of Edinburgh (Carletta et al., 2003) (see Section 2 for

more details).

CHAPTER 4. SENTENCE COMPRESSION 59

empty” prefabricated phrases (e.g., “let’s face it” and “for some reason”) (Kjellmer, 1991; Nattinger

and DeCarrico, 1992; Hughes, 1996). Furthermore, conversational speech contains a high incidence

of markers of interpersonal dynamics, to signal such activities as taking the floor (e.g., “well” and

“but”), holding the floor (e.g., “and what else”), verifying that the speaker is being understood (e.g.,

“you know what I mean?”), and starting a new topic (e.g., “so”). In many cases, such terms do not

alter the propositional content of the sentences in which they appear, and may as well be deleted

(EARS, 2003). As in sentence compression for texts, it is of course also desirable to go beyond

small edits, and perform summarization at the subsentential level by removing the least informative

clauses and phrases.

In this chapter, our goal is to render errorful and disfluent transcript utterances into concise

sentences that are maximally readable, removing words or phrases that are not necessary in the gen-

erated output. Given the need to preserve grammaticality, most previous work moved away from

purely word-based or string-based approaches1 to instead employ syntactic knowledge to remove

constituents from phrase-structure trees (Jing, 2000; Knight and Marcu, 2000; Dorr et al., 2003),

a transformation that can often be expressed using synchronous rewriting and synchronous gram-

mars (Lewis and Stearns, 1968; Aho and Ullman, 1969; Shieber and Schabes, 1990). Synchronous

grammars are versatile formalisms for representing the recursive transformation of one language

into another, and have found many usages in natural language processing, including natural lan-

guage generation (Shieber and Schabes, 1990), machine translation (Abeillé et al., 1990; Wu, 1997;

Yamada and Knight, 2001; Melamed et al., 2004; Galley et al., 2004a; Chiang, 2005), semantic

parsing (Wong and Mooney, 2006), paraphrasing (Madnani et al., 2007), and theoretical syntax

(Abeillé, 1994; Rambow and Satta, 1996).

Previous approaches to synchronous rewriting for sentence compression relied almost exclu-

sively on synchronous context-free grammars (SCFG) (Lewis and Stearns, 1968; Aho and Ullman,

1969), which extend context-free grammars (CFG) in that their productions generate two right-hand

sides (RHS) instead of one. Algorithms for extracting and weighting SCFG productions using par-

allel texts of document-abstract pairs have been proposed (Knight and Marcu, 2000; Turner and

1Previous work that aimed to generate very short telegraphic sentences, such as headlines, is a notable exception

(Witbrock and Mittal, 1999; Banko et al., 2000; Zajic et al., 2002), which arguably would benefit less from syntax-

directed approaches than other compression tasks.

CHAPTER 4. SENTENCE COMPRESSION 60

Charniak, 2005). However, while computationally attractive and linguistically plausible, these pre-

vious approaches to sentence compression based on synchronous context-free grammars suffer from

two notable weaknesses:

• Unsuitable syntax tree representation: Compression rules are acquired from syntax trees

such as Penn Treebank (PTB) trees (Marcus et al., 1994), whose labels are not specific enough

to appropriately distinguish constituents that are syntactically or semantically optional. First,

it is widely acknowledged that the category symbols of the PTB are too coarse to adequately

render context-free productions independent of their contexts. Second, these labels mainly fit

linguistic descriptive purposes, and are not meant to be optimal with regard to any particular

constituent classification task such as in sentence compression. Third, as noted previously in

syntactic parsing, many context-free rewrite rules in the PTB are seen only once, and rela-

tive frequency estimation on raw context-free productions leads to severe sparseness issues

(Charniak, 1996; Collins, 1999; Klein and Manning, 2003). As we will see later in this chap-

ter, this issue represents a major bottleneck in sentence compression, since relative frequency

estimation on raw SCFG productions is even more brittle than for CFG productions, and this

problem is exacerbated by the fact that sentence compression has only scarce training material

available.

• Unreasonable assumptions about summarization data: While it is convenient to address

the subsentential summarization task as sentence compression—i.e., requiring that the target

sentence be a substring of the source—only few sentence pairs in summarization training

corpora abide to this restriction. In practice, a large percentage of target sentences contain

word substitutions and insertions, such as paraphrases and replacements of noun phrases with

pronouns. In a large corpus commonly used in sentence compression (Ziff-Davis), summary

sentences that are subsequences of full-document sentences account for only 1.75% of the

entire summarization data. However, previous approaches to sentence compression discard

any sentence pair that includes insertions and deletions, since the transformation from one

sentence to the other cannot normally be represented in these models.

Our research objective in this chapter is to address these two serious limitations as we present

a new statistical sentence compression model that offers solutions to both. Since previous syn-

CHAPTER 4. SENTENCE COMPRESSION 61

chronous grammar approaches to sentence compression were applied exclusively to written texts,

we capitalize on robust techniques to make our syntax-directed sentence compression approach ap-

plicable to noisy and disfluent input such as conversational speech. The main contributions of this

chapter include:

• Robust parameterization of compression probabilistic SCFG (Section 4.2.2): To allevi-

ate data sparseness issues pertaining to previous generative models for sentence compression

(Knight and Marcu, 2000; Turner and Charniak, 2005), we present Markov SCFG grammars

for sentence compression (Section 4.2.2). In the same way Markov grammars in syntactic

parsing (Magerman, 1995; Collins, 1996) extend plain PCFG grammars (Booth and Thomp-

son, 1973), Markov SCFG grammars extend probabilistic SCFG grammars by introducing

a flexible number of conditional independences between right-hand side constituents, and

thus yield more robust probability estimates. Markov SCFG provides several other benefits,

including the ability to condition constituent deletions on a flexible amount of additional

syntactic context (e.g., ancestors in parse trees). Assuming robust smoothing techniques

are employed, they also enable us to incorporate lexical conditionings. Lexical informa-

tion is especially useful to accurately determine whether a syntactic constituent (e.g., “like

any other product”) is grammatically optional—as in “she sold it like any other product”—or

mandatory—as in “it looks like any other product”. We show that our compression model

is successfully applicable to both written texts and conversational speech, and that it signif-

icantly outperforms a state-of-the-art syntax model (Knight and Marcu, 2000) that does not

incorporate Markovization and lexicalization, and produces sentences that were judged more

grammatical.

• Better modeling of revision bi-texts (Section 4.2.1): Another part of our effort focuses on

robust techniques for extracting SCFGs from parallel data. We improve upon (Knight and

Marcu, 2000), who could only exploit 1.75% of a standard document-abstract corpus (Ziff-

Davis) because of their restriction to sentence pairs that include no substitutions or insertions

in target strings. To alleviate this restriction, we present a robust approach to tree-to-tree

alignment between arbitrary document-abstract parallel corpora. By accounting for sentence

pairs with substitutions in addition to deletions, we reach a retention rate of more than 25% of

CHAPTER 4. SENTENCE COMPRESSION 62

the Ziff-Davis data, and show that lexicalized SCFG models greatly benefited from this extra

training material.

• Minimum error-rate training (Section 4.2.3): We incorporate additional models and fea-

tures to improve compression quality—such as n-gram language models built from written

texts and speech data, tf.idf scores, sentence length features, and confidence scores provided

by the speech recognizer—and tune the scaling factors of these different models as to directly

optimize automatic evaluation metric scores, such as word error rate (WER).

This chapter is organized as follows. In Section 4.1, we present our experiments in produc-

ing syntax trees from speech utterances, which is prerequisite of our approach. In Section 4.2,

we overview synchronous context-free grammars for sentence compression. In Section 4.2.1, we

describe approaches to extracting synchronous grammars from parallel corpora. In Sections 4.2.2

and 4.2.3, we present generative and discriminative models for sentence compression, and in Sec-

tion 4.2.4, we describe a decoder for syntax-directed sentence compression, and for producing doc-

ument compressions that satisfy any pre-defined compression ratio. In Section 4.4, we present

experimental results for these different models on various speech and text corpora. Finally, we

relate our approach to previous work in Section 4.5 and conclude in Section 4.6.

4.1 Preprocessing

Our architecture for compressing conversational speech comprises three stages: first, the input sen-

tence is stripped of edited words occurring in self repairs (e.g., “why didn’t he?” in the utterance

“why didn’t he? why didn’t she stay home?”). Second, the remaining words are parsed to construct

a phrase-structure tree using a standard statistical parser (Charniak, 2000) (for reasons explained

later, it is often advantageous to extract an n-best list from the syntactic parser, and not just the

best hypothesis). Finally, each phrase structure tree is trimmed down to a simpler tree using SCFG

productions as presented later in this section.2

Our technique for identifying and removing edited words is presented in the next chapter. Our

motivation for removing edited words before parsing arises from the fact that repairs generally

2Note that in the case of written texts, we parsed Ziff-Davis sentences using the parser described in (Charniak and

Johnson, 2005).

CHAPTER 4. SENTENCE COMPRESSION 63

decrease parsing accuracy, and that techniques that exploit shallow phenomena such as word repe-

titions achieve very good performance in identifying edited words (Charniak and Johnson, 2001).

Since this chapter is primarily concerned with context-free formalisms for sentence compression,

we will assume for the remainder of this section that input utterances do not contain edited words.

In Section 5.2, we present a sequence model for disfluency removal that achieves performance that

is close to state-of-the-art. We also evaluate the impact of automatic edited-word removal on com-

pression performance, and show that its automation seldom decreases accuracies.

The remaining preprocessing step is syntactic parsing, which is presented in the next subsection.

4.1.1 Syntactic Parsing of Conversational Speech

Our parsing problem is to map any input sentence to a corresponding phrase-structure tree. In this

work, we rely on a statistical parser that was trained on the Switchboard section (i.e., conversa-

tional speech) of the Penn treebank (Marcus et al., 1994). In training this parser on Switchboard,

our assumption is that it should scale relatively well on meetings, because both genres are conver-

sational and spontaneous in nature. For convenience to the readers who are not familiar with the

Penn Treebank annotation, we included in Appendix A a list of all morpho-syntactic tags of the

Penn Treebank along with descriptions and examples, since many of these tags appear in examples

of this chapter. To train and test this parser, we removed all edited words from training and test

treebank trees,3 and split our data into training, development, and test set following (Charniak and

Johnson, 2001): training data consisted of all sw[23]*.dps files, development data consisted of

all sw4[5-9]*.dps files and test consisted of all sw4[0-1]*.dps files.

In Table 4.2, we report our own experiments in parsing the test section of Switchboard corpus.

As is generally the case in syntactic parsing, we evaluated parsing accuracy with the PARSEVAL

measure (Black et al., 1991), which measures bracketing precision and recall. Precision and recall

are defined as the number of correct constituents in the proposed parse respectively divided by the

number of constituents in the proposed parse and the reference parse. Since our sentence com-

pression models were evaluated with different inputs ranging from properly punctuated and cased

human transcriptions to automatic speech recognition output, we trained two parsing models. The

3In the Switchboard annotation, constituents of consecutive edited words were assigned a special EDITED tag. Hence,

it is possible to remove edited words without fundamentally changing parse tree structures.

CHAPTER 4. SENTENCE COMPRESSION 64

≤ 100 words ≤ 40 words

TREEBANK FORMAT LP LR LP LR

No edited words (mixed case, punctuation) 88.24% 88.09% 89.21% 89.12%

No edited words (ASR-like) 87.76% 87.81% 88.64% 88.68%

Original treebank (mixed case, punctuation) 85.30% 84.17% 86.80% 86.66%

Table 4.2: Parsing results on Sections 40-41 of the Switchboard section of the Penn Treebank.

LP and LR stand for labeled precision and recall. All experiments are performed with the parser

described in (Charniak, 2000).

first one was trained with punctuation and mixed case, and the second one with ASR-like transcrip-

tion (i.e., all tokens were lower-cased, and punctuation symbols were removed from parse trees).

Overall, it appears from these results that lack of punctuation seldom affects parsing accuracy.

For comparison purposes, we also trained a model with the original treebank including its edited

words, whose performance is shown in the last row of Table 4.2.4 This model is not used in our

experiments on sentence compression, but it enables us to see that failures to remove edited words

before parsing significantly decreases performance.

While results seem quite promising, we would also like to emphasize that any error the syntac-

tic parser may produce does not necessarily imply a lower accuracy down the pipeline. The end

product of our sentence compression system is always a sequence of words, and parse trees are

akin to latent variables in our particular application. While incorrect parses make it more difficult

to apply sensible compressions, many parsing errors do not affect compression evaluation. For in-

stance, if a constituent is deleted, its internal structure—no matter how incorrect—cannot influence

sentence compression evaluation since its yield does not appear in the output sentence; conversely,

if a constituent is spared any deletion, its internal structure has no influence either, since all possible

subtrees would have the same yield.

4We just removed empty elements RM, RS, and IP, which respectively indicate the start and end of a repair, and the

location of the interruption point (Shriberg, 1994). As other empty elements, these tags cannot be identified by the parser

used in our experiments (Charniak et al., 1998).

CHAPTER 4. SENTENCE COMPRESSION 65

4.2 Synchronous Grammars for Sentence Compression

A significant body of previous work takes syntax-directed approaches to sentence compression, by

typically assessing the merits of a phrase deletion based on its syntactic category and perhaps other

elements of the tree structure surrounding the constituent.

One successful syntax-driven approach (Knight and Marcu, 2000, henceforth K&M) relies on

synchronous context-free grammars (SCFG), otherwise also known as pushdown transducers, syn-

tax directed transduction grammars and syntax directed translation schemata (Lewis and Stearns,

1968; Aho and Ullman, 1969). SCFGs can be defined as context-free grammars (CFGs) whose pro-

ductions have two right-hand side strings instead of one, namely source and target right-hand side.

In the case of sentence compression, we restrict the target side to be a sub-sequence of the source

side (possibly identical), and we will call this restricted grammar a deletion SCFG. For instance, a

deletion SCFG rule that removes an adverbial phrase (ADVP) between a noun phrase (NP) and a

verb phrase (VP) may be written as follows:5

S → 〈NP ADVP VP, NP VP〉

In a sentence compression framework similar to the one presented by K&M, we build SCFGs

that are fully trainable from a corpus of document and reduced sentences. Such an approach com-

prises two subproblems: (1) transform tree pairs into synchronous grammar derivations; (2) based

on these derivations, assign probabilities to deletion SCFG productions, and more generally, to com-

pressions produced by such grammars. These two tasks are described respectively in Sections 4.2.1

and 4.2.2.

5Productions in SCFGs are generally required to define a one-to-one correspondence between right-hand side con-

stituents, as in S → 〈NP 1 NP 2 VP 3 , NP 1 NP 2 VP 3 〉, where indices specify a recursive relationship be-

tween constituents (i.e., a linked pair such as 〈NP 1 ,NP 1 〉 must be rewritten together, and recursions through, e.g.,

〈NP 1 ,NP 2 〉 are explicitly disallowed). However, as noted in (Chiang, 2006), a grammar with incompletely linked pro-

ductions (such as the ones in K&M) are weakly equivalent to SCFG by adding productions with empty right-hand sides.

In the case of deletion SCFGs, the transformed grammar only contains productions that are order-preserving, as in sim-

ple transduction grammars (Lewis and Stearns, 1968). The above ADVP deletion rule would be rewritten S → 〈NP 1

ADVP 2 VP 3 , NP 1 ADVP 2 VP 3 〉, where ADVP is a special non-terminal that can only yield an empty target

language string, as in 〈ADVP, ADVP〉 ⇒ 〈RB, RB〉 ⇒ 〈usually,ε〉. For simplicity, we will omit these extra productions.

CHAPTER 4. SENTENCE COMPRESSION 66

of subs. Sentences SCFG SCFG-adj

0 823 823 951

≤ 1 2674 2139 2460

≤ 2 5307 3315 3822

≤ 3 8384 4431 5164

≤ 4 11345 5495 6377

≤ 5 13836 6335 7340

≤ 6 15554 6934 8021

≤ 7 16787 7365 8516

Table 4.3: Cumulative number of training sentence pairs and number of SCFG productions acquired

from Ziff-Davis (without and with adjunction decompositions), allowing 0, 1, or more substitutions

between full and compressed sentences, and any number of deletions.

4.2.1 Extracting Synchronous Grammars

We now describe methods to train SCFG models from sentence pairs. Given a tree pair (f , c),

whose respective parses (πf , πc) were generated by a parser, the goal is to collect SCFG production

counts required by relative frequency estimates. The approach taken by K&M is to analyze both

trees and count the occurrence of a deletion SCFG rule l → 〈αf , αc〉 whenever two nodes nf and

nc in the two trees are “deemed to correspond”, i.e., categories of nf and nc are the same, the CFG

production αc rooted at nc is a sub-sequence of the production αf rooted at nf , and each pair of

matching right-hand constituents in αf and αc yields a string pair whose target side is a subset of

the source side. This leads to a quite restricted number of different productions on the subset of

the Ziff-Davis corpus that comprises only sentence-compression pairs: 823 different productions

were extracted, 593 of which appear only once. Thus, this first approach has serious limitations; the

assumption that sentence compression appropriately models human abstractive data is particularly

problematic. This considerably limits the amount of training data that can be exploited in Ziff-Davis,

and this makes it very difficult to train lexicalized models.

An approach to slightly loosen this assumption is to consider document-abstract sentence pairs

in which the condensed version contains one or more substitutions or insertions. Consider for ex-

ample the tree pair in Figure 4.1: the two sentences are syntactically very close, but the substitution

CHAPTER 4. SENTENCE COMPRESSION 67

DT[3]

The[4]

JJ[5]

second[6]

NN[7]

computer[8]

NP[2]

VBD

started RP

up

PRT

VP CC

and VBD[10]

ran[11] IN[13]

without[14] NN[16]

incident[17]

NP[15]

PP[12]

VP[9]

VP .[18]

.[19]

S[1]

DT[3]

The[4]

JJ[5]

second[6]

NN[7]

unit[8]

NP[2]

VBD[10]

ran[11] IN[13]

without[14] NN[16]

incident[17]

NP[15]

PP[12]

VP[9] .[18]

.[19]

S[1]

Figure 4.1: A full sentence tree (top) and a summary sentence tree (bottom) with a minor rewording

between the two. While the latter sentence is not a compression of the former, it can still be used

to gather statistics to train a sentence compression system, e.g., to learn the reduction of a VP

coordination.

of “computer” with “unit” makes this sentence pair unusable in the framework presented in K&M.

Arguably, there should be ways to exploit abstract sentences that are slightly reworded in addition

to being compressed. To use sentence pairs with insertions and substitutions, we must find a way

to align tree pairs in order to identify SCFG productions. More specifically, we need to define a

constituent alignment between the paired abstract and document sentences, which determine how

the two trees are synchronized in a derivation. Obtaining this alignment is no trivial matter as the

number of non-deleting edits increases. To address this problem, we synchronized tree pairs by find-

ing the constituent alignment that minimizes the edit distance between the two trees (Tai, 1979),6

6The edit distance between two trees is analogous to the edit distance between two strings. Any word and non-

terminal insertion, substitution, and deletion has a cost of one. Note that node insertions and deletions may increase

CHAPTER 4. SENTENCE COMPRESSION 68

i.e., minimize the number of terminal and non-terminal insertions, substitutions and deletions. This

minimization problem is known to be NP hard, so we used an approximation algorithm (Zhang and

Shasha, 1989) that runs in polynomial time. While criteria other than minimum tree edit distance

may be effective, we found—after manual inspections of alignments between sentences with less

than five non-deleting edits—that this method generally produces good alignments.7 Once a con-

stituent alignment is available, it is then trivial to identify all deletion SCFG rules available in the

synchronized tree pair, e.g., NP → 〈DT JJ NN, DT JJ NN〉 in the Figure 4.1, which displays the

tree-to-tree alignment produced by the algorithm described in (Zhang and Shasha, 1989).

We also exploited more general tree productions known as synchronous tree substitution gram-

mar (STSG) rules. For instance, the STSG rule rooted at S can be decomposed into two SCFG pro-

ductions if we allow unary rules such as VP → VP to be freely added to the compressed tree. More

specifically, we decompose any STSG rule that has in its target (compressed) RHS a single context

free production, and that contains in its source (full) RHS a single context free production adjoined

with any number of tree adjoining grammar (TAG) auxiliary trees (Joshi et al., 1975). The figure

displays an example where such a decomposition is applicable with an initial tree S → NP VP and

an adjoined auxiliary tree VP → VP CC VP.8 We found this approach quite effective, since many

common compressions, such as coordination reductions or the removal of any NP within an NP,

are generally missed by the extraction procedure of K&M. Statistics regarding the number of rules

extracted from Ziff-Davis are displayed in Table 4.3.

4.2.2 A Generative Model

The overall goal of a sentence compression system is to transform a given input sentence f into

a concise and grammatical sentence c ∈ C, which is a sub-sequence of f . Similarly to K&M

or reduce the depth of the tree. For instance, transforming the tree (NP (NN authorization)) into (NP (NP

(NN authorization)) (PP [...])) yields a cost of 1 for adding an NP node (plus the cost of inserting the PP

subtree).

7Other methods to align trees have been used in machine translation, but the fact that we are aligning trees of the same

language makes minimum-edit-distance tree alignments an effective solution in the case of sentence compression.

8To determine whether a given one-level tree is an auxiliary, we simply check the following properties: all its leaves

but one (the “foot node”) must be nodes attached to deleted subtrees (e.g., VP and CC in the figure), and the foot node

(VP[9]) must have the same syntactic category as the root node.

CHAPTER 4. SENTENCE COMPRESSION 69

and many successful syntactic parsers (Collins, 1999; Charniak, 2000; Klein and Manning, 2003),

our sentence compression system is generative, and attempts to find the optimal compression ĉ by

estimating the following function:9

ĉ = arg max
c∈C

{
p(c|f)

}
= arg max

c∈C

{
p(f , c)

}
(4.1)

If τ(f , c) is the set of all synchronized tree pairs that yield (f , c) according to some underlying

SCFG, we can estimate the probability of the sentence pair using:

p(f , c) =
∑

(πf ,πc)∈τ(f ,c)

P (πf , πc) (4.2)

We note that, in practice (and as in K&M), Equation 4.2 is often approximated by restricting τ(f , c)

to a unique full tree π̂f , the best hypothesis of an off-the-shelf syntactic parser. This implies that

each possible compression c is the target-side yield of at most one SCFG derivation.

As in standard PCFG history-based models, the probability of the entire structure (Equation 4.2)

factorizes into probabilities of grammar productions. If θ is a derivation θ = r1 ◦ · · · ◦ rj ◦ · · · ◦ rJ ,

where rj denotes the SCFG rule lj → 〈αj
f , αj

c〉, we get:

p(πf , πc) =
J∏

j=1

p(αj
f , αj

c|lj) (4.3)

The question we will now address is how to estimate the probability p(αj
f , αj

c|lj) of each SCFG

production.

4.2.2.1 Lexicalized Head-Driven Markov Model

A main issue in our approach is to reliably estimate productions of deletion SCFGs. In a sentence

compression framework as the one presented by K&M, we use aligned trees of the form of the Penn

Treebank (PTB) (Marcus et al., 1994) to acquire and score SCFG productions. However, the use of

the PTB structure faces many challenges also encountered in probabilistic parsing.

Firstly, PTB tree structures are relatively flat, particularly within noun phrases. For instance, ad-

jective phrases (ADJP)—which are generally good candidates for deletions—appear in 90 different

9In their noisy-channel approach, K&M further break down p(c, f) into p(f |c) · p(c), which we refrain from doing

for reasons that will become obvious later.

CHAPTER 4. SENTENCE COMPRESSION 70

PRP

it

NP

VBZ

looks IN

to PRP

me

NP

PP

PRP

I

NP

VBP

mean

VP

S

PRN

RB

kind

RB

of

ADVP

IN

like DT

a

NNP

Chevy

NP

PP

VP

S

Figure 4.2: Syntax tree of the disfluent Switchboard sentence “I mean, it looks to me, I mean, kind

of like a Chevy”, which is compressed into “it looks like a Chevy”. Constituents and subtrees that

must be deleted appear in italic.

NP-rooted SCFG productions in Ziff-Davis, 61 of which appear only once, e.g., NP → 〈DT ADJP

JJ NN NN, DT JJ NN NN〉. While it may seem advantageous to maintain many constituents within

the same domain of locality of an SCFG production, as we may hope to exploit its large syntactic

context to condition deletions more accurately, the sparsity of such productions make them poor

candidates for relative frequency estimation, especially in a task with limited quantities of training

material. Indeed, the Ziff-Davis corpus (of 1,087 tree pairs) contains only 951 SCFG productions,

593 of which appearing only once.

Secondly, syntactic categories in the PTB are particularly coarse grained, and lead to many

incorrect context-free assumptions. Some important distinctions, such as between arguments and

adjuncts, are beyond the scope of the PTB annotation, and it is often difficult to determine out of

context whether a given constituent can safely be deleted from a right-hand side.

One first type of annotation that can effectively be added to each syntactic category is its lexical

head and its part-of-speech (POS), following work in syntactic parsing.10 This type of annotation is

10The head is the most important word of a constituent and the one that determines its syntactic category. For instance,

CHAPTER 4. SENTENCE COMPRESSION 71

particular beneficial in the case of prepositional phrases (PP), which may be either complements or

adjuncts. As in the case of Figure 4.2, knowing that the PP headed by “like” appears in a VP headed

by “looks” helps us to determine that the PP is a mandatory complement of this verb, and that it

should presumably not be deleted. Conversely, the PP headed by “to” modifying the same verb is

an adjunct, and can safely be deleted if unimportant. Also, as discussed in (Collins, 1996), POS

annotation can be useful as a means of backing off to more frequently occurring head-modifier POS

occurrences (e.g., VBZ-IN) when specific bilexical co-occurrences are sparsely seen (e.g., “looks-

like”). At a lower level, lexicalization is clearly desirable for pre-terminals. Indeed, current SCFG

models such as K&M have no direct way of preventing highly improbable single word removals,

such as deletions of adverbs “never” or “nowhere”, which may turn a negative statement into a

positive one.11

A second type of annotation that can be added to syntactic categories is the so-called parent

annotation (Johnson, 1998), which was effectively used in syntactic parsing to break unreasonable

context-free assumptions. For instance, a PP with a VP parent is marked as PPˆVP. It is reasonable to

assume that constituents deep inside a PP have more chances to be removed than otherwise expected,

and one may seek to increase the amount of vertical context that is available for conditioning each

constituent deletion.

To achieve the above desiderata for better SCFG probability estimates—i.e., reduce the amount

of sister annotation within each SCFG production, by conditioning deletions on a context smaller

than an entire right-hand side, and at the same time increase the amount of ancestor and descendent

annotation through parent (or ancestor) annotation and lexicalization—we follow the approach of

(Magerman, 1995; Collins, 1996; Charniak, 2000; Klein and Manning, 2003), i.e., factorize n-ary

grammar productions into products of n right-hand side probabilities, a technique sometimes called

grammar Markovization (Klein and Manning, 2003).

Markovization is generally head-driven, i.e., reflects a decomposition centered around the head

the head of the noun phrase “the same thing” is the noun “thing”. Head-finding rules used in our work are taken from

(Collins, 1999, Appendix A).

11K&M incorporate lexical probabilities through n-gram models. However, since n-grams cannot naturally model

parallel texts, they are thus unlikely to penalize a compression from “they never arrived” to “they arrived”.

