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ABSTRACT

Adapting Automatic Summarization to New Sources of Information

Jessica Jin Ouyang

English-language news articles are no longer necessarily the best source of informa-

tion. The Web allows information to spread more quickly and travel farther: first-person

accounts of breaking news events pop up on social media, and foreign-language news arti-

cles are accessible to, if not immediately understandable by, English-speaking users. This

thesis focuses on developing automatic summarization techniques for these new sources of

information.

We focus on summarizing two specific new sources of information: personal narratives,

first-person accounts of exciting or unusual events that are readily found in blog entries and

other social media posts, and non-English documents, which must first be translated into

English, often introducing translation errors that complicate the summarization process.

Personal narratives are a very new area of interest in natural language processing research,

and they present two key challenges for summarization. First, unlike many news articles,

whose lead sentences serve as summaries of the most important ideas in the articles, per-

sonal narratives provide no such shortcuts for determining where important information

occurs in within them; second, personal narratives are written informally and colloquially,

and unlike news articles, they are rarely edited, so they require heavier editing and rewrit-

ing during the summarization process. Non-English documents, whether news or narrative,

present yet another source of difficulty on top of any challenges inherent to their genre: they

must be translated into English, potentially introducing translation errors and disfluencies



that must be identified and corrected during summarization.

The bulk of this thesis is dedicated to addressing the challenges of summarizing per-

sonal narratives found on the Web. We develop a two-stage summarization system for per-

sonal narrative that first extracts sentences containing important content and then rewrites

those sentences into summary-appropriate forms. Our content extraction system is inspired

by contextualist narrative theory, using changes in writing style throughout a narrative to

detect sentences containing important information; it outperforms both graph-based and

neural network approaches to sentence extraction for this genre. Our paraphrasing system

rewrites the extracted sentences into shorter, standalone summary sentences, learning to

mimic the paraphrasing choices of human summarizers more closely than can traditional

lexicon- or translation-based paraphrasing approaches.

We conclude with a chapter dedicated to summarizing non-English documents written

in low-resource languages – documents that would otherwise be unreadable for English-

speaking users. We develop a cross-lingual summarization system that performs even heav-

ier editing and rewriting than does our personal narrative paraphrasing system; we create

and train on large amounts of synthetic errorful translations of foreign-language docu-

ments. Our approach produces fluent English summaries from disfluent translations of

non-English documents, and it generalizes across languages.
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Introduction

In the first paper on automatic summarization, Luhn (1958) wrote that the goal of summa-

rization is “to save a prospective reader time and effort in finding useful information.” Since

then, the field of automatic summarization has grown up around this goal. The scope of

summarization research has broadened: where there earliest work focused on summarizing

scientific articles, summarization research has grown to cover a wide range of domains,

including meeting transcripts, email threads, and most importantly, news articles. While

scientific article summaries are primarily of interest to scientists, and meeting and email

summaries are primarily of interest to corporate workers, news summaries provide useful

information for everyone.

However, English-language news articles are no longer necessarily the best source of

information. The Web allows information to spread more quickly and travel farther: first-

person accounts of breaking news events pop up on social media, and foreign-language

news articles are accessible to, if not immediately understandable by, English-speaking

users. More than forty percent of Americans get at least some of their news from social

media, and over one-third of Americans between the ages of 18 and 29 consider social me-

dia to be the most helpful source of news, ahead of news articles or cable broadcasts (Pew

Research Center 2016).

This thesis focuses on summarizing these new sources of information. Techniques

developed for summarizing copy-edited, English-language news articles are often inap-

propriate for informal genres, such as blog entries and social media posts. In particular,

1



many English news articles can be summarized effectively by lightly paraphrasing, or even

directly copying, the lead sentence or paragraph, but there is no lead in informal genres.

Similarly, while foreign-language news articles might have lead sentences, an English sum-

mary of a non-English article (cross-lingual summarization) cannot directly copy them –

the article must first be translated into English, introducing a potential source of noise via

machine translation.

The copying, or extractive, summarization approach selects sentences from a document

without modifying them. In the case of informal genres, the colloquialisms and grammat-

ical or spelling errors common to such documents require heavy editing or paraphrasing

if we are to form a coherent summary from them; similarly, in the case of cross-lingual

summarization, we must correct or elide errors and disfluencies introduced by the machine

translation system. These documents require an abstractive summarization approach that

combines edited sentence fragments with new text generated from scratch.

In this thesis, we develop summarization techniques for two new sources of infor-

mation: the bulk of the thesis focuses on a two-stage, extract-then-abstract approach for

summarizing the genre of personal narrative, first-person accounts of exciting or unusual

events, which are readily found in blog entries and other social media posts; the rest dis-

cusses an abstractive approach to cross-lingual summarization, focusing on producing En-

glish summaries of documents written in low-resource languages, where there are no sum-

marization systems of any kind, and only the most basic machine translations are available.
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Contributions

The main contributions of this thesis are as follows:

A human-quality summarization corpus for the genre of personal

narrative that supports a two-stage, extract-then-abstract approach to

summarization.

While there are many summarization and text-to-text generation corpora available, there

are none for personal narrative, which is a relatively new genre of interest in natural lan-

guage processing. Further, most existing corpora provide only a very specific set of an-

notations: only extractive summaries or only abstractive summaries, or sentences demon-

strating only compression or only fusion and no other text-to-text generation techniques.

This does not accurately capture how humans write summaries; human summarizers ex-

tract snippets of text, both with and without rewriting them, as well as generating new text,

and they use a mix of text-to-text generation techniques. The work described in this thesis

provides a corpus that captures all of the diverse operations human summarizers perform.

Our specific contributions in this area are

• a collection of 476 annotated and 4,396 unannotated personal narratives scraped from

the Web;

• matching human-written abstractive summaries and human-selected extractive-summaries

for each annotated narrative, supporting the extract-then-abstract summarization ap-

proach;
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• phrase-level alignments annotated with text-to-text generation techniques between

corresponding extractive and abstractive summaries, capturing the interaction be-

tween techniques.

A narratology-inspired approach to main event detection and

extractive summarization for personal narrative.

Personal narratives are structured differently from the news articles that have been the

focus of the majority of summarization research, and so new techniques are needed to

identify important information in them. They do not have lead sentences, so position-based

sentence extraction will not work; they are tightly written, with little to no repetition of

information, so salience-based sentence ranking will not work. The work described in this

thesis addresses the challenges of extracting summary sentences from personal narratives

by drawing from contextualist narrative theory.

Our specific contributions in this area are

• a computational validation of the linguistic theory that the author of a narrative uses

changes writing style to mark important content in the narrative;

• a change-based and completely content-agnostic view of narrative summarization

that represents each sentence by a set of affectual and stylistic features;

• the use of this change-based view of narrative to perform both event detection and

extractive summarization for personal narrative.
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A thorough investigation of the task of paraphrasing for abstractive

summarization.

While both paraphrase generation and abstractive summarization are active areas of re-

search, the two have not previously been considered together. Further, prior work on para-

phrase generation was primarily concerned with producing as many lexically diverse para-

phrases as possible, while selecting the appropriate paraphrase and determining whether

or not a given sentence ought to be paraphrased in the first place were neglected. The

work described in this thesis focuses on the latter two tasks: determining which input doc-

ument sentences a human summarizer would paraphrase and selecting natural, human-like

paraphrases.

Our specific contributions in this area are

• a demonstration of the limitations of previous, “shotgun” approaches to paraphrasing

when it comes to generating human-like paraphrases;

• a sentence-level neural classifier for predicting whether or not a document sentence

ought to be paraphrased for summarization;

• a sentence-level neural paraphrasing system for rewriting a document sentence into

an abstractive summary sentence;

• an analysis of word-level features that allow the above two systems to learn human-

like paraphrasing.
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A monolingual paraphrase alignment system capable of aligning

phrases of any length and robust to minor semantic differences.

The task of monolingual paraphrase alignment branched out from the related task of align-

ment for machine translation and, as a result, inherited two of the latter’s key assumptions:

first, that alignments are between words or phrases that mean exactly the same thing, and

second, that alignments are between single words or short phrases. However, these as-

sumptions break down in monolingual alignment when we consider source/target sentence

pairs that come not from parallel corpora, but from document/summary pairs. Prior work

on monolingual alignment has been limited to aligning either identical words or very close

synonyms, and alignments between longer phrases are beyond the capabilities of state-

of-the-art systems; they are thus unable to align sentence pairs where the sentences are

lexically diverse. The work described in this thesis addresses the two issues of aligning

long phrases and aligning despite minor semantic differences between those phrases.

Our specific contributions in this area are

• a constituent-based view of alignment that is able to align phrases of arbitrary length

as though they were single words;

• the use of a phrase-level embedding system to allow each phrase to be aligned based

on its general meaning, rather than on the words it contains;

• a pointer-network-based alignment system that aligns a source phrase to the entire

target sentence at once;
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• a voting procedure for aggregating alignments using phrases of different lengths,

which automatically discovers the optimal phrase length for a source/target sentence

pair.

A fluent and generalizable approach to cross-lingual summarization

for low-resource languages.

Prior work on cross-lingual summarization has focused on the high-resource language pair

of English and Chinese. Because both the source language (English) and target language

(Chinese) are very active in natural language processing research, summarization tech-

niques can be applied to both the source language document and the translated target lan-

guage document, and the translations are of good quality. With a low-resource source

language, however, there is no data to train a source language summarization system, and

translations into the target language are of much lower quality. The work described in this

thesis is the first to address the low-resource language scenario in cross-lingual summa-

rization.

Our specific contributions in this area are

• a robust, neural abstractive summarization system that produces fluent English sum-

maries from low-quality, machine-translated documents from three low-resource lan-

guages: Somali, Swahili, and Tagalog;

• the trained, three-language model that works “out of the box” for new, previously

unseen source languages, even without additional training;
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• a straightforward methodology for extending the system to new languages to further

tailor performance to a specific source language.

Outline

Five of the first six chapters of this thesis detail a two-stage, extract-then-abstract sum-

marization system for personal narrative; Chapter 5 takes a brief detour into monolingual

paraphrase alignment, and Chapter 7 concludes with cross-lingual summarization. Each

chapter begins with an overview of previous work, either on the task discussed in the chap-

ter or on a closely related task, and concludes with a summary of contributions and a

discussion of how the chapter ties in to the overall structure of this thesis.

• Chapter 1 introduces the genre of personal narrative, gives an overview of both

linguistic and computational work on the genre, and motivates both our goal of sum-

marizing personal narrative and our two-stage approach to doing it.

• Chapter 2 details the change-based view of personal narrative, as well as the lin-

guistic theory that inspired it, and then presents our early experiments on using this

change-based view to detect the most reportable event of a narrative.

• Chapter 3 describes the creation of our personal narrative summarization corpus, fo-

cusing on how we elicited matching pairs of human-quality extractive and abstractive

summaries and how we captured multiple text-to-text generation techniques.

• Chapter 4 applies the change-based approach of Chapter 2 to the task of extractive

summarization, using the corpus in Chapter 3.
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• Chapter 5 presents the monolingual paraphrase alignment system that we use later

in Chapter 6; it motivates the need for a system capable of aligning long phrases that

do not necessarily mean exactly the same thing and details our solution for this task.

• Chapter 6 discusses the task of paraphrasing for summarization, explores the limita-

tions of previous approaches to paraphrase generation, and presents our approaches

to addressing those limitations.

• Chapter 7 shifts our focus to the task of cross-lingual summarization for low-resource

languages, motivating the task and describing our training pipeline for producing

summarization systems for any source language.

• The Conclusion summarizes our contributions, discusses the limitations of the work

in this thesis, and suggests future directions for adapting automatic summarization to

new sources of information.
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1. Motivation

In the following chapters, we focus on the genre of personal narrative: first-person stories

about exciting or unusual events in the authors’ lives. We argue that personal narrative

is an important and previously neglected genre for summarization research – when the

archaeologists of the future want to know what it was like to live in the early twenty-first

century, it is to personal narratives, not news, that they will turn.

1.1 A Brief History of (Computational) Narratology

The study of narrative (in general, as opposed to personal narrative in particular) spans

across such diverse disciplines as philosophy (Ricoeur 1984), psychology (Goldman, Graesser,

and Broek 1999), anthropology (Ochs and Capps 2001), and of course, linguistics and

literature. In this section, we give a brief (noncomprehensive) overview of the field of

narratology and its parallels in natural language processing research.

The formal study of narrative began with the work of Propp (1928), who noted that

there is a limited set of actions or functions that form the building blocks of every fairy

tale, and further that the order of these functions is always the same. While the names

and other attributes of the characters vary across fairy tales, the sequence of actions (the

hero leaves home, the hero is tested in some way, the hero acquires a magical item or

follower, etc.) does not. Fittingly, the study of computational narrative began with the

work of Lehnert (1981), who likewise identified fifteen primitive plot units constructed
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from different combinations of positive or negative events and character mental states,

along with the character motivations or actions that relate them to one another, and later

work by Goyal, Riloff, and Daumé III (2010) tackled automatically identifying the plot

units that make up a particular narrative. Lehnert’s work was also the earliest attempt at

summarizing narrative; she argued that a narrative is a graph of plot units, and that its

summary can be constructed by selecting the most highly connected plot units.

Todorov (1969) argued that all narratives share an underlying structure, a minimal plot,

where there is a shift from one equilibrium to another (Prince (1973) similarly defines a

minimal story as an event that causes a change of state). Barthes (1975) defines three lev-

els of structural analysis for narrative: (Proppian) functions; characters, their perspectives,

actions, and relationships; and narration, including both the identity of the narrator and of

the audience. These three levels of analyses are reflected in the computational narrative

work of Elson and McKeown (2010) and Elson (2012), who encoded narratives in three

graphs: the textual graph, containing spans from the narration; the timeline graph, contain-

ing predicate functions; and the interpretive graph, containing character goals, beliefs, and

affect.

These works represent the structuralist view of narratology – that each narrative has

two parts: a deep structure, consisting of characters and functions, and a surface form,

consisting of the narration. The structuralist claim is that every narrative is the realiza-

tion of some deep structure, and so identifying a narrative’s deep structure is of paramount

importance. This claim is reflected in the computational narrative work of Chambers and

Jurafsky (2008), who extracted narrative event chains of functions centered around a com-

mon character, and of Manshadi, Swanson, and Gordon (2008), who learned probabilistic
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sequences of predicate-argument pairs extracted from narratives.

The opposing contextualist view of narratology focuses not on the deep structure of a

narrative, but on its surface form. Smith (1980) defines a narrative as a social act, a function

of who the narrator is, who the audience is, the narrator’s purpose in telling the story, and

the audience’s purpose in listening to the story. If any of those properties changes, the

narrative produced will also change. Smith further argues that there is no such thing as a

deep structure that exists independently of narration; stories cannot exist independently of

their purpose in being told.

Polanyi (1981) notes that since storytelling is a social act, a narrative must be interesting

and have a point, otherwise it will not hold the audience’s attention. Narrators use eval-

uation devices, such as onomatopoeia, reported speech, and changes in sentence length,

complexity, or verb tense, to emphasize important parts of their stories; these evaluated

elements of a narrative form an adequate paraphrase of the point of that narrative.

1.2 Personal Narrative

The study of personal narrative is closely intertwined with contextualist narratology.

Labov (1966) founded the study of personal narrative partly by accident. A sociolin-

guist, Labov was trying to record variations in language across social classes in New York

City. He found that, when confronted with an Ivy League professor and a microphone,

people changed the way they spoke: “People said what they thought you wanted to hear,

and said it in a way that they thought you wanted it to be said” (Labov 2013). Trying

to combat this observer’s paradox, Labov discovered that, when talking about important
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personal experiences, people spoke more naturally. As a result, he collected hundreds of

personal narratives and found a shared structure among them.

Here the terminology gets a bit confusing. Labov’s narrative structure is not the deep

structure of structuralist narratology; the Labovian view is a contextualist one. Labov

defined the elements of narrative structure in terms of their role in organizing the narration,

such as giving necessary background information that the audience needs to understand the

narrative, or signaling the end of a narrative by relating it to the present. Labov’s narrative

structure is found in personal narratives across cultures (Labov 2010), suggesting that there

is a universal, “right” way to effectively share a personal experience – a deep structure of

narration, in a sense.

Labov and Waletzky (1967) defined the structure of narrative as consisting of three el-

ements: the orientation, the complicating action, and the evaluation. Labov (1997) refined

this structure to include three additional elements – the abstract, the resolution, the coda

– and argued that every narrative is organized around a single most reportable event. Each

clause of a narrative is assigned to one of the elements of narrative structure, but not all

elements are necessary in every narrative – the original three are sufficient for a narrative,

and the later three (abstract, resolution, and coda) are relatively rare.

Abstract. The abstract is an introduction to the story and may contain a description of

the most reportable event. For example –

Shall I tell you about the first man got kilt – killed by a car here... Well, I can
tell you that.

(All examples in this section are from Labov (2013)).
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Orientation. The orientation contains information on the time, place, and people in-

volved in the story – the background information. It usually occurs at the beginning of the

narrative, but some orienting information may be postponed until later in the narrative, just

before it becomes relevant. An example of this is found in “Jacob Schissel’s story”: the

orienting information

When I let go his arm, there was a knife on the table,

is not given until close to the end of the narrative, just before the Schissel is stabbed with

the knife.

Complicating Action. The complicating action is a chain of causal or instrumental

events that culminates in the most reportable event. The complicating action chain tells

what happened in the story. In “Jacob Schissel’s story”, the chain of complicating actions

is as follows:

1. He saw a rat out in the yard
2. and he started talk about it [sic]
3. and I told him to cut it out.
4. ...I grabbed his arm
5. and twisted it up behind him.
6. he picked up [the knife]
7. and he let me have it.

Each event is causally related to the one before it, except for events 5 and 7, which are

instrumentally related to events 4 and 6.

Evaluation. The evaluation is where the narrator gives his opinions on the events of the

story, considers alternative outcomes, assigns praise or blame to the characters, or attempts

to add credibility to the story. As suggested by its name, the evaluation serves to establish
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the “point” of the narrative; it usually comes in a block immediately following the most

reportable event, but like orientations, evaluations can be interjected among the events of

the complicating action. For example, Jacob Schissel gave this evaluation on being stabbed:

And the doctor just says, “Just that much more,” he says, “and you’d a been
dead.”

This evaluation serves two purposes: first, it presents an alternative outcome in which the

narrator did not survive the stabbing; second, it adds credibility to the stabbing by quoting

a third party witness, the doctor.

Resolution. Some narratives extend the chain of events to a final resolution of the

situation created by the most reportable event. For example, in a narrative about a fight, the

narrator gives the resolution,

An’ they took us – they took us to the hospital.

Coda. The coda signals the end of the story by bringing the listener back to the present.

For example, in the story about the fight, the lines

An’ that was it. That’s the only fight I can say I ever lost.

relates the events of the narrative to the present.

Computational approaches to personal narrative are relatively few and recent. Rahim-

toroghi et al. (2013), Ouyang and McKeown (2014), and Swanson et al. (2014) explored

automatically labeling clauses in a narrative with Labov’s structural elements. Personal

narratives have also been used as data for learning commonsense causal relations (Gordon,

Bejan, and Sagae 2011) and subjectivity (Sagae et al. 2013).
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1.3 Summarizing Narrative

Aside from the early work of Lehnert (1981), summarization of narrative has been largely

ignored in natural language processing research; there is far more interest in generating

narratives than in summarizing them (McIntyre and Lapata 2009; McIntyre and Lapata

2010; Riedl and Young 2010; Montfort 2011; Rishes et al. 2013; Li et al. 2013). We argue

that personal narrative is just as important a genre for summarization research as is news.

Storytelling is a fundamental and universal form of communication, and as an informa-

tion source, the genre of personal narrative complements that of news. Where news articles

are objective, personal narratives are subjective; where news articles convey facts, per-

sonal narratives convey experiences. Linde (1993) and Fivush, Bohanek, and Duke (2005),

among others, argue that personal narratives are inextricably tied to one’s sense of self. To

share one’s own experience in a personal narrative, one must evaluate the experience and

construct a story that persuades the audience to take one’s side; sharing in others’ expe-

riences provides new models of how the world works, new frameworks for behavior, and

new perspectives on one’s own experiences.

Anyone can author a personal narrative. A witness to a breaking news event can break

the story him- or herself with a personal narrative far more quickly, for better or worse,

than a news agency can compose, edit, and fact-check a news article. With the global reach

of social media, anyone who has been affected by a newsworthy event can share his or her

experience. Consider the famous statement usually attributed to Joseph Stalin: “The death

of one person is a tragedy; the death of one million is a statistic.” News may report the

statistic, but personal narrative has the power to convey the tragedy of each of those one
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million deaths.

Personal narrative summarization faces challenges not found in news summarization.

First, content selection is more difficult. There is no headline or lead sentence in a personal

narrative. While the abstract may paraphrase the most reportable event of a personal nar-

rative and thus serve a similar role as a lead sentence, abstracts are rare among personal

narratives, and not all abstracts explicity describe the most reportable event – one abstract

from our personal narrative summarization corpus (described in Chapters 2 and 3) states

simply, “This isn’t exactly creepy, but it’s one of the scariest things that’s ever happened to

me.” Position-based sentence extraction techniques will not work for personal narrative.

Further, personal narratives are, by their nature, already quite minimal. Personal narra-

tives are social acts and need to compete for their audience’s attention; an overwritten story

will be ignored in favor of any one of the thousands of shorter, punchier stories posted on

the Web. There is thus little, if any, repetition of information in a personal narrative, so

graph-based sentence extraction techniques will not work (we demonstrate this in Chapter

4).

The second challenge of personal narrative summarization is the need for very aggres-

sive rewriting. Personal narratives posted on the Web do not have professional editors

cleaning them up; spelling and grammatical errors are very common. In addition, while a

narrative posted on the Web is capable of reaching vast audiences, it is often written for

a small, specific audience: the users of the specific Web community in which it is posted.

Thus, unexplained acronyms or other jargon may be present and need to be rewritten in

order for a general audience to understand the summary. This problem extends to pro-

nouns and other diectics; where a reporter writing a news article will avoid ambiguous
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antecedents and remind his or her reader of who important named entities are, a layperson

writing a personal narrative may not. This is all in addition to the basic rewriting required to

produce any abstractive summary: deletion of extraneous information, fusion of mutually

redundant sentences, and so on.

Sharing personal narratives online has had a tremendous impact on our society, and

automatic summarization for personal narratives can, too. Topics such as mental health and

sexual assault are stigmatized, and so people may be reluctant to discuss or seek help for

them. However, people are willing to share personal narratives about their experiences with

these topics online – the #PreexistingCondition and #MeToo movements. With these viral

personal narrative movements, there are far too many narratives posted for a human to read

them all; summarization can help psychologists, public health researchers, and sociologists

more easily find those narratives that are of the most interest for their work. In mental

health, automatic summarization can also help people to avoid reading certain narratives

– people with post-traumatic stress disorder, for example, may have symptoms that are

triggered by their being reminded of the source of their trauma. If such a person is browsing

narratives online, he or she may not realize that a narrative contains such triggering content

until it is too late; a summary can inform him or her that such content is present in the

narrative, without going into enough detail to trigger symptoms.

In the following chapters, we describe how we address these two challenges separately.

We develop a two-stage summarization system for personal narrative: a content selection

system first identifies important sentences in a narrative by extracting evaluated sentences,

sentences that are stylistically distinct from their neighbors; a paraphrasing system then

rewrites the selected sentences into a coherent summary.
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2. Main Event Detection

In one of the early linguistic analyses of storytelling, Prince (1973) defined a narrative as

describing an event that causes a change of state. Prince’s minimal narrative had three

parts: the starting state, the ending state, and the event that transforms the starting state

into the ending state. Prince gave this example of a minimal narrative:

A man was unhappy, then he fell in love, then as a result, he was happy.

This is, of course, a toy example, but Prince’s claim that a narrative is about a single

key event was mirrored in the work of Labov, who defined a well-formed narrative as a

series of actions leading to a most reportable event (MRE). The MRE is the point of the

narrative – the most unusual event that has the greatest emotional impact on the narrator

and the audience (Labov and Waletzky 1967; Labov 1997). The MRE is what the narrative

is about, and without the MRE, there is no narrative. Thus, the MRE is also the shortest

possible summary of the narrative; it is what one would say about the narrative if one could

only say a single thing.

Our work on summarizing personal narrative began with the task of identifying the

MRE of a narrative. In narratological terms, the MRE is part of the deep structure of a

narrative; it is a real-world event that underlies and exists independently of the narration.

Such a thing is is difficult to infer automatically, so instead, we focused on first extracting

sentences in the narrative that described or referred to the MRE. This extractive approach is

in keeping with Labov’s own – a contextualist himself, Labov did not distinguish between
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the MRE and the sentence in the narration that contains the MRE.

2.1 Related Work

Earlier natural language processing work drawing from Labovian narrative theory focused

on classifying clauses in a narrative into Labov’s elements of narrative structure. Rahim-

toroghi et al. (2013) used 20 of Aesop’s fables, totalling 315 clauses. They used two anno-

tators to manually label clauses with the three main elements of narrative structure defined

by Labov and Waletzky (1967): orientation (background information), action (events),

and evaluation (author’s perspective), which we discussed in the previous chapter. Like the

work discussed in the rest of this chapter, Rahimtoroghi et al. avoided lexical features and

instead represented sentences by their verb tenses, the presence of dialogue or questions,

and other such structural features. They achieved accuracy and precision of about 90% on

all three labels, as well as recall of about 90% on all but clauses orientation, which their

classifier often confused with evaluation clauses. It is interesting to note that Rahimtoroghi

et al. considered using two different datasets in their experiments: Aesop’s fables and the

Say Anything dataset (Swanson and Gordon 2012) of 267 personal narratives collected

from weblog entries. They chose Aesop’s fables over Say Anything largely because the

latter was too challenging; the fables were shorter and used simpler language, and each

clause served a clear narrative purpose.

Swanson et al. (2014) also worked on three-way classification of clauses into orien-

tation, action, and evaluation. They used 50 personal narratives taken from the corpus

of Gordon and Swanson (2009) (the Say Anything dataset was also taken from this cor-
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pus). This corpus was automatically constructed using unigram lexical features to classify

weblog entries as either narratives or not, with about 75% precision. Swanson et al. used

three annotators to label their subset of 50 personal narratives, totalling 1,602 clauses. Un-

like Rahimtoroghi et al.’s data, where over half of the clauses were actions and the rest were

mostly evaluations, Swanson et al. found that nearly half of their clauses were evaluations,

with orientations and actions making up about one quarter each. Swanson et al. used both

lexical and structural features and achieved 69% overall F-score on three-way classification

of clauses.

Swanson et al. echoed Rahimtoroghi et al.’s earlier conclusion that personal narra-

tives collected from the Web are more challenging to work with than are Aesop’s fables.

While Swanson et al.’s annotators achieved substantial interannotator agreement (Fleiss’s

κ = 0.63) on the weblog narratives, they could not approach the near perfect agreement

(Cohen’s κ = 0.82)) of Rahimtoroghi et al.’s annotators on the fables. Unlike the fables

– and indeed, unlike the personal narratives studied by Labov himself, which were tran-

scribed from recordings of sociolinguistic interviews – weblog narratives often have long

clauses that serve more than one purpose. Swanson et al. gave this example of a very

long clause from their dataset of 50 personal narratives, which contains a mix of orienting

information, narrator actions, and author evaluation:

After leaving the apartment at 6:45 AM, flying 2 hours, taking a cab to Seattle,
and then driving seven hours up to Whistler including a border crossing, it’s
safe to say that I felt pretty much like a dick with legs.

We likewise found this to be the case in the personal narrative data we used in this

chapter.
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Finally, our own prior work (Ouyang and McKeown 2014) focused on extracting the

action chain of personal narratives. We used 49 narratives, consisting of 1,277 clauses,

from Labov (2013), which were transcribed from sociolingusitic interview recordings –

Labov himself annotated the clauses with his elements of narrative structure. Our features

were a mix of narrative-inspired features, similar to but simpler than those we use later

in this chapter, and discourse features inspired by the work of Pitler, Louis, and Nenkova

(2009). We achieved 72 % F-score on the task of extraction action clauses and found that

a clause’s participation in certain classes of discourse relations was one of the strongest

predictors of whether or not it was an action.

2.2 Modeling Personal Narratives

Despite the successes of Rahimtoroghi et al. (2013), Swanson et al. (2014), and Ouyang

and McKeown (2014), we chose not to use Labov’s elements of narrative structure directly.

While Labov considered the most reportable event to be the culmination of the sequence of

actions in a narrative (Labov 1997; Labov 2013), in practice this is not always the case: as

discussed in the previous chapter, the sequence of actions in a narrative may be broken up

by delayed orientations or early evaluations, or it may be extended to include a resolution.

Instead, we returned to Prince’s claim that stories are about change. Polanyi (1985)

observed that the climax or turning point of a story is often marked by a change in style,

formality of language, or emphasis in the narration; Labov (2013) likewise observed that

a change in verb tense often accompanies the MRE of a narrative. Thus, we hypothesized

that the MRE sentence would be found at a point of change in the narration.
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We modeled the narration using three categories of sentence-level scores: syntactic,

semantic, and affectual.

Syntactic. Based on Polanyi’s claim that a change in formality marks the changing

point, we included metrics of sentential syntax, using the syntactic complexity of a sen-

tence as an approximation for its formality. The complexity of a sentence also reflects

emphasis – short, staccato sentences bear more emphasis than long, complicated ones. We

used the length of the sentence, the length of its verb phrase, and the ratio of these two

lengths; the depth of the sentence’s parse tree, the depth of its verb phrase’s subtree, and

the ratio of these two depths. We also used the average word length for the sentence, as

well as the syntactic complexity formula proposed by Botel and Granowsky (1972), which

scores sentences based on the presence of specific syntactic structures, such as passives,

appositives, and clausal subjects. Finally, we used the formality and complexity lexicons

created by Pavlick and Nenkova (2015), which provide human formality judgments for

7,794 words and short phrases and complexity judgments for 5,699 words and phrases (we

scored each sentence by averaging across all words and phrases in the sentence).

Semantic. As the MRE is an unsual and surprising event, we expect sentences describ-

ing it it to be dissimilar from the surrounding sentences. We used semantic similarity be-

tween a sentence and its immediate neighbors as a measure of surprisingness. Our seman-

tic scores were the bag-of-words cosine score and the latent semantic similarity score (Guo

and Diab 2012) between a sentence and its preceding and following sentences.