CHAPTER 4. SENTENCE COMPRESSION 72

of each CFG production:

l → ∆Lm · · ·L1HR1 · · ·Rn∆ (4.4)

where H is the head, L1, . . . , Lm are the left modifiers, R1, . . . , Rn are right modifiers, and ∆ is a

termination symbol needed for accurate probability estimations (e.g., to capture the fact that some

constituents are more likely than others to be the right-most constituent); for simplicity, we will

ignore ∆ in later discussions. For a given SCFG production l → 〈αf , αc〉, we ask, given the source

RHS αf that is assumed given (e.g., provided by a syntactic parser), which of its RHS elements are

also present in αc. That is, we write:

p(αc|αf , l) = p(km
l , · · · , k1

l , kh, k1
r , · · · , kn

r |αf , l) (4.5)

where kh, ki
l , k

j
r (‘k’ for keep) are binary variables that are true if and only if constituents H,Li, R

j

(respectively) of the source RHS αf are present in the target side αc. Note that the conditional

probability in Equation 4.5 enables us to estimate Equation 4.3, since p(αf , αc|l) = p(αc|αf , l) ·

p(αf |l). We can rely on a state-of-the-art probabilistic parser to effectively compute either p(αf |l)

or the probability of the entire tree πf , and need not worry about estimating this factor. In the case of

sentence compression from the one-best hypothesis of the parser, we can ignore p(αf |l) altogether,

since πf is the same for all compressions.

We can rewrite Equation 4.5 exactly using a head-driven infinite-horizon Markovization, which

is a simple application of the chain rule:

p(αc|αf , l) = p(kh|αf , l) (4.6)

·
∏

i=1...m

p(ki
l |k1

l , · · · , ki−1
l , kh, αf , l)

·
∏

i=1...n

p(ki
r|k1

r , · · · , ki−1
r , kh,Λ, αf , l)

where Λ = (k1
l , · · · , km

l) is a term needed by the chain rule. One key issue is to make linguistically

plausible assumptions to determine which conditioning variables in the terms should be ignored.

Following our discussion in the first part of this section, we may start by making an order-s Markov

approximation centered around the head, i.e., we condition each binary variable (e.g., ki
r) on a con-

text of up to s sister constituents between the current constituent and the head (e.g., (Ri−s, . . . , Ri)).

In order to incorporate bilexical dependencies between the head and each modifier, we also condi-

tion all modifier probabilities on head variables H (and kh). These assumptions are overall quite

CHAPTER 4. SENTENCE COMPRESSION 73

similar to the ones made in Markovized parsing models. If we assume that all other conditioning

variables in Equation 4.7 are irrelevant, we write:

p(αc|αf , l) = ph(kh|H, l) (4.7)

·
∏

i=1...m

pl(ki
l |Li−s, ..., Li, ki−s

l , ..., ki−1
l ,H, kh, l)

·
∏

i=1...n

pr(ki
r|Ri−s, ..., Ri, ki−s

r , ..., ki−1
r ,H, kh, l)

Note that it is important to condition predictions on both constituent histories (Ri−s, . . . , Ri) and

non-deletion histories (ki−s
r , . . . , ki−1

r); otherwise we would be unable to perform deletions that

must operate jointly, as in the production S → 〈ADVP COMMA NP VP, NP VP〉 (in which the

ADVP should not be deleted without the comma). Without binary histories, we often observed

superfluous punctuation symbols and dangling coordinate conjunctions appearing in our outputs.

We now describe in details the kind of lexico-syntactic information used to represent the head

constituent H and its modifiers Li and Ri.

4.2.2.2 Conditioning Variables and Smoothing

We define four meta parameters in our model that determine how much sister, vertical, lexical,

and POS annotation is used in maximum likelihood estimation. The question of how much of this

annotation is needed for effective sentence is evaluated in details in Section 4.4 (for written texts

and accurate speech transcripts) and Section 5.4.2 (for ASR output).

As explained previously, the parameter s conditions predictions on a context of up to s con-

stituents between the head and the modifier. For example, if s = 0, the probability of retaining the

PP headed by “like” in Figure 4.3 is pr(1|PP, . . .). If s = 2, then it is pr(1|PRN,ADVP,PP, . . .).

The parameter v works the same way as s, but for vertical annotation. If v = 1, the probability is

written pr(1|S,PP, . . .).

The parameter l controls how much lexical information is incorporated into the model. If l = 0,

the model is fully unlexicalized. If l = 1, the probability of retaining any constituent is additionally

conditioned on its head word, e.g., p(1|like, . . .). For modifiers, a value l = 2 enables the probability

of the modifier to be conditioned on two lexical items, one drawn from the head and the other from

the modifier. In this case, the probability of retaining the PP is p(1|looks, like, . . .). The parameter t

CHAPTER 4. SENTENCE COMPRESSION 74

PRP

it

NP

VBZ/looks

looks IN

to PRP

me

NP

PP/to

PRP

I

NP

VBP

mean

VP

S

PRN/mean

RB

kind

RB

of

ADVP/kind

IN

like DT

a

NNP

Chevy

NP

PP/like

VP

S

Figure 4.3: To determine that a constituent like “like a Chevy” must be retained in this sentence, it is

effective to condition this decision on the pair of head words “looks-like”. Note that it is important

to condition on both words, since it would be fine to delete a PP headed by “like” in a different

context (e.g., “they arrived like that”).

for POS annotation works the same way as l, but it applies to the POS of head words. For instance,

if t = 2, the probability is written p(1|VBZ, IN, . . .). The motivation for using POS labels is that

it provides a means to back-off to more robust statistics when a word or word pair in rarely seen

(Collins, 1996; Eisner, 1996).

Since this probability model constrains a relatively large amount of conditioning variables, max-

imum likelihood estimation is likely to be plagued by sparsity issues if not appropriately smoothed.

Smoothing is crucial for lexicalized models, and particularly for those incorporating bi-lexical head-

modifier dependencies. In our work, we rely on Witten-Bell interpolation.12 Generalized linear

interpolation as defined by Bell et al. (Bell et al., 1990) is defined recursively as

pWB(k|v1:k) = λv1:k
pML(k|v1:k) + (1− λv1:k

)pWB(k|v1:k−1) (4.8)

where k ∈ {1, 0} is our prediction and v1:k is a vector of all conditioning variables in the model.

12Note that we relied on the SRI language modeling (SRILM) (Stolcke, 2002) toolkit library. After experimenting with

many smoothing techniques implemented in SRILM, we found that Witten-Bell interpolation was the one that worked

best with our models.

CHAPTER 4. SENTENCE COMPRESSION 75

We used the following order of deletion in the Witten-Bell interpolation of the probability of retain-

ing a head constituent H according to ph(ki
h| . . .): lexical head, POS of the lexical head, vertical

annotation, and syntactic category. The order of deletion goes from first to last, i.e., the lexical head

is deleted first. For the probabilities pl(ki
l | . . .) of retaining a constituent L that modifies the head

constituent H , we remove in order: lexical head of H , lexical head of L, POS of the lexical head

of H , POS of the lexical head of L, sister annotation (which indicates whether or not sisters were

deleted or not), kh (which indicates whether or not the head is deleted), syntactic category of the

head, syntactic category of the modifier. We experimented with different orderings, and found this

ordering works quite well in practice, and was used in all experiments reported in this paper. How-

ever, in future work, we would like to experiment with more powerful back-off techniques, such

as generalized parallel backoff (Bilmes and Kirchhoff, 2003) to have more flexibility in combining

these conditioning variables.

4.2.3 Discriminative Framework

While it has often been found that generative models perform no worse than discriminative models

when the amount of training data is very scarce (Ng and Jordan, 2002; Johnson, 2001), we are

nevertheless interested in applying a discriminative framework that can provide a natural means to

incorporate various information sources aside from SCFG structures, e.g., n-gram language models

and tf.idf scores.13

Following many successful applications in other NLP applications, in particular in statistical

machine translation (SMT) (Och and Ney, 2003; Tillmann and Zhang, 2006; Liang et al., 2006), we

take a minimum error rate training approach to optimizing the parameters of a log-linear model

p(c|f) ∝ exp
(J∑

j=1

λjhj(c, f)
)

(4.9)

where hj(f , c) are features described in the next subsection. In SMT, model parameters are typically

optimized on BLEU scores (see Section 4.3), but we experiment with both maximum BLEU and

minimum word error rate (WER) training. To optimize model parameters, we resort to the downhill

13We could have followed an independent path by constructing a discriminative equivalent to the generative model

of Section 4.2.2, e.g., by maximizing the conditional log-likelihood (MCLE) of the training data as done for PCFGs in

(Johnson, 2001).

CHAPTER 4. SENTENCE COMPRESSION 76

simplex algorithm (Nelder and Mead, 1965) to iteratively compute changes in BLEU or WER by

running the decoder on a development set of 264 meeting utterances. In our case, the simplex

algorithm typically required between 50 to 200 iterations to converge (generally in less than 24

hours).

4.2.3.1 Features

We now describe the features included in the log-linear model of Equation 4.9. Note that the dis-

criminative framework described here is not applied to the Ziff-Davis corpus, since our primary goal

is to perform meeting summarization.

• pSCFG(f , c): log-probability of the Markov SCFG model.14

• pLM(c): log-probability of a trigram mixture language model trained from many different

sources, including all compressed utterances of our ICSI training set (21K words), Broadcast

News (BN) transcripts included in the TDT (Graff, 1997) (12M words), and the Brown corpus

(1M words).

• sum-idf(c): sum of inverse document frequency (IDF) scores of all words in c. IDF scores

were collected from 92 million documents taken from Reuters stories, Broadcast News, and

the Brown corpus.

• ratio of words that are retained in the compression (|c|/|f |).

• confidence score (only used in Chapter 5): in this work, we take word posterior probabilities

provided with the ASR system described in Section 5.1.

Note that trigram log-probabilities are normalized by the length of the sentence, since they

would otherwise always favor very short compressions. IDF scores were also normalized, since

they would otherwise always prefer longer sentences.

14Note that, as in the generative model, pSCFG(f , c) equals
P

(πf ,πc)∈τ(f ,c) p(πf , πc). Each term p(πf , πc) is decom-

posed as p(πc|πf)p(πf), where the first term is computed by the SCFG deletion model and where the second is provided

by the syntactic parser. A difference with the generative model is that we add a scaling factor λj for PCFG probabilities,

which is also directly optimized for either WER or BLEU: pSCFG(f , c) =
P

(πf ,πc)∈τ(f ,c) p(πc|πf)p(πf)
λj .

CHAPTER 4. SENTENCE COMPRESSION 77

4.2.4 Decoder

The goal of the decoder is to find the most likely compression ĉ of the model. As seen in Equa-

tions 4.1 and 4.2, it can be computed by maximizing:

ĉ = arg max
c∈C

{ ∑
(πf ,πc)∈τ(f ,c)

p(πf , πc)
}

(4.10)

Finding the maximum-probability yield it difficult in general, because the above equation con-

tains a summation over all possible tree structures that yield (f , c). Another issue is that the SCFG

model makes no attempt to model the probabilities p(f) or p(πf). We thus approximate ĉ the fol-

lowing way: we first use a syntactic parser to parse the input sentence f and generate a moderately

large N -best list (π1
f , . . . , π

N
f). Second, for each tree πi

f , we search for the M most probable com-

pressions (πi,1
c , . . . , πi,M

c) according to the estimate of p(πc|πi
f) provided by the SCFG model. If

we set M and N to be large enough, we can effectively cover most of the probability mass of

Equation 4.10. This approximation yields

ĉ = arg max
c∈C

{ N∑
i=1

p(πi
f)

∑
πc∈(πi,1

c ,...,πi,M
c)

p(πc|πi
f)

}
(4.11)

To find the M most probable derivations that maximize p(πc|πi
f) for a given parse tree πi

f , we

use a bottom-up beam search decoder15 that maintains at each node only the M most probable

configurations, which are obtained by enumerating and sorting the derivations accessible from each

child. Let r be the rank of the grammar (i.e., maximum number of symbol in any of its right-hand

sides), then the overall time complexity of such an M -best decoding algorithm is O(rM r log M)

(Huang and Chiang, 2005). Note that, as opposed to syntactic parsing, the search space is relatively

small in our case, since constituent brackets are fixed for each run of the decoder. Even though we

could have implemented algorithms with much lower asymptotic complexities (Huang and Chiang,

2005), we are generally able to produce very large M -best lists in relatively small amounts of time.

As in the case for summaries produced in Chapter 3, it is often desirable to constrain the length

of the output produced by our sentence compression system. In general, it seems more sensible

to impose a length constraint at the document level rather than at the sentence level. First, this is

15Note that we specifically do not use dynamic programming because n-gram language model scores are incrementally

computed during decoding as it is generally done in syntax-based machine translation decoding (Wu, 1996).

CHAPTER 4. SENTENCE COMPRESSION 78

generally how summarization evaluations are performed, and any hard constraint on the length of

a specific sentence often has undesirable effects (e.g., it may produce ungrammatical output if no

phrase is grammatically optional).

In our evaluations in this chapter, we will assume that a target length L is provided at run

time. For a given sequence of input sentences f1:S = (f1, . . . , fS), the sequence of compressions

c1:S = (c1, . . . , cS) hypothesized by the decoder must satisfy

S∑
i=1

|ci| = L (4.12)

where |ci| is the length of sentence ci. To ensure that this constraint is met, we resort to the following

approximation. First, we assume all compressions are independent and identically-distributed (iid),

which allows us to write:16

p(c1:S |f1:S) =
S∏

i=1

p(ci|fi) (4.13)

Second, we use the list of k-best yields produced by our decoded (k ≤ MN) for each input

sentence to find a sequence of compressions that satisfy the constraint on length. This search is

trivial to implement using dynamic programming on a table T of size S×L, where T [i, j] represents

the most likely sequence of hypothesis compressions c1:i that satisfy
∑i

m=1 |cm| = j.

4.3 Evaluation Metrics

Previous automatic evaluations for sentence compression evaluation results relied primarily on word

error rate (WER) and BLEU (Papineni et al., 2002). We now provide an brief overview of these two

metrics.

4.3.1 Word Error Rate

Word error rate is widely used in speech recognition to assess recognition quality, and has also been

used in some prior work on sentence compression (Clarke and Lapata, 2006b). Word error rate is

computed using the edit distance e(i) between the recognizer output and the reference transcript of

16Identifying dependencies between constituents in different sentences is of course beyond the scope of syntactic

models described in this chapter.

CHAPTER 4. SENTENCE COMPRESSION 79

sentence i, and is defined as

WER =
∑

i e
(i)∑

i n
(i)

, (4.14)

where n(i) is the length of the reference sentence i. The edit distance, or Levenshtein distance

(Levenshtein, 1966), is the minimum number of insertions, substitutions, and deletions required

to transform one sentence into the other. In natural language generation and sentence compres-

sion, WER is sometimes expressed as an accuracy measure and is termed simple string accuracy

(SSA) (Bangalore et al., 2000; Clarke and Lapata, 2006b): SSA = 1−WER.

4.3.2 BLEU

BLEU (BiLingual Evaluation Understudy) (Papineni et al., 2002) is an evaluation metric commonly

used to assess the quality of machine translation outputs, and is currently the most popular metric

in machine translation. Several studies have reported high correlation with human judgments of

translation quality (Papineni et al., 2002; Coughlin, 2001).

In our case, BLEU measures sentence compression accuracy according n-grams (1 ≤ n ≤ N)

found both in the hypothesis compression and any of the references. Specifically, it measure the

geometric mean of n-gram precisions and is multiplied by a factor BP that penalizes hypotheses

that are shorter than any reference compression:

BLEU = BP · exp
(N∑

n=1

log pn

N

)
(4.15)

Here, pn denotes the precision of n-grams in the hypothesis compression, and N is the largest

n-gram size used for evaluation. As it is often the case in machine translation, we use N = 4.

Note that a related metric, ROUGE (Lin, 2004), is sometimes used to assess summarization

quality. Since ROUGE is mainly intended to be used to assess summarization quality at the docu-

ment level rather at the sentence level, we do not report results with ROUGE.

4.4 Results

This section analyzes performance of the generative and discriminative models presented earlier on

written and spoken texts. While summarization of conversational speech is the main focus of this

thesis, it is nevertheless interesting to analyze their application to other genres such as written text.

CHAPTER 4. SENTENCE COMPRESSION 80

First, our sentence compression system is fully data-driven and thus it is in principle not restricted to

any domain, genre, or language. Second, linguistic resources, such as treebanks and summarization

annotation, are available in much larger quantities for written texts; an analysis of the learning curve

on written texts can give some insight into how much data would be needed to achieve reasonable

performance in other genres. Third, most of the previous work in sentence compression was applied

to the Ziff-Davis corpus, and it thus seems natural to provide a comparison against a state-of-the-art

system on such data.

Note that, in all our experiments, we set the size of N -best lists produced by the syntactic parser

to be N = 10. This generally yields much superior results than just using the first parse, which is

the approach taken by K&M.

4.4.1 Written Texts

All experiments on written texts were performed on the Ziff-Davis corpus, and reported using WER.

Since WER and BLEU scores are often correlated, we only report BLEU scores when it is deemed

interesting.

For our empirical evaluations on Ziff-Davis, we use the entire training set of 16,787 sentence

pairs 2.4, which may contain any number of deletions and up to seven substitutions. We use the

abbreviation ZD-i to refer to the version of the corpus that contains all the sentence pairs that

have a number of substitutions smaller or equal to i. After parsing all these sentences with the

parser described in (Charniak and Johnson, 2005, release of November 2005), we apply the SCFG

rule extraction method described in Section 4.2.1. In addition to this, 200 sentence pairs (with no

substitutions or deletions) are reserved as our development test, and we use the same 32 sentence

pairs that were selected by K&M for testing.

In our first evaluation, we experimented with different horizontal and vertical Markovizations

(Table 4.4). First, it appears that vertical annotation is helpful. It provides reductions in WER from

47.9% (v = 0, s = 2) to 46.8% for (v = 1, s = 2), but higher orders (v > 1) do not provide system-

atic increases of performance. Sister annotation is much more effective than vertical annotation, and

provides, for instance, an improvement from 52.7% WER (v = 1, s = 0) to 46.8% (v = 1, s = 2).

Manual examinations of compression outputs confirmed this analysis: without sister annotation,

deletions of punctuation symbols and function words (determiners, coordinate conjunctions, etc.)

CHAPTER 4. SENTENCE COMPRESSION 81

Vertical Horizontal Order

Order s = 0 s = 1 s = 2 s = 3

v = 0 52.2 48.5 47.9 48.5

v = 1 52.7 48 46.8 47.7

v = 2 51.8 48.5 47.5 47.8

v = 3 50.2 47 47.2 48.5

Table 4.4: Word error rates (%WER) on the Ziff-Davis development set for different Markov struc-

tures. These models do not incorporate any lexical or POS information (l = 0, t = 0). The relative

WER reduction from (v = 0, s = 0) to (v = 1, s = 2) is 11.5% (5.4% absolute). The baseline

(unsplit SCFG) achieves only 62.4% WER.

are often inaccurate, and compressions clearly lack fluency. This annotation is also helpful for

phrasal deletions; for instance, we found that PPs are deleted in 31.4% of the cases in Ziff-Davis

if they do not immediately follow the head constituent, but this percentage drops to 11.1% for PPs

that immediately follow the head. It seems, however, that increasing sister annotation beyond s > 2

to provide no benefits.

In our second evaluation reported in Table 4.5, we assessed the usefulness of lexical and POS

annotation (setting s and v to 0). As mentioned earlier, the meta-parameter l controls the degree

of lexicalization, e.g., models with l = 2 incorporate head-modifier bi-lexicalization (e.g., “looks-

like”). The same principle applies to t, e.g., models with t = 2 incorporate head-modifier POS pairs

(e.g., VBZ-IN). The column ZD-7 displays results for the entire training set of 16,787 sentence

pairs, which includes substitutions. ZD-0 refers to its subset of sentence-compression pairs that

K&M were restricted to with their model. The overall best model in the table is one that uses pairs of

words and pairs of POS tags (44.9% WER). It is important to notice that the incorporation of lexical

information without adding the ability to back-off to POS labels is seriously hurting performance.

For instance, if we do not include the POS label of the head (i.e., VBZ in the case of our “looks-

like” example), we observe a change from 44.9% (l = 2, t = 2) to 48.3% in WER. We also observe

that POS tags provide substantial benefits in the case of uni-lexical and unlexicalized models. Note

that lexical conditioning also helps in the case where the training data is relatively small (ZD-0),

though differences are less significant, and bilexical dependencies actually hurt performance. The

CHAPTER 4. SENTENCE COMPRESSION 82

Lexicalization and POS ZD-7 ZD-0

unlexicalized models:

l = 0, t = 1 49.8 49.5

l = 0, t = 2 48.2 50.6

uni-lexical models:

l = 1, t = 1 47.2 49.0

l = 1, t = 2 45.8 47.2

bi-lexical models:

l = 2, t = 1 48.3 48.9

l = 2, t = 2 44.9 47.8

Baseline (unsplit SCFG) 62.4

Table 4.5: Word error rates (%WER) on the Ziff-Davis development set for different head-modifier

annotations (other meta parameters set to s = 0 and v = 0). In ZD-7, the larger training set with

substitutions is used for training.

best model for ZD-0 is one that conditions deletions on two POS tags and just one head word.

Since many head-modifier word pairs are sparsely seen, it is interesting to analyze how often

contexts of POS tags and head words observed at test time were seen in the training data. We

note again that all models discussed in this chapter are smoothed with Witten-Bell interpolation,

thus maximum likelihood estimates of the largest contexts are always interpolated with less specific

ones as to make maximum likelihood estimates more robust. Table 4.6 displays the percentage

of times the maximum context of each model is unseen in the training data. It effectively shows

that contexts of pairs of head words are available 39.7% of the cases. We note some differences

between this analysis and studies that have been done in syntactic parsing to assess the usefulness

of bi-lexical dependencies. Bikel (2004) found that the maximum context of a bilexical parsing

model (Collins, 1999) is only available in 1.49% of the cases. In the case of the bi-lexical parsing

model, words seen less than 5 times in the training data were mapped to “unknown”, which makes

this 1.49% not directly comparable to ours (in our case, we did not remove rare words, since we

assumed that our use of Witten-Bell interpolation would by itself robustly handle statistics for rare

words). We hypothesize another reason that may explain this difference: a syntactic parser needs

CHAPTER 4. SENTENCE COMPRESSION 83

Lexicalization and POS ZD-7 ZD-0

unlexicalized models:

l = 0, t = 1 1.9 7.3

l = 0, t = 2 2.5 8.5

uni-lexical models:

l = 1, t = 1 38.6 74.9

l = 1, t = 2 39.9 75.9

bi-lexical models:

l = 2, t = 1 60.5 84.3

l = 2, t = 2 60.3 84.1

Table 4.6: Model coverage analysis: percentage of time the maximum context of POS and head

words, which depends on l and t, is unknown at test time.

to process an extremely large search space, and is bound to hypothesize a large number of (often

incorrect) head-modifier word pairs that the sentence compression model never sees in the parser’s

N -best list.

It is also interesting to analyze classification accuracy at the level the model performs predic-

tions, i.e., at the constituent level. Table 4.7 provides constituent-level classification accuracies, as

well as precision and recall scores with respect to deletions (i.e, recall is 1 if the classifier manages to

identify all deleted constituents). Note that this analysis is performed on machine-generated parses,

and that performance measures here are only helpful for error analysis and should presumably not

be used for evaluation. We find that model performs best with parentheticals (PRN), coordinating

conjunctions (CC), adverbials, and S clauses. On the other hand, it has problems spotting adjective,

noun phrase, and verb phrase deletions, which are infrequent in the training data (note, however,

that classification accuracy is high for these three constituents).

In our search for the best model on the development set, we experimented with different combi-

nations of Markovizations and lexical dependencies, and finally settled with a model incorporating

bi-lexical dependencies. While it appears that lexical, POS, sister, and vertical annotation inde-

pendently provide significant improvements, the addition of sister and vertical annotation does not

provide any improvement over l = 2, t = 2 in terms of automatic evaluation. However, we found

CHAPTER 4. SENTENCE COMPRESSION 84

Cat. Accuracy Precision Recall F1

COMMA .798 .813 .946 .875

PRN .615 .7 .778 .737

CC .811 .781 .641 .704

ADVP .523 .556 .625 .588

S .852 .545 .571 .558

PP .852 .71 .415 .524

ADJP .864 .75 .375 .5

RB .583 .364 .571 .444

SBAR .727 .333 .615 .432

NP .908 .667 .301 .415

VP .934 .333 .25 .286

JJ .857 .5 .05 .091

Table 4.7: Classification accuracies, precision, recall, and F1 scores for the most frequently deleted

categories. Since positive instances constitute the majority class, precision and recall are computed

here with respect to negative predictions (i.e., deletions). Note that the table contains all categories

that were deleted at least 5 times in the reference annotation of the development set.

CHAPTER 4. SENTENCE COMPRESSION 85

Models Grammar Content Len(%)

NoisyC 4.37 ± 0.5 3.87 ± 1.2 70.4

Markov 4.68 ± 0.4 4.22 ± 0.4 62.7

Human 4.95 ± 0.1 4.43 ± 0.3 53.3

Table 4.8: Human evaluation on the Ziff-Davis test set. Note that results reported in this table

pertain to a slightly different version of the Markov SCFG model (Galley and McKeown, 2007)

(minor fixes have been made, which provide some improvement on the development set).

that one level of sister and parent annotation positively impacted output quality, hence our final

model includes both (s = 1, v = 1, l = 2).

We finally took the best configuration selected above, and evaluated our model against the noisy-

channel model of K&M on the 32 test sentences selected by them. We performed a human eval-

uation against the output produced by Knight and Marcu’s original implementation of their noisy

channel model (Table 4.8). For this human evaluation, we relied on six native speakers of Ameri-

can English who assessed grammaticality and content (importance) with scores from 1 to 5, using

instructions as described in K&M. Compressions produced by humans, the Markov SCFG model,

and K&M’s model were scored by each subject, and were provided to them in random order. Both

types of evaluations favored the Markov model against the noisy channel model.

Table 4.9 shows several outputs of our system (Markov) that significantly differed from the out-

put of the noisy channel model (NoisyC), which confirms our impression that Markovized models

can produce quite grammatical output. Our compression for the first sentence underlines one of

the advantages of constituent-based classifiers, which have the ability to delete a very long phrase

at once (here, a PP). The three next sentences display some advantages of our approach over the

K&M model: the latter model seems to perform deletions with too little lexico-syntactic informa-

tion, and accidentally removes certain modifiers that are sometimes, but not always, good candidates

for deletions (e.g., ADJP in Sentence 2, PP in sentences 3 and 4). On the other hand, our model

keeps these constituent intact. Finally, the fifth example is one of the three cases (among the 32

sentences) where our model produced a sentence we judged clearly ungrammatical. After inspec-

tion, we found that the parser assigned a particularly errorful tree to this input, which may partially

explain this ungrammatical output.

CHAPTER 4. SENTENCE COMPRESSION 86

Input Many debugging features, including user-defined break points and variable-watching and message-watching win-

dows, have been added.

NoisyC Many debugging features, including user-defined points and variable-watching and message-watching windows,

have been added.

Markov Many debugging features have been added.

Human Many debugging features have been added.

Input The chemical etching process used for glare protection is effective and will help if your office has the fluorescent-

light overkill that ’s typical in offices.

NoisyC The process used for glare protection is and will help if your office has the overkill

Markov The chemical etching process used for glare protection is effective.

Human Glare protection is effective.

Input The utilities will be bundled with Quickdex II in a $90 package called super quickdex, which is expected to ship

in late summer.

NoisyC The utilities will be bundled

Markov The utilities will be bundled with Quickdex II.

Human The utilities will be bundled with Quickdex II.

Input The discounted package for the SparcServer 470 is priced at $89,900, down from the regular $107,795.

NoisyC The package for the 470 is priced

Markov The discounted package for the SparcServer 470 is at $89,900.

Human The SparcServer 470 is priced at $89,900, down from the regular $107,795.

Input Prices range from $5,000 for a microvax 2000 to $179,000 for the vax 8000 or higher series.

NoisyC Prices range from $5,000 for a 2000 to $179,000 for the vax 8000 or higher series.

Markov Prices range from $5,000 for a microvax for the vax.

Human Prices range from $5,000 to $179,000.

Input The source code, which is available for C, Fortran, Ada or VHDL, can be compiled and executed on the same

system or ported to other target platforms.

NoisyC The source code, can be compiled and executed on the system or ported to other target platforms.

Markov The source code can be compiled and executed on the same system or ported to other target platforms.

Human The source code is available for C, Fortran, Ada or VHDL.

Input The DOS batch language has major limitations, of course.

NoisyC The language has major limitations, of course.

Markov The DOS batch language has major limitations.

Human The DOS batch language has major limitations.

Input Arborscan is reliable and worked accurately in testing, but it produces very large DXF files.

NoisyC Arborscan is but it produces large DXF files.

Markov Arborscan is reliable and worked accurately.

Human Arborscan produces very large DXF files.

Input Although it bears the IBM name, it synthesizer circuitry is identical to that of a Yamaha FB-01, a popular eight-

voice synthesizer module.

NoisyC It synthesizer circuitry is identical to that of a Yamaha FB-01, a eight-voice synthesizer module.

Markov Synthesizer circuitry is identical to that of a Yamaha FB-01.

Human The synthesizer circuitry is identical to a Yamaha FB-01 eight-voice synthesizer module.

Table 4.9: Sentence compressions for the test set of the Ziff-Davis corpus.

CHAPTER 4. SENTENCE COMPRESSION 87

Vertical Horizontal Order

Order s = 0 s = 1 s = 2 s = 3

v = 0 52.4 52.5 53.2 53.6

v = 1 52.9 52.4 53.1 53.5

v = 2 52.5 52.8 52.1 53.0

v = 3 52.2 51.7 52.9 52.5

Table 4.10: Word error rates (%WER) on the ICSI development set for different Markov structures.

Relative reduction of WER between the model without vertical and sister annotation (v = 0, s = 0)

and the best other model (v = 3, s = 1) is 1.44% (.75% relative).

4.4.2 Conversational Speech

In the experiments described in this section, we use the ICSI sentence compression corpus described

in Section 2.1.6. We use 1,393 utterance pairs for training, and respectively use 264 utterance pairs

(7,412 annotated words) for development and 169 utterances pairs (3,710 annotated words) for

testing. More statistics regarding these two sets are provided in Tables 2.5 and 2.6.

We provide again an analysis of the effect of sister and parent annotation in parse trees (Ta-

ble 4.10). We find again that this kind of annotation helps the constituent classifier, and that vertical

annotation provides more prediction power than sister annotation. The benefit of this annotation is

less pronounced than for written texts. Indeed, while the relative decrease of error reported in the

previous section was 11.5%, we only notice a 1.44% relative WER decrease with meeting utter-

ances.

A positive finding in Table 4.11 is that uni-lexical and bi-lexical models provide noticeable

improvements over unlexicalized models, despite the small amount of training material. The column

‘%unseen’ suggests that lexical probabilities are used relatively often. What may come as a surprise

is that only 56.5% of the contexts of head-modifier word pairs are unknown at test time, while as

many as 60.3% are unknown in the case of Ziff-Davis (for the equivalent model in Table 4.6). This

finding is quite striking, since models for Ziff-Davis are trained from more than 10 times the same

amount of data. We believe this to be mostly due to a genre difference. Spoken mode is characterized

by low lexical density, and tendency for simpler and less abstract vocabulary (Hughes, 1996), which

might render lexicalized models more effective with spoken genres than with written texts.

CHAPTER 4. SENTENCE COMPRESSION 88

Lexicalization and POS %WER %unseen

unlexicalized models:

l = 0, t = 0 52.4 3.21

l = 0, t = 1 52.7 6.36

l = 0, t = 2 51.9 8.19

uni-lexical models:

l = 1, t = 0 49.1 41.2

l = 1, t = 1 50.3 41.5

l = 1, t = 2 49.4 43.4

bi-lexical models:

l = 2, t = 0 49 56.4

l = 2, t = 1 48.4 56.4

l = 2, t = 2 47.8 56.5

Baseline (unsplit SCFG) 63.1 -

Human 43.7 -

Table 4.11: Word error rates (%WER) on the ICSI development set for different head-modifier

annotations (other meta parameters were set to s = 0 and v = 0). %seen represents the percentage

of time the maximum context of POS and head words, which depends on l and t, is unknown at test

time.

%WER %BLEU

MODEL devel test devel test

Generative (SCFG) 47.84 43.16 65.44 68.10

Discriminative (minimum-WER) 47.04 42.82 66.74 68.71

Discriminative (maximum-BLEU) 48.68 47.03 67.77 70.67

Human 43.7 37.1 - -

Table 4.12: Results for discriminative training with four features: SCFG compression model, n-

gram language model, tf.idf score, and sentence length.

CHAPTER 4. SENTENCE COMPRESSION 89

Results with discriminative training are displayed in Table 4.12. We trained two models by

optimizing either WER or BLEU on our development corpus. It appears that the model trained

for WER outperforms the generative model with both metrics and with both development and test

sets. On the other hand, optimizing BLEU provides expected improvements in BLEU with both

development and test sets, but it slightly worsens (i.e., increases) WER for both sets.

To illustrate these outputs, we include in Table 4.13 the first eight compressions generated by

the discriminative model trained to minimize WER, along with input sentences and human com-

pressions. Appendix C contains its compressions for the entire test set. Summary utterances have

an average of 12.28 words per utterance, which represents 56 percent of the average number of

words in the input sentences. In general, we found that this sentence compression system is able to

remove accurately the various disfluencies, parenthetical phrases (“you know”), and information-

poor phrases (e.g., “in this case” in the last example of the table). For longer deletions, it deletes

mostly adverbial phrases and prepositional phrases, such as the temporal prepositional phrase “while

he is changing the grammars to english” in example 4 for the table.

We performed an error analysis on the entire summary available in the appendix. Poor sentence

generation is caused by three types of errors: incorrect input, incorrect parse, and incorrect compres-

sion. First, input sentences are not always well-formed grammatical sentences, as this can be seen

in the first compression of Table 4.14 (these compressions are also taken from the appendix). The

input sentence “well from my understanding of what the people at phillips were originally trying to

do doesn’t quite fit” is not grammatical, and as a result, its compression “from my understanding of

what people at phillips were trying to do” does not contain a main clause. Second, the quality of

the input parses plays an important role in sentence compression, and incorrect attachments often

yield compressions that are either syntactically or semantically incorrect. For instance, while the

compression for the fifth input sentence in Table 4.13 seems grammatical, it distorts the meaning

of the input sentence, mainly because the noun phrase “the syntactic tree that is underneath in the

syntactic structure” was not attached to the verb “produce” as it should in the parse tree. Third, com-

pression errors are caused by different factors, including wrong tree alignments and incorrect parses

in the training data. Some compression errors also seem to stem from data sparseness issues. In the

second example of Table 4.14, our system incorrectly deletes the argument “which of those it is” in

“to add which those it is”. If the system had much more data available, it would presumably have

CHAPTER 4. SENTENCE COMPRESSION 90

Input ok well , so ralf and tilman are here .

Markov ralf and tilman are here .

Human ralf and tilman are here .

Input i thought two things uh we ’ll introduce ourselves and what we do .

Markov i thought two things we ’ll introduce ourselves .

Human we ’ll introduce ourselves .

Input and um we already talked with andreas , thilo and david and some lines of code were already written today and almost

tested and just going to say we have um again the recognizer to parser thing where we ’re working on and that should

be no problem and then that can be sort of developed uh as needed when we enter the tourism domain .

Markov we talked with andreas thilo and david and lines of code were written today and tested .

Human we already talked with andreas , thilo and david some lines of code were written today and almost tested we have the

recognizer to parser that can be developed when we enter the tourism domain .

Input and um there one of our diligent workers has to sort of volunteer to look over tilman ’s shoulder while he is changing

the grammars to english because we face two ways .

Markov there one of our diligent workers has to volunteer to look over tilman ’s shoulder .

Human one of our workers has to look over tilman ’s shoulder while he is changing the grammars to english .

Input either we do a syllable concatenating um grammar for the english generation which is sort of starting from scratch and

doing it the easy way , or we simply adopt the ah um more in-depth um style that is implemented in the german system

and um are then able not only to produce strings but also the syntactic tree that is underneath in the syntactic structure

which is the way we decided we were going to go because a , it ’s easier in the beginning and um it does require some

knowledge of those grammars and some linguistic background .

Markov we do a syllable concatenating grammar for the english generation but also the syntactic tree that is underneath in the

syntactic structure .

Human either we do a syllable concatenating grammar for the english generation , or we adopt the more in-depth style in the

german system and are then able not only to produce strings but also the syntactic tree it ’s easier in the beginning and

it does require knowledge of those grammars and linguistic background .

Input johno , are you going to have some time to do that uh with these guys ?

Markov johno are you going to have some time to do that with these guys ?

Human johno , are you going to have time to do that ?

Input the ultimate goal is that before they leave we can run through the entire system input through output on at least one or

two sample things .

Markov the ultimate goal is before they leave we can run through the entire system input through output .

Human the goal is that we can run the entire system on one or two sample things .

Input and by virtue of doing that then in this case johno will have acquired the knowledge of how to extend it .

Markov johno will have acquired the knowledge of how to extend it .

Human then johno will have acquired the knowledge of how to extend it .

Table 4.13: Sentence compressions for the test set of the ICSI meeting corpus (first 8 compressions).

CHAPTER 4. SENTENCE COMPRESSION 91

Input well from my understanding of what the people at phillips were originally trying to do does n’t seem to quite fit into

smartkom currently so what they ’re really doing right now is only selecting among the alternatives , the hypotheses

that they ’re given enriched by the domain knowledge and the um discourse modeler and so on .

Markov from my understanding of what the people at phillips were trying to do does n’t seem to fit into smartkom currently .

Human what the people at phillips were originally trying does n’t fit into smartkom currently so they ’re selecting alternatives

, hypotheses enriched by domain knowledge and the discourse modeler .

Input there are only three possibilities and what one would like is for this uh , knowledge modeling module to add which of

those it is and give it to the planner .

Markov there are only three possibilities and what one would like is for this knowledge modeling module to add and give it to

the planner .

Human one would like this knowledge modeling module to add which it is and give it to the planner .

Input also of course it would be really nice to know what the plans are , in addition to what ’s sort of already in code .

Markov it would be nice to know what the plans are , in addition .

Human it would be nice to know the plans , in addition to what ’s already in code .

Table 4.14: Sentence compressions for the test set of the ICSI meeting corpus (sample errors).

learned that a clause headed by “which” and appearing as the first right modifier of the verb “add”

is most certainly grammatically required. However, because the head-modifier pair “add-which”

does not appear in the training data, it backs off to just considering the word “which” to determine

whether or not to delete this clause. In this case, the backoff is unfavorable, since clauses headed by

“which” are often deleted in the training data and are therefore deleted in most of the cases at test

time.17 It sometimes also occurs that the distinction between grammatically optional and mandatory

is difficult to capture with the kind of structural features discussed in this chapter. For example, in

the last example of Table 4.14, the compression of “in addition to what ’s already in code” into “in

addition” seems a poor compression in that particular sentence. However, it would have been fine

to delete the PP headed by “to” and modifying “addition” in a sentence such as “in addition to this,

it would be nice to know the plans.”

4.5 Related Work

4.5.1 Sentence Compression

A large body of work addresses the problem of revision at the sentence level. Sentence compression

techniques have been applied to single-document summarization (Jing and McKeown, 2000; Jing,

17Given the constraints imposed on length during decoding, SBARs headed by “which” are deleted in 71% of the cases.

CHAPTER 4. SENTENCE COMPRESSION 92

2000; Knight and Marcu, 2000; Daumé III and Marcu, 2002; Reizler et al., 2003; Turner and

Charniak, 2005), headline generation (Witbrock and Mittal, 1999; Banko et al., 2000; Zajic et

al., 2002; Dorr et al., 2003) text compaction for small displays (Corston-Oliver, 2001), voicemail

summarization (Koumpis and Renals, 2003a), text simplification (Chandrasekar et al., 1996; Carroll

et al., 1998), information retrieval (Corston-Oliver and Dolan, 1999), audio scanning services for

the blind (Grefenstette, 1998), and closed captioning (Linke-Ellis, 1999; Robert-Ribes et al., 1999).

A variety of techniques have been used for sentence compression: hand-crafted rules derived

from a study of document-abstract pairs (Jing, 2000; Jing and McKeown, 2000; Dorr et al., 2003),

generative synchronous grammars automatically learned from document-abstract pairs (Knight and

Marcu, 2000; Daumé III and Marcu, 2002; Turner and Charniak, 2005), and various word or

constituent classifiers such as hidden Markov models (Witbrock and Mittal, 1999; Banko et al.,

2000; Zajic et al., 2002; Koumpis and Renals, 2003a), decision trees (Knight and Marcu, 2000),

maximum-entropy models (Reizler et al., 2003), support vector classifiers (Daumé III and Marcu,

2004; Nguyen et al., 2005), and other large-margin techniques (McDonald, 2006). Some techniques

relied on unsupervised learning (Hori, 2002; Clarke and Lapata, 2006a), in the sense that they did

not exploit any parallel data. It is interesting to notice that, aside from (Witbrock and Mittal, 1999;

Banko et al., 2000; Zajic et al., 2002; Koumpis and Renals, 2003a) compression techniques gener-

ally capitalize on syntactic knowledge. Their case is particular in the sense that their techniques have

mainly been used to produce messages for small displays (Koumpis and Renals, 2003a) or head-

lines, tasks for which grammatical knowledge is admittedly less helpful. With headlines, generated

sentences are typically very short, e.g., (Banko et al., 2000) produces 5-6 words per sentence on

average, and the production of ungrammatical sentences is less likely and generally not particularly

harmful to their understanding.

It may appear to some readers that our work shares many similarities with the speech summa-

rizer of Hori (2002). As in (Hori, 2002), our sentence compression system incorporates a syntax

model, an n-gram language model, and various information sources such as tf.idf scores and con-

fidence scores from the speech recognizer. However, as opposed to most other syntax-directed

approaches to sentence compression, the syntactic model of Hori is trained in an unsupervised fash-

ion with the inside-outside algorithm (Lari and Young, 1990), and does not exploit treebanks now

available for many languages (including Japanese (Kawata and Bartels, 2000) and English, the two

CHAPTER 4. SENTENCE COMPRESSION 93

languages Hori experimented with). Furthermore, all models in (Hori, 2002) are monolingual and

none are trained on parallel texts. Hence, a poor compression of the sentence “they almost missed

the train” into “they missed the train” wouldn’t be penalized, since the target sentence is linguis-

tically well formed and would expectedly rank high according to dependency models and n-gram

language models properly trained on in-domain data. Their use of dependency trees is primarily

meant to penalize compressions that remove heads (e.g., “missed”) without their modifiers (e.g.,

“they”), as in “they almost the train”, and it has no means to proscribe deletions that are semanti-

cally undesirable (e.g., “they missed the train”).

Besides (Hori, 2002), other approaches (Kikuchi et al., 2003; Chatain et al., 2006b; Turner

and Charniak, 2005; Chatain et al., 2006a; Clarke and Lapata, 2006a) also rely exclusively on

unsupervised methods.18 While it is desirable to address the sparseness issue by exploiting the

abundance of non-parallel data in an unsupervised manner, our interest in our thesis was more to

make supervised learning more effective by exploiting corpora of unrestricted document-abstract

pairs, which are generally much more available than annotated sentence-compression pairs.

Other applications to utterance revision have primarily focused on making transcript utterances

more fluent and readable, though they did not attempt significant reduction in sentence lengths.

Zechner’s (2002) revision operations were essentially restricted to disfluency removal. More re-

cently, the DARPA EARS program (Effective, Affordable, Reusable Speech-to-Text) aimed to

achieve better transcript readability, by removing non-content words such as filled pauses, discourse

markers, and disfluent speech. We consider our work to be somewhat orthogonal and complemen-

tary to previous research done under the auspices of the EARS program, since relevant research in

EARS has primarily focused on metadata annotation and extraction (e.g., (Liu et al., 2004; Kim et

al., 2004; Liu et al., 2005)) and has generally not directly targeted improvement in end-to-end read-

ability. (Gibson et al., 2004) is the only work in EARS known to us directly addressing questions

about readability.

18To be more precise, we specifically mean that none of these methods use any labeled parallel data. However, they

often rely on supervised learning from non-parallel texts, e.g., build generative language models using n-gram or CFG

production frequencies.

CHAPTER 4. SENTENCE COMPRESSION 94

4.5.2 Machine Translation

Since the sentence compression task can easily be expressed as a translation problem, it is natural

to compare our work to machine translation approaches. Previous work in statistical machine trans-

lation (SMT) can be broadly divided into three categories: word-based models (Brown et al., 1990),

phrase-based models (Och et al., 1999; Koehn et al., 2003; Och and Ney, 2004), and syntax-based

models (Wu, 1997; Yamada and Knight, 2001; Chiang, 2005).

In word-based machine translation, the IBM models (Brown et al., 1990) incorporate word-for-

word translations, various “distortion” models for re-ordering words, word “fertility” models that

account for insertions and deletions. Of these three model types, only the fertility model is directly

relevant to sentence compression. While our syntax-based model does more than just estimating

probabilities at the word level (i.e., it does so at the constituent level), it is interesting to contrast the

fertility model of Brown et al. with probabilities of deleting words (i.e., leaf nodes) in our SCFG

model. As it is the case with our model, the fertility model is trained with the maximum likelihood

estimator (specifically, with maximum-likelihood re-estimation as in the expectation-maximization

algorithm (Dempster et al., 1977)), thus we would expect that the deletion probabilities derived

from fertility models would not have any particular advantage or disadvantage over our lexicalized

word-level deletion probabilities,19 except that the SCFG model can use additional information such

as POS tags and parent annotation to better classify infrequent words.

The alignment template approach to SMT first described in (Och et al., 1999) learns phrase-to-

phrase translations, in which a phrase may be any consecutive sequence of words. Phrase-based

models are among the best performing ones in SMT. While phrase-based models would become

very appealing if training data in sentence compression abounded as in machine translation, it would

seem difficult to apply phrase-based approaches to sentence compression with just a few thousand

sentence pairs as training material.

Syntax-directed translation was originally applied to compilers (Irons, 1961), and formalized

into grammars (Lewis and Stearns, 1968; Aho and Ullman, 1969) that are now often termed syn-

chronous context-free grammars in NLP. Synchronous tree rewriting systems, such as tree substitu-

tion grammars (STSG) and tree adjoining grammars (STAG), extend SCFG grammars in that their

19We admit the comparison between the two models is quite difficult, in particular because any systematic differences

in word alignment could lead to completely different probability estimates.

CHAPTER 4. SENTENCE COMPRESSION 95

productions generate pairs of trees instead of pairs of strings, and have recently been applied to

SMT (Poutsma, 1998; Eisner, 2003; Galley et al., 2004a; Galley et al., 2006; Cowan et al., 2006).

As argued in (Joshi, 1987) the extended domain of locality of tree rewriting systems is useful in

generation—and by extension in machine translation—because they offer effective means of local-

izing syntactic properties such as argument structure, word order, and morphological marking (e.g.,

agreement). However, many of these benefits bear little significance to the sentence compression

problem, i.e., word order and morphology generally remain the same in the source and target sen-

tence. We nevertheless believe there is a practical benefit of localizing argument structure, since

dependencies between binary predictions (i.e., to delete or not) often do not appear within the same

domain of locality of SCFG productions.

4.6 Conclusion

In this chapter, we presented a sentence compression system based on synchronous context-free

grammars (SCFG), for which we defined a head-driven Markovization formulation. This Markoviza-

tion enabled us to incorporate lexical conditioning variables into our models. We empirically evalu-

ated different Markov structures, and obtained a best system that generates particularly grammatical

sentences according to a human evaluation. This approach was found to scale well on conversational

sentences drawn from meeting transcripts, and was found only 9.38% worse (relative difference in

%WER) than human performance. A discriminative model trained to minimize word error rate

(WER) and combining in particular SCFG probabilities, tf.idf scores, and a trigram language model

provided a further improvement.

Chapter 5 96

Chapter 5

Integration and Error Analysis

This chapter presents two fully integrated and automated systems for content selection and utterance

compression. It provides a comprehensive evaluation of the utterance selection and compression

systems described in Chapters 3 and 4, for which we assume all inputs and information sources are

produced by automated means such as automatic speech recognition (ASR) and automatic disflu-

ency removal.

This chapter also describes the development of a classifier that identifies edited words, i.e.,

words in a self-repair that are subsequently corrected (e.g., “why didn’t he?” in the utterance “why

didn’t he? why didn’t she stay home?”) or abandoned. We present a linear-chain conditional

Markov random field (CRF) classifier that achieves an accuracy of 97.9% and an F1 score 79.4% on

a standard test set of the Switchboard corpus. While slightly less effective than the best performing

system to date evaluated on the same data (Johnson and Charniak, 2004), it is relatively simple to

implement and fast, which is in contrast with the O(n5) running time of the tree adjoining grammar

approach of (Johnson and Charniak, 2004). This edited-word detector is used as a pre-processing

step prior to syntactic parsing.

5.1 Automatic Speech Recognition

Our main motivation in this chapter is to assess the scalability of our approaches on real ASR

output. The use of ASR transcripts is expectedly more problematic in sentence compression than in

utterance selection. Thus, for the evaluation of the compression component, we attempt to further

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 97

analyze how our sentence compression system scales with word error rates (WER) on the continuum

between perfect transcriptions and the ASR output of the CTS recognizer described previously. The

rationale is that such evaluations would allow us to reach WERs that better reflect current state-of-

the-art performance (Stolcke et al., 2007), and also give us a better sense of how our summarization

components would behave on more accurate ASR transcripts that may be available in the near future.

To perform evaluation on ASR transcripts, we used the output of the SRI-ICSI speech recogni-

tion system (Mirghafori et al., 2004), which was run on the entire ICSI meeting corpus. As opposed

to the experimental setup described in (Mirghafori et al., 2004), the version of the SRI-ICSI recog-

nizer that produced a full recognition of the ICSI meeting did not exploit any meeting data to train

acoustic or language models. We could not use a more performant and recent recognition system,

since most current state-of-the-art meeting recognition systems (such as (Stolcke et al., 2007)) use

almost the entire ICSI meeting corpus as training data, making them unsuitable in any experiment—

like ours—that uses ICSI meetings for testing.1

As a result of this constraint, the speech recognition system used in our experiments was trained

only on conversational telephone speech (CTS) data. It has its acoustic model trained on 350 hours

of CTS such as Switchboard (Godfrey et al., 1992), and its mixture language model was trained

from 4 million words of Switchboard transcripts, 150 million words of Broadcast News, and 191M

words chosen from the web (Bulyko et al., 2003).

To get ASR transcripts with lower word error rates than real ASR outputs, we use word lattices2

produced by the SRI-ICSI decoder, and search for the minimum-WER path in each lattice. A nice

property of this method is that these paths are within the search space of the speech recognizer, and,

as opposed to other approaches to produce oracle transcripts, they do not suffer from unreasonable

artifacts such as containing out-of-vocabulary words.

The method we used to identify the minimum WER path in a lattice is a simple extension of

the standard dynamic programming algorithm commonly used to find the minimum edit distance

alignment between two strings (Levenshtein, 1966). The algorithm to find the minimum distance

1Ideally, we would have liked to train the recognizer on the ICSI, NIST, and CMU meeting data, but leave out the few

meetings that comprise our development and test sets. Since we do not have direct access to the SRI-ICSI recognizer, this

wish is effectively difficult to satisfy.

2We thank Andreas Stolcke for preparing these word lattices and making them available to us.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 98

\RX FRXOG OHDYH UHDVRQV

OHDGFDQ�

FDQ�

244444

323333

213333

321222

432222

321222

432111

543210

D
Q
G

\R
X

FD
Q

OH
D
YH

UH
J
LR
Q
V

\RX

FDQ�
FRXOG

FDQ�
OHDYH

OHDG

UHDVRQV

�D� �E�

VXE

LQV

Figure 5.1: Illustration of the minimum edit distance (MED) dynamic programming algorithm to

find the minimum WER in the lattice shown in (a) given a reference transcription “and you can

leave regions”. While the edit distance between the highest-probability path (shown is bold) is 3,

the MED algorithm has a cost of 2.

between a reference transcript and any path in the lattice is illustrated in Figure 5.1. When normal-

ized by the length of the reference string, this measure is often called lattice WER (Weng et al., 1998;

Stolcke, 2002). The algorithm operates as follows: given a reference sentence w1:n = (w1, . . . , wn)

and a word lattice represented as a topologically sorted graph G = (V,E), we build a table T of

n + 1 rows and |E|+ 1 columns. T [i, j] represents the minimum cost of aligning w1:i with any

path between the start vertex v1 and edge ei. If we define π(j) to be the set of indices of all edges

adjacent to ej and preceding it, the value of T [i, j] can then computed recursively using:

T [i, j] = min


min

k∈π(j)
T [i− 1, k] + subst-cost(wi, ej)

min
k∈π(j)

T [i, k] + 1

T [i− 1, j] + 1

Note that it often happens that the minimum WER path in the lattice is not unique, in which

case we use word posterior probabilities to break ties. To get oracle transcripts with WER worse

(i.e., higher) than lattice WER, we simply prune lattices with a threshold on lattice density before

extracting the path with minimum WER. In speech recognition, lattice density is defined as number

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 99

10
0

10
1

10
2

10
3

10
4

10

20

30

40

50

60

70

80

lattice density

se
nt

en
ce

 le
ng

th
density vs. sentence length for unpruned lattices

10
0

10
1

10
2

10
3

10
4

0.2

0.25

0.3

0.35

0.4
effect of density prunning on word error rate

lattice density (threshold)

w
or

d
er

ro
r

ra
te

Figure 5.2: The upper scatterplot displays the relationship between lattice density and reference

length for each unpruned lattice. The lower graph displays the increase of lattice WER as a result

of pruning lattices with a threshold on density.

of words in the lattice divided by the number of words in the reference.

Figure 5.2 displays the result of varying the amount of pruning to get WERs that become pro-

gressively close to real decoder WER. The upper figure analyzes unpruned lattices (about 85,000),

and shows the correlation between the length of the reference sentence and lattice density, which is

403 edges per word on average. The lower figure displays the effect of pruning lattices by imposing

a threshold on lattice densities, and expresses the relationship between density threshold and WER.