Affectual. Since the goal of a personal narrative is to share an important experience,

we expect the MRE to occur at an emotional peak in the narration. We used the Dictionary

of Affect in Language (DAL) (Whissell 1989), augmented with WordNet (Miller 1995) for
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better word coverage. The DAL represents lexical affect with three scores: evaluation (ee,

hereafter ‘pleasantness’ to avoid confusion with Labov’s evaluation), activation (aa, active-

ness), and imagery (ii, concreteness). We also used a fourth score, the activation-evaluation

(AE) norm, a measure of subjectivity defined by Agarwal, Biadsy, and McKeown (2009):

norm =

√
ee2 + aa2

ii

For each of these four word-level scores, we calculated a sentence-level score by averaging

across the words in the sentence, accounting for negation by using the finite state machine

described by Agarwal et al., which inverts the scores of words that follow a negation word,

reverting to uninverted scores after the word “but” is encountered. We expect the sentences

surrounding one containing the MRE to be more subjective and emotional as the impact of

the MRE becomes clear. We also expect a build-up in activeness and intensity, peaking at

the MRE sentence.

For example, the following personal narrative has its MRE sentence in bold:

This isn’t exactly creepy, but it’s one of the scariest things that’s ever happened
to me. I was driving down the motorway with my boyfriend in the passenger
seat, and my dad in the seat behind my own. My dad is an epileptic and his fits
are extremely sporadic. Sometimes he goes extremely stiff and other times he
will try to get out of places or grab and punch people. Mid-conversation I felt
his hands wrap around my throat as I was driving, pulling my head back
and making it increasingly difficult to drive. My boyfriend managed to help
steer the car into the hard shoulder but it was one of the scariest experiences in
my life.

To extract the MRE sentence, we looked for changes in the syntactic, semantic, and

affectual scores of the narration. Figure 2.1 shows the activeness and pleasantness DAL
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Figure 2.1: Activeness and pleasantness scores over the course of a personal narrative.

scores for the example narrative above. It shows that the MRE is the most exciting sentence

in the narrative – global maximum in activation – as well as the most horrifying – global

minimum in pleasantness. The overall shape of the activeness scores reflects Prince’s three

components of a minimal story: low initial activation (starting state) and low final activation

(ending state) with a build up to a peak at the MRE (change in state) between them.

2.3 Data

Having developed this change-in-style view of the most reportable event, we needed nar-

ratives on which to test it. A large collection of personal narratives scraped from weblog

posts already existed (Gordon and Swanson 2009), but we chose not to use it for two rea-

sons. First, the Gordon and Swanson corpus consists of weblog posts that contain mostly,

but not necessarily only, narrative content. Gordon and Swanson noted the rarity of weblog
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posts consisting solely of narrative content and so decided to allow for some non-narrative

content in their data, but non-narrative content would only serve to add noise to our change-

in-style view of the MRE.

Second, while acquiring a large amount of personal narratives was possible, acquiring

large amounts of human MRE annotations was less so. A human annotator must read each

narrative, decide what he or she thinks the MRE is, and then identify the sentences that

describe or refer to it. This is time-consuming work, and getting enough human MRE an-

notations to train even a non-neural model would be difficult. We realized that we would

likely need to make use of unannotated personal narratives to train our model. Unfor-

tunately, Gordon and Swanson’s corpus was created by a trained classifier that predicted

whether or not a given weblog post contained mostly narrative content; they reported 75%

precision on the task, so 25% of the documents in their corpus were not personal narratives

at all. A human annotator would be able to identify those non-narrative documents and

remove them from the collection, but as we would need to use unannotated documents as

well, we did not want to risk using so many non-narrative documents to train our model.

Thus, we needed to create a personal narrative corpus of our own – ideally, one that

would address a third concern: how could we incorporate unannotated narratives in training

our model? Since direct supervision would not be possible, distant supervision would be

the next best option, so what data source would allow us to develop heuristics to label MRE

sentences automatically?
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2.3.1 Narrative Collection

We turned to Reddit, a social bulletin board website organized into topic-specific ‘subred-

dit’ communities. Each subreddit is a bulletin board where users make posts, consisting of

a title and (optionally) a body, which can be text, an image or video, or a link to another

website. Other users can make comments replying to these posts, or comments replying to

other comments, forming a tree of comments rooted at the post. Users can also “upvote”

(give a point to) and “downvote” (take a point from) any post or comment. Reddit automat-

ically sorts posts in the same subreddit and comments rooted at the same post by by their

accumulated points and hides comments with negative points, allowing users to filter out

off-topic or low-quality comments.

Figure 2.2 shows an example of a post from the AskReddit subreddit, where users post

questions for other members of the comunity, who reply with comments answering the

questions. It also shows the advantages of collecting our personal narratives from Reddit:

• We could target narrative content by collecting comments replying to AskReddit

posts that asked for stories.

• The points system ensured that most of the collected comments would be high-

quality, on-topic narratives.

• We could capture each narrative as a social act: a comment replying to a prompt,

with audience comments responding to it.

Using the Python Reddit API Wrapper1 (PRAW), we scraped the top 50 AskReddit

posts containing the keyword “story.” Of these posts, 10 were tagged as NSFW (“not safe

1https://praw.readthedocs.org/en/v2.1.20/
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Figure 2.2: Example of AskReddit post and comments.

for work”), indicating they contained adult content; we did not include those posts in the

corpus, as we felt the language would be too different from that used in posts without the

NSFW tag. Another 3 posts did not contain personal narratives, and instead were about

fictional stories in movies or song lyrics. Table 2.1 shows some examples of AskReddit

posts that we scraped, demonstrating the wide variety of story topics included in our corpus.

From the 37 remaining posts, we collected 6,000 top-level comments – those whose

parent was the post, and not another comment – with positive vote score. We also collected
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Post Title

Whats your creepiest (REAL LIFE) story?
Your best “Accidentally Racist” story?
What are your stories of petty revenge?

Table 2.1: Examples of AskReddit posts that serve as prompts for personal narratives.

any sub-comments replying to those top-level comments, discarding any top-level com-

ments with no sub-comments responding to them; we used the number of sub-comments

as an estimate for community engagement with, and thus quality of, the top-level com-

ment. These two filters, vote score and presence of sub-comments, allowed us to achieve

very high precision in collecting personal narratives, as we discuss in the next section.

We tokenized the top-level comments by sentence and removed all sentences following

any variation of the word ‘EDIT’, as these were usually responses to readers’ comments

and not part of the narrative. We discarded texts with fewer than three sentences, leaving

4,896 narratives with an average length of 16 sentences and a maxiumum of 198. While

our experiments, both in this chapter and in Chapter 4, are conducted on these narratives

collected from AskReddit, we expect the change-based model described in the previous

section to apply to personal narratives from any source, whether from another Reddit com-

munity or another social media website; as discussed in the previous chapter, there is a

universal “right” way to tell a story, and we show in this chapter and in Chapter 4 that the

change-based model of narrative captures it.

2.3.1.1 Ethical Concerns

We take a brief detour here to discuss the ethics of scraping personal narratives from the

Web without the explicit consent of the authors. Our collection and use of scraped personal
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narratives described above was ethically sound for three following reasons.

First, we scraped the narratives from AskReddit, a public subreddit. Further, AskReddit

is one of Reddit’s “default subs,” to which every Reddit user is automatically subscribed

when he or she creates an account; content from the default subs is also shown to anyone

browsing Reddit without being logged into an account. Thus, Reddit users know that

content posted to AskReddit can – and very likely will – be seen by anyone.

Second, we did not target any particular user’s content; we collected narratives based

on their topics, not their authors. Further, we did not collect the usernames of any of our

narrative authors, and narratives in our corpus are identified only by numbers reflecting

the order in which they were collected, so it is difficult to discover the author’s username

(although not impossible; a determined snooper could search AskReddit for the text of a

narrative).

Finally, we collected the narratives to train a summarization system. Automatic sum-

marization is an innocuous task, the goal of which is to faithfully convey the important

content in an input document; a summary does not change or misrepresent the content in

its input document.

However, a researcher could easily stumble into ethically unsound territory, such as by

scraping data from a private subreddit (or other similar, non-public community). Content

on private subreddits cannot be seen by users who are not members of that subreddit; to

become a member, a user must be approved by the moderating team of that subreddit. Since

scraping Reddit consists of using a bot that is associated with a user account to access posts,

it is possible for a researcher to gain access to a private subreddit and use a bot to scrape it.

However, unless the researcher had informed that subreddit community of his or her intent,
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and had received permission to collect the data, it would be deceptive and highly unethical

to do so.

Similarly, targeting a specific user’s data, rather than collecting an aggregate of many

anonymous users’ data, or using a user’s data to train for a more targeted task, rather than a

general task like summarization, would be invasive and unethical. Tracking a single user’s

content – for example, to capture changes in his or her writing style over time – or training

a system based on that user’s content – for example, to use style transfer to rewrite text so

that it appears to be authored by him or her – requires the user’s consent.

2.3.2 Human MRE Extraction

We partitioned our data into development, seed, and tuning sets of 100 narratives each; a

testing set of 200 narratives; and a training set of 4,396 narratives. Narratives from 36 of

the 37 AskReddit posts were randomly assigned to each of the development, seed, tuning,

and training sets, such that the proportion of narratives from a given post in each of these

data sets matched the proportion of narratives from that post in the overall corpus. The test

set consisted of 103 narratives from the 37th post, “What’s a story you’ve been wanting to

tell on here but no one has submitted a viable question?” and 97 narratives from the other

36 posts, distributed like those in the other data sets. The development, seed, tuning, and

testing sets were manually annotated by a native English speaker, a graduate student in our

research group, who was instructed to extract all sentences that contained or referred to the

most reportable event.

To measure interannotator agreement, we also had a second annotator (also a native
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English speaker and and graduate student in our research group) extract MRE sentences

from the 100 narratives in our development set. We found substantial agreement (Cohen’s

κ = 0.729) between the two annotators; the two classes, MRE sentence and not, are highly

unbalanced – only 15% of sentences in the human-annotated data sets were MRE sentences

– so observed agreement percentage between the two annotators was extremely high (95%).

In addition to labeling the MRE sentences, our first annotator identified and discarded

31 texts out of 500 that were not personal narratives, but rather Reddit-specific inside jokes

or meta-discussions on how interesting the stories in the thread were. From this, we can see

that the precision of our story collection method is very high. Gordon, Cao, and Swanson

(2007) found that narratives comprised only 17% of the weblog posts that they collected,

while 94% of our 500 top-level comments that were read by a human were narratives.

2.3.3 Heuristic MRE Extraction

It took several weeks for our human annotator to extract 500 personal narratives’ worth of

MRE sentences, after which we experimented on the development set with seven heuristics,

defined below, for automatically extracting MRE sentences from the 4,396 unannotated

narratives in the training set. We measured the performance of each heuristic by selecting

the index sh of the sentence in each narrative with the highest heuristic score and calcu-

lating the root-mean-square error (RMSE), which measured the standard deviation of how
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many sentences away the heuristic fell from a true MRE sentence.

Let N = number of narratives

Si = the set of human-annotated MRE sentences in narrative i

RMSE =

√√√√ 1

N

N∑
i=1

mins∈Si

(
(s− shi

)2
)

We used a linear combination of the three heuristics that achieved the lowest RMSE

(lower is better, with 0 indicating a perfect match between the heuristic and the true MRE

sentences), averaged across all narratives in the development set, to automatically extract

MRE sentences from our training set.

Similarity to comment. The maximum bag-of-words cosine similarity2 between sen-

tence sh and any of the comments replying to the narrative (Figure 2.3). We expected

comments to refer to the MRE because of its shocking nature and importance to the narra-

tive. This heuristic achieved RMSE of 5.5 sentences on the development set.

Comment: Yeah, this happened to me too, almost exactly the same. “〈Friend〉, what’s
your Chinese name?” 〈awkward pause〉 “...I’m from South Korea. I don’t have a Chinese
name.” Beyond awkward.

Narrative: I was meeting people on my floor at one of those beginning of the year Floor
Meetings your RAs put on (last year) and I was talking to an Asian girl named “Sunny” and
she said that was her “American Name” because her real name was too hard for Americans
to say. So I asked “So how do you say your Chinese name?” and she said “...I’m Korean.”
I wanted to die.

Figure 2.3: Example of the similarity to comment heuristic, with its highest-scoring narrative
sentence italicized.

2Everywhere we use bag-of-words cosine similarity, we first stemmed the sentences and removed all
stopwords.
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Similarity to tl;dr. The latent semantic similarity between sentence sh and the tl;dr of

the narrative, if there was one (Figure 2.4). The tl;dr (which stands for “too long; didn’t

read”) is a very short paraphrase of a post or comment written by its author. They are

relatively rare – only 663 narratives, or 14% of our training set, had a tl;dr. Since the MRE

is the central event of the narrative, we expect it to be included in the tl;dr. We calculated

the similarity using the weighted matrix factorization algorithm described by Guo and Diab

(2012). This heuristic achieved RMSE of 5.8 sentences.

Tl;dr: Kid in his underwear flips me off and trash talks me.

Narrative: Playing Xbox at my house, I look to see that my controller needs new batteries.
Searching through my home, I find no batteries and decide to walk to the nearby liquor store
to buy some. Down the street I see a small figure starting to walk towards me. Puzzled,
I walk toward him hoping to see who he was. The figure was a kid of around 5 to 6
completely naked except for his underwear. He flips me off and starts to trash talk me. “Get
over here bitch, come fight me!” “I will fuck you up bitch come on!” I was so confused I
didn’t know what to say. I started to run toward him to stop him from shouting. He looked
and ran, screaming at the top of his lungs, and disappeared into the nearby alley.

Figure 2.4: Example of the similarity to tl;dr heuristic, with its highest-scoring narrative sentence
italicized. The narrative is slightly edited for length.

In contrast, bag-of-words cosine similarity to the tl;dr performed poorly (RMSE of 13.2

sentences; this was very high, considering the average length of a narrative was only 16

sentences). This was due to the tl;dr being both very short and a paraphrase of its narrative.

There are very few words in the tl;dr, and those words are often synonyms of, but not the

same as, words in the narrative. Guo and Diab’s latent semantic similarity score addresses

this word sparsity problem by modeling not the words that are present in the input text, but

the words that are missing from the input text. We also experimented with latent semantic

similarity for the similarity-to-comment and similarity-to-prompt heuristics, but in these
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two cases, it did not perform as well as bag-of-words cosine similarity.

Similarity to prompt. The bag-of-words cosine similarity between a sentence and the

AskReddit post that prompted the narrative (Figure 2.5). The narrative should be relevant to

the prompt, so we expect the MRE to be similar to the prompt text. This heuristic achieved

RMSE of 6.3 sentences.

Prompt: Does anyone have any Bridezilla stories?

Narrative: I knew a woman who was a bridesmaid in a relative’s wedding. She was
married and had been trying to get pregnant for a while. Finally, her and her hubby got
lucky and she conceived. The bridezilla got furious and kicked her out of the wedding
because she would be pregnant in the pictures. 3 months later, sadly, the woman miscarried.
The bride called her with a response along the lines of “good, well now you can be back in
the wedding.” Needless to say, she did not even attend it.

Figure 2.5: Example of the similarity to prompt heuristic, with its highest-scoring sentence itali-
cized.

We used the heuristic with the fourth lowest RMSE as one of the baselines in our

experiments:

Last sentence. The last sentence in the narrative. Since the events of a narrative build

up to the MRE, the MRE sentence should occur near the end. This heuristic is the personal

narrative equivalent of the lead baseline in news summarization. The last sentence heuristic

achieved RMSE of 6.9 sentences.

Other heuristics. We also tried the following:

• Single-sentence paragraph (RMSE of 8.7 sentences). This heuristic was meant to

capture emphasis, as an MRE might be placed in its own, separate paragraph to draw

attention to it.
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• First sentence (RMSE of 13.7 sentences). As previously discussed, a news-style

lead baseline could work well on personal narratives with abstracts that mention

the MRE; this heuristic was meant to capture a reference to the MRE in abstract.

Unfortunately, most narratives do not have abstracts, and not all abstracts mention

the MRE.

We extracted MRE sentences from the training set automatically, using a linear com-

bination of the three best-performing heuristics: similarity to comment, similarity to tl;dr,

and similarity to prompt.

hlabel = 0.2 ∗ hcomment + 0.5 ∗ htldr + 0.3 ∗ hprompt

This linear combination outperformed each of the three alone, achieving an RMSE of 5.1

sentences (lower is better). The weights for each heuristic were tuned on the development

set. For stories without a tl;dr, that heuristic was set to 0. The sentence in the narrative with

the highest heuristic score was selected as the MRE sentence. We extracted only one MRE

sentence per narrative using the heuristics, in constrast with the human annotation, which

allowed any number of MRE sentences to be extracted from a narrative; we chose to extract

a fixed number of MRE sentences automatically to avoid having to use a tuned threshold

that might result in some narratives having dozens of MRE sentences while others had

none.

In 52 of the 99 stories in the development set, we found that multiple, consecutive sen-

tences were labeled by our annotator as MRE sentences. The average number of consecu-

tive MRE sentences was 2.5, so to reflect this, we labeled our training set in three-sentence
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Number of Sentences

Data Set Stories MRE Total

dev* 99 169 1528
seed* 82 184 958
tuning* 95 212 1301
testing* 193 444 2771
training 4178 11205 67954

Table 2.2: Distribution of MRE sentences. * denotes human annotations.

blocks. The sentence selected by our heuristics, along with the immediately preceding

and following sentences, were all considered MRE sentences. The result was the weakly-

labeled training set in Table 2.2. Just over 16% of the weakly-labeled sentences were MRE

sentences.

2.4 Experiments

Using this weakly-labeled Reddit dataset and the change-based view of narration described

in Section 2.2, we conducted two experiments on automatically extracting MRE sentences.

We compared our results with three baselines: random, our extraction heuristic, and the

last sentence of the narrative (the next-best heuristic).

As described in the previous section, we labeled our training set in blocks of three con-

secutive MRE sentences, centered on the sentence from each narrative that was selected by

our heuristic. To account for this, in our experiments and baselines, we predicted the pres-

ence of an MRE sentence in a three-sentence block: in testing, we considered a predicted

block to be correct if it contained at least one human-extracted MRE.
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2.4.1 Features

Stylistic Features. For each sentence in a narrative, we generated 176 sentence-level fea-

tures capturing changes in the narration. We first scored each sentence using each of the

sixteen metrics shown in Table 2.33. The semantic metrics, cossimilarity and lssimilarity,

refer to bag-of-words cosine similarity and latent semantic similarity of a sentence to the

preceding sentence.

Type Metric Names

Syntactic
sentlength, vplength, lengthratio, sentdepth, vpdepth, depthratio,
wordlength, structcomplexity, wordformality, wordcomplexity

Semantic cossimilarity, lssimilarity

Affectual pleasantness, activation, imagery, subjectivity

Table 2.3: The sixteen narration-style metrics.

We then smoothed the scores across sentences in a narrative by applying a Gaussian

filter. We also tried weighted and exponential moving averages, as well as a Hamming

window, but the Gaussian performed best in experiments on our tuning set. Finally, we

generated eleven features for each metric at each sentence: the sentence score; whether or

not the sentence is a local maximum or minimum; the sentence’s distance from the global

maximum and minimum; the difference in score between the sentence and the preceding

sentence, the difference between the sentence and the following sentence, and the average

of these differences (approximating the incoming, outgoing, and self slopes for the metric);

and the incoming, outgoing, and self differences of differences (approximating the second

derivative).

3While lexical formality and complexity scores are not properly features of the syntax of a sentence,
we considered them part of the same category as the truly syntactic features, whose goal was to capture the
formality and complexity of the sentence.
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Other Features. We included an additional ten features inspired by Labov’s theory of

narrative structure:

• The tense of the main verb and whether or not there is a shift from the previous

sentence. Labov (2013) suggests a shift between the past and the historical present

near the most reportable event.

• The position of the sentence in the narrative; the MRE usually appears near the end.

We implemented position as four binary features by dividing the narrative into four

sections.

• The bag-of-words cosine similarity and latent semantic similarity between the sen-

tence and the first and second sentences in the narrative. While the MRE sentence

usually appears near the end of the narrative, Labov (2013) notes that the abstract, a

short introduction that occurs in some narratives, often refers to the MRE.

It is important to note that we did not use any lexical features in our experiments –

the system we trained does not in any way model what a narrative is about. This was a

deliberate choice in the design of our system. Because our Reddit narratives were collected

from just 39 different prompts, a system that did use lexical features might learn a set of

words topically related to each prompt and classify MRE sentences based on those words.

Such a system would perform poorly on narratives about previously unseen topics. We

designed our features to capture only the similarities and differences between a sentence

in a narrative and its neighbors, keeping them independent of the actual content – the

deep structure – of the narrative. Our hope was that the narration alone contained enough

information to allow our system to automatically extract MRE sentences.
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2.4.2 Distant Supervision

Our first experiment used distant supervision with our weakly-labeled training set: the

heuristically extracted MRE sentences were treated as if they were gold standard labels.

We classified blocks of three sentences as containing an MRE sentence or not. The two

classes, MRE and no-MRE, were weighted inversely to their frequencies in the weakly-

labeled training set, and all features were normalized to the range [0, 1]. We trained a

support vector machine with margin C = 1 and an RBF kernel with γ = 0.001 (these

parameters were tuned using grid search on our human-annotated tuning set).

Trial Precision Recal F-Score

Last sentence baseline 0.208 0.112 0.146
Heuristic baseline 0.107 0.333 0.162
No change-based features* 0.146 0.378 0.211
Random baseline 0.185 0.586 0.281
Change-based features only* 0.351 0.685 0.466
All features* 0.398 0.745 0.519

Table 2.4: Distant supervision experiment results (* indicates significant difference from baselines,
p < 0.01).

The results of the distant supervision experiment are shown in Table 2.4. We trained

three different systems using different sets of features: the change-based features included

all 176 stylistic features except for the metric scores themselves; the non-change-based

features included the other Labov-inspired features and the metric scores, but none of the

other stylistic features, such as slopes and distance from global extremes.

Our best results use both sets of features, but notably, using the change-based features

alone achieved significant improvement over the three baselines (p < 0.00005). The no-

change feature set was outperformed by the random baseline (p < 0.0024), supporting our
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hypothesis that it is change in a stylistic metric, rather than the metric score itself, that

predicts MRE sentences.

2.4.3 Self-Training

The distant supervision approach treats heuristically-labeled data as if it were human-

labeled, gold standard data. The hope is that a large amount of noisy data would allow

one to train a more general model than would a very small amount of clean data. However,

there is the risk that some of these noisy training labels are so egregiously bad that they

could lower the overall performance of the trained model.

Our second experiment used a self-training approach, where a classifier uses a small,

labeled seed set to label a larger training set. In pure self-training, there is the risk that

these predicted labels are incorrect or reflect strange outliers or biases in the seed set. We

addressed the risks of both the distant supervision and self-training approaches by adding

an additional quality control step to self-training: to ensure the quality of a self-training

predicted label, we required that it agree with the heuristic weak label for that sentence in

order to be added to the training set.

With the same parameter settings as in the distant supervision experiment, we trained an

SVM on our hand-labeled seed set of 958 sentences. We used this initial model to predict

labels for the training set, and all sentences where this labeling agreed with the heuristic

labeling were added to the seed set and used to train a new model, which was in turn used

to label the remaining unused sentences (ie. sentences whose predicted labels from the

previous round had disagreed with the heuristic labels), and so on until none of the current
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model’s labels agreed with any of the remaining heuristic labels. Figure 2.6 shows the

learning curve for the self-training experiment, along with the growth of the self-training

set.
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Figure 2.6: Learning and training set size curves for self-training.

The results of the self-training experiment are shown in Table 2.5. We achieved the best

performance, F-measure of 0.635, after 9 rounds of self-training; self-training terminated

after 10 rounds, but the 10th round had no effect on model performance.

Trial Precision Recall F-Score

Random baseline 0.185 0.586 0.281
Seed training only* 0.374 0.617 0.466
Distant supervision* 0.398 0.745 0.519
Self-training* 0.478 0.946 0.635

Table 2.5: Self-training experiment results (* indicates significant improvement over the baseline,
p < 0.01).
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The initial model, trained only on the seed set, performed nearly as well as our distant

supervision experiment. This illustrates that sheer quantity of data may not overcome the

use of accurate manual labels on a small dataset. As described in Section 2.2, the distant

supervision labels were based on a linear combination of three heuristics that achieved at

best an RMSE of 5.1 sentences. However, with quality-controlled self-training, we were

better able to exploit the noisy heuristic labels by using only those that agreed with the seed-

trained model, thus reducing the amount of noise. 52,147 of the 67,954 total heuristically-

labeled sentences were used in our quality-controlled self-training experiment – roughly

27% of our heuristic labels were too noisy to use.

2.5 Discussion and Error Analysis

Because we used an non-linear kernel in our SVMs, we were not able to examine fea-

ture weights directly. Instead, Table 2.6 shows the results of a logistic regression model

trained on our features. The 10 best features are shown, along with their weights and 95%

confidence intervals.

From feature 8, we see that MRE sentences tend to occur just before the narrative’s

global minimum in imagery. This fits Labov’s obvservation that the most reportable event

is usually followed by the evaluation, where the narrator praises or blames characters for

their roles in the narrative and discusses possible alternative outcomes. Feature 1 indicates

that MRE sentences show a sharp increase in imagery compared to previous sentences;

the MRE is described in a burst of vivid language, followed by the more abstract author

opinions.
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Feature Name Weight Confidence Interval

1. incomingd2 imagery 4.174 (4.062, 4.287)
2. distancefrommin wordformality neg 4.109 (3.952, 4.265)
3. cossimilarity adjacent 3.618 (3.425, 3.812)
4. distancefrommin activeness 3.377 (2.855, 3.298)
5. sentdepth 3.364 (3.138, 3.590)
6. distancefrommin wordlength neg 3.321 (3.018, 3.624)
7. distancefrommin vpdepth 3.034 (2.823, 3.247)
8. distancefrommin imagery neg 2.790 (2.524, 3.056)
9. wordformality neg 2.329 (2.226, 2.432)
10. incomingd2 vplen 2.128 (1.938, 2.318)

Table 2.6: Top 10 features in self-training experiment.

Features 2 and 9 indicate that MRE sentences tend to use informal language – a textual

echo to Labov’s observation that the subjects of his sociolinguistic interviews spoke less

formally and more colloquially as they relived the climaxes of their stories.

Feature 3 suggests that MRE sentences are similar to the surrounding sentences. While

we expected MRE sentences to be different from their neighbors due to the unusual and

shocking nature of the MRE, this feature seems instead to reinforce the idea, initially sug-

gested by our human annotator’s labels, that MREs tend to described over the course of

multiple, consecutive sentences, rather than in a single sentence. From feature 4, we see,

as expected, that the MRE is far from the narrative’s global minimum in activeness, as it is

the end of a chain of events, far away from the stative orientation.

Finally, features 5 and 10 suggest that MRE sentences are not only long, but much

longer than the preceding sentences, and feature 6 indicates that MRE sentences are close to

the global minimum in average word length. Shorter average word length is expected, as an

indicator of both informal word choice and emphasis. Long MRE sentences, however, were

unexpected. Looking over our development set, we found that many authors combined the
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description of the MRE with evaluative material in a single sentence, resulting in a longer

and more syntactically complex MRE sentence than is found in Labov’s data.

Our experiments showed that our change-based view of narration is effective for iden-

tifying MRE sentences, and this model provides evidence supporting the change-in-state

definition of narrative suggested by Prince (1973). We achieved high recall with the self-

training experiment (95%), but precision was low across the board, suggesting that, while

MRE sentences do occur at extremes in syntactic complexity, semantic similarity, and emo-

tional activation, there may be many non-MRE local extremes throughout a narrative.

Examining our results, we found a few common sources of error. False positive sen-

tences tended to have high imagery and activeness. In Table 2.6, we saw that imagery

and activeness alone do not indicate the presence of the MRE. An MRE sentence is not

just active; it is separated from the stative introduction by the other events of the narrative.

Nor is it enough for a sentence to have high imagery; the MRE must be even more vividly

described than the preceding events – demonstrating again the importance of change in

our view of narrative. False negative sentences tended to have high scores in syntactic

complexity and formality.

2.6 Conclusion

The main contributions described in this chapter (based on work published in Ouyang and

McKeown (2015)) are as follows:

• We created a new approach to modeling narrative, based on linguistic theories narra-

tion (Prince 1973; Polanyi 1985; Labov 1997). Our model tracks stylistic sentence
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characterstics over the course of a narrative, capturing changes in complexity, mean-

ing, and emotion.

• We created a new corpus of 4,896 personal narratives, taking advantage of AskRed-

dit, a online community where members often prompt each other for stories. The

corpus consists of both high-quality human annotations of sentences describe or re-

fer to the most reportable event of the narrative, as well as noisy labels automatically

generated using heuristic rules that leverage the comment-thread structure of Reddit

content.

• We showed that our content-agnostic model is able to identify MRE sentences purely

by modeling changes in stylistic features among sentences in a personal narrative.

We also demonstrated that large quantities of hand-labeled data are not required for

this task: the noisy heuristic labels were sufficient.

• We combined the distant supervision and vanilla self-training approaches into quality-

controlled self-training, a learning scheme that successfully filtered out low-quality

noisy labels.

This first foray into personal narrative summarization was intended as an extractive first

step for a summarization system. The MRE is a real-world event that exists outside of the

narration of a personal narrative, and thus an abstractive second step to rewrite the extracted

MRE sentences into self-contained, standalone summaries followed naturally.

Unfortunately, we soon realized that the MRE sentence selection task as it was con-

ceived in this early work was not a good parallel for extractive summarization. Our human
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annotator selected all sentences that referred to the MRE, introducing two problems for

extractive summarization. First, the extracted MRE sentences often did not include enough

context to understand them in isolation. Second, extracting all sentences referring to the

MRE often resulted in redundancy among selected sentences and the inclusion of extrane-

ous information; many MRE sentences contained irrelevant text, such as narrator opinions.

Thus, while the work described in this chapter was successful in detecting emotional im-

pact in personal narratives, it did not produce usable extractive summaries.

Now obviously my balls drop and instinct kicks in as I speed up, it’s quite a small round-
about so I need to either slow down enough to turn left, or speed up and nope the fuck
straight out of there.

Figure 2.7: Example MRE sentence that does not work as an extractive summary.

Figure 2.7 shows the human-annotated MRE sentence for one of the narratives in our

corpus. One can see from the colorful language in the MRE sentence that our annotator

captured a very emotionally-charged moment. Unfortunately, the MRE sentence is difficult

to understand without the rest of the narrative – what is the narrator afraid of?

Another problem with this first approach to personal narrative summarization was that

it was unclear how to proceed from extracting MRE sentences to rewriting them into an

abstractive summary. We had no reference summaries for what such a thing should look

like – in fact, we had no gold standard annotations for what the MREs, the real-world

events underlying the MRE sentences in the narration, were.

In the next chapters, we describe how we addressed the problem of creating a true per-

sonal narrative summarization corpus, containing both extractive and abstractive versions

of the same summary for a narrative, as well as how we adapted the change-based model
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of narrative for true extractive summarization of personal narrative.
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3. A Summarization Corpus

To develop a two-stage summarization system with extractive content selection and ab-

stractive editing, we need personal narratives paired with matching extractive and abstrac-

tive summaries. We have as a starting point our Reddit personal narrative corpus, with its

most reportable event (MRE) sentence annotations. It is one of the two personal narra-

tive corpora in existence; the other is the weblog narrative corpus of Gordon and Swanson

(2009), which is mostly unannotated, although small subsets of it have been labeled with

Labov’s elements of narrative structure (Swanson et al. 2014). As discussed in the previous

chapter, the MRE sentence annotations had several limitations that made them unsuited for

the abstractive summarization task.

In this chapter, we describe how we address these limitations and transform the Reddit

personal narrative corpus into a summarization corpus. The reference summaries in this

new corpus are organized in matching pairs of human-written abstractive summaries and

extractive summaries explicitly constructed to match the abstractive summaries in content;

only a handful of corpora provide paired extractive and abstractive summaries of this kind.

Our corpus consists of 1,088 unique abstractive summaries, written by trained human an-

notators, paired with crowdsourced extractive summaries. Also using crowdsourcing, each

pair is annotated with phrase-level alignments, and each alignment is annotated with the

six summarization rewriting operations identified by Jing and McKeown (1999): reduction

(more commonly called compression), combination (more commonly called fusion), syn-

tactic reordering, lexical paraphrasing, generalization, and specification. This is the only
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summarization corpus in existence that provides not only paired, aligned extractive and

abstractive summaries for each input document, but also an analysis of which text-to-text

generation techniques are needed to rewrite an extractive summary into its corresponding

abstractive summary.

3.1 Related Work

While there are many single-document summarization copora available, ours is the only

one for personal narrative, as well as the only one to include text-to-text generation tech-

nique annotations. Corpora do exist for some of the individual rewriting operations de-

scribed by Jing and McKeown (1999), such as compression (Filippova and Altun 2013; Ka-

jiwara and Komachi 2016), fusion (McKeown et al. 2010), and lexical paraphrasing/syntactic

reordering (Ganitkevitch, Van Durme, and Callison-Burch 2013), but the rewriting oper-

ations in these corpora are captured in isolation, whereas human summarizers may apply

multiple operations to a single phrase. In this section, we do not give an exhaustive list of

existing single-document summarization corpora; instead we discuss in detail those corpora

that we either used or considered using in the work described in the rest of this dissertation,

as well as any corpora with interesting properties similar to those of our personal narrative

summarization corpus. We organize the corpora we discuss by genre: news, discussions,

and web text.
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3.1.1 News Summarization Corpora

While the corpora described in this section provide only abstractive reference summaries,

they have all been used to train and evaluate both extractive and abstractive summarization

systems. The number and size of news summarization corpora greatly outstrips those of

any other text genre.

3.1.1.1 Document Understanding Conferences

Year Documents Summary Length

2001 300 100
2002 600 100
2003 640 10
2004 500 ∼12.5*

Table 3.1: DUC single-document news summarization datasets. *The summary length for DUC
2004 was 75 bytes, which is approximately 12.5 words.

Single-document news summarization was been a recurring task in the early Document

Understanding Conferences (DUC), usually paired with multi-document news summariza-

tion. However, single-document summarization was removed after DUC 2004, and later

DUCs retained only multi-document summarization tasks. Table 3.1 shows the four DUC

single-document summarization datasets: the number of summarized documents provided

for system development and training and the lengths of reference summaries. Of particular

note are the provision of multiple reference summaries for each document, and the small

sizes of the datasets and the short lengths of the DUC 2003-4 summaries.
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3.1.1.2 The Gigaword Corpus

Rush, Chopra, and Weston (2015) created a summarization corpus of news article head-

lines (the summaries) and first sentences (the documents) using the annotated Gigaword

corpus (Napoles, Gormley, and Van Durme 2012). They first collected about 9.5 million

news articles from the Gigaword corpus and created pairs of headlines and first sentences,

then filtered these 9.5 million pairs to remove spurious pairs, such as those where the

headline and first sentence shared no content words in common, resulting in 4.2 million

document-summary pairs. The Gigaword corpus was the first large-scale corpus designed

for the training of end-to-end neural abstractive summarization systems. Both the docu-

ments and summaries in this corpus consist of single sentences and are extremely short:

documents average 31.4 words, while summaries average 8.3 words.

3.1.1.3 The CNN/Daily Mail Corpus

Hermann et al. (2015) collected a corpus of 311,672 news articles from the CNN and Daily

Mail websites, along with human-written bullet-point highlights, which they used to cre-

ate cloze-style queries to train a neural question-answering system. Nallapati et al. (2016)

modified this corpus for summarization by skipping the query creation step of Hermann

et al.’s web crawling script and using the intact highlights for an article as its summary,

treating each highlight as a sentence. Thus the CNN/Daily Mail corpus consists of multi-

sentence summaries, in constrast to the single-sentence summaries in DUC 2003-41 and

Gigaword: the average summary length in the CNN/Daily Mail corpus is 53 words (3.72

1DUC 2001-2, which had multi-sentence summaries, are no longer used in recent work on summariza-
tion.
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sentences).

3.1.1.4 The New York Times Annotated Corpus

The New York Times (NYT) annotated corpus (Sandhaus 2008) contains 664,998 arti-

cles paired with summaries written by the New York Times Indexing Service. (While

the NYT corpus properly refers to the entire set of nearly two million articles, hereafter

when we discuss the NYT corpus, we mean the subset of articles that are paired with sum-

maries). Paulus, Xiong, and Socher (2018) were the first to use this corpus for end-to-end

neural abstractive summarization, noting that the summaries in the NYT corpus tend to

be shorter (40 words on average) and more heavily rewritten than those in the CNN/Daily

Mail corpus, where the summaries tend to be worded more similarly to their articles.

3.1.1.5 The Newsroom Corpus

The largest and most recent news summarization corpus was collected by Grusky, Naaman,

and Artzi (2018), who scraped 1,321,995 articles from 35 news websites, using HTML

metadata to identify the human-written summaries that are often used as social media or

search result descriptions. Grusky et al. evaluted their document-summary pairs using

three metrics: coverage, the percentage of summary words that appear in the document2;

density, the average length of the shared word sequences between the summary and the

document that contain each summary word; and compression, the ratio of document words

to summary words. They found that, in general, the greater the summary compression

rate for a given news website, the less diversity in coverage and density – that is, shorter

2This definition may seem counterintuitive, but the metric was intended to measure the degree to which
the summary copied from the document, ie. how extractive (as opposed to abstractive) it was.
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summaries were correlated with more standardized summarization strategies within a news

organization.

Grusky et al. also compared their document-summary pairs with those of the DUC

2003-4, CNN/Daily Mail, and NYT corpora, finding that DUC had by far the highest

median compression ratio: a document is 47 times longer than its summary. The NYT

corpus, as Paulus et al. qualitatively observed, was quantifiably more abstractive than the

CNN/Daily Mail corpus, with lower average coverage and density scores than CNN/Daily

Mail. In comparison, the Newsroom corpus summaries cover a wider range of density and

coverage scores than either NYT or CNN/Daily Mail.

3.1.2 Meeting Summarization Corpora

Meeting transcripts were the first major non-news genre to receive attention in text sum-

marization research. By their nature, meeting summarization corpora are time-intensive to

produce, requiring human annotators to review long recordings and transcripts. As a result,

meeting summarization corpora are relatively small in terms of the number of document-

summary pairs, and the documents and summaries are very long. Email threads are a

related genre that introduce an additional difficulty: most collections of email are not pub-

lically available due to privacy concerns.

3.1.2.1 The ISCI Meeting Corpus

Janin et al. (2003) recorded and transcribed 75 naturally-occurring meetings at the Interna-

tional Computer Science Institute. Shriberg et al. (2004) segmented the meeting transcrip-

tions into discourse units called dialogue acts, and Murray et al. (2005) created extrac-
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tive and abstractive summaries for each meeting. Their annotators first wrote abstractive

summaries of up to 800 words, in which they were instructed to cover certain pieces of

information: the general purpose of the meeting; any decisions, progress, or achievements

made; and any problems discussed. The annotators were then asked to select any number

of dialogue acts from the segmented meeting transcription to cover the information in their

abstractive summary, thus producing an extractive version of the summary. Finally, the an-

notators aligned the extractive summaries to the abstractive summaries by annotating each

abstractive summary sentence with the dialogue acts that supported the correctness of that

sentence. The result is a summarization corpus that is the most similar to our own, with

three key differences:

• The size of the corpus is small, consisting of only 75 document-summary pairs.

• The documents and summaries in the ISCI corpus are very long. While the lengths

of the meeting transcripts are not reported, each recording was roughly one hour; the

summaries were up to 800 words long, which is too long for current neural abstrac-

tive summarization systems to generate.

• While this corpus is the only one besides ours to provide alignments between the

extractive and abstractive summaries for a meeting transcript, it does not provide

text-to-text generation technique annotations for the alignments.

3.1.2.2 The AMI Meeting Corpus

In contrast to the naturally-occurring meetings of the ISCI corpus, the AMI meeting cor-

pus (Carletta et al. (2005) and McCowan et al. (2005)) consists of 141 elicited meetings, in
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which participants role-played a design meeting for a new type of remote control, and one

participant, assigned to be the project manager, was asked to write a report summarizing

the meeting. The recorded meetings were, like those in the ISCI corpus, transcribed and

segmented into dialogue acts, and extractive summaries were created by selecting dialogue

acts to support the project managers’ abstractive summaries. Unlike ISCI’s extractive sum-

maries, AMI’s were not constructed by the authors of the abstractive summaries, and they

were not aligned back to the abstractive summaries.

3.1.2.3 The Enron Email Dataset

Carenini, Ng, and Zhou (2007) created extractive summaries for 20 email threads from the

publically available Enron email dataset, including both single-chain threads, where each

email in the thread had only one reply, and tree-structured threads, where some emails in

the thread had multiple replies. Annotators were asked to extract sentences to construct

a summary roughly 30% as long as its email thread, as well as to classify each extracted

sentence as either essential or optional, where essential sentences must be included in

the summary, and optional sentences are helpful for understanding the essential ones and

should be included if the length limit allows.

Carenini et al. used five annotators per email thread and scored each sentence based on

the number of annotators who classified it as either essential or optional. They found that

about 12% of sentences were overall essential, ie. agreed upon by all five annotators, with

at least two annotators marking the sentence as essential and at least two others marking

it as essential or optional. Unfortunately, this one agreement statistic leaves the reader

wanting to know more: do the overall essential sentences form a complete summary, or are
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there other sets of equally essential sentences, where each sentence in the set provides the

same essential piece of information, such that the annotators disagreed on which sentence

to extract from the set? (This question was addressed by Nenkova and Passonneau (2004).)

3.1.2.4 The BC3 Email Corpus

Ulrich, Murray, and Carenini (2008) annotated 40 email threads from the W3C email cor-

pus. Three annotators worked on each email thread, producing first a 250-word abstractive

summary, then aligning each sentence in their abstractive summary to a sentence in the

email thread, and finally creating an extractive summary by selecting important sentences

from the thread. Like the ICSI meeting corpus, the BC3 email corpus is structurally sim-

ilar to the personal narrative corpus we describe in this chapter, except for its small size,

long summaries, and its alignments being between abstractive summary and the input doc-

ument rather than the extractive summary – Ulrich et al. treated the extractive summary as

a completely separate task from the abstractive summary.

3.1.3 Web Corpora

Many web-based summarization tasks – such as summarizing live blogs (Avinesh, Peyrard,

and Meyer (2018)) and Twitter topics (Sharifi, Inouye, and Kalita (2013)) – are framed as

multi-document, rather than single-document, summarization. Relatively few dedicated

corpora for either single- or multi-document web summarization of the kind described in

the previous two sections exist (that is, pairs of documents and human-constructed gold

standard summaries), partly because of the relative ease of scraping large amounts of web
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text, and partly because early work on web summarization used mainly unsupervised ap-

proaches.

3.1.3.1 The Webis-TLDR-17 Corpus

Völske et al. (2017) created a large corpus of “found” summaries using the social bulletin

board website Reddit. They filtered posts and comments from a publically available Reddit

web crawl, retaining only those that contained some variation of the acronym “TL;DR”,

which stands for “too long; didn’t read.” The acronym TL;DR is usually followed in a post

by a very short, often humorous summary written by the author of the post; it was first used

in natural language processing by Ouyang and McKeown (2015), as we described in the

previous chapter.

Post: Doing some traveling this year and I am looking to build the ultimate travel kit . . . So
far I have a Bonavita 0.5L travel kettle and AeroPress. Looking for a grinder that would
maybe fit into the AeroPress. This way I can stack them in each other and have a compact
travel kit.

TL;DR: What grinder would you recommend that fits in AeroPress?

Figure 3.1

Völske et al. further filtered the posts to remove those written by summarization

bots, for a final corpus of 4 million document-summary pairs. However, as with any

heuristically-labeled dataset, Völske et al.’s summaries contain some noise. Figure 3.1

shows a document-summary pair from the Webis-TLDR-17 corpus. The TL;DR here is

not really a summary of the post; the post contains the contextual information a reader

needs to answer the question posed in the TL;DR.
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3.2 The Reddit Personal Narrative Corpus

In this section, we briefly review the Reddit corpus, which we discussed in the previous

chapter, and which served as our starting point for building a personal narrative summa-

rization corpus.

We collected 4,896 personal narratives from AskReddit, which had been posted in re-

sponse to 19 different prompts, along with readers’ comments posted in response to the

narratives. A human annotator labeled a subset of 476 narratives with most reportable

event (MRE) sentences; she was instructed to first decide what she thought was the climac-

tic event of the narrative and then label all sentences that referred to it. Our intent was that

the MRE sentences should serve as an extractive summary of the narrative, but our instruc-

tions for our annotator did not elicit good summaries. Figure 3.2 shows the MRE sentence

for a narrative, compared to the abstractive and extractive summary for that narrative from

the corpus whose creation we describe in this chapter. The MRE sentence makes a poor

summary because it is impossible to figure out what is happening in the narrative from

reading the MRE sentence on its own – it is impossible even to tell that the MRE sentence

comes from the same narrative as the summaries!

Another limitation of the original Reddit corpus is that we had no explicit representa-

tion of the MRE itself, only the sentences in the narrative that referred to it. Even if the

MRE sentences had made reasonably good extractive summaries, we still had no example

of what a good, self-contained, standalone description of an MRE – an abstractive summary

– should look like. Since abstractive summarization is our ultimate goal, we begin build-

ing the new Reddit personal narrative summarization corpus by eliciting human-written

59



MRE: Now obviously my balls drop and instinct kicks in as I speed up, it’s quite a small
roundabout so I need to either slow down enough to turn left, or speed up and nope the
fuck straight out of there.

Extractive: As I’m looking around as to what the fuck is going on, we approach the
roundabout and there is a man in medical looking attire next to a woman in what looked
like white pyjamas, with blood covering her clothing. I go straight, and as we go past the
woman attempts to launch herself at my car as the man looked like he was trying to stop her.

Abstractive: While driving home I saw a woman covered in blood standing by the side of
the road. As I passed she attempted to launch herself at my car.

Figure 3.2: An MRE sentence compared with extractive and abstractive summaries.

descriptions of the MRE.

3.3 Abstractive Summaries

We use the same subset of 476 narratives as in in the previous chapter, partitioned into

7 slices of 68 narratives each. We trained four graduate student annotators from the De-

partment of English and Comparative Literature. Each was assigned four slices, three of

which were shared with one other annotator and one slice that was common to all annota-

tors (Table 3.2). Thus, for our 476 narratives, there are 408 with two different abstractive

summaries written by two different annotators, and 68 with four different abstractive sum-

maries written by all four annotators.

Annotator Slices

Annotator A 1, 3, 4, 7
Annotator B 1, 2, 5, 7
Annotator C 2, 3, 6, 7
Annotator D 4, 5, 6, 7

Table 3.2: The four annotators’ narrative slice assignments.
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Each annotator participated in a 30-minute training session: they were told to identify

the most reportable event of each narrative by imagining they were about to tell the story to

a friend and wanted to ask, “Did I tell you about the time that. . . ?” They were instructed to

write one or two sentences to complete the question and include any context they thought

necessary for their friend to understand it (e.g., “I slipped on a banana peel” is different

from “I slipped on a banana peel that my rival planted”). The annotators were given a tuto-

rial, consisting of five narratives accompanied by questions about which events and pieces

of contextual information should be included in the summary, as well as an example sum-

mary they could read after answering the questions. The annotators worked independently,

summarizing their assigned narratives over the course of three weeks; they produced a total

of 1,088 different abstractive summaries.

The abstractive summaries allow us to address another limitation of our previous MRE

sentence annotation scheme: the difficulty of measuring agreement. While we had found

substantial agreement (Cohen’s κ = 0.729) between two annotators on identifying MRE

sentences on a subset of 100 personal narratives, we could not determine the cause of

disagreement. We had asked the annotators to visualize the MRE internally and to se-

lect sentences based on that, but we had no way of knowing what each annotator thought

the MRE was, and so there were two possible sources of disagreement. The annotators

could have disagreed on which sentences best represented the MRE; one of the challenges

of evaluating extractive summaries is that there is often not a single “correct” set of sen-

tences, but rather many different sets of sentences that all convey roughly the same infor-

mation (Nenkova, Passonneau, and McKeown 2007).

Alternatively, the annotators could have disagreed on what the MRE itself was; what
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was shocking and unusual to one annotator might not have been shocking and unusual to

the other, depending on his or her background. In Figure 3.2, for example, the author of the

abstractive summary focuses on one event, the woman throwing herself at the narrator’s

car, while the MRE sentence annotator focuses on another, the narrator’s reacting with

a dangerous driving maneuver. With abstractive summaries explicitly stating what each

annotator thinks the MRE is, however, we are able to measure agreement on the MRE itself.

This is an important sanity-check, as low agreement on MREs would suggest a fundamental

problem with our belief in a single climactic event that can serve as the summary of an

entire personal narrative.

You will be shown two short texts, each describing an event or situation. The task is to
determine 1) whether or not the two texts describe the same event or situation, and 2) if so,
how similar the descriptions are.

Assume that the characters in both texts are the same, eg. if a character called ”Joe” in one
text is a soccer player, and a character referred to as ”he” in the other text is also a soccer
player, assume they are the same person.

Figure 3.3: Turker instructions for the abstractive summary agreement HIT.

We evaluate interannotator agreement on both the MRE and the context required to

understand it using an Amazon Mechanical Turk HIT (Human Intelligence Task). Turkers

were shown two abstractive summaries of the same narrative, written by different anno-

tators – but not the narrative itself – along with the instructions shown in Figure 3.3. We

then asked the Turkers to decide whether or not the summaries described the same event.

We required Turkers to complete a qualification test before working on the HIT, ensuring

they had read and understood the task instructions. The test consisted of pairs of example

summaries constructed so that the correct answers to our question was clear: the paired
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summaries were either about completely different topics, or identical except for some lex-

ical variation or extra pieces of information that we inserted into one or both summaries.

Figure 3.4 shows one of the qualification test questions we used.

Feedback from Turkers indicated that answering both questions for the agreement HIT

took about 15-20 seconds per; they were compensated at a rate of $0.05 per HIT. Three

Turkers worked on each HIT, and we considered a pair of summaries to be in agreement if

at least two out of three Turkers indicated that the summaries described the same event.
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Table 3.3 shows each of our four annotators’ average agreement with the other three

annotators. The right two columns correspond to the percentage of narratives on which

each annotator agreed with the other three annotators, depending on whether two (consen-

sus) or all three Turkers (unanimous) agreed on whether or not the two summaries were

about the same general event; each annotator shared 136 narratives in common with each

other annotator. We wondered if narrative length might affect agreement, since longer nar-

ratives contain more events and contextual information for annotators to choose from, but

we find that length has minimal effect: for narratives of more than 32 sentences, more

than one standard deviation above the average narrative length of 16 sentences, consensus

agreement among all annotators was 75.73%, and unanimous agreement was 88.41%.

Abstractive Summary Agreement

Annotator Consensus Unanimous

A 79.17% 91.05%
B 82.85% 91.25%
C 77.70% 87.80%
D 82.85% 91.33%

Table 3.3: Observed agreement among annotators on the main events described by their abstractive
summaries.

Figure 3.5 shows a pair of agreeing and a pair of disagreeing abstractive summaries.

With the disagreeing summaries, annotators A and B focus on different aspects of the

narrative. As with the abstractive summary and MRE sentence in Figure 3.2, one annotator

focuses on what happened to the narrator, while the other focuses on what the narrator

did in response; B explains why the narrator was angry with the rude woman, while A

summarizes the narrator’s confrontation with the her.

If a Turker indicated that the two summaries they had read described the same event,
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Abstract A: My neighbor’s mom saved me from being kidnapped into a car when I was six.

Abstract B: Someone tried to kidnap me when I was six, but a neighbor’s mom grabbed
me before they got me.

(a) Agreeing abstractive summaries.

Abstract A: I ran my mouth off at this rude woman.

Abstract B: I held a door for a lady and she told someone on the phone that I had rudely
ran around her.

(b) Disagreeing abstractive summaries.

Figure 3.5: Examples of agreeing and disagreeing abstractive summaries for two different narra-
tives.

we asked them a second question: whether or not one or both of the abstractive summaries

contained important information that was not in the other. This part of the HIT only ap-

plied to the abstractive summaries for narratives in slices 1-3, written by annotators A-C;

annotator D was recruited last and had not finished writing summaries when we ran this

HIT.

Of the 408 summary pairs in slices 1-3, the Turkers achieved consensus on 338 pairs.

We find that, despite our annotators generally choosing the same MRE for their summaries,

they rarely agree exactly on what contextual information should be included in the sum-

mary – the Turkers indicated that only 11.39% of agreeing summary pairs contained exactly

the same information. In 23.72% of pairs, both summaries in the pair contained informa-

tion not in the other, suggesting that annotators consider different aspects of the narrative

to be important.

From Table 3.4, we see that annotators A and C choose the same MRE for their sum-

maries for almost all of their shared narratives; annotator B differs slightly from A and

C, but still chooses the same MRE for most narratives. Annotator B includes more infor-
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Extra Information

Turkers Abstract A Abstract B Both No Difference

Consensus 18 38 18 6
Unanimous 8 23 3 2

(a) Comparing annotators A and B.

Extra Information

Turkers Abstract B Abstract C Both No Difference

Consensus 8 42 35 4
Unanimous 4 31 15 0

(b) Comparing annotators B and C.

Extra Information

Turkers Abstract A Abstract C Both No Difference

Consensus 17 25 42 5
Unanimous 5 13 13 0

(c) Comparing annotators A and C.

Table 3.4: Variation among annotators A, B, and C in abstractive summary content.

mation than annotator A in nearly half of their summary pairs (Table 3.4a, Figure 3.6a).

Annotators A and C tend to focus on different aspects of the narrative: in nearly half of

their pairs, both summaries contain information not in the other (Table 3.4c). For exam-

ple, in Figure 3.6b, we see that annotator A focuses on the event’s emotional effect on the

narrator, while annotator C emphasizes the irresponsible friend’s bad behavior.

3.4 Extractive Summaries

With human-written abstractive summaries in hand, we now need to construct extractive

versions of the abstractive summaries. Because our ultimate goal is to rewrite extractive
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Abstract A: My friends and I discovered a chilling porcelain doll on a bed in a creepy
abandoned house.

Abstract B: My friends and I broke into an abandoned farmhouse and among a bunch of
creepy things we found a life-sized porcelain doll set up in the bed.

(a) Extra information in abstractive summary B.

Abstract A: This one friend never gave back the 360 and netbook I let him borrow, so now
I have a hard time doing good deeds for other people.

Abstract C: I lent my friend my netbook and xbox 360 and he broke the netbook and
claimed the 360 was stolen. He only ever gave me 100 bucks for it.

(b) Extra information in both summaries.
Figure 3.6: Examples of extra information in pairs of agreeing abstractive summaries.

summaries into fluent, coherent, and easy to understand abstractive summaries, the ideal

extractive summary for a narrative already matches its abstractive summary as closely as

possible – most importantly, any information not present in the extractive summary cannot

be recovered by a rewriting system, so we need to ensure that the extractive summaries

cover the same information as their corresponding abstractive summaries.

We create another HIT that shows Turkers a narrative, one of the abstractive summaries

written for that narrative, and instructions to compose an equivalent summary by selecting

as few sentences as possible from the narrative (Figure 3.7). The abstractive summary thus

serves as a guide for constructing the extractive summary.

You will be shown a short story where each sentence has been numbered. You will also be
shown 1-2 sentences summarizing an event or situation from the same story.

The task is to construct a new summary equivalent to the one you are shown, using only
the sentences in the story. Select the smallest possible number of sentences from the story
such that, when read together, they give the same information as the summary sentences.

Your summary does not need to explain who characters are, eg. a character called “Joe” in
the provided summary may be referred to only as “he” in your summary.

Figure 3.7: The Turker instructions for the extractive summarization HIT.
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We again required Turkers to complete a qualification test before working on our HITs.

The test consists of a single story and abstractive summary, written so that the summary is

a word-by-word paraphrase of a single sentence in the narrative that did not overlap with

any other sentences (Figure 3.8).

The Turkers reported spending about two minutes per HIT. We received a good deal

of positive feedback on this HIT – the Turkers enjoyed reading the narratives and did not

find the sentence selection task difficult. The Turkers also left positive feedback on their

compensation rate of $0.20 per summary, suggesting that this HIT could be completed even

less expensively than it was. Three Turkers worked on each HIT, and all of the HITs were

completed within 24 hours of being posted.
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Summary Set Fleiss’s κ

Abstract A 0.7364
Abstract B 0.7507
Abstract C 0.7604
Abstract D 0.7475

Table 3.5: Turker agreement on extractive summary sentence selection.

The Turkers achieved substantial agreement on which sentences they selected: Fleiss’s

κ of 0.7364 − 0.7604, depending on which annotator wrote the abstractive summaries the

Turkers used as a guide. Figure 3.9 shows an extractive summary where the three Turkers

achieved perfect agreement.

Abstractive: At a concert, I grabbed a chunk of dirt in mid-air that was being thrown at a
woman, and security thought I was throwing the dirt.

Extractive: There is a woman standing next to me when a huge piece of dirt comes flying
straight at her face. I grab the chunk inches from her face mid-air. Security sees me with a
chunk of dirt in my hand and instantly grab and pull me out of the crowd.

Figure 3.9: An example of perfect agreement among Turkers in constructing the extractive sum-
mary.

From the results of this HIT, we construct six different extractive summaries for each

abstractive summary. There is one for each of the three Turkers and an additional three

created by aggregating the Turkers’ summaries: sentences selected by at least one (union),

two (majority), and all three (intersect) Turkers. For 16.12% of narratives, the union and

intersect summaries are identical (i.e., perfect agreement among the Turkers); only two

narratives have no majority summary (i.e., no agreement at all among the Turkers). The

average length of an aggregated summary is 4.15 sentences for union, 2.69 for majority,

and 1.67 for intersect.
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3.5 Phrase Alignments

With both the abstractive and extractive summaries finished, we turn to the rewriting pro-

cess. One of our goals for applying text-to-text generation techniques to rewriting an ex-

tractive summary into an abstractive summary is targeted rewriting: learning not just how

to perform a rewriting operation, but when it is appropriate to do so. Thus, we need to

annotate not only which rewriting operations are present in a given extractive-abstractive

summary pair, but roughly where in the two summaries the operations are applied. We

break down this annotation into two steps: first, phrase-level alignments between corre-

sponding phrases in the extractive summary and abstractive summary, and second, binary

yes/no annotations for the presence of each rewriting operation in each pair of aligned

phrases.

We use another AMT HIT to produce the phrase-level alignments between the extrac-

tive and abstractive summaries. We showed Turkers one of the abstractive summaries and

its corresponding extractive summary (using union aggregation, to err on the side of recall

over precision). The task was to align phrases between the summaries, and to submit as

many alignments as they could find.

To avoid confusing terminology, the instructions to the Turkers referred to the abstrac-

tive summary as the “summary” and the extractive summary as the “excerpt.” We defined

aligning as “matching phrases from the summary with phrases from the excerpt that ef-

fectively mean the same things.” The HIT interface (Figure 3.10), displayed the extractive

and abstractive summaries in text boxes and allowed Turkers to select phrases by directly

highlighting them. Turkers could submit as many alignments per HIT as they could find,
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so the interface allowed them to save alignments as they went along and submit all their

saved alignments at the end.

As in the previous stages, we required Turkers to complete a qualification test to check

their understanding of the task. However, since the alignment interface allowed them to

highlight any string of characters, the results obtained from the interface would be too

open-ended to judge straightforwardly in an automated qualification test. Instead, we cre-

ated a multiple-choice qualification test where we showed Turkers one phrase from an ab-

stractive summary and four phrases from the corresponding extractive summary and asked

them to decide which of the four extractive options would make a good alignment with the

abstractive phrase. We also presented them with a link to a demo of the interface so that

they could try the highlighting and saving functions before working on the actual HIT.
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Annotator Alignments

A 1424
B 1792
C 1514
D 1443

Total 6173

Table 3.6: Number of phrase alignments by abstractive summary annotator.