Table 5.1 shows word error rates for the speech recognizer used in our experiments (SRI-04)

(Mirghafori et al., 2004), which displays an overall WER is 37.77%. The overall WER of our oracle

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 100

SYSTEM Hours ICSI-all ICSI-devel ICSI-test

SRI-ICSI-04 decoder WER 350 (CTS) 37.77 32.66 31.57

SRI-ICSI-04 lattice WER 350 (CTS) 22.85 19.30 16.53

Table 5.1: Decoder and lattice word error rates (%WER) of the speech recognizer used in our

experiments. ICSI-all refers to entire corpus (75 meetings). ICSI-devel and ICSI-test respectively

refer to the development and test set of our experimental setup for sentence compression.

transcripts is 22.85%. As we pointed out earlier, the SRI-ICSI recognizer used in our experiments

could not be trained on any meeting data. We would of course expect a significant reduction of WER

with in-domain data. Furthermore, Stolcke et al. (2007) report that the SRI-ICSI recognizer of 2007

provides relative WER reduction of 24% (from 33.6% to 27.1%) on a NIST test set compared to the

system of 2004, which may hint that the 22.85% WER of our oracle transcripts may be relatively

close to current state-of-the-art performance.

5.2 Removing Edited Words from Disfluent Utterances

As mentioned in Chapter 4, we choose to identify and remove edited words during pre-processing,

and leave the identification of other disfluencies, such as filled pauses (e.g., “uh”, “um”), explicit

editing terms (e.g., “I mean”), and parentheticals for later stages. This is consistent with previous

work (Charniak and Johnson, 2001) and enables a more direct comparison with their results.

There seems to be little evidence supporting the idea that treating syntax-directed sentence com-

pression and disfluency removal as a joint problem is beneficial. First, repairs almost inevitably de-

crease parsing accuracies. Second, previous attempts to use CFG models to treat syntactic parsing

and edit detection as a joint problem have not come close to state-of-the-art performance (Harper

et al., 2005; Hale et al., 2006). Third, major clues in detecting speech repairs that are instrumental

in achieving high accuracies (as shown later in this section) are relatively shallow phenomena, such

as repeated words and part-of-speech tokens. Finally, a more troublesome issue is that context-free

grammars—as our SCFG models—cannot reasonably account for the structure of repairs (Johnson

and Charniak, 2004).

As analyzed by Shriberg (1994), a self-repair consists of four parts as seen in Figure 5.3: the

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 101

but we have a pretty low income t- I mean pretty low tax rate here
CC PRP VBP DT RB JJ NN XX PRP VBP RB JJ NN NN RB

D1 J D2E

Figure 5.3: A self-repair comprises four parts: the reparandum (α1), an interruption point (β), an

optional editing term (γ), and the repair (α2). Cross-serial dependencies between α1 and α2 make

context-free grammars unsuitable recognizers.

reparandum, which is the speech production to be repaired; an interruption point or free final,

which signals the point of interruption and may be associated with a word fragment; an optional

interregnum which contains one or more editing terms such as “I mean”; the repair, which is the

speech production that corrects the reparandum. The relationship between reparandum and repair is

particular in sense that the repair is an approximate copy of the reparandum. These so-called cross-

serial dependencies cannot be recognized by context-free grammars, and require instead the use

of more powerful formalisms such as tree adjoining grammars (TAG) (Joshi et al., 1975; Shieber,

1988). This was the motivating factor for the development a TAG-based edit-word detector (Johnson

and Charniak, 2004).

Previous approaches to identifying repairs have used textual and syntactic information (Bear et

al., 1992; Core and Schubert, 1999; Charniak and Johnson, 2001; Johnson and Charniak, 2004),

prosody (Nakatani and Hirschberg, 1993; Shriberg et al., 1997; Stolcke et al., 1998), and language

models (Heeman and Allen, 1999; Johnson and Charniak, 2004). A central idea to some of these

approaches is that repairs are often identified by two sequences of repeated words (Bear et al.,

1992; Charniak and Johnson, 2001). For instance, Charniak and Johnson (2001) present a two-stage

approach that tries to identify repeats of part-of-speech sequences, and then use various lexical and

POS features pertaining to repeats and individual words in order to classify each word as either

edited or not. Since Charniak and Johnson’s approach is relatively simple and provides good results

on the Switchboard corpus—a corpus also made of informal conversations—we decided to build on

their approach.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 102

REPAIR TYPE PERCENTAGE

a1 a2 73.03

a1 F a2 6.49

a1 5.00

a1 P a2 4.18

d1 d2 3.85

Table 5.2: Distribution of repairs in Switchboard. F stands for filler (e.g., “um”, “uh”), and P for

parenthetical (e.g., “I mean”). a1 and a2 are respectively the reparandum and the repair. d1 and d2

corresponds to the repetition of a discourse marker (e.g., “and - and”).

5.2.1 Distribution of Repairs

The 41,233 repairs annotated on the Switchboard corpus are distributed as shown in Table 5.2. a1

and a2 are respectively the reparandum and the repair, which may or may not constitute an exact

copy. As we can see in the table, most repairs occur without any intervening strings (73%). There is

also a small percentage of cases (5%) where the interregnum is abandoned (i.e., a2 is missing). For

cases where both a1 and a2 are present, we analyzed the distribution of edit distances (Levenshtein,

1966) between a1 and a2. Table 5.3 displays edit distances in terms of words (i.e., the number of

word insertions, substitutions, and deletions), and Table 5.4 relies on edit distances in terms of POS

tags. In the latter case, we allow a word to be substituted with another word if the two share the

same POS tag. As we can see, exact repeats between a1 and a2 represent only 57.2% of the cases.

Even when we match a1 and a2 with their POS labels, cases of exact repeats (of POS sequences)

still represent only 65.5%. The approach of Charniak and Johnson relies on the assumption that

a1 and a2 are identical POS sequences, but this assumption often does not hold. As we will see,

our approach tries to improve upon their limitations by defining features that can recognize any

partial match between subsequences of a1 and a2 (e.g., identical substrings of words, POS labels,

and suffixes).

5.2.2 Baseline Approach

In this subsection, we first describe the approach of (Charniak and Johnson, 2001, henceforth, C&J)

to edited word detection, and then present and evaluate some simple changes that yield significant

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 103

EDIT DISTANCE PERCENTAGE

0 57.2

1 27.1

2 8.9

3 1.3

Table 5.3: Word edit distance between a1 and a2.

EDIT DISTANCE PERCENTAGE

0 65.5

1 21.6

2 7.1

3 2.8

Table 5.4: POS edit distance between a1 and a2.

improvements on the Switchboard corpus. From our reimplementation of their approach to our best

model, we obtain a relative error reduction of 23.6% on the development set.

The split of the Switchboard data is the same as for the syntactic parser in Chapter 4 and con-

sistent with C&J: training data consisted of all sw[23]*.dps files, development data consisted of

all sw4[5-9]*.dps files and test consisted of all sw4[0-1]*.dps files. For evaluation pur-

poses, we follow the approach of (Johnson and Charniak, 2004) by removing all word fragments

and punctuation symbols from the data, as to make our edited term detector more effectively appli-

cable to ASR transcripts.3 Hence, the presentation of C&J is slightly simplified, since all features

that depend on word fragments and punctuation are ignored in our case.

C&J’s method is broken down into two steps. The first step is to identify so-called “rough

copies” in the input strings, which are represented as substrings of the form α1βγα2. Rough copies,

such as the one depicted in Figure 5.3, must satisfy:

1. The strings of POS tags of source α1 and copy α2 are identical.

2. The free final β consists of zero or more words such as “and”, “or”, “actually”, “so”, etc.

3While the experiments in (Charniak and Johnson, 2001) are reported with word fragments and punctuation, (Johnson

and Charniak, 2004) provides the results of running the earlier work under this new evaluation condition.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 104

VARIABLES EXPLANATION

W0 Current word

T−1, T0, T1, T2, Tf POS tags

Nm Number of words in common between α1 and α2

Nu Number of words in α1 that do not appear in α2

Ni Number of words in interregnum

Nl Number of words to left edge of source

Nr Number of words to right edge of source

Ct True if followed by identical POS tag

Cw True if followed by identical word

Ti POS tag of the word following the interregnum

Table 5.5: Features to identify edited words within disfluencies.

3. The interregnum γ consists of zero or more strings such as “uh”, “you know”, “I guess”,

“I mean”, etc.

The search for such a pattern is repeated multiple times until no more matches can be found,

and longest matches are extracted first. Overlaps between rough copies are explicitly disallowed.

The second step is treated as a word-level binary classification problem, in which many of the

conditioning variables are defined in terms of features pertaining to rough copies. The classifier

presented in C&J is a linear model discriminatively trained to minimize BoostLoss (Collins, 2000).

In our case, we instead minimize LogLoss as in so-called maximum entropy models (Berger et al.,

1996). All our models are smoothed using a Gaussian prior (Chen and Rosenfeld, 1999) of .3, which

was manually tuned on our development set.

Features presented in C&J are summarized in Table 5.5. All integer-valued features are bounded

between 0 and 4 and converted to binary features. Features pertaining to each word include the

current word W0, a fixed window of POS labels T−1, . . . , T2, and two flags Ct and Cw that are

set to true if the current word is followed by the same word or by the same POS, respectively.

Features pertaining to rough copies are assigned to each word within the copy, and each word that

is not within a rough copy has all rough-copy features set to NULL. Rough copy features attempt

to quantify the similarity between α1 and α2, and include some features of the interregnum and the

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 105

%Precision %Recall F1

baseline 92.1 61.9 74.1

1st-order CRF 91.8 64.6 75.8

relaxed matched of βγ (free final and interregnum) 88.0 67.7 76.6

word-copy features 90.9 71.8 80.2

Table 5.6: Results for edited word detection on the development of the Switchboard corpus.

free final. Note that the subscript f , as in Tf , is used to refer to the first word of the free final.

5.2.3 Improvements over Baseline

We make several changes to improve upon C&J following a partially manual hill-climb on the

development set and inspection of errors produced on that set. We believe the development to

be large enough (51,123 instances) that there is no noticeable variance in our experiments. The

performance after each step of our manual hill-climb is displayed in Table 5.6.

The first row of the table corresponds to our reimplementation of the C&J approach, which is

our baseline. First, we hypothesized that a sequence model such as a 1st-order CRF would yield

some error reduction, since edited terms generally occur contiguously. The error reduction over the

baseline, which is equivalent to a 0th-order CRF model, is 1.7% (6.56% relative).

Second, we also noticed that the baseline has a particularly low recall, presumably because

criteria for identifying rough copies are rather strict and seriously restrain what words may appear

between α1 and α2 (i.e., βγ). In order to improve the recall of rough copy detection, we loosen the

criteria to match rough copies as to allow βγ to be any sequence of predefined length I . To ensure

that this relaxation does not impact precision too adversely, we enable this relaxed search criterion

only after we have found all rough copies satisfying the more constrained conditions mentioned in

Section 5.2.2. We found the value of I = 6 to be optimal on the development set. This modification

provides .8% error reduction (3.3% relative), and increases recall by 3.1%.

Third, we obtained our most significant improvement on this data using a large set of features

that attempt to identify individual word repeats, POS repeats, and suffix repeats (word-copy fea-

tures). As we can see in Figure 5.4, the requirement that α1 and α2 be the same sequence of words

or POS tags is often unrealistic. Word insertions, deletions, and substitutions are common, and many

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 106

and I think he just really w- he really wanted it

D1 D2E

Figure 5.4: Copies α1 and α2 in a repair often contain insertions, deletions, substitutions. Hence,

the assumption that α1 and α2 are the same POS sequences is often incorrect.

rough copies are consequently missed. A more robust approach is to allow the classifier to identify

repeats by other means than our rule-based rough-copy matcher. For each word pair (wi, wi+k)

within a window of size K, we define feature predicates that determine whether wi and wi+k are:

(1) the same word; (2) words with the same POS label; (3) words with the same suffix. This change

alone provides a large error reduction of 3.6% (15.4% relative).

We finally analyze the complexity of our approach to edit detection. Decoding the most likely

sequence using a linear-chain model is linear in the length n of the utterance (Viterbi, 1967). Finding

the maximal “rough copy” within the input sequence is a particular instance of the longest common

substring (LCS) problem,4 which is solved in O(n2) using dynamic programming (Gusfield, 1997),

and multiple passes to incrementally find non-overlapping copies of POS sequences takes O(n3)

time. However, this asymptotic bound seems rarely met in practice and our decoder takes only about

70-80 seconds on average to decode the entire development set (5895 utterances) of the Switchboard

corpus. LCS can be improved to run in time linear in the sequence using generalized suffix trees

(McCreight, 1976), bringing time complexity for decoding each sentence down to O(n2). For

comparison, the TAG-based approach of (Johnson and Charniak, 2004) runs in time O(n5), and thus

requires some approximations to be computationally tractable. In practice, Johnson and Charniak

only compute analyses on windows of 12 words or less.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 107

SYSTEM LM %Precision %Recall %F1 %Accuracy

(Charniak and Johnson, 2001) none 95.1 63.1 75.9 97.7

(Johnson and Charniak, 2004) bigram 77.6 73.6 75.6 97.3

(Johnson and Charniak, 2004) trigram 77.4 76.3 76.8 97.4

(Johnson and Charniak, 2004) parser 82.0 77.8 79.7 97.8

This thesis work none 91.5 70.1 79.4 97.9

Table 5.7: Results for edited word detection on the test set of Switchboard corpus (sections 40-41).

Results from previous work are directly taken from (Johnson and Charniak, 2004). The LM col-

umn indicates what type of language model was used to score target strings. Note that accuracies

were not reported in (Johnson and Charniak, 2004), but could be derived from precision and recall

scores using the total number of genuine positives and negatives in the test data (3511 and 58012,

respectively).

5.2.4 Results

Results on the test set of the Switchboard corpus (Sections 40-41) are displayed in Table 5.7. While

performance of the best TAG-based model of (Johnson and Charniak, 2004) (F1 = .797) is slightly

superior to our best model (F1 = .794), we note that ability to rescore hypothesized target strings

with a syntax-based language model (Charniak, 2001) plays a very important role, and that no such

feature is yet available in our model. In fact, our approach does not make use of any language

model, and is thus unable to detect that the removal of several consecutive edited words generates

unlikely trigrams in the target sentence. Furthermore, as opposed to the TAG-based approach, our

method is unable to identify approximate repairs. It would certainly be possible to improve the

repeat matching technique of our approach to deal with edit distances larger than 0, e.g., by drawing

from previous work in biological sequence modeling. Schmidt (1998), for instance, presents a

O(n2 log n) algorithm for finding all (locally optimal) approximate repeats within a string of size n.

An improved ability to identify rough copies is likely to provide a more reasonable balance between

recall (70.1%) and precision (91.5%) and improve our overall F1 score.

4The longest common substring problem is not to be confused with the longest common subsequence problem (Cor-

men et al., 2001). The fact that we are looking for two identical substrings within the same string, and not within two or

more strings as it is typically the case, actually reduces search time.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 108

dialogic pairs transcript utterance segmentation

auto-DP automatic manual manual

ref manual manual manual

auto-DP-ASR automatic automatic manual

auto-DP-ASR-seg automatic automatic automatic

Table 5.8: The four experimental setups for the evaluation of content selection. The first one, auto-

DP, is the same as in Chapter 3.

5.3 Content Selection

We now turn to the evaluation of our content selection component. We provide here results for four

experimental conditions listed in Table 5.8. The first experimental setting of the table (auto-DP) is

the same as in Chapter 3. We felt it was interesting to compare accuracies against a system that uses

reference dialogic pair annotation (ref), since Chapter 3 only evaluates systems with automatically

identified DPs.

Dialogic pair identification follows the method described in Section 3.2, which relies only on

structural, textual, and durational information, and achieves 85.3% accuracy. In order to adapt

the DP identifier to ASR transcripts, we trained two models: one with accurate transcripts and

punctuation5 and the second one with ASR transcripts. Reference transcripts are the same as in

Chapter 3, i.e., down-cased and with punctuation symbols.

We used the output of the SRI-ICSI-04 decoder described in Section 5.1 as our ASR transcripts.

Since content selection didn’t seem to be seriously affected by the quality of the transcripts, we only

performed evaluations with real decoder output and didn’t use any oracle ASR transcripts for the

evaluation of content selection.

Each experimental setup among the three first rows required the extraction of an entirely new set

of textual and information retrieval observations. Experiments with automatic segmentation (auto-

DP-ASR-seg) required an entirely different set of observations to be recomputed again, since any

change of segmentation affects what is observed from both the ASR transcripts and speech signal.

5We did not evaluate the effect of punctuation, but it would seem reasonable to assume they can provide helpful cues,

e.g., question marks may help identifying DPs in the presence of question-answer pairs.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 109

5.3.1 Automatic Utterance Segmentation

One potentially problematic aspect of this evaluation is that summarization annotation in (Carletta

et al., 2003) is segmented by dialog acts, a type of segmentation that is notoriously hard to obtain

automatically. Kolar et al. (2007) achieve an error rate of 46.6% in DA segmentation on meeting

data, and most previous research in DA classification ignores the segmentation problem altogether.

Since we consider the DA segmentation problem not to be essential to summarization, we in-

stead relied on a silence-based segmentation for the auto-DP-ASR-seg evaluation setting. In this

evaluation setting, an utterance is defined as a period of speech by one speaker that has no pauses

greater than t second (we arbitrarily set t = 1). This type of segmental unit, sometimes termed

spurt (Shriberg et al., 2001), is often used to test real automatic conditions in various classification

tasks.

Note that this definition of utterance with t = 1 is of course applied to both training and testing

data. The fact that utterance segmentation differs from reference summarization annotation is not an

issue. As explained in Section 3.4.1.4, reference utterance segmentation is not used at all in content

selection annotation, since evaluation is performed at the word-level.

5.3.2 Results

As explained in Chapter 3, we run for each evaluation setting the sum-product loopy belief propa-

gation (BP) algorithm and use posterior probabilities to select the most probable utterances to form

a summary that satisfies a length constraint. We use the same 1st-order skip-chain CRF model that

was found to work best on accurate transcripts.

Table 5.9 displays results for the four evaluation settings with different summary target lengths,

and Figure 5.5 displays ROC for the four systems. Area under the curves (AUC) for the four

experimental conditions are .76 (ref), .757 (auto-DP), .70 (auto-DP-ASR), and .66 (auto-DP-ASR-

seg). As we noted in Chapter 3, the fact that we are evaluating each peer summary against multiple

models makes it impossible in general to reach the maximum possible score, so we also provide F1

scores for optimal summaries, which can be constructed following the Pyramid method (Nenkova

and Passonneau, 2004b). As we did previously, results are provided with different thresholds on

summary lengths, including the break-even point where the number of positive predictions matches

the number of genuine positives in the test data.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 110

10% 18.6% 30%

ref 33.5 42.6 46.5

auto-DP 33.2 42.4 47.3

auto-DP-ASR 28.5 37.8 44.0

auto-DP-ASR-seg 24.4 32.8 38.4

baseline 12.0 20.5 25.9

human - 45.6 -

optimal 57.3 69.3 67.9

Table 5.9: F1 scores for summaries of length 10%, 18.6% (break-even point), and 30%, for varying

degrees of transcription quality.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True positive rate

F
al

se
 p

os
iti

ve
 r

at
e

optimal
ref
auto−AP
auto−AP−ASR
auto−AP−ASR−seg

Figure 5.5: ROC curve comparing different levels of automation. “optimal” refers to the optimal

summary, which may be obtained using the Pyramid method (Nenkova and Passonneau, 2004b).

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 111

text-like disfluency removal %WER-devel %WER-test

ref yes manual 0 0

no-punc no automatic 0 0

oracle-ASR no automatic 19.30 16.53

real-ASR no automatic 32.66 31.57

Table 5.10: The four experimental setups for the evaluation of sentence compression. “text-like” in-

dicates whether the transcription contains punctuation and mixed case.

In these results, we find that automatic dialogic pair identification seldom affects performance,

and that performance with automatic DPs is about the same as manually labeled dialogic pairs.

However, decrease of performance between manual transcripts (auto-DP) and ASR outputs (auto-

DP-ASR) is more pronounced. We hypothesize that degradation may be primarily due to the fact

that our feature set incorporates a large number of lexical and cue-word features. We only performed

feature selection on accurate transcripts, and it appears that many helpful features selected in this

process are missing in ASR inputs (e.g., all features that depend on punctuation become ineffective).

A feature selection applied instead to ASR transcripts would yield a different set of features, which

presumably would capitalized on observations that do not so much depend on accurate transcripts

(e.g., acoustic features).

5.4 Utterance Compression

In this section, we evaluate sentence compression on four types of transcripts, which we overview

in Table 5.10. The two first experimental setups (ref and no-punc) aim to identify any empirical

difference between taking as input (1) a relatively fluent textual transcription with punctuation,

mixed case, and no edited words and (2) an ASR-like disfluent transcription whose edited words

must be detected automatically. Transcriptions for the two last experimental setups (oracle-ASR

and real-ASR) correspond respectively to minimum-WER paths in lattices and actual recognition

outputs. We trained two sentence compression systems to handle respectively the original manual

transcripts—i.e., with punctuation, mixed case, and word fragments—and ASR-like transcripts. To

train and test the two models, we used two different syntactic parser models, which are described

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 112

compressed
reference

full ASR
(input)

compressed ASR
(output)

and we're setting it up so that we hope to expand certain intentions of people

we hope to implant intentions in people

we hope to expand certain intentions

Figure 5.6: Motivating example for compression word error rate (CWER). WER and CWER are

essentially the same, except that errors made by the sentence compression system are discounted if

the speech recognizer makes the same error. For instance, both recognizer and compression system

incorrectly include “expand” in their output, thus this error does not count towards CWER. Errors

appearing in rectangles are not caused directly by the speech recognizer, and thus are considered as

errors in the CWER computation.

in Section 4.1.1. Both were trained on a version of the Switchboard treebank whose edited words

have been removed. For the second one, punctuation, case information, and word fragments were

also removed.

We evaluate sentence compression with the approach presented in Chapter 4, and experiment

both with the generative and discriminative model. Unless disfluencies have already been removed

(as in ref), we automatically remove disfluencies with the method presented in Section 5.2. We then

parse the remaining words with the appropriate syntactic parsing model overviewed in Section 4.1.1,

which was trained both with and without punctuation.

5.4.1 Evaluation

Since input transcripts are errorful and differ from the ones used by human judges to perform sen-

tence compression annotation, it is generally not possible for the sentence compression system to

obtain a perfect match with the reference compression. Since the output of the sentence compres-

sion system may contain inserted and substituted words that were misrecognized by the ASR system

in the first place, we need to adapt the WER metric to properly distinguish between errors that are

the sole product of the recognizer and those caused directly by the sentence compression system.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 113

Figure 5.6 displays an example of a sentence compression that contains both a word that was

originally misrecognized by the ASR system (“expand”) and errors that are caused by the sentence

compression system (“certain” should have been deleted and “people” is missing). The sentence

compression system should admittedly not be penalized for inserting “expand”, since the word was

incorrect in the ASR. To account for this difference, we define compression word error rate (CWER)

to enable a more sensible evaluation of compression results. CWER naturally extends WER, in that

CWER equals WER when the input provided to the sentence compression system contains no errors.

In CWER, we compare a reference compression c with a hypothesized compression ĉ of the

ASR output. As in WER, we compute the minimum edit distance (MED) alignment between the

two sentences (Levenshtein, 1966), which determines a count e of word insertions, word substi-

tutions, and word deletions. The difference with WER is that we additionally compute the MED

alignment between the full ASR sentence f and the reference compression c, in order to identify

any words in the reference compression that do not align to any word in the ASR transcript (i.e.,

words the sentence compression system has absolutely no means of getting correct). From these

two alignments, we then compute an error adjustment a, which is the count of all words ci in the

reference compression that satisfy both following conditions:

• ci is an insertion or substitution error in the MED alignment between f and c (“implant”, “in”,

and “people” in Figure 5.6).

• ci is an insertion or substitution error in the MED alignment between ĉ and c (“implant”,

“in”, and “people” in Figure 5.6).

Compression word error rate is then computed as follows:6

CWER =
∑

i(e
(i) − a(i))∑

i(n(i) − a(i))
(5.1)

n(i), e(i), and a(i) are respectively the length, number of errors, and error adjustment of sentence i.

Note that ASR errors are discounted in both numerator and denominator (without discounting errors

in the denominator, CWER would unreasonably get close to zero for extremely high ASR word error

6Note that none of the terms (n(i) − a(i)) are negative. The only case where CWER becomes ill-defined is when no

words of the reference correctly align to any word of the ASR sentences, which is highly unlikely.

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 114

ref no-punc oracle-ASR real-ASR

Lexicalization and POS (WER=0) (WER=0) (WER=19.3%) (WER=32.6%)

unlexicalized models:

l = 0, t = 1 52.4 55.2 70.0 77.8

l = 0, t = 2 51.9 53.6 69.0 76.4

uni-lexical models:

l = 1, t = 1 50.3 50.8 68.2 73.1

l = 1, t = 2 49.4 49.8 66.1 71.8

bi-lexical models:

l = 2, t = 1 48.4 50.6 66.1 73.3

l = 2, t = 2 47.8 49.2 65.6 73.4

Baseline (unsplit SCFG) 63.1 64.9 76.4 86.4

Human 43.7 - - -

Table 5.11: Compression word error rates (CWER) on the ICSI development set. The best model

for each type of transcript is shown in bold.

rates). In the example of Figure 5.6, CWER = (4 − 2)/(7 − 2) = .4, while the standard WER

computed between ĉ and c is about .57.

5.4.2 Results

All results in this section are reported using CWER, since we do not have a meaningful way of

adapting the BLEU metric to the compression task as we did with WER.

The results of running the SCFG compression model on different levels of transcription quality

is shown in Table 5.11. Since errorful transcriptions are presumably likely to have a negative effect

on any lexicalized model, we provide the same type of analysis of lexical and POS annotation as in

Section 4.4. We find that lexicalization still provides large improvements over unlexicalized models,

even in the case of real ASR transcripts. Relative WER reduction provided by the best lexicalized

model over the best unlexicalized model is 5.5%, 4.4%, and 6.4% for no-punc, oracle-ASR, and

real-ASR, respectively. Relative WER reduction provided by the best bi-lexical model over the best

uni-lexical is 3.25% for no-punc, and 0.76% for oracle-ASR. However, bilexicalization was found

CHAPTER 5. INTEGRATION AND ERROR ANALYSIS 115

ref no-punc oracle-ASR real-ASR

MODEL (WER=0) (WER=0) (WER=16.6%) (WER=31.6%)

Markov SCFG 43.2 45.4 61.6 67.9

Discriminative model (minimum-WER) 42.8 43.9 59.7 66.7

Baseline (unsplit SCFG) 53.4 56.6 69.8 76.9

Human 37.1 - - -

Table 5.12: Compression word error rates of the generative model on the ICSI test set.

to decrease performance in the case of real ASR transcripts.

Table 5.12 compares our generative and discriminative models for the four experimental condi-

tions. As explained in Chapter 4, the parameters of a log-linear model incorporating five features—

SCFG score, language model score, compression length, tf.idf score, and ASR confidence scores—

which are optimized on the development corpus using the downhill simplex algorithm (Nelder and

Mead, 1965). Simplex searches for the four experimental conditions took between 67 and 127 iter-

ations to converge. Discriminative models are particularly more effective than the generative ones

when tested on errorful transcriptions. Indeed, relative error reductions from generative to discrimi-

native are respectively .94%, 3.4%, 3.2%, and 1.8%. One may hypothesize that the syntax-directed

model—which requires accurate parses to be the most effective—loses some of its effectiveness as

simpler models such as n-gram language models and tf.idf are presumably less affected by errorful

inputs.