Three Turkers worked on each HIT, and they were compensated at a rate of $0.20 per

HIT. Feedback from the Turkers again indicated that they enjoyed the HITs, both as a

chance to read interesting material and for a good rate of pay; all of the HITs were returned

within three days. Table 3.6 shows the breakdown of the 6173 total phrase alignments the

Turkers generated across the four different abstractive summary annotators.

Worker A1PAY3X73PQ16S
Abstractive: My crazy ex-boyfriend killed my kitten.
Extractive: My crazy ex-boyfriend told me one day while we were still dating that I loved
my 10 week old kitten more than him. The next morning he called to tell me that he woke
up late, jumped out of bed, and “accidentally crushed him with both feet” in his exact
words.

Worker A31Q7PWLBCU2X0
Abstractive: My crazy ex-boyfriend killed my kitten.
Extractive: My crazy ex-boyfriend told me one day while we were still dating that I loved
my 10 week old kitten more than him. The next morning he called to tell me that he woke
up late, jumped out of bed, and “accidentally crushed him with both feet” in his exact
words.

Figure 3.11: Example of two agreeing phrase alignments, shown in italics.

It is difficult to determine interannotator agreement on phrase alignments because each

Turker could submit multiple alignments for each summary pair, and alignments could be

between any two substrings of the summaries. We consider two phrase alignments to be

in agreement if 1) different Turkers submitted them, 2) the selected abstractive phrases
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overlap enough such that at least half of the shorter of the two is covered by the overlap,

and 3) the selected extractive phrases overlap enough such that at least half of the shorter

of the two is covered by the overlap. Figure 3.11 shows an example of two agreeing phrase

alignments. We consider a phrase alignment that is in agreement with at least one other

phrase alignment to be a confident alignment – out of the 6,173 phrase alignments, 5,836

(95%) were confident.

3.6 Rewriting Operations

Finally, we annotate each phrase alignment with text-to-text generation techniques. Our

final HIT asked Turkers to review the phrase alignments described in the previous section,

and to identify which of the rewriting operations defined by Jing and McKeown (1999)

were involved in transforming an extractive phrase into its aligned abstractive phrase. Be-

cause an alignment can employ more than one operation, we did not want to confuse Turk-

ers by showing them all of the operations at once, so we simplified the task by creating

separate HITs for each combination of phrase alignment and rewriting operation. When

performing the task, Turkers were only asked about with one rewriting operation at a time

and simply had to indicate whether the current alignment employed that operation or not.

We defined the following rewriting operations for the Turkers, and provided examples

of each:

• Reduction keeps key parts word-for-word and removes less important information.

• Lexical paraphrasing replaces words or word sequences with paraphrases, ie. other

words that have the same meaning.
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• Syntactic reordering changes the grammatical structure (eg. passive vs active).

• Generalization replaces longer strings of detail with shorter, more general descrip-

tions.

• Specification replaces short, general descriptions with longer strings of detail.

We do not include fusion in this task, instead detecting it automatically from multiple

alignments between a given phrase from a single abstractive sentence and multiple other

phrases from multiple extractive sentences. Figure 3.12 shows the full instructions for the

reduction HIT, which includes an example. As in the previous section, the instructions

to the Turkers referred to the abstractive summary as the “summary” and the extractive

summary as the “excerpt” to avoid confusing terminology.

You will be shown two versions of the same story, the first an excerpt from the original
and the second a summary. You will see each passage has one phrase in bold. The task is
to examine the bold phrases and decide whether reduction was used to transform the bold
phrase from the excerpt into the bold phrase from the summary.

Definition: Reduction keeps the key parts word-for-word, and removes less important
information.

Excerpt: Already late for my meeting, I waited impatiently at the bus stop and hoped the
crosstown would arrive soon. → Summary: I waited impatiently at the bus stop.

Figure 3.12: Instructions for reduction rewriting operation HIT.

As in previous stages, we tested the Turkers’ understanding of the task before allowing

them to work on the HITs. Since we asked about one rewriting operation at a time, we

designed separate qualification tests for each operation. For each test, we selected one ab-

stractive/extractive summary pair and constructed two different alignment examples where

one alignment employed the operation in question and the other did not. The Turkers were

asked whether or not the operation was used in each of the two alignments.
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For each alignment, we put up four HITs (we combined generalization and specification

so that Turkers could choose one or the other or neither, but not both). Four HITs per

alignment totaled 24,696 HITs, and we had three Turkers work on each HIT. Since the task

was very quick, we compensated them for $0.01 per HIT, and with this rate of pay, the

entire set of HITs took one week to finish.

Rewriting Operation Counts

Fusion 2123 Reduction 216
Syntactic Reordering 916 Generalization 3359
Lexical Paraphrasing 1218 Specification 1250

Table 3.7: Number of phrase alignments employing each rewriting operation.

Table 3.7 lists each rewriting operation and how many alignments used it; we include

an alignment when at least 2 out of 3 Turkers agreed it used the operation. We see that gen-

eralization is by far the most popular rewriting operation, and reduction is the least, likely

because reduction’s definition was the most restrictive, as it required word-for-word match-

ing outside of the removed parts. Figure 3.13 shows an example each of generalization and

its counterpart specification from our annotations.

Generalization: Very rarely do I ever get a ”thanks” or a smile of appreciation. → I never
get any thanks.

Specification: I had the alien abduction dream. → I had a sleep paralysis dream where I
was abducted by aliens.

Figure 3.13: Examples of the two most common rewriting operations, generalization and specifi-
cation.

We did not ask Turkers to indicate where in a phrase alignment a rewriting operation

occurred, only that it was present somewhere in the alignment, because the presence of

multiple rewriting operations within a phrase alignment could make it very difficult to
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identify exactly where each operation occurred. We define a precise alignment to be one

that does not contain an extractive phrase over two sentences in length (the abstractive

summary is already limited to two sentences in length). The longer the alignment, the less

likely the two halves of the alignment were to be a perfect match on meaning, and the

more difficult it could be to identify the rewriting operations involved. Of the 6,173 phrase

alignments, 5,602 (91%) were precise, and 5,281 (86%) were both confident and precise.

Extractive: I came back to her introducing me to her new boyfriend and me subsequently
being kicked to the curb. 2 years later we got to talking over facebook and I initiated a
booty call. Afterwords, She told me she had feelings for me again and i responded with
”cool, i’m late for dinner, talk to you later” BEST MASHED POTATOES EVER WERE
HAD.

Abstractive: My girlfriend dumped me for some other guy, but we hooked up two years
later and I had the best mashed potatoes ever.

Figure 3.14: Example of a confident and precise alignment (in italics) with multiple rewriting
operation labels: lexical paraphrasing, generalization, and reduction.

Examining the rewriting operation labels produced for the confident and precise phrase

alignments, we find that many alignments are labeled for more than one operation, indicat-

ing that quality phrase transformations for summarization often involve stitching together

multiple rewriting operations. Figure 3.14 shows an example of such an alignment, which

is labeled for lexical paraphrasing (perfect agreement from 3/3 annotators), generalization

(perfect agreement from 3/3 annotators), and reduction (majority agreement from 2/3 an-

notators). Table 3.8 shows the interactions between rewriting operations in the form of a

co-occurence matrix of the five rewriting operations we labeled using Amazon Mechanical

Turk, plus fusion, which we identify automatically.
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3.7 Conclusion

The main contribution described in this chapter (based on work first published in Ouyang,

Chang, and McKeown (2017)) is our creation of a personal narrative summarization corpus

consisting of 1,088 aligned abstractive and extractive summaries, totaling 6,173 phrase-

level alignments, with each alignment annotated with rewriting operations. For each ab-

stractive summary, our summarization corpus also includes information from our original

Reddit corpus: the AskReddit prompt in response to which the personal narrative was writ-

ten, as well as any comments posted in response to the narrative. The prompts and com-

ments were key to both the MRE sentence classification system described in the previous

chapter and extractive summarization system we describe in the next chapter.

Our corpus provides crucial data that other existing summarization corpora do not:

• Paired abstractive and extractive summaries explicitly constructed to be as similar as

possible to each other, as well as phrase-level alignments between matching phrases

in each pair. Existing corpora provide only gold standard extractive summaries (En-

ron), only abstractive summaries (DUC 2003-4, Gigaword, CNN/Daily Mail, NYT,

Newsroom, and Webis-TLDR-17), or separate abstractive and extractive summaries

that do not necessarily cover the same information (BC3). Only the ISCI and AMI

meeting corpora provide extractive summaries explicitly constructed based on an

abstractive summary; of those two, only ISCI provides alignments between corre-

sponding extractive and abstractive summaries, and it does not provide rewriting

operation labels for those alignments.

Direct, end-to-end abstractive summarization is a difficult task, especially with longer
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input documents and target summary lengths. Summarization corpora that provide

only abstractive summaries force systems to try to learn both the content selection

and editing subtasks at once, while corpora that provide paired extractive and ab-

stractive summaries allow systems to learn first to select content in the form of an

intermediate extractive summary, and then to edit the selected content into a fluent,

coherent abstractive summary.

• Text-to-text generation technique annotations for each phrase alignment. Rewriting

operations can oppose each other, most obviously in the case of generalization and

specification, but also in the case of a de facto seventh operation: do nothing, which

opposes every other operation. An abstractive summarization system trained on data

that does not distinguish among rewriting operations must either learn some repre-

sentation of them on its own, or commit to an operation-agnostic approach that either

favors one operation over another or performs all of them poorly. No other existing

corpora provide annotations for all six of the rewriting operations identified by Jing

and McKeown (1999); our contribution fills a gap among summarization corpora.

Except where otherwise stated, we use this dataset for the rest of the work described in

this thesis, occasionally augmented by other, larger datasets for training neural networks.

As we discuss in the next chapters, our extractive and abstractive summarization systems

are designed for the highly emotional style of these narratives, in contrast to the traditional

summarization genre of newswire text.
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4. Extractive Summarization

Using our completed Reddit personal narrative summarization corpus, we now revisit our

approach to MRE sentence detection and adapt it to perform extractive summarization.

The most reportable event (MRE) sentence prediction task to which we originally applied

the change-based approach was directly based on the same contextualist narratological

theories that inspired the approach itself: authors use evaluation devices, such as changes

in sentence length, sentence complexity, or verb tense, to mark important content in their

narratives, and every narrative has an MRE, the most important and most heavily evaluated

event in the narrative.

The new extractive summaries in our Reddit summarization corpus differ from the ear-

lier MRE sentences in two ways. First, the Amazon Mechanical Turk workers (Turkers)

who constructed them were not given any instructions about the MRE at all; the annota-

tors who wrote the abstractive summaries were instructed to write about the MRE, and the

Turkers were told only to match the abstractive summary as closely as possible using as

few sentences as possible. Second, the annotators were instructed to include any non-MRE

orienting information that was required to understand the MRE, so both the abstractive and

extractive summaries could include non-MRE information. Thus, it is possible that the

change-based approach may not work well for extractive summarization; the sentences in

an extractive summary may not be the heavily evaluated sentences that the approach was

designed to detect, but rather high-coverage sentences containing many different pieces of

information, or orientation sentences giving essential background information.
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Despite these differences, we believe that the change-based approach will still work for

extractive summarization. A key claim of contextualist narratology is that the evaluated

clauses of a personal narrative form an adequate paraphrase of that narrative (Polanyi

1981) – what is a summary if not an adequate paraphrase? In this chapter, we describe how

we tested this hypothesis by applying the change-based approach to modeling narrative to

true extractive summarization.

4.1 Related Work

The task of single-document extractive summarization has been studied in natural lan-

guage processing for over sixty years. In this section, we do not give an exhaustive list of

extractive summarization systems, but focus instead on the main novelty of our change-

based approach: the way in which a document and its sentences are represented. With

the change-based approach, we represent each sentence in a document by comparing its

scores on several stylistic metrics to the scores of neighboring sentences. We organize

our discussion of other document representations as follows: topic-based representations,

graph-based representations, structural representations, and neural representations.

4.1.1 Topic-Based Representations

The simplest method of determining the main topic of a document is to take normalized

frequency counts for each word; these were used in the very first attempt at automatic

extractive summarization (Luhn 1958). The idea is that words that occur frequently in a

document are associated with the main topic of that document, and so sentences contain-

84



ing many such high-frequency words are good candidates for extraction. Luhn filtered out

stopwords and manually tuned frequency thresholds for determining the set of words that

was characteristic of a document, and later work refined the approach, using more sophis-

ticated metrics for word importance, such as TF*IDF (term frequency * inverse document

frequency) and the log-likelihood ratio (Nenkova and McKeown 2011). These metrics

compare the frequency of a given word in a document with its frequency in a large set of

documents belonging to the same domain; words that occur more frequently in the doc-

ument to be summarized but less frequently in the other documents are more representa-

tive than words that are common in all documents. Some notable systems that used word

frequency approaches are Lin and Hovy (2000), Nenkova, Vanderwende, and McKeown

(2006), and Vanderwende et al. (2007).

Once the topics of a document have been identified, an extractive summarizer can

choose one or more sentences to represent each topic in the summary. Other approaches to

identifying the topics of a document include lexical chains (Barzilay and Elhadad 1999),

latent semantic analysis (Gong and Liu 2001), and topic modeling (Daumé III and Marcu

2006). The advantage of topic-based approaches is that they are unsupervised; they require

no human-written reference summaries, only collections of in-domain documents for cal-

culating TF*IDF, fitting a topic model, and so on (or in the case of lexical chains, a lexicon

of semantic relations to build the chains). These approaches are also language-independent,

assuming the required resources (document collections or semantic lexicons) are available.
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4.1.2 Graph-Based Representations

Like topic-based representations, graph-based representations focus on the words in each

sentence. Each document is represented as a graph whose vertices are sentences and whose

edges are weighted by the similarity between the two endpoint vertices. Any sentence-level

similarity measure can be used, such as normalized word overlap counts, string kernels,

or cosine similarity between TF*IDF vectors. In this graph, high-weight cliques roughly

correspond to topics, and graph centrality algorithms can be applied to rank sentences in

order of importance (Mihalcea and Tarau 2004; Erkan and Radev 2004).

Because they depend on similarity between sentences, graph-based representations are

at a disadvantage with short documents (fewer sentences available to provide supporting

evidence of a given sentence’s importance) and documents with little repetition among

sentences (low similarity scores throughout); personal narratives are short documents with

little repetition among sentences, and we show later in this chapter that a graph-based

baseline summarizer performs poorly on this genre.

4.1.3 Structural Representations

These representations include the position of a sentence in the document, its position within

its paragraph, the position of its paragraph in the document, and its proximity to section

headers, such as “Introduction” or “Conclusion” (Edmundson 1969), as well as the length

of the sentence (Osborne 2002) and the presence of named entities and discourse markers

(eg. “further” or “for example”) (Fuentes Fort, Alfonseca, and Rodrı́guez Hontoria 2007),

and of quoted speech (Wong, Wu, and Li 2008) in the sentence.
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Positional features can be very strong in certain genres. In many sub-genres of news,

such as newswire and world news, selecting the first sentence of an article (the lead) is

an extremely powerful baseline for extractive summarization, to the point where human-

engineered features often underperform it (Nenkova 2005). Later in this chapter, we show

that positional features work for summarizing personal narrative – although not in the same

way as in news – and other structural features, such as sentence length, are also useful.

4.1.4 Neural Representations

Recent work on extractive summarization has turned to neural models, where each word is

represented by a word embedding, a high-dimensional vector in a distributional semantic

space. A sentence is a sequence of words, and so the encoding of a sentence is the combina-

tion of the embeddings of its words (another high-dimensional vector, possibly of a differ-

ent size than the word embeddings); similarly, a document is a sequence of sentences. The

main approaches to encoding sentences and documents for neural extractive summarization

are training convolutional or recurrent neural networks to produce sentence encodings from

word embeddings and document encodings from sentence encodings (Cheng and Lapata

2016; Nallapati, Zhai, and Zhou 2017), although simply averaging the word embeddings

often works just as well as trained sentence encodings (Kedzie, McKeown, and Daume III

2018).

Neural representations are difficult to interpret, compared to topic-based, graph-based,

or structural representations. In end-to-end training, neural extractive summarizers learn

the sentence and document representations that give the best performance on their valida-
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tion sets, and these learned representations do not necessarily correspond to any linguistic

or rhetorical theories or human intuitions about which sentences should or should not be

included in a summary. A further disadvantage of neural representations is their need for

large numbers of document/reference summary pairs to learn.

One final interesting note is that existing neural extractive summarization systems im-

plicitly make use of some positional information in that they treat sentence selection as a

sequence tagging task. As previously discussed, the lead, or first-sentence, baseline is very

strong in the news genre, and Kedzie, McKeown, and Daume III (2018) found that neural

extractive summarizers trained on news learn to identify the first sentence despite having

no explicit positional features: performance dropped significantly when summarizers were

trained on documents with the order of the sentences shuffled.

4.2 Using the Reddit Summarization Corpus

One of the goals of the work described in this chapter is to compare the performance of the

contextualist-inspired, change-based approach on extractive summarization to its previous

performance on the MRE sentence detection; we use the same development, seed, tuning,

and testing set split of the 476 annotated personal narratives as in our previous experiments.

4.2.1 Reference Summary Construction

The Reddit personal narrative summarization corpus provides either two or four human-

written abstractive summaries for each narrative and up to six crowdsourced or aggregated

extractive summaries for each abstractive summary. Thus, our first task is to construct a
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single extractive reference summary for each narrative in the corpus. Choosing a single

extractive summary for each abstractive summary is relatively straightforward: we use the

majority aggregation scheme, which included any sentence selected by at least two out of

three Amazon Mechanical Turk workers. Of the other two aggregation schemes, intersect,

which required sentences to be selected by all three workers, is too strict – in about 12%

of narratives, the intersect-aggregated summary is empty – while union, which combines

all sentences selected by all workers, is likely to include redundant sentences. Further, the

average length of a majority-aggregated extractive summary is 2.69 sentences, very close

to the average of 2.5 MRE sentences per narrative in our previous experiments.

How best to combine the majority summaries corresponding to two different anno-

tators’ abstractive summaries into a single extractive summary for each narrative is less

clear. Differences among the majority summaries reflect, to a large extent, differences

in the content of their corresponding abstractive summaries. In the previous chapter, we

used crowdsourcing to examine differences in content in the abstractive summaries in our

corpus, finding three possible cases:

1. The abstractive summaries are about completely different main events. In this case,

the majority summaries are completely disjoint sets of sentences.

2. The abstractive summaries are all about the same main event and cover exactly the

same information. In this case, the majority summaries are ideally identical, although

in practice, there are multiple sets of sentences that can reconstruct the information

in the abstractive summaries.

89



In both of these cases, neither of the abstractive summaries is any more or less “correct”

than the other, so we take the union of the sentences in the majority summaries.

3. The abstractive summaries are about the same event, but one or both of them covers

information not in the other. In this case, there is likely to be a shared subset of

sentences between the two majority summaries, with some extra sentences in either

one or both.

In this last case, there is some piece of information that one annotator considered es-

sential to a reader’s understanding of the summary, but that another annotator considerd

unimportant. As we have no way to tell which annotator is “correct,” we experiment with

two different methods for handling extra information: keeping it or dropping it.

• Keep: We take the union of the sentences in the majority summaries, thus retaining

any extra information present in either summary.

• Drop: We do not include any sentences present only in the more-informative majority

summary. If both majority summaries contain information not present in the other,

we take the intersection of the sentences in the two summaries.

For the 68 narratives with four different abstractive summaries, we begin building the

extractive reference summary using two of the majority summaries as described above

and then working in the other two, adding or removing sentences as needed, following

the same rules. The average length of a completed extractive reference summary is six

sentences, using the keep method of handling extra information, while the average length

of a completed extractive reference summary using drop is four sentences.
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4.2.2 Pyramid Weighting

Because the extractive reference summaries are constructed by merging multiple majority-

aggregated Turker summaries, it is not necessarily the case that all sentences in a reference

summary are equally important. Up to twelve Turkers contributed to each reference sum-

mary, but we only require a sentence to be selected by two Turkers to be included. A natural

next step to ensure the quality of our reference summaries is to apply the pyramid method

of Nenkova and Passonneau (2004).

The pyramid method for summarization evaluation was designed to address the possi-

bility of there being multiple sentences in a document that express overlapping or identical

information – in other words, there may be multiple, equally correct extractive summaries

that express the same information using different sets of sentences. The pyramid method

addresses this concern by breaking each summary into summary content units (SCUs),

roughly clause-level units of meaning. A system summary is evaluated based on the SCUs

it contains, where each SCU is weighted according to the number of human summaries that

contain it. The set of weighted SCUs taken from all human summaries forms the pyramid,

the gold standard reference summary.

While we do not have SCU annotations for our data, we can still use the pyramid

method to weight the sentences in our extractive reference summaries. A sentence selected

by all twelve Turkers, for example, likely expresses crucial information not present in any

other sentence in the document; a system-generated summary should be penalized more

heavily for failing to include such a sentence than for omitting another sentence selected

by only two Turkers, the information in which might well be present in some other sentence

91



that the system did extract.

In the development, seed, tuning, and testing sets, we assign each sentence a pyramid

weight equal to the number of Turkers who selected it; because we use majority aggregation

to construct the extractive reference summaries, the pyramid weight for all sentences in the

extractive reference summary is at least 2, while the weight of the other sentences is 1.

4.2.3 Heuristic Labeling

We use a new linear combination of the same similarity metrics from our previous ex-

periments (semantic similarity to comment, tl;dr, and prompt) to label each sentence as

extracted or not, using a threshold tuned on our pyramid-weighted development set:

hcomment + htldr + hprompt
?
> 1.544

The 67,954 training sentences labeled using this heuristic are assigned a pyramid weight

of 1.

4.3 Experimental Results

We test our change-based model of narrative using both distant supervision and quality-

controlled self-training on the same 193-narrative test set as in our previous experiments.

Our task is to classify a given sentence in a narrative as either extracted or not. As in

the previous chapter, the distant supervision experiment trains on the full set of 67,954

heuristically-labeled sentences (using the new heuristic shown above). The quality-controlled
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self-training experiment is first trained on the human-labeled seed set of 82 narratives,

then after each round of training, compares its own predicted labels on the larger training

set against the heuristic labels and trains again on those training sentences for which the

heuristic agreed with its predicted labels.

Table 4.1 shows the “mass” distribution of unweighted and pyramid weighted extracted

sentences in the test set; while the positive class, extracted sentences, is relatively rare, the

pyramid weighting scheme does a great deal to balance the positive and negative classes,

for both drop and keep reference summaries.

Reference Summary Unweighted Extracted Pyramid Weighted Extracted Not Extracted

Drop 444 1214 2,391
Keep 675 1721 2160

Table 4.1: Distribution of unweighted and pyramid weighted labels in the test set.

Table 4.2 shows the results of our distant supervision and quality-controlled self-training

experiments on the keep reference summaries, which takes the union of sentences in the

majority-aggregated extractive summaries for a given narrative. For both distant super-

vision and self-training, training and testing on the keep reference summaries outperforms

the drop summaries, which takes the intersection sentences in the majority-aggregated sum-

maries, by about 0.1 F-score, suggesting that for the amount and quality of data points we

have for the positive class (extracted sentences), more is better. We use an SVM with RBF

kernel, γ = 0.001, and the margin C was set to 100 for distant supervision and 10 for

self-training, tuned on the tuning set.

The quality-controlled self-training experiment terminates after five rounds and uses

81% of the weakly-labeled training sentences. Our previous self-training experiment used
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Trial Precision Recall F-Score

TextRank 0.281 0.384 0.324
Distant supervision 0.362 0.821 0.502
Self-training 0.465 0.956 0.626

Table 4.2: Binary sentence classification results using keep reference summaries.

only 73% of the training sentences over 10 rounds, suggesting that our new heuristic la-

bels more closely match our reference summaries than our old heuristic labels matched

the MRE sentences. We compare our results to a graph-based summarizer (Table 4.2), the

Sumpy1 implementation of TextRank (Mihalcea and Tarau 2004); to construct the Tex-

tRank summary, we select the top k ranked sentences, where k is the number of sentences

in either the distant supervision or self-training summary for that narrative, whichever is

longer.

Trial ROUGE-1 ROUGE-2 ROUGE-L Summary Length

Kedzie et al. 0.208 0.054 0.189 5.67
Distant supervision 0.441 0.306 0.397 8.67
Self-training 0.567 0.423 0.513 7.70

Table 4.3: ROUGE-1, -2, and -L scores using keep reference summaries, and the average number
of sentences in produced summaries.

We also compared our results to a neural network summarizer, Kedzie, McKeown, and

Daume III (2018)’s reimplementation of Cheng and Lapata (2016)’s neural extractive sum-

marizer, using word embedding averaging for the encoder2. This comparison is somewhat

unfair in our favor. Neural approaches require large amounts of training data, so one should

not expect a neural model trained on our relatively small corpus to perform extremely well;

1https://github.com/kedz/sumpy
2Kedzie et al. also experimented with other neural extractive summarizers and encodings, but averaging

and the Cheng and Lapata system performed the best on our corpus.
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for comparison, the same neural model trained and tested on the much larger CNN/Daily

Mail corpus achieved ROUGE-1 of 0.389, ROUGE-2 of 0.177, and ROUGE-L of 0.366.

Predicted Summary: About a year ago, an online friend’s cat ran away. He was
inconsolable, since he grew up with the cat and it was basically one of his best friends.
I vaguely recalled him telling me a long time ago that the cat had run away for three
days once, and had gotten stuck in a local barbecue restaurant while it was closed for the
weekend. I didn’t mention it, because I figured it would make my friend more upset. Three
days later, the cat comes back, smelling like barbecue sauce because it got stuck in the
restaurant over the weekend. My friend swears the cat had never run away before, and I
could find no record of the supposed “cat ran away” conversation in any of our chat logs.
He never even mentioned there was a barbecue restaurant near his house.

TextRank Summary: About a year ago, an online friend’s cat ran away. He was incon-
solable, since he grew up with the cat and it was basically one of his best friends. I vaguely
recalled him telling me a long time ago that the cat had run away for three days once, and
had gotten stuck in a local barbecue restaurant while it was closed for the weekend. I didn’t
mention it, because I figured it would make my friend more upset. Three days later, the
cat comes back, smelling like barbecue sauce because it got stuck in the restaurant over
the weekend. My friend swears the cat had never run away before, and I could find no
record of the supposed “cat ran away” conversation in any of our chat logs. He never even
mentioned there was a barbecue restaurant near his house.

Figure 4.1: Extractive summaries: the whole narrative is shown, with extracted sentences in blue
or red; the italicized sentences are false positives.

Figure 4.1 shows an extractive summary produced by our self-trained model; this sum-

mary has perfect recall and one false positive sentence. On this particular example, Tex-

tRank also performs very well; it generates a similar summary with a different false positive

sentence.

4.4 Discussion

While the change-based model works well for both extractive summarization and MRE

sentence detection, the two tasks focus on different subsets of the features. We compare
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the top 10 features for our quality-controlled self-training experiment (obtained from lo-

gistic regression due to our nonlinear SVM kernel) to those in our previous self-training

experiment in Table 4.4. Some of the features are similar, such as a sharp increase in im-

agery compared with preceding sentences. For several metrics – activeness, verb phrase

parse tree depth (a measure of sentence complexity), and semantic similarity to adjacent

sentences – one of the two tasks relied more on a sentence’s distance from the global mini-

mum for that metric, while the other relied on the metric score itself; both features targeted

sentences with relatively high scores on that metric.

Formality features, such as low average word formality and proximity to the docu-

ment’s global minimum in formality, perform well in MRE sentence detection but not in

extractive summarization; for extractive summarization, but not MRE sentence detection,

semantic similarity features for the first two sentences in a narrative perform well (“lssim-

ilarity2” and “cossimilarity1”), reflecting the inclusion of background information, which

usually appears near the beginning of a narrative.

Examining false positive sentences, we find mostly sentences with high imagery and

activeness, and low semantic similarity to neighboring sentences, similar to true positives.

However, false positives tend to be short and syntactically simple. Because the Turkers

who constructed our reference summaries were instructed to select as few sentences as

possible, they likely chose longer sentences that contained as many pieces of information

as possible. In contrast, our model predicts whether or not a given sentence should be

extracted in isolation, allowing it to choose several short, one-factoid sentences where a

human would choose a single long, multiple-factoid sentence (as evidenced by the strength

of the sentence length feature in extractive summarization).
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We also find that false positives tended to score higher on subjectivity than neighbor-

ing sentences. The predicted summary in Figure 4.1 demonstrates this: the false positive

sentence describes the narrator’s concerns about his friend’s feelings. Human summarizers

trying to limit summary length are likely to omit such sentences, as they are less important

to a reader’s understanding of the story.

4.5 Conclusion

The main contributions of this chapter are as follows:

• We explore different methods for combining multiple human-constructed extractive

summaries into a single reference summary, including aggregating individual work-

ers’ summaries, removing or retaining information present in one summary but not

another, and using a weighting system based on the pyramid method to account for

the relative importance of sentences extracted by different workers.

• We apply the change-based model of narrative to the task of extractive summariza-

tion and show that, despite significant differences between this task and that of de-

tecting most reportable event sentences, for which it was originally designed, the

change-based model performs very well and outperforms extractive summarization

approaches not specifically designed for the personal narrative genre.

It is interesting to note that while the precision of our extractive summarizer is lower

than its recall, this is not nessarily an undesirable outcome; the reverse, high precision and

low recall, would be far worse. The extractive summaries produced by this system are, in

98



the next chapters, used as inputs to a paraphrasing system that rewrites them into abstractive

summaries. Any information not preserved in the extractive summary is lost forever; the

rewriting system cannot recover it. Thus, while there is some room for improvement in our

change-based extractive summarization system, its performance is satisfactory – and better

than that of any other extractive summarizer.

In the next chapters, we move on to the second stage of our two-stage summarization

system: editing and rewriting. We focused on lexical paraphrasing, one of Jing and McK-

eown (1999)’s six rewriting operations; we develop an abstractive system that learns not

only how to perform paraphrasing for summarization, but also when it is appropriate to

paraphrase.
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5. Sentential Paraphrase Alignment

Before we can address the task of lexical paraphrasing for summarization, we must wrestle

once again with the problem of data. As discussed in Chapter 3, our Reddit summarization

corpus contains only 1218 examples of lexical paraphrasing – nowhere near enough to train

the neural sequence-to-sequence model we plan to use for the paraphrasing task. We need

more data, but hiring human workers to create, align, and annotate more summaries would

be time-consuming and expensive.