Chapter 6 116

Chapter 6

Final Discussion

This thesis is concerned with the transformation of meeting transcriptions into short textual sum-

maries that are maximally pertinent and readable, in the hope of improving effectiveness in meeting

information access. The problem of finding important information in meetings and generating fluent

summaries is treated as a structural prediction problem. At the document level, we select utterances

using both local and long-range intersentential dependencies, such as between pragmatically related

sentence pairs. At the sentence level, we select subsets of words that represent important informa-

tion, while attempting to preserve both grammaticality and meaning.

6.1 Contributions

We make several significant advances in content selection for summarization of multi-party speech,

and provide some contributions to sentence compression that were applicable to genres as diverse

as conversational speech utterances and technical articles of the Ziff-Davis corpus. Contributions of

the three main chapters of this thesis are summarized in the next subsections.

6.1.1 Utterance Selection

We presented a skip-chain conditional Markov random field (CRF) model for summary sentence

selection that exploits long-distance dependencies between pragmatically related sentences, such as

between a question and its answer, or an offer and its acceptance. These dependencies are automati-

cally inferred by a probabilistic model of interpersonal interaction, and are instrumental in achieving

CHAPTER 6. FINAL DISCUSSION 117

accuracies superior to competitive approaches. Compared to a standard 1st-order CRF model, the

skip-chain CRF model provides a 1.4% increase in F1-score. Our best performing system reaches

92.9% of human performance.

6.1.2 Utterance Compression

Robust parameterization of synchronous context-free grammars: To alleviate data sparseness

issues pertaining to previous generative models for sentence compression, we presented Markov

synchronous context-free grammars (SCFG) for sentence compression. Markov SCFG grammars

extend probabilistic SCFG grammars by introducing a flexible number of conditional independences

between right-hand side constituents, and thus yield more robust probability estimates. Markov

SCFG provides several other benefits, including the ability to condition constituent deletions on

a flexible amount of additional syntactic context—such as parents and siblings in the tree—and

lexical and POS annotation. We show that our compression model is successfully applicable to

both written texts and conversational speech, and that it significantly outperforms a syntax-directed

model that does not incorporate Markovization and lexicalization: 39% relative reduction of WER

on written texts (from 62.4% to 44.9%), and 32% relative WER reduction (from 63.1% to 47.8%)

on meeting utterances. In a human evaluation, our approach was found to produce sentences that

are more grammatical than those of previous work (Knight and Marcu, 2000).

Better modeling of revision bi-texts. Another part of our effort focused on robust techniques for

extracting SCFGs from parallel data. We improve upon (Knight and Marcu, 2000), who could only

exploit 1.75% of a standard document-abstract corpus (Ziff-Davis) because of their restriction to

sentence pairs that include no substitutions or insertions in target strings. To alleviate this restriction,

we present a robust approach to tree-to-tree alignment between arbitrary document-abstract parallel

corpora. By accounting for sentence pairs with substitutions in addition to deletions, we reach a

retention rate of more than 25% of the Ziff-Davis data, and show that lexicalized SCFG models

greatly benefited from this extra training material. This incorporation of this additional training

material yields a relative WER reduction of 6.46% (2.9% absolute).

CHAPTER 6. FINAL DISCUSSION 118

Minimum error-rate training. We incorporate additional models and features to improve com-

pression quality—such as n-gram language models built from written texts and speech data, tf.idf

scores, sentence length features, and confidence scores provided by the speech recognizer—and

tune the scaling factors of these different models to optimize word error rate (WER) and BLEU on

a development corpus. The incorporation of these other knowledge sources reduces WER down to

42.8%, while human performance is at 37.1%.

6.1.3 Integration

Integration and evaluation. We present fully integrated and automated systems for utterance

selection and sentence compression, which are applicable to real automatic speech recognition out-

put. We carried out evaluations on transcriptions with varying degrees of recognition errors, ranging

from fully accurate transcriptions to real ASR outputs. We find that lexico-syntactic features that are

novel to sentence compression—such as head-modifier lexical dependencies—scale well on ASR

transcripts.

Correcting speech-repairs. We present a linear-chain CRF model for disfluency removal that

almost achieves state-of-the-art performance on a common test set of the Switchboard corpus. It

achieves .794 for F1-score on edited-word retrieval, and an overall 97.9% accuracy. While it reaches

a slightly lower F1-score than (Johnson and Charniak, 2004), it has a substantially lower asymptotic

running time.

6.2 Deliverables

Our work provides several deliverables that are accessible to the research community. Most re-

sources are or will be available at: http://www1.cs.columbia.edu/˜galley/tools.

html.

• Sentence compression system: we make available a sentence compression system that in-

corporates most of the features described in Chapter 4 in one single executable. This program

can be used to extract compression k-best lists, and to train Markov SCFG models with vary-

ing degrees of lexical and syntactic conditioning on parsed parallel texts. Provided that the

CHAPTER 6. FINAL DISCUSSION 119

user will acquire additional resources such as SRILM n-gram language models and counts for

tf.idf scores, this program can be used to discriminatively train model parameters with either

maximum-BLEU training or minimum-WER training. This implementation also contains an

implementation of the noisy channel model described in (Knight and Marcu, 2000), and the

unsupervised SCFG extraction approach presented in (Turner and Charniak, 2005). While

we cannot incorporate any of the parallel corpora described in this thesis, this tool however

provides model files that performed best on these corpora, and thus can be used to compress

sentences drawn from written texts and conversational speech. This tool is freely available to

anyone who intends to use it for research and educational purposes.

• ICSI sentence compression corpus: we supervised three human judges who manually short-

ened a total of 2409 sentences drawn from the extractive summaries of 14 meetings. Sentences

were shortened in seven stages, which represent training resources that can be used to train

compression systems for a wide range of compression rates.

• Correcting speech repairs: we provide a tool to remove edited words from self-repairs in

conversational speech, which incorporates all the features described in Section 5.2. This tool

contains a model file that performed best on the Switchboard corpus. This program requires

MALLET (McCallum, 2002) to train and test linear-chain CRF models.

6.3 Limitations and Future Work

We will now mention some limitations of our approach, and enumerate some issues and ideas that

we believe merit future research. We focused our efforts on two relatively well defined problems—

content selection and sentence compression—and left aside some features that would be desirable

in a meeting summarization system. For instance, our summarization system does not attempt to

model substitutions, and is thus unable to perform revisions such as paraphrasing and changes in

referring expressions. Revisions other than deletions are often needed to make summaries more co-

herent and cohesive. For instance, (Nenkova, 2006) demonstrates the need for reference expression

generation in order to improve the coherence of summaries of newswire texts. The scarce availabil-

ity of training resources makes it computationally very challenging to extend our supervised model

to revisions that require any substitutions. We believe it would be more reasonable to treat correc-

CHAPTER 6. FINAL DISCUSSION 120

tions currently not covered by our approach either during pre-processing or post-processing (as it is

done in (Nenkova, 2006)), since the relatively small number of revisions that require substitutions

would probably not justify a dramatic increase of complexity in our syntax-based model.

Another drawback is that we spent more effort on devising methods and features that work

well on accurate transcriptions and reference utterance segmentations, and spent comparatively less

time attempting to fine tune the components in the fully automated settings of Chapter 5. Our goal

in Chapter 5 was more to provide some results that can be used as initial points of reference for

future research, but we believe that more experiments may yield better results. Common wisdom

in machine learning dictates that training and testing data should have similar statistical properties,

but we were not always able to abide to this rule, since it would have required a large amount of

extra experiments. For practical reasons, we trained models on accurate transcriptions before testing

them on ASR outputs, but this probably yielded suboptimal results.

Another limitation of our work arises from some general independence assumptions we formu-

lated between the various summarization components. While it is computationally appealing to ad-

dress summarization as a two-step approach—separating content selection from sentence revision—

it is obvious that the underlying assumption that the two tasks are independent is often incorrect.

The dependency between the two problems is bidirectional: the deletion of a sentence is likely to

render a subsequent one incomprehensible, e.g., because a referring expression (e.g., “it”) might

lose its referent (e.g., “your approach”). Conversely, the removal of a syntactic constituent may

remove some text of the sentence that elicited its selection in the first place (e.g., an answer to a

question). As mentioned earlier, one approach to address this limitation would be to correct any

inconsistent predictions in content selection and sentence compression as a post-processing step.

A computationally more challenging approach that would reflect a new trend and interest in NLP

(Sutton et al., 2006) is to move away from pipeline approaches that make chains of independent

decisions, and move towards systems that make multiple decisions jointly (e.g., perform selection

and compression jointly). While it would seem computationally intractable to extend our utterance

selection and compression approaches into an exact joint inference problem, we would be interested

in exploring several approximate global inference approaches such as reranking (e.g., first extract a

compression N -best list from each utterance and then use an intersentential model, such as a skip-

chain CRF, that attempts to enforce pragmatic and referential constraints between the compressions

CHAPTER 6. FINAL DISCUSSION 121

of different sentences).

We did not particularly study the impact of different utterance or sentence segmentations on the

summarization task, but we believe it would merit some investigation. Since the ICSI summariza-

tion annotation was defined in terms of dialog act (DA) units, most of our experiments are reported

on this kind of segmentation. We did not address the DA segmentation problem in our thesis, be-

cause we felt it was not particularly crucial to summarization and also because DA segmentation is

difficult to obtain automatically. We would ideally want to explore better approaches than our use of

pausal duration to segment utterances (Chapter 5), and it may be useful to have human labelers map

DA summarization to a segmentation that is more realistic to automate, e.g., sentence segmentation.

A segmentation by sentence is certainly preferable to the reader and the representation that is admit-

tedly the best for the utterance compression component. It would also be interesting to investigate

classification approaches that perform classification and segmentation jointly, such as semi-Markov

CRFs (Sarawagi and Cohen, 2004).

We feel we could have more thoroughly exploited acoustic and durational information in this

thesis. Our work in utterance selection explored a large set of pitch, energy, and durational features,

but our dialogic act classifier uses no acoustic features, and our work on disfluency removal and

sentence compression uses neither acoustic nor durational features. Previous research has shown

(Shriberg et al., 1997; Stolcke et al., 1998) that acoustic and durational features are sometimes help-

ful to disfluency removal. It would also be interesting to study the use of pitch and energy features

in sentence compression. While the relative slowness of our current minimum-WER training frame-

work does not allow us to incorporate a large number of features, we would like to experiment with

other discriminative learning techniques.

We could also have used learning algorithms that have been found superior to those used in this

thesis, such as max-margin Markov networks (Taskar et al., 2003), kernel CRFs (Lafferty et al.,

2004), and more effective loss functions (Collins et al., 2002). In the case of sentence compression,

our work puts much more emphasis on feature analysis than on efficient optimization, and relies

on a statistical framework that strives for careful feature selection and combination. However, we

would like to extend our work to a more powerful discriminative framework, and in particular study

the discriminative training of the parameters of the SCFG compression model (e.g., by maximum

conditional likelihood estimation as it is sometimes done with CFG models (Johnson, 2001)).

CHAPTER 6. FINAL DISCUSSION 122

We would like to improve our work by exploiting large amounts of unlabeled data, and more

specifically rely on semi-supervised techniques such as co-training and the Yarowsky algorithm

(Yarowsky, 1995; Blum and Mitchell, 1998; Abney, 2004). Some researchers in sentence com-

pression have taken a fully unsupervised approach (Hori, 2002; Kikuchi et al., 2003; Chatain et

al., 2006b; Chatain et al., 2006a; Clarke and Lapata, 2006a). However, we would argue against

ignoring altogether exploitable parallel training data on the grounds that it is sparsely available.

Another interesting idea is to perform domain adaptation (Gildea, 2001; McClosky et al., 2006),

which attempts to make effective use of out-of-domain labeled data and in-domain unlabeled data

to improve performance on a given domain. This was successfully applied to syntactic parsing, and

it may provide some means to effectively use the sentence compression annotation of the Ziff-Davis

corpus to improve performance on meetings.

Finally, we would like to point out that summaries as the ones discussed in this thesis need not

be the end products of our speech summarization system, and we envision usages of our summa-

rization system that are more elaborate than producing raw texts. Summaries may be integrated

into a graphical user interface (GUI), such as hypertext documents in a web browser or a dedicated

application, and provide smooth integration with other information gathering functionalities, such

as query-based retrieval. We believe it is critical to provide direct links from summary utterances

(either compressed or not) to utterances shown in context in the original document. One key benefit

of an interactive GUI lies in its ability to better cope with classification errors, since some GUI

control element or hyperlink would enable users to quickly access sentences or phrases that were

inappropriately deleted. We believe an interface that would enable a seamless navigation between

summaries and documents—such as NEWSBLASTER (Evans et al., 2004)—would greatly enhance

the experience of meeting browsing and retrieval, perhaps the same way it was found to enhance the

productivity of real users gathering information from news articles (McKeown et al., 2005).

Chapter A 123

Appendix A

Penn Treebank Tags

This appendix describes the most common clause-level, phrase-level, and word-level tags of the

Penn Treebank corpus (Marcus et al., 1994). Note that this information is taken from (Bies, 1995),

where one can find an exhaustive description of each tag.

APPENDIX A. PENN TREEBANK TAGS 124

Tag Definition

S Declarative, imperative, or infinitive clause

SINV Inverted declarative sentence

SBAR Clause introduced by a subordinating conjunction.

SBARQ Question introduced by a wh-word

SQ Inverted yes/no question or main clause of a wh-question

Table A.1: Clause-level tags of the Penn Treebank.

Tag Definition Example

VP Verb phrase -

NP Noun phrase -

PP Prepositional phrase -

ADJP Adjective phrase “so many”

ADVP Adverb phrase “kind of”

CONJP Conjunction phrase “and then”

FRAG Fragment “no” (as an isolated word)

INTJ Interjection “uh”

PRN Parenthetical “you know”

PRT Particle “up” as in “keep up”

WHAVP Wh-adverb phrase “how much”

WHNP Wh-noun phrase “what kind”

Table A.2: Phrase-level tags of the Penn Treebank. Examples are taken from Switchboard.

APPENDIX A. PENN TREEBANK TAGS 125

Tag Definition

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

RB Adverb

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

IN Preposition or subordinating conjunction

MD Modal

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

TO to

UH Interjection

Table A.3: Word-level tags of the Penn Treebank.

Chapter B 126

Appendix B

Annotation Guidelines for Sentence

Compression

This appendix contains the annotation guidelines provided to three human annotators who per-

formed sentence compression annotation on meeting extracts of the ICSI meeting corpus (see Sec-

tion 2.1.6 for more details).

B.1 Overview

The ultimate goal of the annotation introduced here is to support the production of meeting sum-

maries that are maximally readable and pertinent, i.e., summaries that contain only important infor-

mation and that are stripped from all disfluencies.

Data to be annotated is a set of spontaneous and informal meetings recorded in an academic

institution and primarily concerned with computer science research (specifically: artificial intelli-

gence, human language understanding, and networking research). Meetings are 60 minutes long on

average, and involve a number of participants ranging from 3 to 10. Participants are not professional

speakers, and given the conversational nature of this data, annotators will notice many hesitations

and speech errors in transcriptions. Several participants are non-native English speakers, hence

transcriptions contain numerous ungrammatical sentences.

Annotators are invited to revise and condense pre-existing meeting extracts in order to pro-

duce fluent and concise summaries. Each meeting extract is itself a selection of the most important

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 127

Figure B.1: The transcription, the unedited (“extractive”) summary, and the edited (“abstractive”)

summary are accessible in three different panels.

sentences of a full meeting transcription. Extracts are 2,000 words long on average, while transcrip-

tions are about 20,000 words long. Since extracted sentences were not altered in any way by the

human annotators who selected them, they tend to be difficult to read, and generally contain many

unimportant and removable phrases. In order to produce readable and pertinent meeting abstracts,

annotators are expected to edit each extracted sentence in stages, and are prompted for specific op-

erations to perform in each stage. Stages include, for instance, the deletion of filler words (e.g.,

“um” or “uh”), and the correction of ungrammatical constructions. A detailed description of each

stage is provided in the second section of this document.

Annotators have access to the word-level transcription and audio recording of each utterance,

and are able to navigate forward and backward in each meeting. Before starting to edit any meeting

extract, they are expected to read the entire extract in order to gain an overall understanding of

the meeting. If any sentence of the extract is ambiguous, they should refer to the full meeting

transcription—where that sentence will appear in its full original context—in order to gain a better

insight into the conversation. As shown in Figure B.1, annotators can access three documents

through three different panels at any point in time: the full meeting transcription (“Transcription”),

the meeting extract (“Extractive Summary”), and the meeting abstract built so far (“Abstractive

Summary”). Each panel contains four columns: start time, end time, anonymized speaker identifier

(e.g., “mn017”), and transcription.

A click on the “Annotation” pane lets annotators access the different edition stages. When

annotators are done with an edition stage, they should click on “commit” to be taken to the next

stage (see Figure B.2). Only deletion operations are possible in the first five stages: to delete words

or phrases, annotators simply need to click on any word or select any range of words. As shown in

Figure B.2, words marked for deletion appear in red, and disappear from the sentence in subsequent

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 128

Figure B.2: The annotation pane (punctuation marks appear surrounded by brackets, e.g. “{.}”, in

order to facilitate their selection.)

stages.

The upper part of the annotation pane contains seven buttons, and a box that lets users change

font size. Besides “commit” explained previously, the “save & quit” button lets annotators store all

edits to file and exit the annotation interface. Note that revisions are regularly saved without any

user intervention, and this button only ensures that the very last changes are also saved. Annotators

should always click this button to stop or interrupt any annotation session. By doing so, they ensure

that all their edits are again available as they return to the annotation page. A click on “clear” lets

users clear all edits pertaining to the current extract sentence, and step back to the first stage. Note

that it is also possible to step back to previous stages without resorting to the “clear” button: for

instance, if an annotator reaches Stage 3 as in Figure B.2, but clicks on the word “speakers” (last

word of the sentence) in the panel corresponding to Stage 1, the deletion of the word will not only

update Stage 1 (i.e., the word “speakers” will appear in red), but also propagate through Stages 2

and 3 (i.e., the word will disappear in these stages). Similarly, a new click on the same word in

Stage 1 will blacken the word in Stage 1, and make “speakers” appear again in Stages 2 to 3.

The “play” and “stop” buttons respectively allow users to start and stop the audio recording of

the current sentence of the extract. Finally, once annotators have completed all edit stages of a given

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 129

sentence, they simply need to click on the forward button (“>>”) to step to the next one (similarly,

the “<<” button allows them to step back and modify their previous edits). Once the revision of

part or all sentences is completed, annotators should read in the last panel (“Abstractive Summary”)

the abstract they produced, and make sure that the main points of the meeting are present in the

summary, and that this summary does not contain any superfluous information. If needed, they

should modify their annotation accordingly. In summary, the creation of a meeting abstract should

proceed as follows:

1. Read the entire meeting extract (panel “Extractive Summary”), and refer to the full transcrip-

tion if needed (“Transcription”).

2. Revise sentences in order, one at a time (“Annotation”).

3. Check the quality of produced abstract (“Abstractive Summary”), and change revisions if

needed (“Annotation”).

4. Click on “save & exit” to temporarily suspend or end the annotation of a meeting.

Annotators should note one final important point regarding the different edits stages: while

the decision of what should or should not be altered in the sentence is quite subjective—i.e., there

may be different reasonable ways of performing the requested edits, especially when it comes to

determining what information is important—annotators should ensure as best as they can that their

edits do not not make the sentence ungrammatical, or cause the revised sentence to bear a meaning

that is significantly different from the unedited sentence. When annotators encounter an extracted

sentence that is originally ungrammatical, they should leave ungrammatical construction unchanged

until they are specifically asked (in Stage 6) to edit the sentence to make it grammatically correct.

The remaining part of these annotation guidelines describes the seven edition stages in details.

B.2 Summarization in Stages

Summarization must be performed in seven stages. Annotators should make sure that each revision

operation is performed at the correct stage, e.g., they should avoid removing disfluencies when

asked to correct ungrammatical constructions. Note that there may be cases where a given input

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 130

sentence doesn’t require revisions in all stages. For instance, if the sentence doesn’t contain any self-

repair (Stage 1), the annotator should simply click “commit” to proceed to the next stage without

performing any edit.

Stage 1: Self-Repairs

By self-repairs, we refer to portions of speech in which a speaker’s utterance is not complete and

fluent, i.e., the speaker corrected or altered the utterance, or abandoned it entirely. Self-repairs may

contain four parts, as it is the case in “I think one thing - I mean , one of the things ...”. First,

the reparandum is the portion of speech that later gets corrected or abandoned (here, “one thing”).

Second, the interruption point is the point where the speaker breaks off, which may appear as an

hyphen (“-”) in the transcription. Third, an optional editing phrase , which consists of an overt

statement (e.g., “I mean”, “err”, “rather”) recognizing the existence of a disfluency. Finally, the

correction consists of the portion of the utterance that contains what the speaker intended to say

(“one of the things”). The three former parts are generally considered removable, and annotators

should remove them if deemed unnecessary, ensuring if possible that the resulting edited sentence is

grammatical. In the example, edits would result in a sentence starting with “I think one of the things

...”. Note that grammaticality is a helpful cue to determine how to distinguish removable repair

words from other words: in particular, “I think” in the example above is not part of the reparandum,

since the correction “one the the things” is a continuation of “I think”, hence the two first words

should not be deleted.

It is sometimes quite difficult to distinguish repair words from other words only based on the

transcription, and annotators are encouraged to listen to the audio recording if they are not sure.

In the example of Figure B.3, the annotator determined that “one th-”, “a {-}”, “the uh {-}”,

“with {-}”, and “I- I-” are removable in the given sentence. Note that interruption points also

sometimes appear at the end of incomplete words (e.g., “th-”). Finally, the second example in

Figure B.3 contains an example of a self-repair containing an editing phrase (“I mean”), which

generally should also be deleted.

Phrases to delete in a self-repair may be arbitrarily long. Figure B.4 contains an example where

an entire clause is abandoned: “so that the meeting meetings will probably ultimately”. Self-repairs

may also come in a sequence, e.g. the abandoned clause mentioned before is followed by three

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 131

Figure B.3: Reparanda, interruption points, and repairs. The second example contains an editing

phrase (“I mean”).

Figure B.4: Self-repairs may be arbitrarily long.

other abandoned phrases (“i-” , “if {-}” and “we’re-”).

After clicking on “commit”, the annotator is shown the same utterance in a new panel, but words

that appeared in red are no longer present.

Stage 2: Filler Words

At this stage, annotators should remove filler words, which generally add no meaning to the speaker’s

utterance. These constructions are words or phrases such as “um”, “uh”, “mmm”, “eh”, “ah”, “I

mean”, “okay”, “so”, “you know”, “basically”, “well”, “but”, “like” that unskilled or unprepared

speakers may utter, often unconsciously, while thinking what to say next and sometimes to maintain

the floor. Note that, for certain filler words or phrases (“I mean”, “okay”, “so” , etc.), it must be

determined from context whether these words are indeed fillers. For instance, while many occur-

rences of “I mean” in conversational speech are fillers, “mean” in “I say what I mean” has its literal

meaning and is not a filler word. In some cases, it may be helpful to listen to the audio recording to

make the distinction. Annotators should remove all filler words that do not alter the meaning of the

summary. In the example of Figure B.5, an annotator determined that occurrences of “um” , “uh” ,

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 132

Figure B.5: filler words, such as “um”, “uh” , and “you know”.

Figure B.6: hedges “I think” and “you know”.

and “you know” are fillers that add no meaning to the sentence.

Stage 3: Hedges

Hedges are words or phrases such as “I think”, “I guess”, “maybe”, “perhaps”, “kind of”, “sort of”,

“I don’t know”, “somewhat”, “more or less”, “pretty much” and “rather” that mitigate or weaken

the certainty of a statement. Often present in conversational speech, they generally mark politeness

or deference, and seldom affect the meaning of the utterance, and are admittedly good candidates

for removal. If an annotator thinks that the mitigating factor introduced by a hedge is particularly

significant, e.g. when speakers are particularly uncertain about their statements, the annotator may

decide to retain the hedge in the sentence. In Figure B.6, an annotator decided that hedges (“I think”

and “I guess”) can safely be removed without significant change in meaning.

Stages 4 and 5: Unimportant Information

Any word or phrase that is deemed optional may be deleted in Stages 4 or 5. In Stage 4, annotators

should only delete words or phrases that they are absolutely sure should not be included in the

summary (because they add no or little factual information to the sentence, or for other reasons).

For example, “guys” in “you guys”, “so I was just realizing” , “the other thing that occurred to me”,

etc. add no useful information to the sentences of Figure B.7, thus these phrases were deleted by

annotators.

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 133

Figure B.7: Phrases that add no factual or useful information should be deleted.

Annotators can also assume that basic facts about meeting, such as meeting time and location,

are known from context. Thus, the clause “which is roughly three months from now” of Figure B.7

may also be deleted, since it adds no extra information to “in January”. In general, annotators may

delete information that is assumed to be general world knowledge, and thus doesn’t need to be

repeated in the summary. For example, it is appropriate to compress “U.S. President George Bush”

into “President George Bush”, “President Bush”, “George Bush”, and even “Bush”, if they think

the person referred to is identifiable from context.

In Stage 5, annotators should delete any words or phrases that carry information that is not

critical to the summary, i.e., that are not needed in order to gain an overall understanding of the

meeting. In Figure B.8, an annotator determined that the fact that “radios shows are not live” has

no overall significance in the meeting, and should not appear in a concise summary of the meeting.

In the second example of the figure, one annotator found that knowing that the amount of data “is

gonna grow” is redundant with respect to the remaining part of the sentence, and that the finality

(“meeting meetings will probably be twenty or thirty percent”) is in this case more important than

words in red. In the third example, one annotator found that it is important to know that “we’d have

three hundred examples” than to know how it will be possible to collect that many examples (i.e.,

“by just getting the speakers overlaps ...”).

The two last stages (6 and 7) allow free text editing, i.e., the user can insert, delete, and substitute

any word as in any text editor. Annotators should avoid large-scale rewordings unless they have

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 134

Figure B.8: Factual information may still be deleted if it is not particularly important.

good reasons to perform them. The number of word substitutions and insertions should remain

relatively low if possible.

Note that once the user has reached Stage 6, all subsequent modifications performed in Stages 1-

5 will not affect Stages 6 and 7 (i.e., clicking on a word in Stage 5 won’t insert or remove any word

in Stage 6). Hence, the user should make sure that she or he is satisfied with all edits in Stages 1-5

before committing Stage 5.

Stage 6: Ungrammatical Constructions

Annotator are asked here to edit the text and remove any ungrammatical constructions, which may

force them to substitute or insert words (in addition to deleting words). They should strive to min-

imize the number of word editions while trying to preserve the same meaning. For instance, the

utterance “I am wondering what do you think.” should preferably be changed into “I am wondering

what you think.” instead of “what do you think?”.

Stage 7: Fluency and Paraphrasing

Finally, annotators are given the opportunity to insert and substitute words in the sentence in order

to further improve its fluency and conciseness. Certain condensations not allowed in previous stages

are possible here, e.g., replacing a long phrase by an equivalent but shorter expression (e.g., “in a

near future” may be replaced by “soon”). In Figure B.9, “the person’s” can safely be replaced by

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 135

Figure B.9: Any deletion, substitution, and insertion may be performed in the last stage.