Human annotators would not be necessary if we had some way to automatically detect

paraphrasing in abstractive summary sentences. Our goal is to learn to rewrite extractive

summary sentences into abstractive summary sentences using lexical paraphrasing, but we

do not need full extractive summaries to do so; we are only interested in those extractive

summary sentences that demonstrate lexical paraphrasing. If we could automatically de-

termine, for a given document and abstractive summary, whether or not each sentence in

the summary was a paraphrase of some sentence in the document, then we could use those

sentences as additional examples of the lexical paraphrasing operation.

However, the type of paraphrasing that we would like to detect is very different from

the strict, word-matching style of paraphrasing for which existing alignment systems are

designed. Paraphrases between a document/extractive summary sentence and an abstrac-

tive summary sentence tend to be worded very differently from each other, and they tend

to be much longer than the one- or two-word paraphrases for which existing systems are

designed. Further, a summary, by definition, is not a perfect reproduction of all information
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present in the document, but rather contains only the most important information from the

document. As a result, in a paraphrase between a document/extractive summary sentence

and an abstractive summary sentence, there is likely to be a mismatch in the amount of in-

formation present: both sentences may express roughly the same ideas, but the abstractive

summary sentence is likely to be more general and less detailed.

In this chapter, we take a brief detour to explore the task of sentential paraphrase align-

ment, designing a system that aligns paraphrases of arbitrary length and of approximately

equivalent meaning that fills this gap in existing paraphrase alignment research.

5.1 Motivation

Monolingual paraphrase alignment (as opposed to alignment for machine translation) has

applications in many natural language processing tasks, such as text-to-text generation (Barzi-

lay and Elhadad 2003; Barzilay and McKeown 2005), natural language inference (Mac-

Cartney, Galley, and Manning 2008), and recognizing textual similarity (Sultan, Bethard,

and Sumner 2014b). In our case, we use it to collect additional paraphrase pairs to train

our paraphrasing system.

Madnani and Dorr (2010) define three levels of paraphrasing:

• Lexical, where individual words are replaced by synonyms or hypernyms.

• Phrasal, involving equivalent idiomatic phrases, such as verb-preposition combina-

tions (eg. “take over” or “assume control of”), or syntactic transformations, such as

active versus passive voice.
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• Sentential, which can be trivially achieved by performing lexical and phrasal para-

phrasing on parts of a sentence, but Madnani and Dorr note that more interesting

paraphrases, such as “He needed to make a quick decision in that situation” and

“The scenario required him to make a split-second judgment,” are challenging.

It is important to note here that the term lexical paraphrasing is overloaded. Madnani

and Dorr use it to refer specifically to word-level paraphrasing, while Jing and McKeown

(1999) use it to refer to paraphrasing in general – they give as examples both a word-level

paraphrase (“point out” and “note”) and a phrase-level paraphrase (“fits squarely into” and

“hits the head on the nail”) when discussing lexical paraphrasing for summarization. In

this thesis, we follow Jing and McKeown in using the term lexical paraphrasing to refer to

paraphrasing in general; we use word-level paraphrasing to refer to Madnani and Dorr’s

definition.

We were confronted with two challenges when we first attempted to use existing mono-

lingual alignment systems to find paraphrases in document-summary pairs. First, past work

on alignment had focused on word-level and short phrase-level alignments, to the exclu-

sion of longer phrase-level or sentence-level alignments. In fact, alignment systems de-

signed for phrase-level alignments were practically limited in the lengths of the phrases

they could align – the decoding time complexity of Yao et al. (2013b)’s state-of-the-art

aligner, JacanaAlign, the fastest existing phrase-based aligner, grows linearly in the length

of the source phrase and quadratically in the length of the target phrase. These limitations

are likely due in part to the lack of longer alignments in existing paraphrase corpora: Yao

et al. report that 95% of alignments in the Microsoft Research Recognizing Textual Entail-
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ment (MSR RTE) (Brockett 2007) and Edinburgh++ (Cohn, Callison-Burch, and Lapata

2008; Thadani, Martin, and White 2012) paraphrase corpora are single-token, word-level

paraphrases, and phrases of four or more words make up less than 1% of MSR RTE and

3% of Edinburgh++ – there was no need for alignment systems to handle longer phrases.

Pat ate. ⇔ Pat did not starve.
Pat teaches Chris. ⇔ Chris is Pat’s student.
The Marines are fighting the terrorists. ⇔ The Marines are eliminating the terrorists.
The government declared victory in Iraq. ⇔ Bush declared victory in Iraq.

Figure 5.1: Examples of quasi-paraphrases from Bhagat and Hovy (2013).

Second, past work had avoided what Bhagat and Hovy (2013) call quasi-paraphrases

(Figure 5.1). Bhagat and Hovy argue that linguists generally accept paraphrase pairs with

approximate, rather than exact, semantic equivalence. Quasi-paraphrases, “sentences or

phrases that convey approximately the same meaning using different words,” include pairs

where there are pragmatic differences between the two text spans, where one implies the

other, or where real-world knowledge is required to understand that the pair are synony-

mous. As was the case with length, the lack of existing work on quasi-paraphrases is

likely due to the type of data available; while both the MSR RTE and Edinburgh++ para-

phrase corpora contain quasi-paraphrases marked as possible alignments, most previous

work chose to ignore them in favor of sure alignments, which hold between words that are

identical or close to identical (we show examples in the next section).

The paraphrases in our Reddit summarization corpus, however, are long quasi-paraphrses

(Figure 5.2). The Amazon Mechanical Turk workers who created them had been instructed

to align “phrases from the [abstractive] summary with phrases from the [extractive sum-

mary] that effectively mean the same things.” The word “effectively” in the instructions

103



Extractive: Very rarely do I get a “thanks” or a smile of appreciation.
Abstractive: I never get any thanks.

Extractive: I had a sleep paralysis dream that I was abducted by aliens.
Abstractive: I had the alien abduction dream.

Figure 5.2: Examples of long quasi-paraphrases from the Reddit summarization corpus.

allowed workers to align quasi-paraphrases rather than strict paraphrases, and because

one sentence is roughly a summary of the other, some amount of compression and general-

ization between the two sentences is to be expected. The workers were free to align phrases

of any length, including the full sentences shown above; just over 99% of the paraphrases

in the Reddit summarization corpus involve phrases of four or more words, and the aver-

age length of aligned phrases is 11 for abstractive summary sentences and 25 for extractive

summary sentences. Thus, to align the type of paraphrases found in the Reddit summariza-

tion corpus, we need to design our own alignment system to address the two challenges of

aligning phrases of arbitrary length and aligning based on approximate, rather than exact,

semantic equivalence.

5.2 Related Work

Because the design of alignment systems was strongly influenced by the data that was

available during their development, in this section, we first give an overview of impor-

tant paraphrase corpora and lexicons, and then discuss the alignment systems that were

designed using those resources.
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5.2.1 Paraphrase and Alignment Corpora

5.2.1.1 The Microsoft Research Recognizing Textual Entailment (MSR RTE)

Corpus

The development of monolingual alignment as an independently evaluated natural language

processing task began with the release of the MSR RTE corpus (Brockett 2007), which

consists of 1600 sentence pairs, divided evenly into training and testing sets, annotated

with alignments. Before it was annotated for alignment, the data had been used in the 2006

Pascal Recognizing Textual Entailment Challenge (Bar-Haim et al. 2006); the sentence

pairs are thus premise-hypothesis pairs, where the premise sentence either does or does not

entail the hypothesis sentence.

He met U.S. President, George W. Bush, in Washington and British Prime Minister, Tony
Blair, in London.

Washington is part of London.
(a) Sure alignments in a sentence pair where the first does not entail the second.

Although they were born on different planets, Oscar-winning actor Nicolas Cage’s new
son and Superman have something in common – both were named Kal-el.

Nicolas Cage’s son is called Kal-el.
(b) Sure alignments in a sentence pair where the first does entail the second.

Tilda Swinton has a prominent role as the White Witch in “The Chronicles of Narnia:
The Lion, The Witch and The Wardrobe”, coming out in December.

Tilda Swinton plays the part of the White Witch.
(c) Both sure (shown in bold) and possible (shown in italics) alignments in a sentence pair.

Figure 5.3: Examples of sentence pairs from the MSR RTE corpus, with alignments shown in bold.

In the case where the premise does not entail the hypothesis, the two sentences do not

mean the same thing (Figure 5.3a), and so the alignments on these pairs are simply between

shared words. In the case where the premise does entail the hypothesis, the alignments may
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still be between identical or nearly identical words (Figure 5.3b), or occasionally, there

may be alignments marked as possible, rather than sure (Figure 5.3c) – these are the quasi-

paraphrases of the MSR RTE corpus. Aligners designed for use on MSR RTE, which we

review later in this section, are trained and evaluated on sure alignments only, effectively

omitting the quasi-paraphrases in the corpus.

5.2.1.2 The Edinburgh++ Corpus

The original Edinburgh corpus (Cohn, Callison-Burch, and Lapata 2008) consisted of sen-

tence pairs from three sources:

• The Microsoft Research Paraphrase corpus. This is not to be confused with the MSR

RTE corpus; it consists of 5800 sentence pairs that were automatically extracted from

news websites and annotated by human judges as either semantically equivalent or

not. Cohn et al. removed pairs where the longer sentence was more than eight times

as long as the shorter sentence but otherwise did not modify this sub-corpus.

• The Multiple-Translation Chinese (MTC) corpus, consisting of 105 Mandarin Chi-

nese news articles, each of which was translated into English by eleven different

translators. Cohn et al. manually selected four of these translators who produced the

most fluent English translations and used different translations of the same sentence

as paraphrase pairs.

• The Leagues corpus, consisting of two different English translations of Jules Verne’s

Twenty Thousand Leagues Under the Sea, with paragraph-level alignments. Cohn et
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al. filtered these alignments, keeping only those that were single sentence to single

sentence.

From each of these three sources, Cohn et al. randomly selected 300 sentence pairs (the

corpus totaled 900 sentence pairs). They first aligned them automatically using Giza++ (Och

and Ney 2003) and then used two trained annotators to correct the automatic alignments.

As was the case with the MSR RTE corpus, the Edinburgh corpus contains both sure and

possible alignments; Cohn et al. explained that “. . . sure alignments are clear-cut decisions

and typical of genuinely substitutable words or phrases, whereas possible alignments flag

a correspondence that has slightly divergent syntax or semantics.”

“the woman was taken to New Charing Cross Hospital by ambulance and her condition
is critical.

she was taken to Charing Cross Hospital, where she remained critically ill last night.
(a) A sentence pair from the MSR Paraphrase subset of the corpus.

“we do not intend to stay until the term is over.

“we do not plan to stay in office up till the expiry of our term.
(b) A sentence pair from the MTC subset of the corpus.

“are these lenses capable of resisting such pressure?”

“is glass capable of resisting such pressures?”
(c) A sentence pair from the Leagues subset of the corpus.

Figure 5.4: Examples of sentence pairs from the Edinburgh++ corpus, with sure alignments shown
in bold and possible alignments shown in italics.

Thadani, Martin, and White (2012) built upon the Edinburgh corpus by using human

annotators to correct the automatic word tokenization, as well as performing truecasing and

normalizing quotation marks. They also added dependency parses and named entity tags

for each sentence. This enhanced version of the corpus is known as Edinburgh++. Fig-

ure 5.4 shows examples of alignments from each of the three subsets of the Edinburgh++
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corpus. As we saw in the MSR RTE alignments, sure alignments are word-for-word iden-

tical or close to identical, while possible alignments capture quasi-paraphrases.

An important distinction between Edinburgh++ and MSR RTE, however, is that the

two sentences in an Edinburgh++ pair are very similar to each other, while the sentences

in MSR RTE pairs are less so. This is due to differences in how the two corpora were

constructed: the sentence pairs in Edinburgh++ were drawn from monolingual parallel text,

and so the sentences in a pair must have the same meaning; the pairs in MSR RTE were

designed for the entailment task, and so the sentences in a pair almost never mean exactly

the same thing – even in entailed pairs, the hypothesis sentence covers only a subset of the

information in the premise sentence. Of the two corpora, MSR RTE is the larger and more

commonly used.

5.2.1.3 Paraphrase Lexicons

There has also been significant work on building paraphrase lexicons, which can be used by

alignment systems to look up potential paraphrase pairs. Rather than collecting sentences

that contain paraphrases, as in the case of the two corpora described above, paraphrase lex-

icons collect pairs of synonymous words, phrases, or syntactic structures, without the sur-

rounding context. Early work on creating paraphrase lexicons used human annotations or

thesauruses to identify interchangeable synonyms, while the first corpus-based approaches

were limited to certain types of paraphrases, such as morphological or syntactic word

variants (Jacquemin, Klavans, and Tzoukermann 1997) or adjective-noun phrases (Lapata

2001).

The first general-purpose, corpus-based paraphrase lexicon was the work of Barzilay
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undertone⇔ low voice
sudden appearance⇔ apparition

Figure 5.5: Examples of paraphrases from Barzilay and McKeown (2001).

and McKeown (2001). They used monolingual parallel text, as did the Edinburgh++ cor-

pus: eleven different English translations of five different non-English novels. They pre-

dicted whether or not a given pair of words or phrases were a paraphrase pair using cotrain-

ing between one classifier that looked at the words or phrases themselves and another that

looked at the surrounding contexts. Figure 5.5 shows examples from Barzilay and McK-

eown’s lexicon of 9483 paraphrase pairs. Other lexicons constructed using monolingual

parallel text include Barzilay and Lee (2003), Pang, Knight, and Marcu (2003), Ibrahim,

Katz, and Lin (2003), Dolan, Quirk, and Brockett (2004), Dolan and Brockett (2005), and

Lan et al. (2017).

thrown into jail⇔ imprisoned
especially concerned about the situation of⇔ particularly concerned at the situation of

Figure 5.6: Examples of paraphrases from the PPDB.

The other corpus-based technique for constructing paraphrase lexicons is bilingual piv-

oting. Because monolingual parallel texts are relatively rare, this approach instead uses

bilingual parallel texts, which come readily available – and already aligned – in the form of

machine translation corpora. The bilingual pivoting approach was introduced by Bannard

and Callison-Burch (2005), who observed that, if two different English phrases are aligned

to (two different occurrences of) the same non-English phrase in a machine translation cor-

pus, then the two English phrases are likely to be a paraphrase pair. The most well-known

and widely used lexicon constructed using bilingual pivoting is the Paraphrase Database
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(PPDB) (Ganitkevitch, Van Durme, and Callison-Burch 2013; Pavlick et al. 2015); Fig-

ure 5.6 shows examples of paraphrase pairs from this lexicon.

How often do earthquakes occur? ⇔ How frequently are earthquakes happening?
This myth involves three misconceptions. ⇔ There are three misconceptions in this
mythology.

Figure 5.7: Examples of paraphrases from ParaBank.

The most recent approach to paraphrase lexicon construction uses neural machine trans-

lation to generate, rather than discover, paraphrase pairs. Instead of aligning phrases in

bilingual parallel texts, this approach instead translates the non-English text into English

and treats an original English sentence and its translated English partner as a paraphrase

pair. Work that uses this approach includes Mallinson, Sennrich, and Lapata (2017), Wi-

eting, Mallinson, and Gimpel (2017), Wieting and Gimpel (2018), and Hu et al. (2019);

Figure 5.7 shows examples of paraphrase pairs from ParaBank (Hu et al. 2019). One of

the stated goals of the neural machine translation approach is to generate sentential para-

phrases, the long paraphrases that were lacking in previous work; however, the paraphrases

that current systems are able to generate consist of multiple lexical or short phrasal para-

phrases put together, not the more interesting and challenging whole-sentence paraphrases

envisioned by Madnani and Dorr (2010).

5.2.2 Monolingual Alignment Systems

To date, there are only five phrase-based monolingual aligners in existence, not including

the work discussed in this chapter. The first was MANLI (MacCartney, Galley, and Man-

ning 2008), which was developed for the MSR RTE corpus and which set a precedent for
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following research: the possible alignments were not used. MacCartney et al. made this

decision based on conclusions drawn in machine translation research that training using

possible alignments did not improve the performance of machine translation systems, but

as we show in Section 5.4, this decision, which has been followed by subsequent MSR

RTE systems, removed from consideration nearly all of the long alignments (four or more

words) in the corpus. MANLI was a phrase-based system, designed to be capable of align-

ing multiple source tokens to multiple target tokens. However, MacCartney et al. found

that constraining it to align only at the word level (i.e., setting a maximum phrase length of

one) decreased the system’s F-measure by only 0.2%, suggesting that this early work was

not yet able to represent the meanings of multi-word phrases as well as it could represent

the meanings of single words.

Thadani and McKeown (2011) extended MANLI by introducing syntactic constraints

on alignment, improving the system’s precision, and used integer linear programming to

perform faster, exact decoding, rather than the slower, approximate search used by the

original system. Thadani, Martin, and White (2012) later added dependency arc edits to

MANLI’s phrase edits, again improving the system’s performance. Interestingly, Thadani

et al. used both the sure and possible alignments in the Edinburgh++ corpus and showed

that training on both gave better performance than training only on sure alignments, but

no subsequent monolingual alignment systems took advantage of possible alignments until

we did so in the work described in this chapter.

The current state-of-the-art phrase-based monolingual alignment system is JacanaAlign-

phrase (Yao et al. 2013b), the phrase-based extension of JacanaAlign-token (Yao et al.

2013a). Yao et al. used a semi-Markov conditional random field to tag each token or se-

111



quence of tokens in the source sentence with the indices of aligned target tokens. To train

this system, they synthesized phrasal alignments by merging consecutive word-level align-

ments among the MSR RTE sure alignments; however, even after doing so, they found that

long alignments involving phrases of four or more words still made up less than 1% of the

corpus. Yao et al. found that the phrase-based JacanaAlign performed slightly worse than

the token-based version, likely due to the overwhelming majority of alignments in their test

set being at the token level and the token-based alignments in the test set penalizing their

phrase-based output.

JacanaAlign-phrase is the fastest existing phrase-based aligner (there are only four

others: MANLI, its two extensions, and SemAligner, all described in this section), but

Yao et al. noted that it is roughtly 30-60 times slower than the word-based version,

JacanaAlign-token. Of particular note is that the decoding time of JacanaAlign-phrase

is O (LsL
2
tMN2), where Ls and Lt are the maximum allowed phrase lengths, and M and

N are the sentence lengths, for the source and target, respectively. The longer the phrases

being aligned, the longer Jacana-Align would need to run.

Finally SemAligner (Maharjan et al. 2016) is a semantic aligner designed for the se-

mantic textual similarity task. It chunks input sentences into phrases, aligns the phrase

chunks, and labels each alignment with a semantic relation, such as equivalence or specifi-

cation. However, it was designed for and evaluated on the semantic textual similarity task,

so its published performance could not be directly compared with those of monolingual

alignment systems.
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5.3 Models

Our goal in designing our own alignment system is to overcome two challenges of monolin-

gual paraphrase alignment that previous work on alignment did not address: aligning long

phrases of four or more words and aligning phrases that were only approximately synony-

mous. We first experimented with a rule-based approach that used the output of both an

existing aligner and a dependency parser; the approach began with aligned words in the

input sentences’ dependency parses and attempted to “grow” the alignments by traversing

the edges of the dependency graphs. However, this first approach was unsuccessful. It

was difficult to determine whether or not a given dependency graph edge should be used

to grow an alignment; because the two input sentences did not necessarily mean exactly

the same thing, there was not always a match between edges in their graphs. It was not

clear which edge matches should be allowed, and it was further unclear how to handle

alignments between phrases of different lengths, for which there would not be a one-to-one

edge mapping.

Our solution and the key to our second, successful approach, is the observation that nei-

ther words nor phrases are necessarily the best unit of alignment; the best unit of alignment

could be word, phrase, clause, or full sentence, depending on how similar in meaning the

input sentences are. We need an alignment system that can not only align units of arbitrary

size, but also discover the best unit size for each input sentence pair.

To accomplish these two goals, our system first chunks the source and target sentences

of an input pair several times, at different levels of granularity, from mostly single words

to phrases to whole clauses, then computes a chunk embedding in a distributed semantic
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space for each chunk (Section 5.3.1). We call any segmentation of a sentence into chunks

a chunking of that sentence; each chunking represents a different possible set of alignment

units for that sentence. We then pair a source chunking with a target chunking and use a

pointer-network (Vinyals, Fortunato, and Jaitly 2015) to perform a preliminary alignment

from a source chunk to the target chunks (Section 5.3.2). Finally, we combine the prelimi-

nary alignments from all source/target chunking pairs using a voting system to produce the

final alignment from the source sentence to the target sentence (Section 5.3.3).

5.3.1 Chunkings and Chunk Embeddings

Our system first chunks the source and target sentences using constituent parsing (Bauer

2014). We consider all nodes with phrase-level tags (XP) to be constituents. Beginning

with the leaves, we move up the tree, deleting any node that is wholly contained in a larger

constituent but that is neither a constituent itself, nor the sibling of a constituent. Figure 5.8

shows such a simplified constituent tree.

Constituents and their siblings are the smallest possible chunks that we consider. In

the example constituent tree above, there are eight such small chunks. Our system can

also merge any number of consecutive small chunks to form a larger chunk: “offered,” “no

dinner,” “at,” and “the reception,” for instance, can be merged to form “offered no dinner

at the reception.” In a sentence with i of these smallest chunks, there are i − 1 potential

chunk boundaries (Figure 5.9); since merging two adjacent chunks is equivalent to ignoring

the chunk boundary between them, there are 2i−1 unique chunkings of the sentence. It is

important to note that each token in the sentence is contained in exactly one chunk in each
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Figure 5.8: An example simplified constituent tree.

chunking of that sentence.

I attended a wedding which offered no dinner at the reception

Figure 5.9: All potential chunk boundaries for the example sentence.

From the example sentence above, our system would obtain 128 unique chunkings.

The coarsest consists of a single chunk containing the entire sentence, and the most fine-

grained has each leaf of the constituent tree as a separate chunk. Each chunk is a possible

unit of alignment, and so each chunking is a different possible way to break down an input

sentence into units of alignment. However, at this point there is no way for our system

to know which chunking is the “correct” one. Instead of arbitrarily choosing a single

chunking to align, we perform the preliminary alignment described in the next section

using all possible chunkings of the source and target sentences; the alignment scores from

the preliminary alignments and the voting system that finally combines those scores will

decide the “correct” units of alignment.
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a tall long necked spotted ruminant of africa

giraffe

Figure 5.10: Hill et al.’s LSTM language model for sentence-level embeddings.

In order to align a chunk, rather than a word, we need some way to represent the

meaning of the chunk as a whole. We look to recent work in composing word embeddings

into phrase- or sentence-level embeddings. Since the early work of Mitchell and Lapata

(2008), there has been a great deal of interest in learning phrase embeddings (Baroni and

Zamparelli 2010; Zanzotto et al. 2010; Yessenalina and Cardie 2011; Socher et al. 2012;

Grefenstette et al. 2013; Mikolov et al. 2013; Yu and Dredze 2015). In the work discussed

in this chapter, we generate chunk embeddings using the LSTM language model of Hill et

al. (2016)1 . The model is trained on dictionaries: it takes as input a dictionary definition,

in the form of a sequence of word embeddings, and produces as output the embedding of

the word to which the definition belongs, thus learning to compose the embeddings of the

words into a single embedding representing the entire phrase or sentence (Figure 5.10)2.

By representing each chunk by a single chunk embedding, we are able to align chunks of

arbitrarily large size with only the language model’s run time as overhead.

1We also experimented with simply averaging word embeddings, but this approach underperformed the
language model.

2A limitation of this approach – also a limitation of context-independent word embeddings in general –
is that there is no accomodation for words with multiple senses.

116



5.3.2 Preliminary Alignment

Once all possible chunkings of the source and target sentences have been assembled and

chunk embeddings calculated for each chunk, our system takes the Cartesian product of

the set of source sentence chunkings and the set of target sentence chunkings, pairing each

source chunking with each target chunking. Then, for a given source/target chunking pair,

we perform a preliminary alignment from each source chunk in the source chunking to

the entire target chunking using a neural network aligner inspired by the pointer network

of Vinyals, Fortunato, and Jaitly (2015). For a source sentence withM different chunkings,

each of length lm where m ∈ [1,M ], and a target sentence with N different chunkings, we

perform
∏

m∈[1,M ] lmN different preliminary alignments. Thus, the multiple chunkings

also have the practical benefit of increasing the amount of training data available for the

aligner.

Most previous work on neural network alignment has used feed-forward, recurrent, or

convolutional neural networks to score source-target word pairs and then fed these scores

to a traditional alignment model, such as an HMM or a greedy aligner (Yang et al. 2013;

Tamura, Watanabe, and Sumita 2014; Legrand, Auli, and Collobert 2016), rather than using

the neural network itself to predict the alignments. This is likely due to the difficulty of

adapting a neural network to the alignment task directly: two input sequences of unknown

and often different lengths, as well as an output set of unknown size, with no clear linear

relationship among output word pairs.

Our neural network aligner is based on the pointer network and learns a distribution

over an output dictionary of variable size. The flexibility of the output size makes the
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We were expecting a buffet to be set up, but there was nothing
ei

c0 c1 c2 c3
I attended a wedding which offered no dinner at the reception

.14

ai0

.09

ai1

.67

ai2

.10

ai3

Figure 5.11: The pointer network aligner performing preliminary alignment between source chunk
ei and and target chunking c0c1c2c3.

pointer network well-suited to the task of aligning chunkings of variable length. For a

given source chunk from the source chunking under consideration, we adapt the pointer

network to predict a preliminary alignment over the entire target chunking:

aij = vT tanh(W1ei +W2cj)

where ei is the embedding for chunk i in the source chunking, cj is the embedding for

candidate chunk j in the target chunking, and v, W1, and W2 are learned parameters. (For

convenience, in subsequent sections we use ei and cj to refer to both the chunk embeddings,

which are vectors, and to the chunks themselves, which are sequences of tokens.) The

chunk embeddings are generated by the LSTM language model described in the previous

section, and are fixed at training time to allow for easier and faster batching. For each

source chunk in the source chunking, the pointer network aligner produces a distribution

over all candidate chunks in the target chunking. Figure 5.11 shows the pointer network

aligner performing a preliminary alignment on a source/target chunking pair.
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5.3.3 Voting and Final Alignment

For a fixed source chunking and a fixed source chunk, the pointer network aligner produces

one preliminary alignment for each different chunking of the target sentence, and we per-

form a preliminary alignment for all source chunks in all chunkings of the source sentence.

By performing preliminary alignments for all combinations of source and target chunkings,

we are able to defer deciding the alignment unit size, instead allowing the voting procedure

to discover it.

Because the standard evaluation metric for monolingual alignment is precision, recall,

and F-measure for aligned token pairs – even for phrase-based models – the output of the

voting procedure (i.e., the final output of our alignment system) is aligned token pairs.

However, the longer aligned phrases that correspond to these aligned token pairs can be

easily reconstructed: following MacCartney, Galley, and Manning (2008) and Yao et al.

(2013b), two tokens are aligned if and only if the phrases containing them are aligned.

Token-level output is convenient for the voting procedure, which is described in pseu-

docode in Figure 5.12. Because the preliminary alignments are performed on chunkings of

different granularities, we must vote at the level of the smallest possible chunks (the leaves

in the constituent tree). Since it is not possible for the tokens within one of these smallest

possible chunks to receive different amounts of votes (to do so would require the tokens to

have been in two different chunks in some chunking) we simply vote on tokens. We convert

the preliminary alignments to token-level alignments by assigning to each token pair the

preliminary alignment score between the source and target chunks containing them.

Only one chunk eis in a given source chunking s contains the token w, and only one
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Inputs
• the source sentence W
• the target sentence U
• the set of source sentence chunkings S
• the set of target sentence chunkings T

Initialize
• set score(w, u) = 0 for tokens w ∈W and u ∈ U

Repeat for ei ∈ s, for (s, t) ∈ S × T
• predict preliminary alignment ai

• add aij to score(w, u) for tokens w ∈ ei and u ∈ cj
Repeat for w ∈W
• sum-to-one normalize score(w, u) for u ∈ U
• sort pairs (w, u) by score(w, u) in descending order: score(w, u1) > . . . > score(w, um)
• select max k such that score(w, uk) > 1/(k + 1)
• set Aw = {(w, u1), . . . , (w, uk)}

Return
⋃

w∈W Aw

Figure 5.12: Voting procedure for final output.

chunk cjt in a given target chunking t contains the token u. Here, is and jt indicate the

specific source and target chunks that contain the tokens w and u, respectively. The token-

level scores are obtained by summing the preliminary alignment values for all source/target

chunk pairs where the source chunk contains w and the target chunk contains u:

score(w, u) =
∑
s∈S

∑
t∈T

aisjt

where S is the set of all source chunkings of the source sentence, T is the set of all chunk-

ings of the target sentence, and aisjt is the preliminary alignment value predicted by the

pointer network aligner described in the previous section.

For a fixed source token w, we normalize its scores to produce a probability distribution

over all target tokens. We select the k highest-scoring target tokens such that the score of

each token is greater than 1/(k + 1). If we select four target tokens, for example, each has

a score of at least 0.2, and the next-highest-scoring token has a score of less than 0.167.
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Intuitively, we are looking for a large gap in the target token scores at which to cut off

the selected tokens from the unselected tokens; the sum of the scores of all unselected

tokens is less than the score of any selected token. We select the largest possible number

of target tokens for which this requirement holds. This flexible threshold ensures that the

selected tokens u1, . . . uk have much larger scores than the unselected tokens uk+1, . . ., um

while still allowing any number of tokens to be selected. The selected target tokens are

then aligned to the source token w to produce aligned token pairs. The final output of our

system is the union of the aligned token pairs for each source token in the source sentence.

5.4 Data

5.4.1 The Reddit Summarization Corpus

To train our model, we use the alignments in our Reddit summarization corpus; as we

discussed in Section 5.1, our goal is to learn to align the longer, looser types of para-

phrases likely to be found in human-written summaries. We randomly split the extrac-

tive/abstractive summary pairs in the corpus into 511 training, 108 validation, and 423

testing pairs, and within each subset further divide each summary pair into sentence pairs.

In order to train the pointer network aligner, we need target distributions for all of the

preliminary alignments for source/target sentence pairs in the training and validation sets.

While the Reddit summarization corpus already contained gold standard alignments be-

tween sentence pairs, those alignments had been produced by Amazon Mechanical Turk

workers (Turkers), who had used a highlighting interface to align any substring from an
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abstractive summary sentence to any substring from an extractive summary sentence – the

Turkers were not constrained to obey the chunk boundaries that did constrain our prelim-

inary alignments. In the example sentence shown in Figure 5.9, for instance, “dinner at

the reception” would have been a perfectly valid span for the Turkers to align, but because

there is no chunk boundary between “no” and “dinner,” the pointer network aligner would

never be able to predict that exact alignment; it would be forced to align either “no dinner

at the reception” or “at the reception.”

alignment

We were expecting a buffet, but there was nothing

I attended a wedding which offered no dinner at the reception

sequence similarity = 0.5target chunking

I attended a wedding which offered no dinner at the reception

1.0 1.0 1.0 1.0 0.5
target distribution

Figure 5.13: An training target distribution for preliminary alignment.

As a result, for a given source and target chunking, the training target distributions for

preliminary alignment need to approximate as closely as possible the gold standard hu-

man alignment. To produce the training target distribution for the preliminary alignment

between a given source sentence chunk and a given target sentence chunking, we first cal-

culate, for each human alignment, the length of the longest common subsequence between

the source chunk and the source alignment span, as well as the length of the longest com-

mon subsequences between each target chunk and the target alignment span, normalized

by the lengths of the chunk and span. This normalized longest common subsequence score
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represents our confidence that the chunk matches the alignment span, and we weight each

target chunk’s position in the training target distribution by its score (Figure 5.13). Finally,

we weight the entire target training distribution by the source chunk’s score. It is important

to note that the target training distributions are not probability distributions; the maximum

possible value at a position in the distribution is 1.0, and the absolute value of a position is

less important than how it compares to the values of other positions in the distribution.

5.4.2 The MSR RTE Corpus

While we train solely on the Reddit summarization corpus, we use both the Reddit corpus

and the MSR RTE corpus (described in detail in Section 5.2) for evaluation. The MSR

RTE corpus is the most widely-used corpus for evaluating alignment systems (MacCartney,

Galley, and Manning 2008; Thadani and McKeown 2011; Yao et al. 2013a; Yao et al.

2013b; Sultan, Bethard, and Sumner 2014a; Sultan, Bethard, and Sumner 2015), although

it has previously been used for evaluation using sure alignments only3.

In order to use this corpus to train their phrase-based system, Yao et al. (2013b) created

longer alignments by merging consecutive, word-level sure alignments in the MSR RTE

training set into larger, phrase-level alignments. They reported that doing so increased the

percentage of multi-word alignments in the training set from 4% to 21%, but even after

merging, alignments involving at least one phrase of four words or longer still made up

less than 1% of the corpus.

If possible alignments are included, however, the percentage of alignments in the MSR

3Yao (2014) performed experiments using a different definition of “sure” and “possible”: his “sure”
alignments were those with perfect agreement among the MSR RTE annotators, and “possible” were those
with some disagreement.
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RTE training set involving phrases of four or more words increases to 27%, and if we

restrict ourselves to sentence pairs that contain at least one possible alignment, that per-

centage increases to 61%. Thus, the set of MSR RTE sentence pairs that contain at least

one possible alignment forms a subcorpus of precisely the type of long quasi-paraphrases

that our system is designed to align. Unfortunately, the MSR RTE training set consists of

only 800 sentence pairs, a very small amount of data for a neural network, and restricting

the sentence pairs to those containing possible alignments reduces the amount of data even

further, so we do not attempt to train our system on this subcorpus. Instead, we evaluate

our system, as well as the state-of-the-art word- and phrase-based aligners, on the subset

of 406 sentence pairs in the MSR RTE test set that contain possible alignments.

5.5 Experiments

Our chunk embedding model is implemented with Lasagne and trained for 25 epochs using

the dictionary datasets and hyperparameter settings of Hill et al. (2016). Our pointer net-

work aligner is implemented with PyTorch, using the pointer network settings of Vinyals,

Fortunato, and Jaitly (2015) and cosine distance of the predicted preliminary alignment ai

from target preliminary alignment as the loss function; we train for 16 epochs using early

stopping based on validation set performance.

We report the results of our experiments using the standard alignment evaluation met-

rics of precision, recall, and F-measure for aligned token pairs, where two tokens are con-

sidered aligned if and only the phrases containing them are aligned. As Yao et al. (2013b)

argue, evaluating at the token level allows for alignment systems to receive partial credit
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for phrases that are partially, but not fully, aligned correctly. We do not report the exact

match percentage, a fourth metric commonly used in alignment evaluation, simply because

that number was close to zero for all systems we tested – getting an exact match on a long

alignment is extremely difficult.

5.5.1 Baselines

We compare our alignment system (hereafter pointer-aligner for simplicity) against three

existing systems: Sultan, Bethard, and Sumner (2014a), a state-of-the-art word-level aligner4;

JacanaAlign-phrase (Yao et al. 2013b), a state-of-the-art phrase-based aligner, and SemA-

ligner (Maharjan et al. 2016). As discussed in Section 5.2, SemAligner has not previously

been evaluated as a monolingual alignment system, as it was designed for textual similarity,

but we include it as a baseline because its approach of aligning chunks is more similar to

ours than the approaches of the two state-of-the-art systems. SemAligner assigns semantic

relations to pairs of chunks, so in this evaluation, we treat chunk pairs assigned the equiva-

lent, specification, and related relations as aligned and those assigned the opposite relation

as not aligned. Because the evaluation is on phrase-level alignments, for fairness, we fol-

lowed Yao et al. in converting word-level alignments into phrase-level ones by merging

consecutive single-word alignments into larger phrase alignments.

We also evaluate a greedy baseline on the Reddit summarization corpus, which scores

each candidate chunk in the target sentence based on the cosine similarity between its chunk

embedding and that of the source chunk. We calculate the score using cosine distance as

4In private correspondence, Sultan recommended that we use this system, rather than Sultan, Bethard,
and Sumner (2015), because it was “so much simpler with only a tiny difference in quality.”
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follows: let e and c be the chunk embeddings for the source and candidate target chunk,

respectively;

score = 1− ec

‖e‖‖c‖
+ 0.25m

where the constituent mismatch indicatorm is a binary indicator that takes the value 0 if the

source and candidate chunks are of the same constituent type, and 1 otherwise. This penalty

encourages the greedy aligner to align constituents of the same type, but still allows, for

example, a verb phrase to be aligned to its nominalized form. The mismatch penalty of

0.25 is tuned on the validation set.

The greedy baseline aligns each source chunk to the candidate target chunk with the

lowest score (lower is better for cosine distance). If there are no target chunks with scores

below a gap threshold of 0.6 (also tuned on the validation set), the source chunk remains

unaligned. We convert the chunk-level alignments of the greedy baseline into token-pair

alignments by considering two tokens to be aligned if and only if the chunks containing

them are aligned. Finally, we take the union of all token alignments for all chunkings of

the source and target sentences.

5.5.2 Reddit Summarization Corpus Evaluation

Table 5.1 shows the performance of the pointer-aligner on the Reddit summarization corpus

test set, compared with the three other systems and greedy baseline. Our approach has

an order of magnitude improvement in recall and F-measure over existing aligners. The

greedy baseline also dramatically improves recall, demonstrating the importance of phrase-

level similarity, but is significantly worse than the pointer-aligner that is key to success.
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System P% R% F1%

Sultan et al. 76.1 1.4 2.8
SemAligner 65.7 2.5 5.4
JacanaAlign-phrase 59.5 3.9 7.3
greedy 51.4 27.5 35.8
pointer 54.3 79.5 64.5

Table 5.1: Performance on the Reddit summarization corpus test set.

Figure 5.14 shows an example of predicted alignments from the pointer-aligner; the

greedy baseline; and the three baseline systems, SemAligner, Sultan et al., JacanaAlign-

phrase. As expected, the state-of-the-art word-level aligner, Sultan et al., achieves the high-

est precision and aligns spans that are word-for-word identical (excepting minor grammat-

ical differences) between the two sentences. Of the three baseline systems, JacanaAlign-

phrase performs the best, although it does not outperform the greedy baseline; it produces

one longer alignment, shown in green. The pointer-aligner and the greedy baseline align

the longest spans, although they seem to have trouble with over-aligning and including

extra words (“which I miraculously,” shown in red in Figure 5.14b, and “and,” shown in

green in Figure 5.14c) while excluding others that should be aligned (“my boyfriend” in

Figure 5.14b and “who I had been living with for two years” in Figure 5.14c).

One interesting note is that the greedy baseline aligns “and she repaid me by hooking

up with my boyfriend” to “about a month later her and my boyfriend” and also separately

aligns “hooking up” to “hooked up” (Figure 5.14c). While it is also possible for the pointer-

aligner to align one source phrase to two non-consecutive target phrases, it does not do so

in any of our experiments. Of the three other systems, only JacanaAlign-phrase is able to

align a single source token or phrase to multiple target tokens, but those target tokens are
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restricted to be a single consecutive phrase; SemAligner and Sultan et al. do not allow

multiple alignments.

128



I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my
boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her
tongue, which I miraculously had with me at the time. About a month later her and my
boyfriend who I had been living with for two years hooked up.

(a) The Reddit summarization corpus’s gold standard alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my
boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her
tongue, which I miraculously had with me at the time. About a month later her and my
boyfriend who I had been living with for two years hooked up.

(b) The pointer-aligner’s predicted alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my
boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her
tongue, which I miraculously had with me at the time. About a month later her and my
boyfriend who I had been living with for two years hooked up.

(c) The greedy baseline’s predicted alignment. The source phrase “hooking up” aligned to both the
green and yellow target phrases.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my
boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her
tongue, which I miraculously had with me at the time. About a month later her and my
boyfriend who I had been living with for two years hooked up.

(d) SemAligner’s predicted alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my
boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her
tongue, which I miraculously had with me at the time. About a month later her and my
boyfriend who I had been living with for two years hooked up.

(e) JacanaAlign-phrase’s predicted alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my
boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her
tongue, which I miraculously had with me at the time. About a month later her and my
boyfriend who I had been living with for two years hooked up.

(f) Sultan, Bethard, and Sumner (2014a)’s predicted alignment. While this system aligns at the
word level, consecutive alignments that we merged for evaluation are shown in the same color here.

Figure 5.14: Alignments on a sentence pair from the Reddit summarization corpus.
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The pointer-aligner has difficulty with clean phrase boundaries, eg. omitting “my

boyfriend” but including “which I miraculously” in Figure 5.14b. Because our system

considers the alignment score of a token to be the sum of the preliminary alignment scores

of the chunks that contain that token, it is possible for words within a constituent to re-

ceive different scores if there is a potential chunk boundary inside the constituent. In the

first sentence of Figure 5.14, for example, there is a potential chunk boundary between

“she repaid me by hooking up with” and “my boyfriend” (because “my boyfriend” is it-

self a constituent). Thus, there is a chunking where “my boyfriend” is its own, separate

chunk, and in the preliminary alignment for that chunking, the pointer-network must have

assigned “my boyfriend” a lower score than it did the rest of the chunks in that sentence.

While other, coarser chunkings would have given “my boyfriend” some score, it was ap-

parently not enough to make up the difference, and “my boyfriend” did not accumulate

enough score to be included in the final alignment. The exclusion of “my boyfriend” is

clearly an error on the part of our system; it may be worth considering to constraining the

system not to break up certain types of constituents, such as prepositional phrases.

5.5.3 MSR RTE Evaluation

We evaluate on the MSR RTE corpus test set, using a majority vote among the three MSR

RTE annotators: any alignments that at least two annotators marked as sure or possible are

included. Because we are interested in evaluating the systems on long quasi-paraphrases,

we remove from consideration the 394 sentence pairs in the MSR RTE test set that do

not contain any possible alignments, leaving 406 sentence pairs. As discussed in Sec-
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tion 5.4, Yao et al. (2013b) found that, even after merging consecutive single-word align-

ments, the sure alignments of the MSR RTE corpus consisted overwhelmingly of phrases

fewer than four words in length. It is not until we add in the possible alignments that the

percentage of four-word or longer phrases grows to 24% in the MSR RTE test set; when

we look only at sentence pairs containing a least one possible alignment, the percentage of

longer phrases grows to 44%. Thus, evaluating only on the 406 sentence pairs that contain

at least one possible requires systems both to perform well on longer alignments, but also

to avoid sacrificing performance on short alignments.

System P% R% F1%

Sultan et al. 6.7 3.4 4.4
SemAligner 4.1 6.8 5.1
JacanaAlign-phrase 5.2 6.7 5.8
pointer 23.4 47.7 31.4

Table 5.2: Performance on the restricted, 406-pair MSR RTE test set.

Figure 5.15 shows predicted alignments from the pointer-aligner and the three base-

line systems. This particular sentence pair is very good for the pointer-aligner because the

gold standard alignment, except for the word “50-50”, is a single constituent neatly sep-

arated out from the rest of the sentence as a parenthetical. Of the three baseline systems,

both SemAligner and Sultan et al. align more conservatively: the prepositions “of” and

“with” for SemAligner (Figure 5.15c), and the semantically related words “business” and

“production” for Sultan et al. (Figure 5.15e). JacanaAlign-phrase attempts to align longer

spans, but its alignments “is a business”⇔ “’s”, shown in green, and “of”⇔ “joint venture

with”, shown in yellow (Figure 5.15d), suffer from the same noisy, constituent-breaking

boundaries as does the pointer-aligner on sentence pairs less well-suited to our approach.
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Comparing the gold standard alignments of the MSR RTE corpus with those the Reddit

summarization corpus, we find that it is often the case with the Reddit alignments that

one sentence contains much more information than other. While some MSR RTE sentence

pairs have this property (the modifier “prominent” in Figure 5.3c, for example), not all do.

This is likely a side effect of the Reddit corpus’s being designed for summarization – the

sentence pairs are composed of an excerpt from a narrative and a human-written summary,

which by definition compresses the content of the narrative. Further, the Reddit alignments

were generated by Amazon Mechanical Turk workers, who were instructed to highlight

aligned spans. In Figure 5.14a, the clause “who I had been living with for two years”

should probably not have been aligned, but the workers may have found it bothersome to

remove the clause (which would require splitting the alignment shown in green into two

separate alignments), so the clause remains in gold standard alignments. Being trained

on this data, the pointer-aligner seems to have learned this preference for retaining extra

information contained within a larger, more strictly aligned span, such as the word “50-50”

in Figure 5.15b. While it is possible for the pointer-aligner to to align a single source phrase

to two non-consecutive target phrases, it did not encounter such examples in training and

never does so in any of our experiments.
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Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De
Beers – reach 33 million carats.

(a) The MSR RTE corpus’s gold standard annotation, with sure alignments in bold and possible
alignments in italics.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers
– reach 33 million carats.

(b) The pointer-aligner’s predicted alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers
– reach 33 million carats.

(c) SemAligner’s predicted alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers
– reach 33 million carats.

(d) JacanaAlign-phrase’s predicted alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers
– reach 33 million carats.

(e) Sultan, Bethard, and Sumner (2014a)’s predicted alignment. While this system aligns at the
word level, consecutive alignments that we merged for evaluation are shown in the same color here.

Figure 5.15: Alignments on a sentence pair from the MSR RTE test set.
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5.6 Discussion

The main limitation of our approach is that it is still computationally expensive. Despite

its independence from the length of the paraphrases it is to detect and align, the system

is still very dependent on the lengths of the source and target sentence: we expand each

pair of input sentences into multiple chunkings, and a preliminary alignment has to be run

on each pairing of a source chunk and target chunking. The number of potential chunk

boundaries in an input sentence varies roughly with sentence length: if the source sentence

has length M , and the target sentence has length N , then there are roughly M/2 potential

chunk boundaries in the source sentence and N/2 potential chunk boundaries in the target

sentence. There are 2M−1 different chunkings of the source sentence and 2N−1 different

chunkings of the target sentence, so the complexity of our system was thus

O
(
(M/2 + 1) 2M−12N−1

)
= O

(
M2M+N−3)

As a result, our approach in its original form is not an improvement in time complexity

over the O (LsL
2
tMN2) of Yao et al. (2013b). Unlike Yao et al., however, our system’s

complexity can easily be reduced. In the original system, there is a great deal of redundancy

among chunkings. Each chunking of a given sentence is identical to one other chunking

of that sentence except for a single merge/no merge decision at a single potential chunk

boundary; thus, the preliminary alignments for those two chunkings are nearly identical

and thus redundant.

To extract paraphrase pairs for training the lexical paraphrasing system that we describe
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in the next chapter, we use a slightly worse-performing but much faster version of this

alignment system. The faster system fixes a constant number of chunkings to align for

every input sentence pair. Each sentence had only three different chunkings:

• The most fine-grained chunking i.e., the leaves of the constituent tree;

• The second coarsest chunking, i.e., the children of the root of the constituent tree

(the coarsest chunking would simply be the full sentence, which was rarely the best

unit of alignment);

• A chunking of intermediate granularity such that the average size of its chunks was

halfway between the average chunk sizes of the most fine-grained and second coars-

est chunkings.

This faster system sacrifices some flexibility in its ability to discover the best units of

alignment for its input sentences but drastically reduces its time complexity to the much

more manageable O (M).

5.7 Conclusion

The main contributions described in this chapter (based on work published in Ouyang and

McKeown (2019)) are as follows:

• We design a monolingual alignment system that is capable of aligning paraphrases

of arbitrary length, from single words to full sentences. By composing the semantics

of the words in a text span into a single embedding representing the meaning of the

entire span, our system is able to align longer spans as if they were single words.
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Unlike previous work on phrase-based alignment, the time complexity of our system

is independent of the length of the paraphrase spans.

• Our experiments on aligning long quasi-paraphrases in both the Reddit summariza-

tion corpus and in the MSR RTE corpus show that our system achieves significant

increases in recall (over 75 points), while still maintaining a strong lead in F-measure

on aligning long paraphrases of four or more words, compared with existing state-

of-the-art word- and phrase-based aligners.

• Our pointer-network-based alignment system is the first use of a neural network to

directly perform the alignment task, rather than using the neural network to generate

features for a more traditional alignment algorithm.
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6. Lexical Paraphrasing

With our completed paraphrase alignment system in hand, we now move on to the second

stage of our two-stage narrative summarizer: an editing and rewriting system to transform

the extractive summaries described in Chapter 4 into fluent and coherent abstractive sum-

maries.

In their analysis of human-written summaries, Jing and McKeown (1999) identify six

major sentence-level operations that expert human summarizers use to rewrite segments of

text from the original document into more summary-appropriate forms: reduction, combi-

nation, syntactic transformation, lexical paraphrasing, generalization, and specification. Of

these six, reduction and combination (more commonly called compression and fusion, re-

spectively) have become well-established research areas of their own (Jing (2000), Knight

and Marcu (2000), and Berg-Kirkpatrick, Gillick, and Klein (2011); and Barzilay, McKe-

own, and Elhadad (1999), Daumé III and Marcu (2004), Barzilay and McKeown (2005),

and Filippova and Strube (2008), to name just a few).

We choose to focus on lexical paraphrasing; while there has been work on both generic

paraphrase generation and paraphrase generation for tasks such as question-answering and

machine translation evaluation, paraphrasing for summarization has not been explored. We

hope to answer two key questions:

• Every sentence can be paraphrased somehow, simply by substituting a synonym for

some word in the sentence, but not all sentences should be paraphrased – anyone
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who has read the writing of a child who has just discovered the thesaurus knows

this! When do human summarizers find it appropriate to paraphrase? Can we learn

to distinguish sentences that human summarizers would paraphrase from those they

would not?

• Can we learn to perform the type of paraphrasing found in the Reddit summarization

corpus? As we discussed in the previous chapter, these paraphrases are long, often

full sentences, and as we showed in Chapter 3, they are often mixed in with other

rewriting operations in the same sentence. Unlike most prior work on paraphrase

generation, we do not want to generate just any paraphrase; we want to generate the

type of paraphrases that human summarizers generate – can it be done?

6.1 Related Work

In the previous chapter, we described several approaches for identifying paraphrases. In

this section, we first focus on approaches for generating sentence-level paraphrases, and

then discuss work on paraphrases, whether identifying or generating, as related to the task

of summarization.

6.1.1 Paraphrasing Approaches

Early work on sentence-level paraphrasing used paraphrase pairs or patterns extracted from

thesauruses or parallel corpora – in effect, paraphrase lexicons. If an input sentence con-

tained one half of a paraphrase pair or matched a paraphrase pattern, the other half of the

pair would be substituted in, or the pattern would be applied, to create a paraphrased output
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sentence (Barzilay and Lee 2003; Pang, Knight, and Marcu 2003; Kauchak and Barzilay

2006; Zhao et al. 2008).

Techniques used to create paraphrase lexicons could also be used to generate new para-

phrases directly for some downstream task. Duboue and Chu-Carroll (2006), for example,

generated paraphrases of question-answering queries by translating them into some other

language and back. As mentioned in the previous chapter, there are also several paraphrase

lexicons created using machine translation: Mallinson, Sennrich, and Lapata (2017), Wi-

eting, Mallinson, and Gimpel (2017), Wieting and Gimpel (2018), and Hu et al. (2019).

While other lexicon-creation techniques are examples of paraphrase identification (because

they extract paraphrases found “in the wild” in parallel corpora), the machine translation

approach generates sentence-level paraphrases directly.

The work of Hu et al., in particular, addressed a major limitation of previous ap-

proaches: coverage. In the case of substitution-based approaches, not every input sentence

can be paraphrased; only sentences containing one half of a known paraphrase pair, or

matching a known pattern, can be paraphrased; in the case of a naive machine translation

approach, there is no way of ensuring that a given input sentence will be modified during

the translation process – it could very well be translated back to English exactly the same.

Paraphrase: It didn’t mean anything, okay? ⇔ It was nothing, all right?
Constraints: disallow “okay,” “mean,” “means,” “meaning,” “meant”

Figure 6.1: A generated paraphrase from Hu et al. (2019).

While the earlier work of Duboue and Chu-Carroll (2006) addressed this limitation to

some extent by using different machine translation systems and different languages to gen-

erate multiple candidate paraphrases, Hu et al.’s approach was more deliberate. They used
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lexically-constrained decoding (Hokamp and Liu 2017), modifying the beam search proce-

dure of their machine translation system to require that certain words be either included or

excluded in the output. These constraints allowed Hu et al. both to perform lexicon-style

paraphrasing (by requiring the inclusion of a word that was a known paraphrase of a word

in the input) and also to force the system to discover new paraphrases for itself – by disal-

lowing a given word in the input sentence but not providing the system with a replacement,

they forced it to find a suitable paraphrase on its own. As a result, Hu et al.’s approach

was capable of generating paraphrases for any input sentence. It is interesting to note that,

while the constraints were single words, multiple constraints used together could produce

surprisingly sophisticated paraphrases, such as that shown in Figure 6.1.

6.1.2 Paraphrasing for Summarization

Prior work on paraphrasing for summarization has mostly focused on identifying, rather

than generating, paraphrases.

Identifying paraphrases is part of the fusion operation (McKeown et al. 1999; Barzilay,

McKeown, and Elhadad 1999; Barzilay 2003). In multi-document summarization, the task

is to summarize a cluster of documents all about the same topic or event. In such a situation,

there are likely to be many sentences all roughly saying the same thing, and so one approach

to multi-document summarization is to find groups of sentences that are similar to each

other. However, sentences within a group will still differ in content, perhaps focusing on

different aspects of the common topic or event (we saw an example of this in Chapter 3). It

is often desirable to fuse the sentences within a group into a single sentence containing the
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most important information in that group, and doing this requires the fusion system to be

able to identify shared information among sentences that may be worded very differently

from each other. Thus, being able to determine whether two phrases that contain different

words are paraphrases, as opposed to truly different phrases representing different pieces

information, is key.

Zhou et al. (2006) applied paraphrase identification to the task of evaluating sum-

marization systems. They argued that metrics that use n-gram overlap unfairly penalize

summaries that paraphrase the reference summary, rather than match it word-for-word.

They extracted paraphrase pairs using bilingual pivoting, which they used to perform a

three-stage summary evaluation, first counting phrase-level paraphrase matches between

the generated and reference summaries, then counting word-level paraphrase matches, and

finally counting exact word matches.

Ganitkevic (2018) recently applied paraphrase generation to the compression opera-

tion. He used bilingual pivoting to identify a set of syntactic paraphrase rules in the form of

a featurized synchronous context-free grammar (SCFG). This rule, for example, addresses

the use of the subordinating conjunction “that” in relative clauses: NP→ NP that VP | NP

VP. Each rule was assigned a set of features, such as the frequency of the paraphrase pair

in the corpus used to construct the rules, and paraphrasing was performed by decoding the

SCFG to “translate” the input sentence into a paraphrased output sentence.

Ganitkevic suggested that the feature set could be tailored to different rewriting oper-

ations based on how the generated paraphrases would be used; he argued that any rewrit-

ing operation could be achieved using paraphrasing. Compression, for example, could be

achieved by replacing words or phrases in the input sentence with shorter paraphrases. He
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performed compression by using features such as the difference in length between the two

halves of a paraphrase pair, and his human evaluations showed that he was indeed able to

shorten sentences without losing their original meaning,

Ganitkevic’s claim is technically true in the sense that the overall length of the sentence

can be reduced using paraphrasing, and Cohn and Lapata (2008) had previously argued that

word substitution is an important part of sentence compression. However, compression

using nothing but paraphrasing is only useful when the input sentence does not contain

any extraneous information that should be gotten rid of – paraphrasing can only replace

words or phrases with other words or phrases meaning the same thing; it cannot remove

them entirely. In the case of summarization, it is often desirable to remove some of the

information in the input document, so Ganitkevic’s approach is less suitable.

6.2 Approach

Our approach to lexical paraphrasing for summarization combines ideas from two of the

works described in the previous section: Hu et al. (2019)’s neural approach and Ganitkevic

(2018)’s feature-based approach.

Hu et al. showed that a neural machine translation system consisting of an LSTM

encoder-decoder with attention was capable of generating lexically diverse, sentence-length

paraphrases, and further, that this ability could be controlled. However, their form of con-

trol, lexical constraints, required them to decide ahead of time which words were to be

paraphrased; Figure 6.2 shows how strongly the choice of constraint affected the para-

phrases generated by their system.
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Input Sentence: It didn’t mean anything, okay?

Constraints: disallow “anything”
Paraphrase: It didn’t mean a thing, okay?

Constraints: disallow “okay”
Paraphrase: It didn’t mean anything, all right?

Constraints: disallow “anything”, “okay”
Paraphrase: It meant nothing, all right?

Figure 6.2: The effect of constraints on the paraphrases of Hu et al. (2019).

Since Hu et al.’s goal was to generate multiple, diverse paraphrases of a single input sen-

tence, they were able to choose their constraints using heuristics, such as requiring para-

phrase matches from the Paraphrase Database (Ganitkevitch, Van Durme, and Callison-

Burch 2013) or disallowing relatively rare words from the input sentence. In our case, we

want to perform a very specific type of paraphrasing; we want to learn to paraphrase when

and how human summarizers do. Thus, we turn to Ganitkevic (2018)’s use of tailored

features to guide the type of paraphrasing to be performed.

Our base model is a pointer-generator (See, Liu, and Manning 2017); it consists of an

LSTM encoder-decoder with attention, like Hu et al.’s translation model, with the addi-

tion of a pointer-network (Vinyals, Fortunato, and Jaitly 2015) to allow rare words, such

as names, to be copied directly from the input sentence. This encoder-decoder-with-copy-

attention model has been widely and successfully used in general-purpose abstractive sum-

marization research (Gu et al. 2016; Chopra, Auli, and Rush 2016; See, Liu, and Manning

2017; Paulus, Xiong, and Socher 2018); it is appealing for our task because it includes a

learned probability switch that determines whether it copies tokens from its input (which

we would like it to do on non-paraphrasing input sentences) or generates new tokens from
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the vocabulary (which we would like it to do on paraphrasing input sentences).

We initialize the embedding matrices of both the encoder and decoder LSTMs with

the pretrained 300-dimensional GloVE Common Crawl word vectors (Pennington, Socher,

and Manning 2014), augmented with seven additional features: word length; activation,

evaluation, and imagery scores from the Dictionary of Affect in Language (Whissell 1989)

(augmented with Wordnet (Miller 1995) for better word coverage), as well as the activation-

evaluation norm for subjectivity (Agarwal, Biadsy, and McKeown 2009); and word-level

formality and complexity scores from the lexicons of Pavlick and Nenkova (2015). In

Chapters 2 and 4, we used these features to predict, at the sentence level, what content

should be included in a personal narrative summary; now we use them again to paraphrase

those sentences by capturing aspects of word choice that a human summarizer might con-

sider, but that might not be captured by the pre-trained embeddings.

Our goal is to train this model to learn not only how to perform lexical paraphrasing for

summarization, but also when it was appropriate to do so – this is in constrast to previous

work on paraphrase generation, which took for granted that their input sentences ought to

be paraphrased somehow. Thus, we train our model on a mix of two different types of data:

• Document-summary sentence pairs where the summary sentence is a paraphrase of

the document sentence. These are the “positive” training examples. On such pairs,

the model should learn how to rewrite the document sentence into its paraphrased

summary sentence.

• Document sentences that are not paraphrased by any of the sentences in their sum-

maries. These are the “negative” training examples. On such an input sentence,
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the model should learn to do nothing and return the sentence with no modifications,

behaving as a simple autoencoder.

In the next section, we describe in greater detail the data sources and preprocessing steps

that we use to create this mixed-type training set for our lexical paraphraser.

6.3 Data

In addition to our own Reddit summarization corpus, we use three other corpora in our

lexical paraphrasing experiments. One is a paraphrase alignment corpus, the Microsoft

Research Recognizing Textual Entailment (MSR RTE) corpus (Brockett 2007), which we

used in the previous chapter. The other two are summarization corpora, both of which we

discussed in Chapter 3: the New York Times annotated corpus (Sandhaus 2008) and the

Webis-TLDR-17 corpus (Völske et al. 2017).