Figure B.10: improve style and fluency.

“his” without loss of information (it is known from context that the speaker refers to a male person).

Stage 7 can also be used to perform stylistic correction and improve fluency, e.g., remove a

double negation, as in Figure B.10.

Stage 7 is the appropriate place to perform revisions that should normally take place in Stages 1-

5, but that cannot be performed in those stages because they would require word insertions and

substitutions. For instance, the phrase “I don’t think it is going to be” in Figure B.11 contains a

hedge, but one cannot removed it without word substitutions (as in “it is not going to be”). Note that

replacing the original phrase with “it is going to be” is incorrect, since it completely changes the

meaning of the sentence. In this case, the annotator should leave the hedge unchanged in Stage 3,

and remove it in Stage 7.

APPENDIX B. ANNOTATION GUIDELINES FOR SENTENCE COMPRESSION 136

Figure B.11: if any removal of self-repair words (Stage 1), filler words (Stage 2), hedges (Stage 3),

etc., also requires word insertions or substitutions to preserve the same meaning, one should perform

suitable revisions in Stage 7 instead of Stages 1-5.

Chapter C 137

Appendix C

Sample Outputs

This appendix provides a set of sentence compressions for test sets of the Ziff-Davis corpus and the

ICSI Meeting corpus.

C.1 Ziff-Davis

We provide here sentence compressions generated by the generative model described in Section 4.2.2

and by human abstractors. The 32 sentences represent the entire test set selected by (Knight and

Marcu, 2000).

Table C.1: Sentence compressions for the Ziff-Davis test set.

ID Transcription

Input like facelift , much of atm ’s screen performance depends on the underlying application .

Human much of atm ’s performance depends on the underlying application .

Markov much of atm ’s screen performance depends on the underlying application .

Input another slight downside is that envelopes must be fed manually .

Human envelopes must be fed manually .

Markov another slight downside is that envelopes must be fed manually .

Input finally , another advantage of broadband is distance .

Human another advantage is distance .

Markov another advantage of broadband is distance .

Input prices range from $5,000 for a microvax 2000 to $179,000 for the vax 8000 or higher series

.

APPENDIX C. SAMPLE OUTPUTS 138

ID Transcription

Human prices range from $5,000 to $179,000 .

Markov prices range from $5,000 for a microvax for the vax .

Input with three exabyte drives , it is priced at $17,850 .

Human with three exabyte drives it is priced at $17,850 .

Markov it is priced at $17,850 .

Input the chemical etching process used for glare protection is effective and will help if your

office has the fluorescent-light overkill that ’s typical in offices .

Human glare protection is effective .

Markov the chemical etching process used for glare protection is effective .

Input apparel makers use them to design clothes and to quickly produce and deliver the best-

selling garments .

Human apparel makers use them to design clothes .

Markov apparel makers use to design clothes and to quickly produce and deliver the best-selling

garments .

Input replacement boards , such as those offered by intel , quadram and sota , require removal of

the 8088 or 8086 processor .

Human replacement boards require removal of the 8088 or 8086 processor .

Markov replacement boards , such as those offered by intel require removal of the 8088 or 8086

processor .

Input * 68000 sweden ab of uppsala , sweden , introduced the teleserve , an integrated answering

machine and voice-message handler that links a macintosh to touch-tone phones .

Human 68000 sweden ab introduced the teleserve integrated answering machine and voice-

message handler .

Markov * 68000 introduced the teleserve to touch-tone phones .

Input microsoft alone has lost one-third of its market value .

Human microsoft lost one-third of its market value .

Markov microsoft has lost one-third of its market value .

Input the sas screen is divided into three sections : one for writing programs , one for the system

’s response as it executes the program , and a third for output tables and charts .

Human the sas screen is divided into three sections .

Markov the sas screen is divided into three sections : one for writing programs , one for the system

’s response as it executes the program , and a third for output tables and charts .

APPENDIX C. SAMPLE OUTPUTS 139

ID Transcription

Input also , trackstar supports only the critical path method (cpm) of project scheduling .

Human trackstar supports the critical path method of project scheduling .

Markov trackstar supports the critical path method .

Input finally , the integrity of database must be a part of the database definition , enforced by

the environment of the database-management system – not separately enforced by each

application .

Human integrity must be a part of the database definition , enforced by the environment of the

database-management system .

Markov the integrity of database must be a part of the database definition , enforced by the environ-

ment of the database-management system enforced by each application .

Input the scamp module , designed and built by unisys and based on an intel process , contains

the entire 48-bit a-series processor .

Human the scamp module contains the entire 48-bit a-series processor .

Markov the scamp module contains the entire 48-bit a-series processor .

Input the first new product , atf protype , is a line of digital postscript typefaces that will be sold

in packages of up to six fonts .

Human atf protype is a line of digital postscript typefaces that will be sold in packages of up to six

fonts .

Markov the product is a line of digital postscript typefaces that will be sold in packages of up to six

fonts .

Input although it bears the ibm name , it synthesizer circuitry is identical to that of a yamaha

fb-01 , a popular eight-voice synthesizer module .

Human the synthesizer circuitry is identical to a yamaha fb-01 eight-voice synthesizer module .

Markov synthesizer circuitry is identical to that of a yamaha fb-01 .

Input the cad-based system can generate 1.49 million different drawing and specification combi-

nations for a 56- by 92-foot building , pritchard said .

Human the system can generate 1.49 million different drawing and specification combinations for

a 56- by 92-foot building .

Markov the cad-based system can generate 1.49 million different drawing and specification combi-

nations for a 56- by 92-foot building .

Input working in the score is not an intuitive process ; it takes a lot of practice .

Human working in the score is not intuitive .

Markov it takes a lot of practice .

APPENDIX C. SAMPLE OUTPUTS 140

ID Transcription

Input the faster transfer rate is made possible by an mti-proprietary data buffering algorithm that

off-loads lock-manager functions from the q-bus host , raimondi said .

Human the algorithm off-loads lock-manager functions from the q-bus host .

Markov the faster transfer rate is made possible by an mti-proprietary data buffering algorithm that

off-loads lock-manager functions from the q-bus host .

Input the utilities will be bundled with quickdex ii in a $90 package called super quickdex , which

is expected to ship in late summer .

Human the utilities will be bundled with quickdex ii .

Markov the utilities will be bundled with quickdex ii .

Input it implements the common cryptographic architecture and offers a comprehensive set of

security products that allow users to implement end-to-end secure systems with ibm com-

ponents .

Human it implements the common cryptographic architecture and offers a comprehensive set of

security products that allow users to implement end-to-end secure systems with ibm com-

ponents .

Markov it implements the common cryptographic architecture .

Input actual hardware and maintenance costs have decreased 40 percent over the years , while

the number of users supported has increased by over 300 percent since 1983 .

Human actual hardware and maintenance costs have decreased .

Markov actual hardware and maintenance costs have decreased 40 percent over the years .

Input beyond that basic level , the operations of the three products vary widely .

Human the operations of the three products vary widely .

Markov the operations of the three products vary widely .

Input establishing external (to the application) reference files allows controlled and timely ac-

cess to all reference data (master files) , regardless of location or application , and enhance

data integrity .

Human external reference files enhance data integrity .

Markov establishing external reference files allows controlled and timely access to all reference

data and enhance data integrity .

Input the discounted package for the sparcserver 470 is priced at $89,900 , down from the regular

$107,795 .

Human the sparcserver 470 is priced at $89,900 , down from the regular $107,795 .

APPENDIX C. SAMPLE OUTPUTS 141

ID Transcription

Markov the discounted package for the sparcserver 470 is at $89,900 .

Input the source code , which is available for c , fortran , ada or vhdl , can be compiled and

executed on the same system or ported to other target platforms .

Human the source code is available for c , fortran , ada or vhdl .

Markov the source code can be compiled and executed on the same system or ported to other target

platforms .

Input arborscan is reliable and worked accurately in testing , but it produces very large dxf files .

Human arborscan produces very large dxf files .

Markov arborscan is reliable and worked accurately .

Input examples for editors are applicable to awk patterns , grep and egrep .

Human examples are applicable to awk patterns , grep and egrep .

Markov examples for editors are applicable to awk patterns .

Input many debugging features , including user-defined break points and variable-watching and

message-watching windows , have been added .

Human many debugging features have been added .

Markov many debugging features have been added .

Input standard fonts include courier , line printer (a sans serif face) , times roman and prestige

elite .

Human standard fonts include courier , line printer , times roman and prestige elite .

Markov standard fonts include courier , line printer , times roman and prestige elite .

Input the dos batch language has major limitations , of course .

Human the dos batch language has major limitations .

Markov the dos batch language has major limitations .

Input when it runs the merge , the word processor will look for headings in the first line of the

document to match those it finds in the form letter .

Human the word processor will look for headings in the first line of the document to match those it

finds in the form letter .

Markov the word processor will look for headings in the first line of the document to match those it

finds in the form letter .

APPENDIX C. SAMPLE OUTPUTS 142

C.2 ICSI Meeting Corpus

We provide here sentence compressions generated by the minimum-WER discriminative model

(“hyp”) described in Section 4.4.2 and by a human annotator.

Table C.2: Sentence compressions for the test set of the ICSI meeting corpus.

ID Transcription

Input ok well , so ralf and tilman are here .

Markov ralf and tilman are here .

Human ralf and tilman are here .

Input i thought two things uh we ’ll introduce ourselves and what we do .

Markov i thought two things we ’ll introduce ourselves .

Human we ’ll introduce ourselves .

Input and um we already talked with andreas , thilo and david and some lines of code were already

written today and almost tested and just going to say we have um again the recognizer to

parser thing where we ’re working on and that should be no problem and then that can be

sort of developed uh as needed when we enter the tourism domain .

Markov we talked with andreas thilo and david and lines of code were written today and tested .

Human we already talked with andreas , thilo and david some lines of code were written today and

almost tested we have the recognizer to parser that can be developed when we enter the

tourism domain .

Input and um there one of our diligent workers has to sort of volunteer to look over tilman ’s

shoulder while he is changing the grammars to english because we face two ways .

Markov there one of our diligent workers has to volunteer to look over tilman ’s shoulder .

Human one of our workers has to look over tilman ’s shoulder while he is changing the grammars

to english .

Input either we do a syllable concatenating um grammar for the english generation which is sort

of starting from scratch and doing it the easy way , or we simply adopt the ah um more

in-depth um style that is implemented in the german system and um are then able not only

to produce strings but also the syntactic tree that is underneath in the syntactic structure

which is the way we decided we were going to go because a , it ’s easier in the beginning

and um it does require some knowledge of those grammars and some linguistic background

.

APPENDIX C. SAMPLE OUTPUTS 143

ID Transcription

Markov we do a syllable concatenating grammar for the english generation but also the syntactic

tree that is underneath in the syntactic structure .

Human either we do a syllable concatenating grammar for the english generation , or we adopt the

more in-depth style in the german system and are then able not only to produce strings but

also the syntactic tree it ’s easier in the beginning and it does require knowledge of those

grammars and linguistic background .

Input johno , are you going to have some time to do that uh with these guys ?

Markov johno are you going to have some time to do that with these guys ?

Human johno , are you going to have time to do that ?

Input the ultimate goal is that before they leave we can run through the entire system input

through output on at least one or two sample things .

Markov the ultimate goal is before they leave we can run through the entire system input through

output .

Human the goal is that we can run the entire system on one or two sample things .

Input and by virtue of doing that then in this case johno will have acquired the knowledge of how

to extend it .

Markov johno will have acquired the knowledge of how to extend it .

Human then johno will have acquired the knowledge of how to extend it .

Input when needed , if needed , when wanted and so forth .

Markov when needed if needed when wanted .

Human when needed .

Input and um also um ralf has hooked up with david and you ’re going to continue either all

through tonight or tomorrow on whatever to get the er parser interface working .

Markov and ralf has hooked up with david and you ’re going to continue either through tonight .

Human ralf has hooked up with david and you ’re going to get the parser interface working .

Input ok , so sort of one branch is to get us caught up on what ’s going on .

Markov one branch is to get us caught up on what ’s going on .

Human get us caught up on what ’s going on .

Input also of course it would be really nice to know what the plans are , in addition to what ’s sort

of already in code .

Markov it would be nice to know what the plans are , in addition .

Human it would be nice to know the plans , in addition to what ’s already in code .

APPENDIX C. SAMPLE OUTPUTS 144

ID Transcription

Input was there uh a time when we were set up to do that ?

Markov was there a time when we were set up to do that ?

Human was there a time to do that ?

Input ok , so we ’ll find a time later in the week to uh get together and talk about your under-

standing of what smartkom plans are .

Markov we ’ll find a time to get together and talk about your understanding of what smartkom plans

are .

Human we ’ll find a time to talk about smartkom plans .

Input thursday around eleven ?

Markov thursday around eleven ?

Human thursday around eleven ?

Input ok so facing to what we ’ve sort of been doing here

Markov facing to what we ’ve been doing here

Human what we ’ve been doing

Input um well for one thing we ’re also using this room to collect data .

Markov we ’re using this room to collect data .

Human we ’re using this room to collect data .

Input no not meeting data but sort ah our version of a wizard experiment not like the ones in

munich but pretty close to it .

Markov no meeting data but sort our version of a wizard experiment .

Human not meeting data but our version of a wizard experiment not like the ones in munich but

close .

Input the major difference to the munich ones is that we do it via the telephone even though all

the recording is done here and so it ’s sort of a computer call system that gives you tourist

information tells you how to get places .

Markov the major difference to the munich ones is we do it via the telephone though all the record-

ing is done and so .

Human the major difference to the munich ones is that we do it via the telephone even though all

the recording is done here it ’s a computer call system that gives you tourist information .

Input and it breaks halfway through the experiment and a human operator comes on .

Markov it breaks through the experiment and a human operator comes on .

Human it breaks halfway through and a human operator comes on .

APPENDIX C. SAMPLE OUTPUTS 145

ID Transcription

Input and we ’re setting it up so that we hope to implant certain intentions in people .

Markov we ’re setting it up so we hope to implant certain intentions in people .

Human we hope to implant certain intentions .

Input but what we actually observed in heidelberg is that most people when they want to go there

they actually do n’t want to enter , because it ’s not really interesting .

Markov is that most people when they want to go there they do n’t want to enter .

Human we observed in heidelberg that most people do n’t want to enter because it ’s not interesting

.

Input what let ’s say a simple parse from an utterance wo n’t really give us is what the person

actually wants .

Markov what wo n’t give us is what the person wants .

Human a simple parse from an utterance wo n’t give us what the person wants .

Input there are all kinds of decisions that we have identified in terms of getting to places and in

terms of finding information about things .

Markov there are all kinds of decisions that we have identified in terms of getting to places .

Human there are decisions in terms of getting places and finding information .

Input and then we ’ve identified more or less the extra-linguistic parameters that may play a role

.

Markov we ’ve identified more or less the extra-linguistic parameters .

Human we ’ve identified the extra-linguistic parameters .

Input and we also want to look closely on the linguistic information what we can get from the

utterance .

Markov we want to look closely on the linguistic information what we can get from the utterance .

Human we also want to look closely on the linguistic information .

Input and um so the idea is to construct uh um suitable interfaces and a belief-net for a module

that actually tries to guess what the underlying intention was .

Markov the idea is to construct suitable interfaces .

Human the idea is to construct suitable interfaces and a belief-net for a module that tries to guess

the underlying intention .

Input and then enrich or augment the m-three-l structures with what more it sort of got out of that

utterance .

Markov enrich or augment the m-three-l structures with what .

APPENDIX C. SAMPLE OUTPUTS 146

ID Transcription

Human and then enrich the m-three-l structures with what it got out of that utterance .

Input you know , that person does n’t want to enter .

Markov that person does n’t want to enter .

Human that person does n’t want to enter .

Input these bits of additional information are going to be embedded into the m-three-l structure

in an sort of subfield that we have reserved .

Markov these bits of additional information are going to be embedded into the m-three-l structure

in of subfield we have reserved .

Human these bits of additional information are going to be embedded into the m-three-l structure

in an subfield that we have reserved .

Input if the action planner does something with it , great .

Markov if the action planner does something with it .

Human if the action planner does something with it

Input i mean ultimately if you can offer that information , somebody ’s going to do something

with it sooner or later .

Markov if you can offer that information somebody ’s going to do something with it .

Human if you can offer that information , somebody ’s going to do something with it .

Input so that ’s a functionality that does n’t exist yet to do that dynamically , but if we can offer

it that distinction , maybe somebody will go ahead and implement it .

Markov that ’s a functionality that does n’t exist yet to do that .

Human that ’s a functionality that does n’t exist yet , but if we offer that distinction , maybe some-

body will implement it .

Input well the obvious one would be if you envision this as a module within smartkom , where

exactly would that sit ?

Markov where exactly would that sit ?

Human as a module within smartkom , where would that sit ?

Input um so far i ’ve thought of it as sort of adding it onto the modeler knowledge module .

Markov i ’ve as adding it onto the modeler knowledge module .

Human adding it onto the modeler knowledge module .

Input so this is one that already adds additional information but it could sit anywhere in the

attention-recognition i mean basically this is what attention-recognition literally sort of can

Markov this is one that but it could sit anywhere in the attention-recognition

APPENDIX C. SAMPLE OUTPUTS 147

ID Transcription

Human this already adds additional information but it could sit anywhere in the attention-

recognition

Input well it ’s supposed to do .

Markov it ’s supposed to do .

Human it ’s supposed to do .

Input that ’s what it should do .

Markov that ’s what it should do .

Human that ’s what it should do .

Input well from my understanding of what the people at phillips were originally trying to do does

n’t seem to quite fit into smartkom currently so what they ’re really doing right now is only

selecting among the alternatives , the hypotheses that they ’re given enriched by the domain

knowledge and the um discourse modeler and so on .

Markov from my understanding of what the people at phillips were trying to do does n’t seem to fit

into smartkom currently .

Human what the people at phillips were originally trying does n’t fit into smartkom currently so

they ’re selecting alternatives , hypotheses enriched by domain knowledge and the discourse

modeler .

Input so if this is additional information that could be merged in by them .

Markov if this is additional information could be merged in by them .

Human this is additional information that could be merged in by them .

Input and then it would be available to action planning and others .

Markov it would be available to action planning and others .

Human and then it would be available to action planning .

Input so well , let me expand on that a little bit from the point of view of the generation .

Markov let me expand on that from the point of view of the generation .

Human let me expand on that from the point of view of the generation .

Input so the idea is that we ’ve actually got this all laid out and we could show it to you um robert

did n’t bring it today

Markov is we ’ve got this all laid out robert did n’t bring it today

Human we ’ve got this all laid out robert did n’t bring it today

Input there ’s a first cut at a belief-net that is n’t fully uh instantiated , and in particular some of

the combination rules and ways of getting the conditional probabilities are n’t there .

APPENDIX C. SAMPLE OUTPUTS 148

ID Transcription

Markov there ’s a first cut at a belief-net that is n’t instantiated .

Human there ’s a belief-net that is n’t fully instantiated , some combination rules and ways of

getting conditional probabilities are n’t there .

Input so one of the decisions is what we call this ave thing .

Markov one of the decisions is what we call this ave thing .

Human one decisions is what we call this ave thing .

Input do you want to um access , view or enter a thing .

Markov do you want to access view or enter a thing .

Human do you want to access , view or enter .

Input so that ’s a discrete decision .

Markov that ’s a discrete decision .

Human that ’s a discrete decision .

Input there are only three possibilities and what one would like is for this uh , knowledge model-

ing module to add which of those it is and give it to the planner .

Markov there are only three possibilities and what one would like is for this knowledge modeling

module to add and give it to the planner .

Human one would like this knowledge modeling module to add which it is and give it to the planner

.

Input but , uh the current design suggests that if it seems to be an important decision and if the

belief-net is equivocal so that it does n’t say that one of these is much more probable than

the other , then an option is to go back and ask for the information you want .

Markov the current design suggests that if to be an important decision you want .

Human the current design suggests that if it seems to be an important decision and if the belief-net

is equivocal , then an option is to ask for the information you want .

Input now there are two ways one can imagine doing that .

Markov there are two ways one can imagine doing that .

Human there are two ways one can imagine doing that .

Input but for a full system , then one might very well formulate a query , give it to the dialogue

planner and say this , you know are you planning to enter ?

Markov for a full system one formulate a query , give it to the dialogue planner say this ?

Human for a full system , one might formulate a query , give it to the dialogue planner

Input so under that model then , there would be a loop in which this thing would formulate a

query , presumably give it to you .

APPENDIX C. SAMPLE OUTPUTS 149

ID Transcription

Markov there would be a loop in which would formulate a query presumably give it to you .

Human there would be a loop which would formulate a query , give it to you .

Input that would get expressed and then hopefully you know , you ’d get an answer back .

Markov that would get expressed you ’d get an answer back .

Human that would get expressed and then , you ’d get an answer back .

Input we probably wo n’t do this early on , because the current focus is more on the decision

making and stuff like that .

Markov we wo n’t do this because the current focus is more .

Human we probably wo n’t do this early on , because the current focus is on the decision making .

Input so my suggestion then is that you um look into the currently ongoing discussion about how

the action plans are supposed to look like .

Markov is that you look into the ongoing discussion about how the action plans are supposed to

look like .

Human my suggestion then is that you look into the ongoing discussion about the action plans .

Input and they ’re currently in the process of agreeing on an xm l-ification of how of network a

like something um state-transition dialogues would proceed .

Markov they ’re in the process of agreeing on an xm l-ification of how state-transition dialogues

would proceed .

Human they ’re agreeing on an xm l-ification of how network a state-transition dialogues would

proceed .

Input well uh marcus lerkult is actually implementing that stuff and marcus and michael together

are um leading the discussion there , yeah .

Markov marcus lerkult is implementing marcus and michael together are leading the discussion .

Human marcus lerkult is implementing that and marcus and michael are leading the discussion .

Input so we have to get in on that .

Markov we have to get in on that .

Human we have to get in on that .

Input because um partly those are like x-schemas .

Markov because those are like x-schemas .

Human those are like x-schemas .

Input and it may be that um we should early on make sure that they have the flexibility that we

need .

APPENDIX C. SAMPLE OUTPUTS 150

ID Transcription

Markov it may be we should make sure they have the flexibility that we need .

Human we should make sure that they have the flexibility that we need .

Input the word action , ok , is what ’s ambiguous here .

Markov the word action is what ’s ambiguous .

Human the word action , is what ’s ambiguous .

Input so that ’s that form of planning , and action , and a route planner and gis , all sort of stuff .

Markov that ’s of action a route planner gis of stuff .

Human that ’s that form of planning , action , a route planner and gis

Input no , in smartkom terminology that ’s um called a function that ’s modeled by a function

modeler .

Markov that ’s called a function that ’s modeled by a function modeler .

Human in smartkom terminology that ’s a function modeled by a function modeler .

Input that ’s simply a functionality that you give data as in a query and then you get back from

that mmm , a functioning model um which might be a planner or a vcr or whatever .

Markov that ’s a functionality that you give data as in a query .

Human that ’s a functionality that you give data and then you get back a functioning model .

Input so action here means dialogue act .

Markov action means dialogue act .

Human action here means dialogue act .

Input um i think that ’s not going to be good enough .

Markov that ’s not going to be good enough .

Human i think that ’s not going to be good enough .

Input so i think the idea of having a , you know , transition diagram for the grammar of conver-

sations is a good idea .

Markov the idea of having a transition diagram for the grammar of conversations is a good idea .

Human having a transition diagram for the grammar of conversations is good .

Input and i think that we definitely have to get in on it

Markov we have to get in on it

Human we have to get in on it

Input but i think that when you get to the tourist domain it ’s not just an information retrieval

system .

APPENDIX C. SAMPLE OUTPUTS 151

ID Transcription

Markov when you get to the tourist domain it ’s an information retrieval system .

Human but when you get to the tourist domain it ’s not just an information retrieval system .

Input so this is where i think people are going to have to think this through a bit more carefully .

Markov this is where people are going to have to this .

Human this is where people are going to have to think this through more carefully .

Input but what happens when you actually get them moving and so forth and so on

Markov what happens when you get them moving

Human but when you get them moving

Input uh i think the notion of this as a self contained functional module that interacts with where

the tourism stuff is going probably is too restrictive .

Markov as a self contained functional module that interacts with where is too restrictive .

Human the notion of this as a self contained functional module that interacts with the tourism stuff

probably is too restrictive .

Input now i dunno how much people have thought ahead to the tourist domain in this

Markov how much people have thought ahead to the tourist domain in this

Human i dunno how much people have thought ahead to the tourist domain

Input probably not enough , i mean another uh more basic point there is that the current um tasks

and therefore the concepts in what ’s called the action plan and what ’s really the dialogue

manager .

Markov another more basic point there is the current tasks and the concepts in what ’s called the

action plan what ’s the dialogue manager .

Human probably not enough , the current tasks and therefore the concepts in the dialogue manager

.

Input um is based on slots that have to be filled and the um kind of values in these slots would

be fixed things like the a time or a movie title or something like this whereas in the a um

tourist domain it might be an entire route .

Markov is based on slots that have to be filled the values in these slots would be fixed things like

the a time a movie title .

Human is based on slots that have to be filled and the values in these slots would be fixed things

like the time or a movie title whereas in the tourist domain it might be an entire route .

Input set-based , or even very complex structured information in these slots and i ’m not sure if

complex slots of that type are really um being taken into consideration .

APPENDIX C. SAMPLE OUTPUTS 152

ID Transcription

Markov i ’m not sure if complex slots of that type are taken into consideration .

Human set-based , or even very complex structured information in these slots and i ’m not sure if

complex slots of that type are being taken into consideration .

Input could you put a message into the right place to see if we can at least ask that question ?

Markov could you put a message into the right place ?

Human could you put a message to see if we can ask that question ?

Input i mean nothing ’s being completely settled there so this is really an ongoing discussion

Markov this is an ongoing discussion

Human nothing ’s being completely settled

Input ok i ’ll talk to michael it ’s what i do anyway .

Markov it ’s what i do anyway .

Human i ’ll talk to michael .

Input how far is the m-three-l specification for the natural language input gone i have n’t seen

anything for the uh tourist path domain .

Markov how far gone i have n’t seen anything for the tourist path domain .

Human how far is the m-three-l specification for the natural language input gone i have n’t seen

anything for the tourist path domain .

Input yeah , there ’s a meeting next week i think

Markov there ’s a meeting next week

Human there ’s a meeting next week

Input those are the true key issues is how does whatever comes out of the language input pipeline

look like and then what the action planner does with it and how that is uh specified .

Markov those are the true key issues is how does whatever comes out of the language input pipeline

.

Human the key issues is how does whatever comes out of the language input pipeline look like and

what the action planner does with it .

Input there ’re dialogue action planners that work with belief-nets that are action planners that

work with you know state automata .

Markov there ’re dialogue action planners that work with belief-nets that are action planners that

work with state automata .

Human there ’re dialogue action planners that work with belief-nets that are action planners that

work with state automata .

APPENDIX C. SAMPLE OUTPUTS 153

ID Transcription

Input i mean it does matter because it does have to keep track of we are on part six of a route that

consists of eight steps and so forth

Markov it does matter because it does have to keep track of we are on of a route that consists of

eight steps and

Human it does have to keep track of we are on a route that consists of eight steps

Input yeah , i think there are a lot of reasons why it matters .