A quick note of terminology: because the input to our model is an extractive summary

sentence and the output is also a sentence, we refer to our data as consisting of sentence

pairs. However, in the case where the input sentence should not be paraphrased (i.e., its

corresponding abstractive summary sentence is not a paraphrase of it), the desired output

sentence is identical to the input sentence. The model is meant to target lexical paraphras-

ing specifically, and so it should leave non-paraphrasing input sentences alone; for these

“negative” examples, there are not two different sentences, but rather two copies of the

same sentence. For consistency, we still refer to these examples as sentence pairs.
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6.3.1 The Reddit Summarization Corpus

The Reddit summarization corpus, which was the focus of Chapter 3, contains 6173 align-

ments between 1088 pairs of corresponding extractive and abstractive summaries. Of these

alignments, 1218 are annotated with the lexical paraphrasing operation. However, the num-

ber of sentence pairs that we can use is actually lower. Because each pair of extractive and

abstractive summaries was aligned by three separate Amazon Mechanical Turk workers

(Turkers), alignments for given summary pair often overlap with or contain each other.

Thus, when we convert the alignments (many of which are between phrases, and not full

sentences) to sentence pairs (by expanding each alignment to include all sentences that

contained part of the alignment, shown in Figure 6.3), we are left with 3589 sentence pairs,

of which 1047 demonstrate the lexical paraphrasing operation, and 2542 do not.

Alignment:
Extractive: from the looks of the video tried to slip my friend a couple of “somethings”
into his drink!
Abstractive: Security tapes revealed that she attempted to drug him,

Sentence Pair:
Extractive: It turns out the VICTIM girl was the one that pulled out the drugs and from
the looks of the video tried to slip my friend a couple of “somethings” into his drink!
Abstractive: Security tapes revealed that she attempted to drug him, and intentionally
drugged herself.

Figure 6.3: An alignment and its corresponding sentence pair.

As we described in Chapter 3, alignments could be annotated with multiple rewriting

operations – of the 1218 alignments with lexical paraphrasing, 687 also contain at least

one other rewriting operation. The presence of other rewriting operations in a sentence

makes it more difficult for our model to learn to isolate and target lexical paraphrasing,
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so we weight each sentence pair based on the number of rewriting operations in it. Since

most sentence pairs represent multiple overlapping alignments, we take the union of the

rewriting operations for each alignment belonging to a given sentence pair.

If the sentence pair contains only lexical paraphrasing and no other operations, it re-

ceives a weight of 7, while a pair that contains n different operations (including lexical

paraphrasing) receives weight 7 − n; a sentence pair containing all six rewriting opera-

tions1, for example, would have weight 1.

Mass

Sentence Pair Unweighted Weighted

Lexical Paraphrasing 1047 4348
Non-Lexical-Paraphasing 2542 5084

Table 6.1: Mass of lexical paraphasing and non-paraphrasing sentence pairs before and after
weighting.

Using this weighting scheme, the total mass of sentence pairs demonstrating the lexi-

cal paraphrasing operation is 4348; to balance the mass of lexical paraphrasing pairs with

that of non-paraphrasing pairs, we assigned the latter 2542 pairs a weight of 2. Table 6.1

shows the mass of lexical paraphasing and non-lexical paraphasing sentence pairs with

and without weighting; from the right-most column, we see that assigning weight 2 to

non-paraphrasing pairs balances the two classes, paraphrasing and non-paraphrasing, rela-

tively evenly. We randomly divide the sentence pairs into a training set of 1435 pairs and

validation, development, and testing sets of 718 pairs each (a 40-20-20-20 split), follow-

ing the natural distribution of lexical paraphrasing and non-paraphrasing pairs. We apply

1While it is not possible for an alignment to be annotated with all six rewriting operations, since gen-
eralization and specification are mutually exclusive, it is possible for a sentence pair to have both. Since a
sentence pair is made up of multiple alignments, it could contain two non-overlapping alignments, one with
generalization and one with specification.
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the weights described above only to the training and validation sets by weighting the loss

function.

6.3.2 The MSR RTE Corpus

The 1435 sentence pairs of the Reddit summarization corpus training set are nowhere near

enough data to train a neural model, so we collect both positive and negative examples of

lexical paraphrasing for summarization from three other corpora, none of which is a perfect

match for our task, but each of which is imperfect in a different way.

The first is the MSR RTE corpus; as we showed in the previous chapter, it contains

high-quality, human-annotated paraphrases in the form of the possible alignments. It was

designed for entailment, not summarization, but on examining the MSR RTE sentence

pairs, we find that, if a premise entails a hypothesis, the latter can be considered a (not

necessarily good) summary of the former. Figure 6.4 shows two sentence pairs where the

premise entails the hypothesis. In the first pair, the hypothesis misses the main point of the

premise sentence, but it could be considered a very poor summary with bad content selec-

tion; in the second pair, the hypothesis is actually a fairly good summary of the premise, if

a little light on the details.

Premise: Sunday’s earthquake was felt in the southern Indian city of Madras on the
mainland, as well as other parts of south India.
Hypothesis: The city of Madras is located in Southern India.

Premise: Police sources stated that during the bomb attack involving the Shining Path, two
people were injured.
Hypothesis: Two people were wounded by a bomb.

Figure 6.4: Entailed sentence pairs from the MSR RTE.
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Because the MSR RTE corpus is very small, only 1600 sentence pairs, we use both the

training and testing sets of the corpus to collect training pairs for our lexical paraphraser.

We filter the 1600 sentence pairs in the MSR RTE to remove those where the premise does

not entail the hypothesis, as well as those that do not contain any possible alignments. We

are left with 403 sentence pairs where the hypothesis is both a (possibly poor) summary and

a paraphrase of the premise, and we use these as positive training examples. We randomly

select an additional 403 pairs where the hypothesis is entailed by the premise, but there are

no possible alignments, to use as negative examples.

6.3.3 The New York Times Annotated Corpus

Because the MSR RTE data provides poor summaries, we use the New York Times (NYT)

annotated corpus as another data source. Unlike MSR RTE, the NYT corpus consists of

human-written summaries of news articles, but it does not contain any paraphrase informa-

tion. To identify document-summary sentence pairs that are paraphrases of each other, we

use a faster version of the pointer-aligner we desigined in the previous chapter. This faster

aligner differs from the full pointer-aligner in two ways:

• Rather than aligning every possible chunking of the source and target sentences, it

aligns only three chunkings per sentence.

• It generates chunk embeddings by averaging the embeddings of the words in the

chunk, rather than using the LSTM language model.

Its performance is somewhat worse than that of the full pointer-aligner (Table 6.2), likely

due to a combination of less flexibility in chunk size, less training data resulting from fewer
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chunkings, and the use of averaged chunk embeddings, which we had found to underper-

form the LSTM embeddings.

Reddit Test Set MSR RTE Test Set

System P% R% F1% P% R% F1%

full pointer 54.3 79.5 64.5 23.4 47.7 31.4
fast pointer 51.6 53.1 52.3 21.6 28.8 24.7

Table 6.2: Performance of the fast pointer-aligner compared with the full pointer-aligner.

The faster version of the pointer-aligner still requires parsing all sentence pairs, and the

news articles of the NYT corpus are much longer than the extractive summaries of the Red-

dit summarization corpus, which average four sentences long, or the premises of the MSR

RTE corpus, which are at most two sentences long. To avoid having to parse every single

sentence in the NYT articles, we first filter out article-summary sentence pairs that are less

likely to be paraphrases of each other, using the Paraphrase Database (PPDB) (Ganitke-

vitch, Van Durme, and Callison-Burch 2013): for each word in a summary sentence that

is part of a paraphrase pair in the PPDB, we filter out article sentences that do not contain

the other half of that paraphrase pair. As we argued in the previous chapter, the paraphrase

pairs in the PPDB are fairly strict in that they mostly consist of close synonyms; for an

article-summary sentence pair not to contain any PPDB paraphrase pair at all would mean

that the sentences did not contain any close synonym matches, and thus would be unlikely

to be paraphrases of each other.

After filtering with the PPDB, we parse the remaining candidate sentence pairs and

align them with the fast pointer-aligner. Any sentence pair whose aligned spans are at least

half as long as the sentences themselves (such that the sentences are not identical to each
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Article: in the house , bipartisan support is coalescing around a proposal that would create
an affordable-housing fund by setting aside a small portion of profits from fannie mae and
freddie mac , the federally sponsored mortgage finance giants .

Summary: proposal with bipartisan support in house would create affordable-housing
fund by setting aside small portion of profits from fannie mae and freddie mac

Figure 6.5: An article-summary sentence pair selected from the NYT annotated corpus.

other) are considered paraphrases. Figure 6.5 shows one such selected article-summary

sentence pair. One concern with this data is that the language used in news articles is very

different from the much more colloquial personal narratives; to combat this issue, we select

sentence pairs from only the Opinion section of the NYT corpus, where we are more likely

to find subjective, emotional language. We find 8170 paraphrasing sentence pairs in the

Opinion section and randomly select an additional 8170 negative pairs from among those

that had been filtered out by the PPDB.

6.3.4 The Webis-TLDR-17 Corpus

Finally, we use the Webis-TLDR-17 corpus (hereafter called the Webis corpus for brevity).

Like the NYT corpus, the Webis corpus is a summarization corpus. It is, however, drawn

from Reddit posts rather than news articles, and so matches more closely the type of lan-

guage found in our own Reddit summarization corpus (although Webis is not restricted to

the genre of personal narrative). As we showed in Chapter 3, the Webis summaries are

of lower quality than those in either the NYT corpus or our Reddit summarization corpus;

they were extracted from Reddit posts using the keyword “TLDR,” or “too long; didn’t

read,” and were not always true summaries of their posts. Thus, the Webis data rounded

out our three additional data sources:
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• The MSR RTE data contains high-quality paraphrases but low-quality summaries

and does not match the language of the Reddit summarization corpus.

• The NYT data contains high-quality summaries and paraphrases of unknown quality

and does not match the language of the Reddit summarization corpus.

• The Webis data contains summaries and paraphrases of unknown quality but does

match the language of the Reddit summarization corpus.

Post: more important than bindings are your boots .

Summary: bindings matter , but boots matter more .

Figure 6.6: A post-summary sentence pair selected from the Webis corpus.

We filter and align sentence pairs in the Webis corpus following the same procedure we

used on the NYT corpus, resulting in 26,591 paraphrasing pairs and an equal number of

randomly selected non-paraphrase pairs. Webis is far and away the largest of the four data

sources we use in our experiments, and as we shall see, this turned out to be both a blessing

and a curse. Figure 6.6 shows a paraphrasing pair selected from the Webis corpus.

6.4 Experiments

The base model described in Section 6.2 is designed to be an end-to-end lexical paraphras-

ing system: it is meant to learn both to determine whether or not a given input sentence

should be paraphrased, and if it should, to perform the paraphrasing. This is a tall order, and

so while we hoped that the end-to-end system would be able to learn both when and how

to paraphrase, we wanted to be able to iterate on our approach to address any weaknesses
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we might discover in it. For this reason, the evaluations in this section are performed on a

development set of 718 sentence pairs from the Reddit summarization corpus. We show the

final evaluation on the Reddit test set, along with discussion of the results and comparisons

to baseline approaches from prior work on paraphrasing, in the next section; this section

compares different iterations of our own approach.

6.4.1 End-to-End Lexical Paraphrasing

The base model consists of a bidirectional single-layer LSTM encoder with a hidden size

of 512 and an embedding size of 307, a single-layer LSTM decoder with hidden size 1024

and embedding size 307, and an additive attention layer that doubles as the pointer-network

for copying directly from the input. The first three hundred dimensions of the embedding

layers of both the encoder and decoder are initialized with the GloVE 300-dimensional

Common Crawl embeddings (Pennington, Socher, and Manning 2014); we limit the vo-

cabulary to the 50,000 most common words in the Common Crawl, along with special

sentence start, sentence end, and out-of-vocabulary tokens.

The last seven dimensions of the embedding layer are intialized with word length;

activation, evaluation, and imagery scores from the Dictionary of Affect in Language

(DAL) (Whissell 1989); the activation-evaluation norm for subjectivity (Agarwal, Biadsy,

and McKeown 2009); and word-level formality and complexity scores (Pavlick and Nenkova

2015). We increase the coverage of the DAL by initializing missing words with the scores

of their closest synonym in WordNet (Miller 1995), or inverting the score of their top

antonym, if no synonyms are available. Any words in the vocabulary still missing DAL
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scores and all words missing formality or complexity scores are initialized with “neutral”

values equal to the average of all scores in their respective lexicons.

We train the model on both “positive” examples, where the input is an extractive sum-

mary or document sentence and the target is an abstractive summary sentence paraphrasing

the input, and “negative” examples, where the input and target are both the same sentence,

an extractive summary or document sentence that does not have a corresponding abstrac-

tive summary sentence paraphrasing it. Thus, on non-paraphrasing inputs, the model is

trained to behave as an autoencoder, while on paraphrasing inputs, it is trained to perform

paraphrasing.

We use several different combinations of data sources:

• The Reddit summarization data only; 1435 weighted sentence pairs.

• The Reddit data and the MSR RTE data; an additional 806 sentence pairs.

• The Reddit data, MSR RTE data, and NYT data; an additional 16,340 sentence pairs.

• The Reddit data, MSR RTE data, NYT data, and Webis data; an additional 53,182

sentence pairs.

We train for 20-31 epochs, depending on the training data sources, using early stopping

based on the validation set error (regardless of which training data sources we use, we

always validate on the 718 weighted sentence pairs in the Reddit summarization corpus

validation set). We train using scheduled sampling with linear decay.

Tables 6.3 and 6.4 show the performance of the base, end-to-end lexical paraphrasing

model on the Reddit summarization corpus development set. We evaluate performance

using two metrics, reflecting the two different facets of the task: word error rate, for the
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autoencoder behavior desired on non-paraphrasing inputs (Table 6.3), and ROUGE, for the

lexical paraphrasing and summarizing behavior desired on paraphrasing inputs (Table 6.4).

Word Error Rate

Paraphrasing

Training Data Source Non-Paraphrasing Input Target

Reddit 9.44 57.28 46.38
+RTE 7.04 52.99 41.30
+NYT 6.47 51.72 38.61
+Webis 11.14 62.06 46.45

Table 6.3: Word error rate for the end-to-end lexical paraphrasing system on the Reddit summa-
rization corpus development set.

The three right columns in Table 6.3 show the word error rate (WER) between the

system output and non-paraphasing inputs (i.e., when the system should behave as an au-

toencoder), as well as between the system output and the input and target for paraphrasing

inputs (i.e., when the system should rewrite the input into the target). Ideally, we would like

for WER of the system output to be low for the non-paraphrasing inputs (i.e., the system

successfully returns the input sentence unchanged); it should be higher on paraphrasing

inputs and low again for the paraphrasing target (i.e., the system rewrites the input into

the target). What we find instead was that the system performs well on non-paraphrasing

inputs and goes crazy on paraphrasing inputs; the WER is high for both the input and the

target.

Table 6.4 shows ROUGE-1, -2, and -L scores for the system output relative to both non-

paraphrasing and paraphrasing inputs. Comparing the scores on non-paraphrasing inputs to

those on paraphrasing inputs, there is noticeable drop in ROUGE on paraphrasing inputs.

That is, ROUGE is high on non-paraphrasing inputs because the system reproduces them
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ROUGE-1

Paraphrasing

Training Data Source Non-Paraphrasing Input Target

Reddit 55.52 50.56 18.62
+RTE 64.21 58.97 19.91
+NYT 68.06 59.84 22.50
+Webis 58.13 34.45 20.28

ROUGE-2

Paraphrasing

Training Data Source Non-Paraphrasing Input Target

Reddit 31.84 30.45 3.29
+RTE 44.65 40.29 4.29
+NYT 51.18 38.77 5.50
+Webis 38.30 13.04 4.43

ROUGE-L

Paraphrasing

Training Data Source Non-Paraphrasing Input Target

Reddit 52.46 50.09 14.79
+RTE 63.87 58.69 16.51
+NYT 67.96 59.49 17.91
+Webis 57.68 39.11 16.50

Table 6.4: ROUGE for the end-to-end lexical paraphrasing system on the Reddit summarization
corpus development set.

without modification, but ROUGE is lower on paraphrasing inputs because the system does

modify them; however, ROUGE is very low for the paraphrasing target, so whatever mod-

ifications the system is making, it is not producing the target. What seems to be happening

is that the system can distinguish between paraphrasing and non-paraphrasing inputs, but it

is not at all successful in rewriting the paraphrasing inputs into their target sentences. This

came as a huge surprise; we expected that performing lexical paraphrasing would be the

easier of the two tasks, and determining which sentences ought to be paraphrased would

be more difficult – but instead, it was the reverse.
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Input: I found an iPhone 3g at the Disneyland parking lot .
Output: i found an iphone shop at the disneyland parking lot .

Input: There is a woman standing next to me when a huge piece of dirt comes flying
straight at her face .
Output: there is a woman standing sitting to me when a huge piece of dirt comes blowing
straight at her face .

(a) System output on non-paraphrasing inputs.

Input: I once flew into a foreign country for this woman ’s wedding since I was a
bridesmaid .
Target: I flew to a foreign country to be my friend ’s bridesmaid .
Output: another guy turns into any foreign security for this guy ’s wedding because she
was a hitchhiker

Input: This damn caterer , who from day one went on and on about no hidden charges and
his price was all inclusive , called me the day before my wedding to ask if I had found a
rental company to supply the glassware and chairs for the reception . . .
Target: The caterer for my wedding who insisted that his services were all inclusive ,
called me a week before my wedding to ask if I had found a rental company to supply
glassware and chairs .
Output: another monkey comes out from the day one night on and other aunts called the
whole victim looks all inside , called me the day before my wedding to ask if i had found
a ladder company to the oilfield and chairs for the whole . . .

(b) System output on paraphrasing inputs.
Figure 6.7: End-to-end lexical paraphrasing system output on the Reddit summarization corpus
development set.

Figure 6.7 shows some outputs of the best end-to-end lexical paraphrasing system,

trained on the Reddit+RTE+NYT data, on the Reddit summarization corpus development

set. The system does fairly well on non-paraphrasing inputs, making some minor errors and

occasionally leaving off sentence-final punctuation. On paraphrasing inputs, its behavior

is bizarre; it seems to be trying to rewrite the input, but not very well, producing an output

sentence that roughly matches the input in terms of sentence structure and punctuation, but

with some words deleted and others replaced with nonsense. We conclude that asking a

single system to behave as an autoencoder on some inputs and as a paraphraser on other

inputs is too much. Thus, our next experiment is to split the task into two subtasks: first
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identifying which sentences should be paraphrased, and then separately performing the

paraphrasing.

6.4.2 Two-Stage Paraphrasing: Sentence Classification

In this experiment, we address the lexical paraphrasing task in two stages. First, we train

a model to classify input sentences as either paraphrasing or non-paraphrasing; then, we

train a second model to perform lexical paraphrasing using paraphrasing sentence pairs

only, without any non-paraphrasing pairs that might distract it. Since the end-to-end system

is already able to distinguish between paraphrasing and non-paraphrasing inputs to some

extent, we modify it to to perform the classification stage.

6.4.2.1 Sentence Classification

The base model in the previous experiment did fairly well on non-paraphrasing inputs

but generated nonsense on paraphrasing inputs, so we knew that it had somehow learned

the difference between the two. However, we did not know where that difference was

represented in the base model, so we tested three different methods for using it to classify

input sentences:

1. Encode the base model’s output using its own encoder, then pass both the encoded

input sentence and the encoded output sentence through a bilinear layer and five

fully-connected layers to gradually reduce the hidden size of 1024 to the classifica-

tion output size of 2.
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2. At each time step in the decoder, pass the decoder state and attention context vector

through a bilinear layer, then run the whole sequence through a recurrent network

and five fully-connected layers, as above.

3. Concatenate the two final hidden states for each direction of the bidirectional en-

coder (i.e., the decoder’s initial hidden state) and run them directly through five

fully-connected layers, as above.

We train these three classifiers using the same four training sets as in the previous sec-

tion, with the base model’s encoder, decoder, and attention layer fixed during this training.

We also tune four baseline classifiers using the WER and ROUGE-1, -2, and -L scores:

each baseline takes the metric score between the base model’s output and the input sen-

tence and compares it against a threshold tuned on the validation set. For example, the

WER baseline classifies an input sentence as paraphrasing if the the word error rate be-

tween the input sentence and the base model output on that sentence is greater than 39.4.

Table 6.5 shows the performance of each classifier on the Reddit development set. We

find that the WER baseline was very strong and is overtaken by the decoder state and

attention context vector classifier only after the addition of the larger NYT and Webis

training sets. The ROUGE baselines are weaker overall because there is more overlap

between the ranges of scores for paraphrasing and non-paraphrasing inputs, although they

also improve significantly after adding the NYT and Webis data.

Of the three classification methods, re-encoding the base model’s output and compar-

ing it to the encoded input performs the worst, despite the baselines showing that directly
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comparing the model’s output sequence to the input sequence is a strong signal for para-

phrasing versus non-paraphrasing inputs; likely re-encoding the output dulls that signal.

Classifying based on the encoder’s final state performs better, but comparing the decoder

state to the attention context vector, which is a weighted average of the encoder output at

each time step, performs the best, suggesting that the base model’s ability to distinguish be-

tween paraphrasing and non-paraphrasing input sentences is a product of the entire model,

and not solely of the encoder.
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6.4.2.2 Sentence Paraphrasing

After an input sentence is classified as a paraphrasing input, we need to perform paraphras-

ing on that sentence. We retrain the base model on only the paraphrasing sentence pairs

from our four data sources. Tables 6.6 and 6.7 show the WER and ROUGE scores for this

second-stage, paraphrasing-only system on the Reddit summarization corpus development

set.

Word Error Rate

Training Data Source Input Target

Reddit 35.57 38.73
+RTE 32.09 34.12
+NYT 27.75 31.62
+Webis 33.38 34.20

Table 6.6: Word error rate for the second-stage paraphrasing system on the Reddit summarization
corpus development set.

It is interesting to note that while the addition of the Webis data improved the perfor-

mances of the paraphrasing/non-paraphrasing classifiers, it hurts the performance of the

paraphraser. The Webis data also hurt the performance of the end-to-end lexical para-

phraser in the previous section. Examining the sentence pairs in the Webis data, we find

that the sentences had a high proportion of out-of-vocabulary words, such as character

names from movies, video game titles, and unexplained abbreviations and acronyms; this

may have made it difficult for the paraphraser to learn from these examples.

In Table 6.6, the WER between the second-stage paraphrasing system’s output and its

input/target is lower than it had been for the end-to-end system (Table 6.3); in Table 6.7

the ROUGE scores comparing this system’s input and output is lower than that of the

end-to-end system (Table 6.4), and the ROUGE scores between the output and target are
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ROUGE-1 ROUGE-2 ROUGE-L

Training Data Source Input Target Input Target Input Target

Reddit 33.94 33.84 15.67 13.41 33.48 28.64
+RTE 40.26 38.51 19.71 16.69 40.04 35.93
+NYT 47.09 47.07 28.17 27.38 46.08 40.88
+Webis 37.08 34.49 17.19 16.48 39.26 36.18

Table 6.7: ROUGE for the second-stage paraphrasing system on the Reddit summarization corpus
development set.

higher. The overall lower WER suggests that the second-stage paraphrasing system is not

introducing as many nonsense words as the end-to-end system, instead producing output

that is more similar to both the input and the target. Similarly, the ROUGE scores between

the output and the input and between the output and the target are roughly equal, with the

input score slightly higher, suggesting that the second-stage paraphrasing system rewrites

more conservatively than the end-to-end system. Figure 6.8 shows this system’s output on

the same two paraphrasing inputs from the previous section. (For comparisons to baselines

based on prior work on paraphrase generation, and for more examples to help interpret

these scores, see Section 6.5.)

Input: I once flew into a foreign country for this woman ’s wedding since I was a
bridesmaid .
Target: I flew to a foreign country to be my friend ’s bridesmaid .
Output: i flew to a foreign country for funny friend ’s bridesmaid .

Input: This damn caterer , who from day one went on and on about no hidden charges and
his price was all inclusive , called me the day before my wedding to ask if I had found a
rental company to supply the glassware and chairs for the reception ...
Target: The caterer for my wedding who insisted that his services were all inclusive ,
called me a week before my wedding to ask if I had found a rental company to supply
glassware and chairs .
Output: the caterer who from day one called the whole price all inclusive , called me the
day before my wedding to ask if i had found a furniture company to hire lining and chairs

Figure 6.8: Second-stage paraphrasing system output on the Reddit summarization corpus devel-
opment set.
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The paraphrasing-only system is more likely to break free from the input sentence

structure and punctuation than the end-to-end system was; the latter needed to balance

both paraphrasing and non-paraphrasing performance. It is also more successful at gener-

ating words and phrases that do not appear in the input, without devolving into complete

nonsense. The first example in Figure 6.8 is a fairly good paraphrase (not by human stan-

dards, but very good for an automatic system, as we show in the final evaluation); the

second is not bad, either, except that, in addition to rewriting “who from day one went on

and on about no hidden charges and his price was all inclusive” into the fairly reasonable

“who from day one called the whole price all inclusive,” it also rewrites the end of the

sentence, which is identical between the input and the target and should not be paraphrased

(“furniture,” “hire,” and “lining” versus “rental,” “supply,” and “glassware”).

6.4.3 Three-Stage Paraphrasing: Intra-Sentence Tagging

The two-stage classify-and-paraphrase approach worked reasonably well, except that the

paraphraser sometimes rewrote parts of the input sentences that should not be rewritten. To

address this problem, we divide the task into three stages: first classifying which sentences

ought to be paraphrased, then tagging which words within those sentences ought to be

paraphrased, and finally performing the paraphrasing. We already had a working sentence-

level paraphrase classifier, so in this section we focus on the tagging and paraphrasing

subtasks.
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6.4.3.1 Intra-Sentence Tagging

To identify the words or phrases in an input sentence that ought to be paraphrased, we mod-

ify the base model to perform tagging. At each time step, instead of having the decoder

predict a distribution over the vocabulary, we modify the decoder to predict a distribution

over two word-level tags, paraphrase and not-paraphrase (as with the sentence-level clas-

sifier, we use five fully-connected layers to gradually reduce the decoder’s hidden size to

the output size). The input to the decoder at each time step is the concatenation of the

embedding for the current input sentence word to be tagged and the tag for the preceding

word.

All four of our data sources can be converted into tagging training data:

• The Reddit summarization corpus alignments are expanded into sentence pairs for

the previous experiments. For tagging, we assign all words in an input sentence

(from an extractive summary) that are contained in at least one lexical paraphrasing

alignment the paraphrase tag, and all other words the not-paraphrase tag. We weight

each alignment based on the number of rewriting operations contained within it: an

alignment is assigned weight 1/n, where n is the number of rewriting operations it

contains, including lexical paraphrasing. Each paraphrase-tagged word receives the

sum of the weights of all alignments containing it; not-paraphrase words receive

weight 1.

• The MSR RTE corpus also contains human-annotated alignments between sentences.

All words in an input (i.e., premise) sentence that are part of a possible alignment
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are assigned the paraphrase tag, along with any sure paraphrase words immediately

adjacent to a possible alignment.

• The NYT and Webis corpora are filtered using the Paraphrase Database (PPDB) and

aligned using the pointer-aligner described in the previous chapter. All words in an

input (i.e., document) sentence that are part of an alignment such that the two aligned

phrases 1) are not identical and 2) contain a PPDB paraphrase pair are assigned the

paraphrase tag.

Table 6.8 shows the performance of the intra-sentence paraphrase tagger on the para-

phrasing input sentences of the Reddit summarization corpus development set. This eval-

uation, unlike the other experimental evaluations, is weighted. The sentence-level weights

described earlier in this chapter were meant to balance the Reddit summarization corpus

training data, since paraphrasing sentence pairs were much rarer than non-paraphrasing

pairs. However, in the tagging subtask, the word-level weights represent confidence. The

Reddit summarization corpus allowed alignments of any size, and each alignment could be

annotated with multiple rewriting operations, so there was no way to determine precisely

which words in an alignment belonged to which rewriting operation. Thus, the weight of

each word-level tag indicates our confidence that a given word ought to be paraphrased.

Training Data Source P% R% F1%

Reddit 46.8 54.0 50.1
+RTE 53.1 52.2 52.6
+NYT 32.4 85.6 47.0
+Webis 25.3 100.0 40.4

Table 6.8: Intra-sentence paraphrase tagging performance on the Reddit summarization corpus
development set.
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Unfortunately, the tagging approach was not successful. Training only on the Reddit

and RTE data seemed promising, but those training sets were small. With the addition of

the larger NYT and Webis training sets, the system learns to take the easy way out and

simply tags every single word as paraphrase. In both the NYT and Webis data, the input

and target sentences are often very similar to each other; in the Webis data especially, the

sentences are very short, and are often only one word or punctuation mark away from being

identical to each other. As a result, most of each input sentence (or all of it, in the case of

the Webis sentences) is tagged as paraphrase in the training data. The high degree of

similarity between input and target sentences in the NYT and Webis data is due to the high

degree of similarity between the summaries and their documents in those corpora; many

NYT and Webis summary sentences are only lightly rewritten versions of some sentence in

their documents; heavily rewritten summary sentences, like those found in the Reddit and

MSR RTE corpora, are rare.

6.4.3.2 Intra-Sentence Paraphrasing

For curiosity’s sake, we continue on to the intra-sentence paraphrasing stage of the three-

stage approach, despite our lack of success with the tagger. If we had an oracle tagger,

how would the three-stage approach perform? We retrain the base model once again, using

only the paraphrase-tagged portion of each input sentence as input and the corresponding

aligned portion of the target sentence as the target; for the sentence pair shown in Figure 6.3

(reproduced here as Figure 6.9), for example, we used the top input and target, rather than

the full sentence input and target at the bottom.

Tables 6.9 and 6.10 show the performance of this intra-sentence paraphraser, trained
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Alignment:
Extractive: from the looks of the video tried to slip my friend a couple of “somethings”
into his drink!
Abstractive: Security tapes revealed that she attempted to drug him,

Sentence Pair:
Extractive: It turns out the VICTIM girl was the one that pulled out the drugs and from
the looks of the video tried to slip my friend a couple of “somethings” into his drink!
Abstractive: Security tapes revealed that she attempted to drug him, and intentionally
drugged herself.

Figure 6.9: An alignment and its corresponding sentence pair.

on each of our four data sources, on the Reddit summarization corpus development set,

evaluated against aligned target sentence portions, rather than full target sentences.