Markov there are a lot of reasons why it matters .

Human there are a lot of reasons why it matters .

Input ok , so that uh , for example , the action planner is going to take some spec and make some

suggestions about what the user should do .

Markov that the action planner is going to take some spec and make suggestions about what the

user should do .

Human the action planner is going to take some spec and make suggestions about what the user

should do .

Input what the user says after that is going to be very much caught up with what the action planner

told it .

Markov is going to be caught up with what the action planner told it .

Human what the user says after that is going to be caught up with what the action planner told it .

Input if the parser and the language end does n’t know what the person ’s been told

Markov if does n’t know what the person ’s been told

Human if the language end does n’t know what the person ’s been told

Input you ’re making your life much more difficult than it has to be .

Markov you ’re making your life difficult than it has to be .

Human you ’re making your life more difficult .

Input i think that uh point has been realized and it ’s not really um been defined yet but there ’s

going to be some kind of feedback and input from uh the action planner into all the analysis

modules , telling them what to expect and what the current state of the discourse is .

Markov has been realized it ’s not been defined yet but there ’s going to be of feedback .

Human there ’s going to be feedback from the action planner into all the analysis modules , telling

them the current state of the discourse .

Input beyond what ’s currently being implemented which is just word lists .

Markov beyond what ’s implemented which is word lists .

APPENDIX C. SAMPLE OUTPUTS 154

ID Transcription

Human beyond word lists .

Input we talked about this several times that the input end is going to need a fair amount of

feedback from the planning end .

Markov we talked about this several times is going to need a fair amount of feedback from the

planning end .

Human the input end is going to need feedback from the planning end .

Input and even on a more basic level the action planner actually needs to be able to have um an

expressive power that can deal with these structures .

Markov the action planner needs to be able to have an expressive power that can deal with these

structures .

Human the action planner needs an expressive power that can deal with these structures .

Input would there be any chance of getting the terminology changed so that the dialogue planner

was called a dialogue planner ?

Markov would there be any chance of getting the terminology changed so the dialogue planner was

called a dialogue planner ?

Human would there be any chance of getting the terminology changed so that the dialogue planner

was called a dialogue planner ?

Input it oughta be called a dialogue manager .

Markov it oughta be called a dialogue manager .

Human it oughta be called a dialogue manager .

Input so what would happen if we sent a note saying gee we ’ve talked about this and could n’t

we change the whole word ?

Markov what would happen if we change the whole word ?

Human could n’t we change the word ?

Input depends on who you talk to how .

Markov depends on who you talk to how .

Human depends .

Input i ’ll go check , cause i completely agree .

Markov i ’ll go check .

Human i ’ll check .

Input yeah , and i think this is just for historical reasons within uh , the preparation phase of the

project and not because somebody actually believes it ought to be action planner .

APPENDIX C. SAMPLE OUTPUTS 155

ID Transcription

Markov this is for historical reasons within the preparation phase of the project .

Human i think this is just for historical reasons

Input so if there is resistance against changing it , that ’s just because oh , we do n’t want to

change things .

Markov that ’s just because we do n’t want to change things .

Human if there is resistance , that ’s because we do n’t want to change things .

Input if that persists then we ’re going to need another term . for the thing that actually does the

planning of the uh routes and whatever we are doing for the tourist .

Markov for the thing that does the planning of the routes and whatever we are doing for the tourist .

Human if that persists then we ’re going to need another term for the thing that actually does the

planning of the routes .

Input that ’s external services .

Markov that ’s external services .

Human that ’s external services .

Input that has all the wrong connotations .

Markov that has all the wrong connotations .

Human that has the wrong connotations .

Input yeah i think just the spatial planner and the route planner i showed you once the interac-

action among them in the deep map system so a printout of the communication between

those two fills up i do n’t know how many pages and that ’s just part of how do i get to one

place .

Markov the spatial planner and the route planner showed you once the interac- action among them

in the deep map system .

Human the spatial planner and the route planner i showed you once the interac- action among them

in the deep map system so a printout of the communication between those two fills up many

pages .

Input and he ’s going to be responsible for the implementation of this action planner .

Markov he ’s going to be responsible for the implementation of this action planner .

Human and he ’s going to be responsible for the implementation of this action planner .

Input no he ’s completely going to rewrite everything . in java .

Markov he ’s going to rewrite everything . in java .

Human no he ’s going to rewrite everything . in java .

APPENDIX C. SAMPLE OUTPUTS 156

ID Transcription

Input yes that ’s my next question whether we ’re we ’re going to stick to prolog or not .

Markov that ’s my next question whether we ’re we ’re going to stick to prolog .

Human we ’re going to stick to prolog .

Input no , that ’s going to be phased out .

Markov that ’s going to be phased out .

Human no , that ’s going to be phased out .

Input but i do think the function modeling concept makes sense in a certain light because the

dialogue manager in that case should not um have to worry about whether it ’s interfacing

with um something that does route planning in this way or that way

Markov i do the function modeling concept makes sense in a certain light because the dialogue

manager in that case should not have to worry

Human but the function modeling concept makes sense because the dialogue manager should not

have to worry about interfacing with something that does route planning

Input there ’s a logic to dialogue which is separable .

Markov there ’s a logic to dialogue which is separable .

Human there ’s a logic to dialogue which is separable .

Input and it cant sort of formulate what it wants in a rather abstract uh way , you know find me a

good route for this .

Markov it cant formulate what it find me a good route for this .

Human it cant formulate what it wants in a rather abstract way .

Input it ’s tricky .

Markov it ’s tricky .

Human it ’s tricky .

Input it ’s tricky because i think it will turn out to be the case that uh , this thing we ’re talking

about , the extended uh knowledge modeler will fill in some parameters about what the

person wants .

Markov it ’s tricky it will turn out to be the case that will fill in parameters about what the person

wants .

Human it ’s tricky because the extended knowledge modeler will fill in some parameters about what

the person wants .

Input but in that case the dialogue manager is sort of event driven .

Markov the dialogue manager is event driven .

APPENDIX C. SAMPLE OUTPUTS 157

ID Transcription

Human the dialogue manager is event driven .

Input so the dialogue manager may think it ’s in a dialogue state of one sort , and one of these

planning modules comes along and says hey right , now we need to ask a question .

Markov the dialogue manager may it ’s in a dialogue state of one sort .

Human the dialogue manager may think it ’s in a dialogue state of one sort , and one of these

planning modules need to ask a question .

Input the underlying idea of course is that there is something like kernel modules with kernel

functionality that you can plug uh certain applications like tourist information or um the

home scenario with uh controlling a vcr and so on .

Markov is there is something like kernel modules with kernel functionality that you can plug certain

applications .

Human there is kernel modules with kernel functionality that you can plug certain applications like

tourist information .

Input that ’s an additional reason to have this well-defined interface and keep these things like uh

tourist information external .

Markov that ’s to have this well-defined interface and keep these things like tourist information

external .

Human that ’s an additional reason to have this well-defined interface and keep things like tourist

information external .

Input but we are facing of course much more um realistic problems .

Markov we are facing of course more realistic problems .

Human we are facing more realistic problems .

Input and language input for example , is of course uh crucial you know also when you do the

sort of deep understanding analysis that we envision .

Markov language input for example is of course crucial .

Human language input , is crucial when you do the deep understanding analysis that we envision .

Input and um so we ’re thinking , for example how much syntactic analysis actually happens

already in the parser .

Markov we ’re for example how much syntactic analysis happens in the parser .

Human we ’re thinking how much syntactic analysis happens already in the parser .

Input yeah , there currently is uh no syntactic analysis but in the next release there will be some .

Markov there is no syntactic analysis but there will be some .

Human there is no syntactic analysis but in the next release there will be .

APPENDIX C. SAMPLE OUTPUTS 158

ID Transcription

Input so what are the plans roughly ?

Markov what are the plans ?

Human what are the plans ?

Input um to integrate and syntactic analysis .

Markov to integrate and syntactic analysis .

Human to integrate and syntactic analysis .

Input and um add some more features like segmentation .

Markov add some more features like segmentation .

Human and add features like segmentation .

Input so then more than one utterance there ’s often uh pause between it and a segmentation

occurs .

Markov there ’s pause between it and a segmentation occurs .

Human more than one utterance there ’s often pause between it and a segmentation occurs .

Input do you have a particular parser in mind ?

Markov do you have a particular parser in mind ?

Human do you have a parser in mind ?

Input i mean have you thought through ?

Markov have you thought through ?

Human have you thought through ?

Input no no i think it ’s totally complicated for just one person

Markov it ’s totally complicated for just one person

Human it ’s complicated for one person

Input yeah , ah and so things must be simpler but uh , miel syntactic analysis with um finite state

transducers .

Markov things must be simpler miel syntactic analysis with finite state transducers .

Human things must be simpler miel syntactic analysis with finite state transducers .

Input people at dfki have written a fair number of parsers .

Markov people have written a fair number of parsers .

Human dfki have written a number of parsers .

Input other you know , people over the years . uh have written various parsers at dfki .

Markov have written various parsers at dfki .

APPENDIX C. SAMPLE OUTPUTS 159

ID Transcription

Human people have written various parsers at dfki .

Input none of them are suitable ?

Markov none of them are suitable ?

Human none of them are suitable ?

Input yeah , uh the problem is that it has to be very fast because um for more than one path

anywhere what ’s in the latches from the speech recognizer so it ’s speed is crucial .

Markov the problem is it has to be fast because for more than one path anywhere what ’s .

Human it has to be very fast for more than one path .

Input and they also have to be very robust . cuz of um speech recognition errors

Markov they have to be robust . cuz of speech recognition errors

Human they also have to be very robust cuz of speech recognition errors

Input so there was a chunk parser in verbmobil , that was one of the uh branchers .

Markov there was a chunk parser in verbmobil that was one of the branchers .

Human a chunk parser in verbmobil was one of the branchers .

Input yeah i guess it ’s similar .

Markov it ’s similar .

Human it ’s similar .

Input from michael strube , i ’ve heard very good stuff about the chunk parser that is done by

forwiss , uh , which is in embassy doing the parsing .

Markov from michael strube i ’ve heard very good stuff about the chunk parser .

Human from michael strube , i ’ve heard very good stuff about the chunk parser that is done by

forwiss .

Input mm-hmm , yeah , it would be very interesting ,

Markov it would be very interesting ,

Human it would be very interesting ,

Input but uh given the constraints , that you want it to be small and fast and so forth , my guess

is you ’re probably into some kind of chunk parsing .

Markov given the constraints , my guess is you ’re into of chunk parsing .

Human but given the constraints , you ’re probably into chunk parsing .

Input yeah , and purely finite-state transducers are not so good for german since the word order

is uh not fixed

APPENDIX C. SAMPLE OUTPUTS 160

ID Transcription

Markov finite-state transducers are not good for german since the word order is not fixed

Human purely finite-state transducers are not good for german since the word order is not fixed

Input yeah , i guess that ’s the point is all the morphology and stuff .

Markov is all the morphology and stuff .

Human the point is the morphology .

Input you ’ve got stemmers ?

Markov you ’ve got stemmers ?

Human you ’ve got stemmers ?

Input um , yeah but it ’s all in the lexicon .

Markov it ’s all in the lexicon .

Human yeah but it ’s all in the lexicon .

Input yeah the information is available .

Markov the information is available .

Human the information is available .

Input so you just connect to the lexicon and uh at least for german you have all of the stemming

information .

Markov you connect to the lexicon you have of the stemming information .

Human you connect to the lexicon and at least for german you have all of the stemming information

.

Input we have knowledge bases from verbmobil system we can use and so .

Markov we have knowledge bases from verbmobil system we can use so .

Human we have knowledge bases from verbmobil system .

Input so the lexicon might be derived by morphix but what ’s happening on-line is just um um a

retrieval from the lexicon which would give all the stemming information so it would be a

full foreign lexicon .

Markov the lexicon might be derived by morphix but what ’s on-line is a retrieval from the lexicon .

Human the lexicon might be derived by morphix but what ’s happening on-line is just a retrieval

from the lexicon which would give all the stemming information .

Input so in german then you actually do case matching in the pattern matcher or not ?

Markov you do case matching in the pattern matcher or not ?

Human in german you do case matching in the pattern matcher ?

APPENDIX C. SAMPLE OUTPUTS 161

ID Transcription

Input um not yet but it ’s planned to do that .

Markov not it ’s planned to do that .

Human not yet but it ’s planned .

Input yeah and here ’s the case where the english and the german might really be significantly

different .

Markov ’s the case where the english and the german be different .

Human here ’s the case where the english and the german might be significantly different .

Input you really might want to do it in a significantly different way .

Markov you might want to do it in a different way .

Human you might want to do it in a significantly different way .

Input in terms of you know , if you ’re doing this for english as well as german

Markov in of if you ’re doing this for english

Human if you ’re doing this for english as well

Input yes it ’s um possible to do list processing .

Markov ’s possible to do list processing .

Human it ’s possible to do list processing .

Input some extensions uh have to be made for a english version

Markov extensions have to be made for a english version

Human some extensions have to be made for a english version

Input not easy .

Markov not easy .

Human not easy .

Input so we talked about the fact that there ’re going to be a certain number of decisions that you

want the knowledge modeler to make , that will be then fed to the function module , that

does uh , route planning .

Markov we talked about the fact that there ’re going to be a certain number of decisions .

Human there ’re going to be a number of decisions that you want the knowledge modeler to make

, that will be then fed to the function module , that does route planning .

Input and then one half of this we talked about at little bit is how if you had the right information

, if you knew something about what was said and something about was the agent a tourist

or a native or a business person or uh young or old , whatever .

APPENDIX C. SAMPLE OUTPUTS 162

ID Transcription

Markov one half of this we talked about at bit is how if you had the right information if .

Human one half of this is the right information , about what was said and about was the agent a

tourist or a native or a business person .

Input that information , and also about the

Markov that information and about the

Human that information

Input so all that kind of information could be combined into decision networks and give you

decisions .

Markov could be combined into decision networks and give you decisions .

Human all that information could be combined into decision networks and give you decisions .

Input but the other half of the problem is how would you get that kind of information from the

parsed input ?

Markov how would you get of information from the parsed input ?

Human the other half is how you get that information from the parsed input ?

Input so what you might try to do is just you know build a template that uh somehow would

capture the fact that he wants to take a picture .

Markov is build a template would capture the fact he wants to take a picture .

Human you might build a template that would capture the fact that he wants to take a picture .

Input but uh from our point of view this is also a research project and there are a couple of people

not here for various reasons who are doing doctoral dissertations on this , and the idea that

we ’re really after is a very deep semantics based on cognitive linguistics and the notion

that there are a relatively small number of primitive conceptual schemas that characterize a

lot of activity .

Markov there are of people not here for various reasons who are doing doctoral dissertations on the

idea .

Human but there are a couple of people who are doing doctoral dissertations on this , and we ’re

after a very deep semantics based on cognitive linguistics and the notion that there are a

relatively small number of primitive conceptual schemas that characterize a lot of activity .

Input so , what we ’re really trying to do is to map from the discourse to the conceptual semantics

level .

Markov is to map from the discourse to the conceptual semantics level .

Human we ’re trying to map from the discourse to the conceptual semantics level .

APPENDIX C. SAMPLE OUTPUTS 163

ID Transcription

Input so another one of these primitive , what are called image schemas , is uh goal seeking .

Markov another one of these primitive is goal seeking .

Human another of these primitive image schemas is goal seeking .

Input and that all sorts of things , particularly in the tourist domain , can be represented in terms

of uh source , path and goal .

Markov all sorts of things can be represented in of source path and goal .

Human all sorts of things , particularly in the tourist domain , can be represented in terms of source

, path and goal .

Input so if you can do this , then the notion would be that across a very large range of domains ,

you could use this deep conceptual basis as the interface .

Markov if you can do this the notion would be that you could use this deep conceptual basis as the

interface .

Human across a very large range of domains , you could use this deep conceptual basis as the

interface .

Input and the idea of the belief-net is it combines the information from the dialogue which comes

across in this general way , you know this is a goal seeking behavior , along with specific

information from the ontology about the kinds of objects involved and about the situation

about is it raining ?

Markov is it combines the information from the dialogue which comes across in this general way ?

Human the belief-net combines the information from the dialogue , along with specific information

from the ontology about the kinds of objects involved and about the situation

Input and so the coupling to the situation comes in this model from at the belief-net , combining

evidence from the dialogue with the ontology with the situation .

Markov comes in this model from combining evidence from the dialogue with the ontology with

the situation .

Human the situation comes from the belief-net , combining evidence from the dialogue with the

ontology with the situation .

References 164

References

Anne Abeillé, Yves Schabes, and Aravind K. Joshi. 1990. Using lexicalized tags for machine
translation. In Proceedings of the 13th conference on Computational linguistics, pages 1–6.
Association for Computational Linguistics.

Anne Abeillé. 1994. Syntax or Semantics? Handling Nonlocal Dependencies with MCTAGS or
Synchronous TAGS. Computational Intelligence, 10(4):471–485.

Steven Abney. 2004. Understanding the yarowsky algorithm. Computational Linguistics,
30(3):365–395.

Alfred V. Aho and Jeffrey D. Ullman. 1969. Syntax directed translations and the pushdown assem-
bler. Journal of Computer and System Sciences, 3:37–56.

James Allen and Mark Core. 1997. Draft of DAMSL: Dialog act markup in several layers. Unpub-
lished manuscript.

Srinivas Bangalore, Owen Rambow, and Steve Whittaker. 2000. Evaluation metrics for generation.
In INLG ’00: Proceedings of the first international conference on Natural language generation,
pages 1–8. Association for Computational Linguistics.

Michele Banko, Vibhu Mittal, and Michael Witbrock. 2000. Headline generation based on statisti-
cal translation. In Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics (ACL–2000), pages 318–325.

Regina Barzilay, Michael Collins, Julia Hirschberg, and Steve Whittaker. 2000. The rules behind
roles: Identifying speaker role in radio broadcasts. In Proc. of the American Association for
Artificial Intelligence conference (AAAI).

John Bear, John Dowding, and Elizabeth Shriberg. 1992. Integrating multiple knowledge sources
for detection and correction of repairs in human-computer dialog. In Meeting of the Association
for Computational Linguistics, pages 56–63.

Timothy C. Bell, John G. Cleary, and Ian H. Witten. 1990. Text compression. Prentice Hall.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. 1996. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–72.

A. Bies. 1995. Bracketing guidelines for treebank ii style penn treebank project. Technical report,
University of Pennsylvania.

Daniel M. Bikel. 2004. On the parameter space of generative lexicalized statistical parsing models.
Ph.D. thesis, University of Pennsylvania. Supervisor-Mitchell P. Marcus.

Jeff A. Bilmes and Katrin Kirchhoff. 2003. Factored language models and generalized parallel
backoff. In Proceedings of the 2003 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language Technology (HLT–NAACL), pages 4–6.
Association for Computational Linguistics.

References 165

Ezra Black, Steven P. Abney, D. Flickenger, Claudia Gdaniec, Ralph Grishman, P. Harrison, Don-
ald Hindle, Robert Ingria, Frederick Jelinek, Judith L. Klavans, Mark Liberman, Mitchell P.
Marcus, Salim Roukos, Beatrice Santorini, and Tomek Strzalkowski. 1991. A procedure for
quantitatively comparing the syntactic coverage of english grammars. In Morgan Kaufman,
editor, Proceedings of the DARPA Speech and Natural Language Workshop, pages 306–311.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In
COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann
Publishers, pages 92–100.

P. Boersma and D. Weenink. 2006. Praat: doing phonetics by computer.
http://www.praat.org/.

T.L. Booth and R.A. Thompson. 1973. Applying probabilistic measures to abstract languages.
IEEE Transactions on Computers, 22(5):442–450.

Peter F. Brown, John Cocke, Stephen Della Pietra, Vincent J. Della Pietra, Frederick Jelinek, John
D. Lafferty, Robert L. Mercer, and Paul S. Roossin. 1990. A statistical approach to machine
translation. Computational Linguistics, 16(2):79–85.

Ivan Bulyko, Mari Ostendorf, and Andreas Stolcke. 2003. Getting more mileage from web text
sources for conversational speech language modeling using class-dependent mixtures. In Pro-
ceedings of the joint conference of Human Language Technology and North American Chapter
of Association for Computational Linguistics (HLT-NAACL).

Susanne Burger, Victoria MacLaren, and Hua Yu. 2002. The ISL meeting corpus: The impact of
meeting type on speech style. In Proc. of the International Conference on Spoken Language
Processing (ICSLP–2002).

Jean Carletta, Stefan Evert, Ulrich Heid, Jonathan Kilgour, Judy Robertson, and Holger Voormann.
2003. The nite xml toolkit: flexible annotation for multi-modal language data. Behavior Re-
search Methods, Instruments, and Computers, 35(3):353–363.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike Flynn, Mael Guillemot, Thomas Hain,
Jaroslav Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa Kronenthal, Guillaume Lathoud,
Mike Lincoln, Agnes Lisowska, Iain McCowan, Wilfried Post, Dennis Reidsma, and Pierre
Wellner. 2005. The AMI meeting corpus: A pre-announcement. In Workshop on Multimodal
Interaction and Related Machine Learning Algorithms (MLMI).

Jean Carletta. 2006. Announcing the ami meeting corpus. The ELRA Newsletter, 11(1):3–5.

John Carroll, Guidon Minnen, Yvonne Canning, Siobhan Devlin, and John Tait. 1998. Practical
simplification of english newspaper text to assist aphasic readers. In Proceedings of the AAAI-98
Workshop on Integrating Artificial Intelligence and Assistive Technology.

Raman Chandrasekar, Christine Doran, and Srinivas Bangalore. 1996. Motivations and methods for
text simplification. In Proc. of the 16th International Conference on Computational Linguistics
(COLING–96), pages 1041–1044.

References 166

Eugene Charniak and Mark Johnson. 2001. Edit detection and parsing for transcribed speech. In
Proc. of the 2nd Meeting of the North American Chapter of the Association for Computational
Linguistics (NAACL–01), pages 118–126.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and maxent discrimina-
tive reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL–2005), pages 173–180.

Eugene Charniak, Sharon Goldwater, and Mark Johnson. 1998. Edge-based best-first chart parsing.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages 127–133.

Eugene Charniak. 1996. Tree-bank grammars. Technical report, Brown University.

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of the First An-
nual Meeting of the North American Chapter of the Association for Computational Linguistics
(NAACL–2000), pages 132–139.

Eugene Charniak. 2001. Immediate-head parsing for language models. In Meeting of the Associa-
tion for Computational Linguistics, pages 116–123.

Pierre Chatain, Edward Whittaker, Joanna Mrozinski, and Sadaoki Furui. 2006a. Class model
adaptation for speech summarisation. In Proc. the Human Language Technology Conference of
the NAACL, pages 21–24.

Pierre Chatain, Edward Whittaker, Joanna Mrozinski, and Sadaoki Furui. 2006b. Topic and stylistic
adaptation for speech summarisation. In Proc. of ICASS.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. Smote:
Synthetic minority over-sampling technique.

Stanley F. Chen and Ronald Rosenfeld. 1999. A gaussian prior for smoothing maximum entropy
models. Technical Report CMUCS-99-108, Carnegie Mellon University.

David Chiang. 2005. A hierarchical phrase-based model for statistical machine translation. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics.

David Chiang. 2006. An introduction to synchronous grammars. Unpublished manuscript.

James Clarke and Mirella Lapata. 2006a. Constraint-based sentence compression: An integer
programming approach. In Proceedings of the COLING/ACL 2006 Main Conference Poster
Sessions, pages 144–151.

James Clarke and Mirella Lapata. 2006b. Models for sentence compression: a comparison across
domains, training requirements and evaluation measures. In ACL ’06: Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual meeting of the ACL,
pages 377–384. Association for Computational Linguistics.

Norman Cliff. 1996. Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum Asso-
ciates.

References 167

J. Cohen. 1960. A coefficient of agreement for nominal scales. Educational and Psychological
measurements, 20:37–46.

Shuki Cohen. 2002. A computerized scale for monitoring levels of agreement during a conversa-
tion. In Proc. of the 26th Penn Linguistics Colloquium.

Michael Collins, Robert E. Schapire, and Yoram Singer. 2002. Logistic regression, adaboost and
bregman distances. Machine Learning, 48(1-3):253–285.

Michael John Collins. 1996. A new statistical parser based on bigram lexical dependencies. In
Proceedings of the 34th annual meeting on Association for Computational Linguistics, pages
184–191. Association for Computational Linguistics.

Michael Collins. 1999. Head-driven Statistical Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania.

Michael Collins. 2000. Discriminative reranking for natural language parsing. In Proceedings of
the 17th International Conference on Machine Learning (ICML–2000), pages 175–182.

John Conroy, Judith Schlesinger, Jade Goldstein, and Dianne O’Leary. 2004. Left-brain/right-brain
multi-document summarization. In DUC 04 Conference Proceedings.

Mark G. Core and Lenhart K. Schubert. 1999. A syntactic framework for speech repairs and other
disruptions. In Proceedings of the 37th annual meeting of the Association for Computational
Linguistics on Computational Linguistics, pages 413–420. Association for Computational Lin-
guistics.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001. Introduction
to Algorithms, Second Edition. The MIT Press.

Simon H. Corston-Oliver and William B. Dolan. 1999. Less is more: Eliminating index terms
from subordinate clauses. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL–99), pages 349–356.

Simon H. Corston-Oliver. 2001. Text compaction for display on very small screens. In Proc. of the
Workshop on Automatic Summarization at the 2nd Meeting of the North American Chapter of
the Association for Computational Linguistics, pages 89–98.

Deborah Coughlin. 2001. Correlating automated and human assessments of machine translation
quality. In In Proceedings of MT Summit IX, pages 63–70.

Brooke Cowan, Ivona Kuc̆erová, and Michael Collins. 2006. A discriminative model for tree-
to-tree translation. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, pages 232–241. Association for Computational Linguistics.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegelhalter. 1999. Prob-
abilistic Networks and Expert Systems. Statistics for Engineering and Information Science.
Springer-Verlag.

Koby Crammer and Yoram Singer. 2001. Pranking with ranking. In Proc. of the conference on
Neural Information Processing Systems (NIPS).

References 168

J. N. Darroch and D. Ratcliff. 1972. Generalized iterative scaling for log-linear models. Annals of
Mathematical Statistics, 43(5):1470–1480.

Hal Daumé III and Daniel Marcu. 2002. A noisy-channel model for document compression. In
Proc. of the Conference of the Association of Computational Linguistics (ACL–02).

Hal Daumé III and Daniel Marcu. 2004. A tree-position kernel for document compression. In
Proceedings of the Fourth Document Understanding Conference (DUC–2004).

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, 39(Ser B):1–38.

R. Dhillon, S. Bhagat, H. Carvey, and E. Shriberg. 2004. Meeting recorder project: Dialog act
labeling guide. Technical Report TR-04-002, ICSI.

Pedro Domingos. 1999. MetaCost: A general method for making classifiers cost-sensitive. In
Knowledge Discovery and Data Mining, pages 155–164.

Bonnie J. Dorr, David Zajic, and Richard Schwartz. 2003. Hedge: A parse-and-trim approach to
headline generation. In Proc. of the HLT-NAACL Text Summarization Workshop and Document
Understanding Conference (DUC–2003), pages 1–8.

EARS. 2003. Effective, affordable, reusable speech-to-text (EARS). Official web site for DARPA-
EARS Program: http://projects.ldc.upenn.edu/MDE/.

H.P. Edmundson. 1968. New methods in automatic extracting. Journal of the Association for
Computing Machinery, 16(2):264–285.

Jason Eisner. 1996. An empirical comparison of probability models for dependency grammar.
Technical Report IRCS-96-11, Institute for Research in Cognitive Science, Univ. of Pennsylva-
nia.

Jason Eisner. 2003. Learning non-isomorphic tree mappings for machine translation. In Proc. of
the 41st Meeting of the Association for Computational Linguistics.

Charles Elkan. 2001. The foundations of cost-sensitive learning. In International Joint Confer-
ences on Artificial Intelligence, pages 973–978.

David Kirk Evans, Judith L. Klavans, and Kathleen R. McKeown. 2004. Columbia newsblaster:
Multilingual news summarization on the web. In Daniel Marcu Susan Dumais and Salim
Roukos, editors, HLT-NAACL 2004: Demonstration Papers, pages 1–4. Association for Com-
putational Linguistics.

J. Finkel, T. Grenager, and C. Manning. 2005. Incorporating non-local information into information
extraction systems by gibbs sampling. In Proc. of ACL, pages 363–370.

Michel Galley and Kathleen McKeown. 2007. Lexicalized Markov grammars for sentence com-
pression. In Human Language Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics; Proceedings of the Main Confer-
ence, pages 180–187. Association for Computational Linguistics.

References 169

Michel Galley, Kathleen R. McKeown, Eric Fosler-Lussier, and Hongyan Jing. 2003. Discourse
segmentation of multi-party conversation. In Erhard Hinrichs and Dan Roth, editors, Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL–03),
pages 562–569.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2004a. What’s in a translation
rule? In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL 2004: Main
Proceedings, pages 273–280. Association for Computational Linguistics.

Michel Galley, Kathleen McKeown, Julia Hirschberg, and Elizabeth Shriberg. 2004b. Identifying
agreement and disagreement in conversational speech: Use of bayesian networks to model prag-
matic dependencies. In Proceedings of the 42nd Meeting of the Association for Computational
Linguistics (ACL–04), pages 669–676.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and
Ignacio Thayer. 2006. Scalable inference and training of context-rich syntactic translation
models. In Proceedings of the 21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics, pages 961–968.
Association for Computational Linguistics.

Michel Galley. 2006. A skip-chain conditional random field for ranking meeting utterances by
importance. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, pages 364–372. Association for Computational Linguistics.

Edward Gibson, Florian Wolf, Evelina Fedorenko, Doug Jones, Charlene Chuang, and Rina Patel.
2004. Two new experimental protocols for measuring speech transcript readability for timed
question-answering tasks. In DARPA EARS RT-04F Workshop.

Daniel Gildea. 2001. Corpus variation and parser performance. In Lillian Lee and Donna Har-
man, editors, Proceedings of the 2001 Conference on Empirical Methods in Natural Language
Processing, pages 167–202.

John J. Godfrey, Edward C. Holliman, and Jane McDaniel. 1992. SWITCHBOARD: Telephone
Speech Corpus for Research and Development. In Proc. of ICASSP, volume 1, pages 517–520.

David Graff. 1997. 1996 english broadcast news speech (hub4). In Linguistic Data Consortium.

Gregory Grefenstette. 1998. Producing intelligent telegraphic text reduction to provide an audio
scanning service for the blind. In Proceedings of the AAAI Spring Workshop on Intelligent Text
Summarization, pages 111–115.

Samuel S. Gross, Olga Russakovsky, Chuong B. Do, and Serafim Batzoglou. 2007. Training condi-
tional random fields for maximum labelwise accuracy. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 529–536. MIT Press.

Dan Gusfield. 1997. Algorithms on strings, trees, and sequences: computer science and computa-
tional biology. Cambridge University Press.

References 170

Thomas Hain, Lukas Burget, John Dines, Iain McCowan, Giulia Garau, Martin Karafiát, Mike
Lincoln, Darren Moore, Vincent Wan, Roeland Ordelman, and Steve Renals. 2005. The devel-
opment of the ami system for the transcription of speech in meetings. In Steve Renals and Samy
Bengio, editors, Machine Learning for Multimodal Interaction, Second International Workshop,
MLMI 2005, Edinburgh, UK, July 11-13, 2005, Revised Selected Papers, volume 3869 of Lec-
ture Notes in Computer Science, pages 344–356. Springer.

John Hale, Izhak Shafran, Lisa Yung, Bonnie J. Dorr, Mary Harper, Anna Krasnyanskaya, Matthew
Lease, Yang Liu, Brian Roark, Matthew Snover, and Robin Stewart. 2006. Pcfgs with syntactic
and prosodic indicators of speech repairs. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 161–168. Association for Computational Linguistics.

Donna Harman and Mark Liberman. 1993. TIPSTER complete. In Linguistic Data Consortium.
CAT: LDC93T3A, ISBN 1-58563-020-9.

Mary Harper, Bonnie J. Dorr, John Hale, Brian Roark, Izhak Shafran, Matthew Lease, Yang Liu,
Matthew Snover, Lisa Yung, Anna Krasnyanskaya, and Robin Stewart. 2005. Parsing and
spoken structural event detection. In Final Report of 2005 Johns Hopkins Summer Workshop.

Randy Allen Harris. 2005. Voice Interaction Design: Crafting the New Conversational Speech
Systems. Morgan Kaufmann.

V. Hatzivassiloglou and K. McKeown. 1997. Predicting the semantic orientation of adjectives. In
Proc. of ACL.

Peter A. Heeman and James F. Allen. 1999. Speech repairs, intonational phrases, and discourse
markers: modeling speakers’ utterances in spoken dialogue. Comput. Linguist., 25(4):527–571.

Ralf Herbrich, Thore Graepel, Peter Bollmann-Sdorra, and Klaus Obermayer. 1998. Learning a
preference relation for information retrieval. In Proceedings of the AAAI Workshop Text Cate-
gorization and Machine Learning.

D. Hillard, M. Ostendorf, and E Shriberg. 2003. Detection of agreement vs. disagreement in
meetings: training with unlabeled data. In Proc. of HLT/NAACL.

Julia Hirschberg and Diane J. Litman. 1994. Empirical studies on the disambiguation of cue
phrases. Computational Linguistics, 19(3):501–530.

Chiori Hori, Sadaoki Furui, Rob Malkin, Hua Yu, and Alex Waibel. 2002. Automatic summariza-
tion of english broadcast news speech. In Proc. of the Human Technology Conference (HLT–02),
San Diego.

Chiori Hori. 2002. A Study on Statistical Methods for Automatic Speech Summarization. Ph.D.
thesis, Tokyo Institute of Technology.

Liang Huang and David Chiang. 2005. Better k-best parsing. In In Proceedings of 9th International
Workshop of Parsing Technologies (IWPT).

References 171

Rebecca Hughes. 1996. English in Speech and Writing: investigating language and literature.
Routledge publishing.

Akira Inoue, Takayoshi Mikami, and Yoichi Yamashita. 2004. Improvement of speech summariza-
tion using prosodic information. In Proc. of Speech Prosody.

Edgar T. Irons. 1961. A syntax directed compiler for algol 60. Commun. ACM, 4(1):51–55.

Adam Janin, Dan Baron, Jane Edwards, Dan Ellis, David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke, and Chuck Wooters. 2003. The ICSI meeting
corpus. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP–03).

Nathalie Japkowicz. 2000. The class imbalance problem: Significance and strategies. In Proceed-
ings of the 2000 International Conference on Artificial Intelligence (IC-AI’2000), volume 1,
pages 111–117.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. 1990. Bayesian updating in causal probabilistic
networks by local computations. Computational Statistics Quaterly, 4:269–282.

Gang Ji and Jeffrey Bilmes. 2005. Dialog act tagging using graphical models. In Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP–05).

Hongyan Jing and Kathleen R. McKeown. 2000. Cut and paste based text summarization. In
Proceedings of the First Annual Meeting of the North American Chapter of the Association for
Computational Linguistics NAACL-2000, pages 178–185.

Hongyan Jing. 2000. Sentence reduction for automatic text summarization. In Proceedings of
the First Annual Meeting of the North American Chapter of the Association for Computational
Linguistics (NAACL–2000), pages 310–315.

George H. John, Ron Kohavi, and Karl Pfleger. 1994. Irrelevant features and the subset selection
problem. In International Conference on Machine Learning (ICML), pages 121–129.

M. Johnson and E. Charniak. 2004. A tag-based noisy channel model of speech repairs. In Proc.
of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04).

Mark Johnson. 1998. PCFG models of linguistic tree representations. Computational Linguistics,
24(4):613–632.

Mark Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proceed-
ings of the 39th Annual Meeting on Association for Computational Linguistics, pages 322–329.
Association for Computational Linguistics.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. 1975. Tree adjunct grammar. Journal of
Computer and System Science, 21(2):136–163.

Aravind K. Joshi. 1987. The relevance of tree adjoining grammar to generation. Natural Language
Generation: New Directions in Artificial Intelligence, Psychology, and Linguistics.

References 172

Yasuhiro Kawata and Julia Bartels. 2000. Stylebook for the japanese treebank in VERBMO-
BIL. Technical Report Verbmobil-Report 240, Eberhard-Karls-Universität Tübingen, Seminar
für Sprachwissenschaft.

T. Kikuchi, S. Furui, and C. Hori. 2003. Automatic speech summarization based on sentence
extraction and compaction. In ICASSP, pages 384–387.

Joungbum Kim, Sarah E. Schwarm, and Mari Ostendorf. 2004. Detecting structural metadata with
decision trees and transformation-based learning. In HLT-NAACL, pages 137–144.

Goran Kjellmer. 1991. A mint of phrases. In Karin Aijmer and Bengt Altenberg, editors, English
Corpus Linguistics, pages 111–127. Longman.

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics (ACL–03).

Kevin Knight and Daniel Marcu. 2000. Statistics-based summarization — step one: Sentence
compression. In The 17th National Conference on Artificial Intelligence (AAAI–2000), pages
703–710.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In
NAACL ’03: Proceedings of the 2003 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language Technology, pages 48–54. Association
for Computational Linguistics.

Jachym Kolar, Yang Liu, and Elizabeth Shriberg. 2007. Speaker adaptation of language models for
automatic dialog act segmentation of meetings. In Proceedings of Interspeech.

K. Koumpis and S. Renals. 2000. Transcription and summarization of voicemail speech. In Proc.
of the International Conference on Spoken Language Processing (ICSLP), Beijing.

K. Koumpis and S. Renals. 2003a. Evaluation of extractive voicemail summarization. In Proc.
ISCA Workshop on Multilingual Spoken Document Retrieval, pages 19–24.

K. Koumpis and S. Renals. 2003b. Multi-class extractive voicemail summarization. In Proc. of
Eurospeech, pages 2785–2788.

Miroslav Kubat and Stan Matwin. 1997. Addressing the curse of imbalanced training sets: one-
sided selection. In Proc. of the 14th International Conference on Machine Learning, pages
179–186. Morgan Kaufmann.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf. on
Machine Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA.

John Lafferty, Xiaojin Zhu, and Yan Liu. 2004. Kernel conditional random fields: representation
and clique selection. In ICML ’04: Proceedings of the twenty-first international conference on
Machine learning, page 64. ACM Press.

G. G. Landis and J. R. Koch. 1977. The measurement of observer agreement for categorical data.
Biometrics, 33:159–174.

References 173

K. Lari and S.J. Young. 1990. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language, 4(1):35–56.

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society,
50(2):157–224.

Vladimir I. Levenshtein. 1966. Binary codes capable of correcting insertions, deletions and rever-
sals. Soviet Physics-Doklady, 10:707–710.

Stephen C. Levinson. 1983. Pragmatics. Cambridge University Press.

P. M. Lewis and R. E. Stearns. 1968. Syntax-directed transduction. In Journal of the Association
for Computing Machinery, volume 15, pages 465–488.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. 2006. An end-to-end discrim-
inative approach to machine translation. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 761–768. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: a package for automatic evaluation of summaries. In Proc. of
workshop on text summarization, ACL-04.

Charles X. Ling and Chenghui Li. 1998. Data mining for direct marketing: Problems and solutions.
In Knowledge Discovery and Data Mining, pages 73–79.

Nanci Linke-Ellis. 1999. Closed captioning in America: Looking beyond compliance. In Pro-
ceedings of the TAO Workshop on TV Closed Captions for the hearing impaired people, pages
43–59.

Yang Liu, Elizabeth Shriberg, Andreas Stolcke, Dustin Hillard, Mari Ostendorf, Barbara Peskin,
and Mary Harper. 2004. The ICSI-SRI-UW metadata extraction system. In Proc. of INTER-
SPEECH, pages 577–580.

Y. Liu, E. Shriberg, A. Stolcke, B. Peskin, J. Ang, D. Hillard, M. Ostendorf, M. Tomalin, P. Wood-
land, and M. Harper. 2005. Structural metadata research in the EARS program. In Proc. of
ICASSP.

Nitin Madnani, Necip Fazil Ayan, Philip Resnik, and Bonnie J. Dorr. 2007. Using paraphrases
for parameter tuning in statistical machine translation. In Proceedings of the Workshop on
Statistical Machine Translation. Association for Computational Linguistics.

David M. Magerman. 1995. Statistical decision-tree models for parsing. In Meeting of the Associ-
ation for Computational Linguistics, pages 276–283.

Inderjeet Mani and Mark T. Maybury. 1999. Advances in Automatic Text Summarization. MIT
Press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1994. Building a large
annotated corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330.

References 174

Sameer Maskey and Julia Hirschberg. 2005. Comparing lexial, acoustic/prosodic, discourse and
structural features for speech summarization. In Proc. of Eurospeech.

Andrew McCallum, Dayne Freitag, and Fernando Pereira. 2000. Maximum entropy markov models
for information extraction and segmentation. In Proc. of ICML.

Andrew McCallum. 2002. MALLET: A machine learning for language toolkit. http:
//mallet.cs.umass.edu.

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Effective self-training for parsing.
In Proceedings of the main conference on Human Language Technology Conference of the North
American Chapter of the Association of Computational Linguistics, pages 152–159. Association
for Computational Linguistics.

I. McCowan, S. Bengio, D. Gatica-Perez, G. Lathoud, F. Monay, D. Moore, P. Wellner, and
H. Bourlard. 2003. Modeling human interaction in meetings. In Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP–03).

Edward M. McCreight. 1976. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272.

Peter McCullagh. 1980. Regression models for ordinal data. Journal of the Royal Statistical
Society. Series B (Methodological), 42(2):109–142.

Ryan McDonald. 2006. Discriminative sentence compression with soft syntactic constraints. In
Proceedings of EACL, pages 297–304.

Kathleen McKeown, Rebecca J. Passonneau, David K. Elson, Ani Nenkova, and Julia Hirschberg.
2005. Do summaries help? In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 210–217. ACM Press.

Kathleen McKeown, Lokesh Shrestha, and Owen Rambow. 2007. Using question-answer pairs
in extractive summarization of email conversations. In Proceedings of CICLing, volume 4394,
pages 542–550.

I. Dan Melamed, Giorgio Satta, and Benjamin Wellington. 2004. Generalized multitext grammars.
In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, page
661. Association for Computational Linguistics.

Nikki Mirghafori, Andreas Stolcke, Chuck Wooters, Tuomo Pirinen, Ivan Bulyko, Dave Gelbart,
Martin Graciarena, Scott Otterson, Barbara Peskin, and Mari Ostendorf. 2004. From switch-
board to meetings: Development of the 2004 ICSI-SRI-UW meeting recognition system. In
Proc. of the International Conference of Spoken Language Processing (ICSLP–04).

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 1999. Loopy belief propagation for approxi-
mate inference: An empirical study. In In Proceedings of Uncertainty in AI, pages 467–475.

Gabriel Murray and Steve Renals. 2006. Dialogue act compression via pitch contour preservation.
In Proceedings of Interspeech 2006.

References 175

Gabriel Murray, Steve Renals, and Jean Carletta. 2005a. Extractive summarization of meeting
recordings. In Proc. of Eurospeech.

Gabriel Murray, Steve Renals, Jean Carletta, and Johanna Moore. 2005b. Evaluating automatic
summaries of meeting recordings. In ACL 2005 Workshop on Intrinsic and Extrinsic Evaluation
Measures for MT and/or Summarization.

Christine H. Nakatani and Julia Hirschberg. 1993. A speech-first model for repair detection and
correction. In Proceedings of the Meeting of the Association for Computational Linguistics,
pages 46–53.

James Nattinger and Jeanette DeCarrico. 1992. Lexical Phrases and Language Teaching. Oxford
University Press.

J. A. Nelder and R. Mead. 1965. A simplex method for function minimization. The Computer
Journal, 7(4):308–313.

Ani Nenkova and Rebecca Passonneau. 2004a. Evaluating content selection in human- or
machine-generated summaries: The pyramid scoring method. Technical Report CUCS-025-
03, Columbia University, CS Department.

Ani Nenkova and Rebecca Passonneau. 2004b. Evaluating content selection in summarization:
The pyramid method. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL
2004: Main Proceedings, pages 145–152. Association for Computational Linguistics.

Ani Nenkova. 2006. Understanding the process of multi-document summarization: content selec-
tion, rewrite and evaluation. Ph.D. thesis, Columbia University.

Andrew Y. Ng and Michael I. Jordan. 2002. On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive bayes. In Proc. of NIPS.

Minh Le Nguyen, Masaru Fukushi, and Susumu Horiguchi. 2005. A probabilistic sentence reduc-
tion using maximum entropy model. IEICE - Trans. Inf. Syst., E88-D(2):278–288.

NIST. 2004a. NIST pilot meeting corpus. http://www.nist.gov/speech/test_beds/
mr_proj/meeting_corpus_1.

NIST. 2004b. NIST rich transcription 2004 evaluation (RT–04). http://nist.gov/speech/
tests/rt.

Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum entropy models
for statistical machine translation. In Proc. of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 295–302.

F. Och and H Ney. 2003. A systematic comparison of various statistical alignment models. Com-
putational Linguistics, 29(1):19–51.

Franz Josef Och and Hermann Ney. 2004. The alignment template approach to statistical machine
translation. Computational Linguistics, 30(4):417–449.

References 176

Franz Och, Christoph Tillmann, and Hermann Ney. 1999. Improved alignment models for statisti-
cal machine translation. In Proc. of the Joint Conf. of Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 20–28.

Franz Joseph Och. 2003. Yet Another Small Maximum Entropy Toolkit (YASMET). http://
www.fjoch.com/YASMET.html.

M. Ostendorf, A. Kannan, S. Austin, O. Kimball, R. Schwartz, and J. R. Rohlicek. 1991. Integra-
tion of diverse recognition methodologies through reevaluation of n-best sentence hypotheses.
In HLT ’91: Proceedings of the workshop on Speech and Natural Language, pages 83–87.
Association for Computational Linguistics.

Maryann Overstreet. 1999. Whales, Candlelight, and Stuff Like That: General Extenders in English
Discourse. Oxford University Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In ACL ’02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages 311–318. Association for Computational
Linguistics.

Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufman Publishers.

A. Pomerantz. 1984. Agreeing and disagreeing with assessments: some features of pre-
ferred/dispreferred turn shapes. In J.M. Atkinson and J.C. Heritage, editors, Structures of Social
Action, pages 57–101.

Arjen Poutsma. 1998. Data-oriented translation. In Proceedings of the Ninth Conference of Com-
putational Linguistics in the Netherlands.

Lawrence R. Rabiner. 1989. A tutorial on hidden markov models and selected applications in
speech recogntion. Proceedings of the IEEE, 77(2):257–286.

Owen Rambow and Giorgio Satta. 1996. Synchronous models of language. In Arivind Joshi and
Martha Palmer, editors, Proceedings of the Thirty-Fourth Annual Meeting of the Association for
Computational Linguistics, pages 116–123. Morgan Kaufmann Publishers.

Owen Rambow, Lokesh Shrestha, John Chen, and Christy Lauridsen. 2004. Summarizing email
threads. In Proceedings of HLT-NAACL.

A. Ratnaparkhi. 1996. A maximum entropy part-of-speech tagger. In Proc. of EMNLP.

Adwait Ratnaparkhi. 1998. Maximum entropy models for natural language ambiguity resolution.
Ph.D. thesis, University of Pennsylvania.

Deepak Ravichandran, Eduard Hovy, and Franz Josef Och. 2003. Statistical QA - classifier vs re-
ranker: What’s the difference? In Proc. of the ACL Workshop on Multilingual Summarization
and Question Answering.

References 177

Stefan Reizler, Tracy H. King, Richard Crouch, and Annie Zaenen. 2003. Statistical sentence
condensation using ambiguity packing and stochastic disambiguation methods for lexical-
functional grammar. In Proceedings of HLT/NAACL, pages 197–204.

J. Robert-Ribes, S. Pfeiffer, R. Ellison, and D. Burnham. 1999. Semi-automatic captioning of
tv programs, an australian perspective. In Proceedings of the TAO Workshop on TV Closed
Captions for the Hearing Impaired People, pages 87–100.

Sacks, Harvey, Schegloff, Emanuel A., and Jefferson, Gail. 1974. A simplest systematics for the
organization of turn-taking for conversation. Language, 50(4):696–735.

Sunita Sarawagi and William W. Cohen. 2004. Semi-markov conditional random fields for infor-
mation extraction. In In Advances in Neural Information Processing Systems 17 (NIPS 2004).

Emanuel A. Schegloff and Harvey Sacks. 1973. Opening up closings. Semiotica, 7-4:289–327.

Emanuel A. Schegloff. 1968. Sequencing in conversational openings. American Anthropologist,
70:1075–1095.

Jeanette P. Schmidt. 1998. All highest scoring paths in weighted grid graphs and their application
to finding all approximate repeats in strings. SIAM J. Comput., 27(4):972–992.

Prithviraj Sen and Lise Getoor. 2006. Cost-sensitive learning with conditional markov networks.
In International Conference on Machine Learning.

Stuart M. Shieber and Yves Schabes. 1990. Generation and synchronous tree-adjoining grammars.
In Proceedings of the Fifth International Workshop on Natural Language Generation, pages
9–14.

Stuart M. Shieber. 1988. Evidence against the context-freeness of natural language. In J. Ku-
las, J. H. Fetzer, and T. L. Rankin, editors, Philosophy, Language, and Artificial Intelligence:
Resources for Processing Natural Language, pages 79–92. Kluwer.

Lokesh Shrestha and Kathleen McKeown. 2004. Detection of question-answer pairs in email
conversations. In Proceedings of COLING, pages 889–895.

Elizabeth Shriberg, Rebecca Bates, and Andreas Stolcke. 1997. A prosody-only decision-tree
model for disfluency detection. In Proceedings Eurospeech ’97, pages 2383–2386.

E. Shriberg, A. Stolcke, and D. Baron. 2001. Observations on overlap: Findings and implications
for automatic processing of multi-party conversation. In Proc. of EUROSPEECH.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy Ang, and Hannah Carvey. 2004. The ICSI
meeting recorder dialog act (MRDA) corpus. In SIGdial Workshop on Discourse and Dialogue,
pages 97–100.

Elizabeth Shriberg. 1994. Preliminaries to a Theory of Speech Disfluencies. Ph.D. thesis, Univer-
sity of California.

References 178

A. Stolcke, E. Shriberg, R. Bates, M. Ostendorf, D. Hakkani, M. Plauche, G. Tur, and Y. Lu. 1998.
Automatic detection of sentence boundaries and disfluencies based on recognized words. In
Proceedings of ICSLP, volume 5, pages 2247–2250.

A. Stolcke, X. Anguera, K. Boakye, O. Cetin, A. Janin, M. Magimai-Doss, C. Wooters, and
J. Zheng. 2007. The SRI-ICSI spring 2007 meeting and lecture recognition system. In Proc.
NIST Rich Transcription Workshop.

Andreas Stolcke. 2002. SRILM – an extensible language modeling toolkit. In Proceedings of the
International Conference on Spoken Language Processing.

Charles Sutton and Andrew McCallum. 2004. Collective segmentation and labeling of distant
entities in information extraction. Technical Report TR # 04-49, University of Massachusetts.

Charles Sutton, Andrew McCallum, and Jeff Bilmes (organizers). 2006. Joint inference for natural
language processing (workshop). In HLT/NAACL.

Charles Sutton. 2006. GRMM: A graphical models toolkit. http://mallet.cs.umass.
edu.

Kuo-Chung Tai. 1979. The tree-to-tree correction problem. Journal of the ACM, 26(3):422–433.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2003. Max-margin markov networks. In Ad-
vances in Neural Information Processing Systems (NIPS 2003). Winner of the Best Student
Paper Award.

Christoph Tillmann and Tong Zhang. 2006. A discriminative global training algorithm for sta-
tistical mt. In ACL ’06: Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the ACL, pages 721–728. Association for Computa-
tional Linguistics.

Jenine Turner and Eugene Charniak. 2005. Supervised and unsupervised learning for sentence
compression. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 290–297. Association for Computational Linguistics.

Vladimir Vapnik. 1998. Statistical Learning Theory. Wiley.

Andrew J. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, IT-13:260–269.

Alex Waibel, Michael Bett, Florian Metze, Klaus Ries, Thomas Schaaf, Tanja Schultz, Hagen
Soltau, Hua Yu, and Klaus Zechner. 2001. Advances in automatic meeting record creation
and access. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP–01).

Fuliang Weng, Andreas Stolcke, and Ananth Sankar. 1998. Efficient lattice representation and
generation. In Proceedings of ICSLP.

Michael J. Witbrock and Vibhu O. Mittal. 1999. Ultra-summarization: A statistical approach to
generating highly condensed non-extractive summaries. In Proceedings of the 22nd Interna-
tional Conference on Research and Development in Information Retrieval (SIGIR–99), Poster
Session, pages 315–316.

References 179

Yuk Wah Wong and Raymond J. Mooney. 2006. Learning for semantic parsing with statistical
machine translation. In Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational Linguistics,
pages 439–446. Association for Computational Linguistics.

Dekai Wu. 1996. A polynomial-time algorithm for statistical machine translation. In Proceed-
ings of the 34th annual meeting on Association for Computational Linguistics, pages 152–158.
Association for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3):377–404.

Kenji Yamada and Kevin Knight. 2001. A syntax-based statistical translation model. In Proc. of
ACL, pages 523–530.

David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In
Meeting of the Association for Computational Linguistics, pages 189–196.

David Zajic, Bonnie J. Dorr, and Richard Schwartz. 2002. Automatic headline generation for
newspaper stories. In In Proceedings of the ACL Workshop on Text Summarization (DUC–
2002), pages 78–85.

Klaus Zechner and Alex Waibel. 2000a. Diasumm: Flexible summarization of spontaneous di-
alogues in unrestricted domains. In Proceedings of COLING-2000, Saarbruecken, Germany,
pages 968–974.

Klaus Zechner and Alex Waibel. 2000b. Minimizing word error rate in textual summaries of spoken
language. In ANLP, pages 186–193.

Klaus Zechner. 2002. Automatic summarization of open domain multi-party dialogues in diverse
genres. Computational Liguistics, Special Issue on Summarization, 28(4):447–485.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262.

Liang Zhou and Eduard Hovy. 2005. Digesting virtual “geek” culture: The summarization of
technical internet relay chats. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 298–305.