Word Error Rate

Training Data Source Input Target

Reddit 42.43 46.88
+RTE 41.15 41.17
+NYT 34.35 33.88
+Webis 34.75 37.92

Table 6.9: Word error rate for the intra-sentence paraphrasing system on the Reddit summarization
corpus development set.

The intra-sentence paraphraser underperforms the sentence-level, second-stage para-

phraser from the previous section (Tables 6.6 and 6.7) by about 1-7 WER and 1-8 ROUGE.

The difference in performance is most pronounced when training on only the Reddit and

RTE data; the addition of the NYT and Webis data somewhat mitigates the loss in perfor-

mance.

The input and target sequences in the Reddit and RTE data are derived from paraphrase

alignments, but there is nothing that constrains those alignments to be between constituents

of the same type. In Figure 6.9, for example, the input sequence is the predicate “from the
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ROUGE-1 ROUGE-2 ROUGE-L

Training Data Source Input Target Input Target Input Target

Reddit 33.94 30.20 9.66 9.01 29.11 26.16
+RTE 38.51 32.11 14.12 12.48 35.80 30.44
+NYT 45.49 44.10 24.94 24.48 42.93 39.27
+Webis 35.97 34.09 15.63 15.42 34.96 28.51

Table 6.10: ROUGE for the intra-sentence paraphrasing system on the Reddit summarization cor-
pus development set.

looks of the video tried to slip my friend a couple of “somethings” into his drink!”, while

the target is the clause “Security tapes revealed that she attempted to drug him.” Where the

sentence-level paraphraser was guaranteed complete sentences for input and target, there is

no rhyme or reason governing the types of constituents that the intra-sentence paraphraser

might receive as input and target. As a result, the Reddit- and RTE-trained intra-sentence

paraphraser never learns proper English sentence structure and produced mostly topically-

related gibberish.

Input: This damn caterer , who from day one went on and on about no hidden charges and
his price was all inclusive , called me the day before my wedding to ask if I had found a
rental company to supply the glassware and chairs for the reception ...
Target: The caterer for my wedding who insisted that his services were all inclusive ,
called me a week before my wedding to ask if I had found a rental company to supply
glassware and chairs .

Reddit Only: towards flight ’s wedding
Full Training: the caterer for my wedding who chose that his divorce was all inclusive ,
called the day before my wedding to ask if i had found a blizzard company to supply leg
and chairs
Sentence-level: the caterer who from day one called the whole price all inclusive , called
me the day before my wedding to ask if i had found a furniture company to hire lining and
chairs

Figure 6.10: Reddit-only and full training set intra-sentence paraphrasing systems’ output on the
Reddit summarization corpus development set.

Figure 6.10 shows the output of the Reddit-only intra-sentence paraphraser and the
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output of the full intra-sentence paraphraser trained on all four data sources. The Reddit-

only system produces (a very small) word salad, while the system trained on all four data

sources performs comparably to the sentence-level paraphraser in the previous section.

As we discussed earlier in this section, the NYT and Webis alignments are mostly full

sentences; being much larger than the Reddit and RTE training sets, the NYT and Webis

training sets pull the intra-sentence paraphraser back towards the behavior of the sentence-

level paraphraser.

6.5 Final Results and Discussion

In the previous section, we described how we experimented with different approaches to

lexical paraphrasing for summarization. Of the three approaches we tested – end-to-end

paraphrasing; two-stage input classification and paraphrasing; and three-stage input classi-

fication, paraphrase tagging, and intra-sentence paraphrasing – the two-stage approach was

the most successful. In this section, we discuss our final evaluation of this approach on the

Reddit summarization corpus test set, compare it with previous approaches to paraphrase

generation, and analyze its performance.

6.5.1 Final Evaluation

We evaluate the two-stage, classify-then-paraphrase approach on the 718 sentence pairs of

the held-out Reddit summarization corpus test set – of the test pairs, 181 are paraphras-

ing and 537 are non-paraphrasing. For the paraphrasing/non-paraphrasing input sentence

classifier, we use the decoder state and attention context vector model trained on the full
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training set of all four data sources; for the sentence-level paraphraser, we use the model

trained only on the Reddit, RTE, and NYT training sets, since excluding the Webis training

data improved performance for this model on the development set.

Table 6.11 shows the performance of the paraphrasing/non-paraphrasing input sentence

classifier, along with two baselines: a Paraphrase Database (PPDB) baseline and a neural

machine translation (MT) baseline. The two baselines represent the two main previous ap-

proaches to paraphrase generation, lexicon-based paraphrasing and translation-based para-

phrasing. The PPDB baseline classifies an input sentence as paraphrasing if it contains

at least one word or phrase that was part of a known paraphrase pair in the PPDB, and

as non-paraphrasing otherwise. The NMT baseline translates each input sentence into a

pivot language and back to English; it classifies a sentence as paraphrasing if its translation

is different from the original sentence (excluding pronoun gender and verb tense errors),

and as non-paraphrasing otherwise. We use Google Translate as our NMT system, with

Czech as the pivot language, following Mallinson, Sennrich, and Lapata (2017), Wieting,

Mallinson, and Gimpel (2017), Wieting and Gimpel (2018), and Hu et al. (2019).

System P% R% F1%

Decoder State and Context 73.2 78.2 75.6

PPDB Baseline 25.5 100.0 40.6
NMT Baseline 27.2 100.0 42.8

Table 6.11: Paraphrasing classifier performance on the Reddit summarization corpus test set.

The decoder state and attention context vector model performs about the same on this

test set as it did on the development set (Table 6.5), scoring in the 70s for precision, recall,

and f-measure. The PPDB and NMT baselines perform comparably to each other. Both
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achieve perfect recall at the cost of very low precision – paraphrasing sentences comprise

just over one quarter of the input sentences in the test set, so it is clear that both baselines

consider nearly every single sentence to be a paraphrasing sentence. This illustrates a

major limitation in previous work on paraphrasing: prior research focused entirely on how

to produce paraphrases, without giving any thought to whether and when paraphrasing

should be performed.

Word Error Rate

System Input Target

Sentence Paraphraser 32.34 36.07

PPDB-oracle Baseline 6.04 121.98
PPDB-random Baseline 213.29 274.98
NMT Baseline 44.00 101.80

Table 6.12: Word error rate for sentence-level paraphrasers on the Reddit summarization corpus
test set.

Tables 6.12 and 6.13 show the WER and ROUGE scores of the sentence-level para-

phraser and the PPDB and NMT baselines. We use two different PPDB baselines in this

evaluation. Both first search the input sentence for candidate words and phrases that are

part of at least one known paraphrase pair in the PPDB. The PPDB-random baseline then

selects one paraphrase pair at random, for each candidate word or phrase, and substitutes

the paraphrase into the sentence. The PPDB-oracle baseline cheats in order to more closely

emulate our goal of learning when and how humans paraphrase for summarization; given a

candidate word or phrase in the source sentence, it searches the target sentence for the cor-

rect paraphrase pair to use and does nothing if no matching paraphrase is found. The NMT

baseline cannot be focused in this way (if the paraphrase tagger were more successful, we

might be able to target paraphrase words with lexically-constrained decoding), so it does
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not have an oracle version.

ROUGE-1 ROUGE-2 ROUGE-L

System Input Target Input Target Input Target

Sentence Paraphraser 46.40 45.38 27.32 25.51 45.53 42.53

PPDB-oracle Baseline 88.67 28.64 81.04 9.18 88.67 21.80
PPDB-random Baseline 31.15 13.44 4.57 0.50 28.57 10.17
NMT Baseline 64.62 29.03 39.69 11.37 61.11 23.53

Table 6.13: ROUGE for sentence-level paraphrasers on the Reddit summarization corpus test set.

As in the classification stage, our second-stage, sentence-level paraphraser performs

similarly on the test set as it did on the development set (Tables 6.6 and 6.7). For the PPDB-

oracle and NMT baselines, their WER with respect to the input is very low, while their

WER with respect to the target is very high; for comparison, the average WER between

an input sentence and its target sentence in this test set is 119.04. Further, their ROUGE

scores with respect to the input are very high – they do not rewrite the input sentence very

much. The PPDB-random baseline, on the other hand, goes wild rewriting the input into

barely recognizable output sentences. Figure 6.11 shows output from our sentence-level

paraphraser and the three baselines.

On these sentence pairs, the PPDB-oracle baseline is unable to find a paraphrase pair

that matches both the input and target sentences, so it does nothing. The PPDB-random

baseline finds many paraphrasing candidates and randomly selects a paraphrase for each

one; the resulting sentences are confusing and badly overwritten – from the language, it is

quite apparent that the PPDB’s main source of paraphrase pairs is EU Parliament proceed-

ings. The sentence-level paraphraser and NMT baseline fall somewhere in between: both

produce fairly good sentences, with the paraphraser leaning more on the side of rewriting
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Input: She then asked to speak to my manager and shortly thereafter faxed over a written
complaint about me and how horribly she had been misled and abused by me .
Target: A potential customer filed a written complaint about me , falsely saying that I
verbally abused and misled her .

Sentence Paraphraser: she updated a written complaint about how she had been
frustrated and abused by me .

PPDB-oracle Baseline: She then asked to saying that to my manager and shortly
thereafter faxed over a written filed a me and how horribly she had been misled and abused
by me .

PPDB-random Baseline: She asked to see my country point agent and , subsequently
, more recently in the future faxed writing an international complainant around how so
terribly she has therefore been misled and , subsequently , maltreatment by way of love by
me .

NMT Baseline: She then asked to speak to my manager and then fax shortly after through
a written complaint about me and how terribly she was deceived and abused.

(a)

Input: She then proceeded to screw up every single part of her job .
Target: My wedding coordinator criticized my preferences during the planning phase of
the wedding , then on the day of the wedding she failed to do her job .

Sentence Paraphraser: she refused to do her job .

PPDB-oracle Baseline: She then proceeded to screw up every single of her job .

PPDB-random Baseline: She shall now proceed to fucked up everyone , and concerning
his father was working .

NMT Baseline: Then she went to every single piece.
(b)

Figure 6.11: Sentence-level paraphraser output on the Reddit summarization corpus test set.

(perhaps a bit too much; its claim that the wedding coordinator “refused” to do her job

is not supported by either the input or the target in Figure 6.11b) and the NMT baseline

leaning more on the side of preserving the input, although it seems to have trouble with the

more colloquial phrase “screw up.”

These sentence pairs also illustrate the challenge of paraphrasing for summarization.
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Both examples contain several other rewriting operations, besides paraphrasing, which

make it very difficult for a paraphrase system to produce the target sentence exactly be-

cause it must somehow deal with the other rewriting operations as well. In Figure 6.11a,

the human summarizer’s use of specification makes it impossible for a paraphrasing system

to generate “a potential customer” without inventing it from whole cloth. In Figure 6.11b,

the human summarizer must have used fusion to combine some other sentence with the

input to produce the target; the entire target clause “my wedding coordinator criticized

my preferences during the planning phase of the wedding” is impossible to generate for a

paraphrasing system that was given only one input sentence.

Input: When the family asked me why I was beaming , I told them what happened and
they proceeded to ridicule me for the rest of the day calling me “ hero ” sarcastically .
Target: I saved my friend ’s life and his family ridiculed me .
Output: later family noticed beaming , told them what happened and they proceeded to
laughing me

Input: As she hung up , she screamed into the room with the party “ Who the fuck
abandons their bride on their wedding night ? !
Target: A groom left his bride on their wedding night to go to the bar with some friends .
Output: she called came across the room “ who the fuck abandons their wife on her
wedding night ? ”

Input: My step mother saw part of what I was doing but to her I was taking money .
Target: I attempted to increase my sister ’s chances of winning a board game , however
my step-mother misinterpreted my actions as cheating to beat my sister .
Output: step mother noticed what i was doing but to her was about money

Input: Saved a girl on an escalator when she got her heel stuck and fell backwards .
Target: I saved a woman from falling backwards down an escalator , and she accused me
of sexually assaulting her .
Output: saved a lady from being on an escalator when she got her heel stuck

Figure 6.12: Sentence-level paraphraser output on impossible sentence pairs, with unrecoverable
information in the target sentence shown in italics.

Examining the Reddit summarization corpus test set, we find that 58.8% of target sen-
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tences are impossible for the paraphrasing system to generate exactly, even if we exclude

target sentences like that in Figure 6.11a, which contain only a small number of impossible-

to-generate words; Figure 6.12 shows examples of impossible input/target sentence pairs,

along with the sentence-level paraphraser’s output. Further, out of the 1218 total lexical

paraphrasing alignments in the Reddit summarization corpus, only three contain no other

rewriting operations – paraphrasing in the context of summarization never occurs in isola-

tion. Any one of those other rewriting operations could be its own area of research, and

their presence in paraphrasing sentence pairs complicates the task far beyond the capabil-

ities of previous, naive approaches to paraphrase generation; even our two-stage model,

which outperforms previous approaches by a large margin, cannot fully solve the problem

of other operations.

6.5.2 Feature Ablation

Given how difficult paraphrasing for summarization turned out to be, it is somewhat amaz-

ing that we are able to do as well as we do. Our paraphrasing/non-paraphrasing classifier

works fairly well, and our sentence-level paraphraser produces reasonable paraphrases,

even if it rarely exactly matches the target sentence. How do they do it?

While it is difficult to interpret exactly what is going on inside a neural network, a

reasonable question to ask would be, do the seven extra features in our augmented word

embeddings help? We initialized the embedding layers of our encoders and decoders with

word length; activation, pleasantness, evaluation, and subjectivity scores; and formality and

complexity scores. Do the models actually use these scores, or do they simply use the extra
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seven dimensions to store some other information that they learn to be important during

trianing? To answer these questions, we retrain both the paraphrasing/non-paraphrasing

input sentence classifier and the sentence-level paraphraser several times, initializing only

six of the seven extra features each time – in effect, ablating the seventh feature; we also

train the models one final time with none of the seven extra features initialized.

System P% R% F1%

Full Feature Set 73.2 78.2 75.6

- Activeness* 66.7 71.2 68.9
- Pleasantness* 69.6 74.1 71.8
- Subjectivity* 64.8 72.0 68.2

No Extra Features* 56.7 66.5 61.2

Table 6.14: Paraphrasing classifier feature ablation results. * indicates significant difference from
the full feature set (p < 0.024).

For the paraphrasing/non-paraphrasing input sentence classifier, we find that removing

the activeness, pleasantness, and subjectivity features significantly lowers classification

performance, while removing the other four features individually has no significant effect.

Table 6.14 shows the performance of the classifier with each of those features ablated. Note

that the middle three rows of the table correspond to experiments where a single feature is

not initialized; the “removal” of features does not accumulate across rows.

For the sentence-level paraphraser, we find that removing any feature other than word

length and pleasantness has a significant impact on both WER and ROUGE (Tables 6.15

and 6.16). Removing features has a larger effect on the sentence-level paraphraser than it

does on the paraphrasing/non-paraphrasing classifier.

It is interesting to note that removing features from the sentence-level paraphraser re-

duces its performance to below that of the full-featured paraphraser trained only on the
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Word Error Rate

System Input Target

Full Feature Set 32.34 36.07

- Activeness* 66.76 86.98
- Imagery* 71.78 89.67
- Subjectivity* 64.18 82.61
- Formality* 63.37 82.59
- Complexity* 53.49 77.22

No Extra Features* 77.45 89.67

Table 6.15: Word error rate for sentence-level paraphraser feature ablation. * indicates significant
difference from the full feature set (p < 0.019).

ROUGE-1 ROUGE-2 ROUGE-L

System Input Target Input Target Input Target

Full Feature Set 46.40 45.38 27.32 25.51 45.53 42.53

- Activeness* 27.82 21.87 5.78 5.06 21.56 16.63
- Imagery* 18.86 17.78 4.77 3.59 18.38 16.40
- Subjectivity* 23.96 21.08 8.71 7.02 23.03 19.29
- Formality* 32.02 27.78 10.49 8.39 29.52 26.13
- Complexity* 41.73 35.85 19.79 12.04 42.57 40.93

No Extra Features* 14.94 11.65 1.13 0.90 14.33 10.8

Table 6.16: ROUGE for sentence-level paraphraser feature ablation. * indicates significant differ-
ence from the full feature set (p < 0.041).

Reddit data, suggesting that the extra features we use to augment the word embeddings are

doing most of the heavy lifting in terms of learning to perform paraphrasing.

Figure 6.13 shows the output of the sentence-level paraphraser trained without initial-

izing any of the seven extra features: it is basically gibberish. That the seven extra features

have such a tremendous impact on the performance of the paraphraser is very surprising;

while we expected them to have some impact, we did not at all expect the paraphraser to

be unable to function without them.
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Input: She then asked to speak to my manager and shortly thereafter faxed over a written
complaint about me and how horribly she had been misled and abused by me .
Target: A potential customer filed a written complaint about me , falsely saying that I
verbally abused and misled her .
Sentence Paraphraser: another personal account received written complaint about mr.

Input: She then proceeded to screw up every single part of her job .
Target: My wedding coordinator criticized my preferences during the planning phase of
the wedding , then on the day of the wedding she failed to do her job .
Sentence Paraphraser: she want need every day of school on her first grade

Figure 6.13: Sentence-level paraphraser trained without initializing extra features.

6.6 Conclusion

The main contributions described in this chapter are:

• We perform the first investigation into the task of lexical paraphrasing specifically

in the context of summarization. Previous work on paraphrasing for summarization

focused on identifying paraphrases in the input document(s) to assist with either con-

tent selection or sentence fusion; performing paraphrasing as part of summarization

had not been explored before us.

• The success of our paraphrasing/non-paraphrasing input sentence classifier demon-

strates that it is possible to predict which document sentences a human summarizer

would paraphrase when writing an abstractive summary. This is in contrast with

previous work on paraphrase generation, where one always wanted to paraphrase

when possible (e.g., to generate multiple queries for better coverage in question-

answering). The relatively poor performance of the Paraphrase Database (PPDB)

and neural machine translation (NMT) baselines show that, while it is almost always

possible to paraphrase any particular sentence, it is not always desirable to do so.
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• Our sentence-level paraphraser is able to learn to rewrite a given input sentence

into something closer to its target paraphrase, producing an output sentence that is

somewhere in between the two. Our comparisons with the PPDB-oracle, PPDB-

random, and NMT baselines show the limitations of lexicon- and translation-based

approaches to paraphrase generation. On the one hand, naively and indiscriminately

applying machine translation or a paraphrase lexicon results in, at best, a slightly

rewritten sentence that still closely resembles the original input, or at worst, an out-

put sentence so heavily and unnaturally rewritten that it is difficult to understand.

On the other hand, using a paraphrase selection oracle to determine which words

to rewrite, and which other words to rewrite them into, reveals that the PPDB, the

largest word- and phrase-level paraphrase lexicon in existence, still has insufficient

coverage.

• We demonstrate in our feature ablation experiments that both the paraphrasing/non-

paraphrasing sentence classification task and the sentence-level paraphrasing task

benefit from the addition of affectual and stylistic word-level features. Just seven

features capture the bulk of the important information for the paraphrasing task and

play a significant role in the classification task, suggesting that style and affect, more

than meaning, drive human summarizers’ paraphrasing decisions.

Paraphrasing for summarization is a hard task – harder than we realized when we set

out to work on it. The work described in this chapter is full of surprises: the unexpectedly

great success of the paraphrasing/non-paraphrasing sentence classifier, the extremely low

coverage of the PPDB-oracle baseline, and the outsize importance of the affectual and
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stylistic features. There are also some disappointments: that it is possible to determine

whether or not a sentence ought to be paraphrased, but not which words within it ought to

be paraphrased. In this last chapter on summarization for personal narrative, we conduct a

thorough and deliberate series of experiments, probing the boundaries of what is possible

in realm of lexical paraphrasing for summarization.
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7. Cross-Lingual Summarization

In the preceding chapters, we addressed automatic summarization of personal narratives, a

text genre that is commonly found on the Web and that presents a unique set of challenges:

the difficulty of identifying important information in a document and the necessity of sig-

nificant editing and rewriting to generate a well-written summary for a highly informal and

colloquial document. In this final chapter, we turn to summarization of a different domain

– one that requires even heavier editing and rewriting than personal narrative: cross-lingual

summarization for low-resource languages.

7.1 Motivation

Cross-lingual summarization is a little-explored task that combines the challenges of auto-

matic summarization with those of machine translation. The goal is to summarize in one

language – English, in our case – a document that is written in another language. Just

as personal narratives posted on the Web are an important new source of information that

complements news, so foreign-language documents, whether news articles or social media

posts, are an important new source of information that complements English news. An

English speaker with friends or family living in a non-English-speaking country might be

interested in that country’s local news, but unless he or she speaks the local language, only

the most dramatic and eye-catching of events – those that are picked up by international

news agencies – are accessible to him or her (Orăsan and Chiorean 2008). Even in the case
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of world news events, an English speaker might like to know how the event is viewed in

other, non-English-speaking countries; for example, what do the op-eds in African news-

papers say about the flood of Chinese investments coming into their countries?

There are two possible approaches to producing an English summary of a non-English

document: summarize the document in the source language and then translate the summary

into English, or translate the document into English and then summarize the translation.

Of course, the availability of human annotators can greatly simplify the task. If human

summarizers are available, who speak either English or the source language, the task is

reduced to machine translation alone; if human translators are available, the task is reduced

to summarization alone. But if there are no human annotators, then it is preferable to

summarize in the source language and translate the summary (Wan, Li, and Xiao 2010).

There are two main reasons for preferring this approach. First, machine translation

is computationally expensive, and so summarizing and then translating means that fewer

sentences need to be translated. Second, errors on the part of an automatic summarization

system are less likely to impact the performance of a machine translation system than vice

versa. While summarization errors may result in an irrelevant, misleading, or even factually

incorrect summary, when compared to the input document, a machine translation system

that takes the summary as input is agnostic to its correctness. An extractive summary,

regardless of its correctness, will always contain sentences as fluent and well-written as in

the original document, and so it will be no harder to translate than the original document;

an abstractive summary could produce difficult to translate gibberish, but even then, a two-

stage approach, such as the one we used for personal narrative, could be applied to first

extract some small number of sentences to be translated.
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In contrast, translation errors can drastically affect the performance of a summarization

system. A single mistranslated word can change the meaning of a sentence – the French

word “l’avocat,” for example, can be translated as either “the (male) lawyer” or “the av-

ocado.” A summarization system that receives such a mistranslation in its input can only

compound the error: it might omit an otherwise desirable sentence because it contains a

mistranslation, or it might include the mistranslation but without enough context for a user

to realize what has happened, or it might be derailed into an unrelated part of the seman-

tic space. The only way a summarizer could recover from a translation error would be to

recognize and correct the error, which is far beyond the purview of existing summarization

systems. The summarize-then-translate approach avoids this scenario; if a translation error

must be made, better that it should be made at the end of the process than early on.

However, the summarize-then-translate approach can only be used when summariza-

tion systems are available in the source language. If the source language is a high-resource

language, this is not a problem, but if the source language is one of the thousands of low-

resource languages in the world, there are no summarization corpora, much less summa-

rization systems, available. From our discussion of corpora in Chapter 3, it is clear that

building a summarization corpus even in English, the highest-resource language of them

all, is expensive and time-consuming – it would be downright impractical for very low-

resource languages. Language-independent extractive summarization techniques, such as

TextRank (Mihalcea 2005), might be used, but there could be serious difficulties in their

application, such as morphologically rich languages that require detailed morphological

analysis and more sophisticated similarity measures than the word-based measures that

work well in English. In such a case, translate-then-summarize is the only possible ap-
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proach.

Another problem is that any machine translation systems that exist for a low-resource

language are unlikely to have had much parallel corpora on which to train; their transla-

tions will be of much lower quality than translations for well-studied, high-resource lan-

guages, like French or German. Thus, regardless of whether summarization or translation

is performed first, the poor quality of the translations would have a significant effect: a

summarization system taking the translations as input would have to contend with errors

as discussed above, and even if a language-independent summarization technique could

be used first, and its output translated into English, the translation would still be disfluent,

difficult to read, and confusing for a human user.

What is needed, then, is for the disfluent translation output to be corrected into more

fluent English, either by rewriting or eliding translation errors. In this chapter, we de-

scribe how we address this need by building an neural abstractive system for cross-lingual

summarization for low-resource languages that learns to generate short, simple phrases to

replace awkwardly-phrased input spans resulting from errorful translations.

7.2 Related Work

7.2.1 Cross-Lingual Summarization

Orăsan and Chiorean (2008) used Romanian as the source language and English as the

target. They used the summarize-then-translate approach, performing extractive multi-

document summarization on Romanian news articles and automatically translating the
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summaries into English. Their evaluations showed that the poor quality of the translations

transformed reasonable Romanian summaries into barely legible English ones.

The most extensively investigated source-target language pair is English-to-Chinese. Wan,

Li, and Xiao (2010) addressed the problem of low-quality translations by training a regres-

sor to predict, given an English sentence, the quality of its Chinese translation. They used

this predicted translation quality score as a feature in selecting which English sentences to

extract for their summaries, with the goal of selecting sentences that were both informative

and easy to translate into Chinese. Wan (2011) explored the problem of unintended infor-

mation loss or modification between an English sentence and its Chinese translation by first

translating all the English sentences into Chinese. He then extracted sentences based on

both the original English and the Chinese translation. Yao, Wan, and Xiao (2015) extended

both these works by scoring aligned phrases from the original English documents and their

Chinese translations to perform joint sentence extraction and compression based on both

information and translation quality – their work on compression was the first attempt at

abstractive cross-lingual summarization.

Zhang, Zhou, and Zong (2016) further explored abstractive approaches for cross-lingual

summarization. They first parsed the original English documents into predicate-argument

structures and then created matching structures in Chinese by aligning the original En-

glish sentences with their Chinese translations. They then selected an informative and

non-redundant set of these bilingual predicate-argument structures and fused the Chinese

words and phrases associated with them to create abstractive summary sentences.

Finally, Wan et al. (2018) experimented with both the summarize-then-translate and

translate-then-summarize approaches; they extracted and ranked multiple candidate sum-
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maries, both English summaries translated into Chinese and Chinese summaries extracted

from translated documents. They were the first to suggest applying neural methods to

cross-lingual summarization (in their case, to perform ranking).

7.2.2 Multilingual Summarization

It is important to draw a distinction between cross-lingual and multilingual summariza-

tion. While these two terms were originally both used to refer to the task of producing

a summary in a different language from its document, multilingual summarization has

come to mean something else: a single system that is capable of summarizing documents

written in multiple languages, but whose summaries are written in the same language as

their documents. Multilingual systems generally make use of language-independent ex-

tractive summarization techniques, such as topic-based or graph-based approaches, with

some language-dependent preprocessing, such as word segmentation for Chinese. Some

notable multilingual summarization systems include Radev et al. (2002), Mihalcea (2005),

and Litvak, Last, and Friedman (2010). Multilingual summarization is the focus of the

MultiLing shared task (Giannakopoulos et al. 2011; Giannakopoulos 2013; Giannakopou-

los et al. 2015; Giannakopoulos et al. 2017).

Two notable systems that used the term “multilingual summarization” but would be

considered cross-lingual systems based on this new distinction between the two names

are Chen and Lin (2000) and Evans, Klavans, and McKeown (2004); both were also multi-

document systems that used a clustering approach. Chen and Lin separately clustered

English sentences and Chinese sentences, producing two sets of monolingual sentence
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clusters. They then translated the nouns and verbs in the Chinese clusters into English

and used word overlap to identify which English cluster was most similar to each Chinese

cluster. The clusters were merged to create bilingual clusters, from which either an English

or Chinese summary could be produced.

Evans et al. produced English summaries for non-English documents by translating

non-English documents into English. These translated sentences were clustered alongside

the originally English sentences; because clustering is based on the words that are present

in a sentence, disfluencies do not pose a problem in forming the clusters. Evans et al.

addressed the possibility of disfluent translations by preferring to extract sentences from

originally English documents, rather than translated sentences.

7.2.3 Abstractive Summarization

Neural abstractive summarization is a booming area of research. In this section, we do not

give an exhaustive list of work in this area, but briefly review approaches that inspired or

are otherwise related to the work described in this chapter.

Rush, Chopra, and Weston (2015) presented the first neural abstractive summarization

model, a convolutional neural network encoder and feed-forward network decoder with

attention, which learned to generate news headlines from the lead sentences of their ar-

ticles; Chopra, Auli, and Rush (2016) extended their work using a recurrent network for

the decoder. Gu et al. (2016) used an RNN for both the encoder and decoder and added

a pointer-network (Vinyals, Fortunato, and Jaitly 2015) to allow copying of rare or out-

of-vocabulary words from the input document. Nallapati et al. (2016) improved on Gu et

188



al.’s “copy net” by adding linguistically-motivated part of speech and named entity type

embeddings and document-level attention, and See, Liu, and Manning (2017) added a cov-

erage vector and coverage penalty to prevent repetition in generated words. In the work

described in this chapter, we used See et al.’s definition of the “pointer-generator” model.

The New York Times annotated corpus (Sandhaus 2008), which we use both in this

chapter and in Chapter 6, had previously been used for neural abstractive summarization

by Paulus, Xiong, and Socher (2018) and Celikyilmaz et al. (2018). Both used more com-

plex models than we do in this chapter: Paulus et al. added attention over the decoder’s

previous predictions to both prevent repetition and maintain coherence in longer generated

summaries, while Celikyilmaz et al. trained multiple, collaborating encoders, one for each

paragraph in a document, to encode long documents in their entirety, rather than truncating

them.

7.3 Data

To train a cross-lingual summarization system for low-resource languages, following the

translate-then-summarize approach, we need data consisting of input documents written in

a non-English language, and their English translations, paired with reference summaries

written in English. Unfortunately, only one such dataset exists: the DUC 2004 Task 3

dataset. The DUC 2004 test set provides both high-quality, human translations and lower-

quality, automatic translations of Arabic news articles, paired with human-written, abstrac-

tive English summaries. However, it is too small to train an abstractive summarization

system – there are only 480 document-summary pairs, and the summaries are very short,
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with a maximum length of ten words. Thus, while we can and do use the DUC 2004 test

set to evaluate our cross-lingual summarization system, we need another source of data on

which to train.

Fortunately, we do not need genuine translations of actual non-English input documents

for training. Following the translate-then-summarize approach, our summarization system

would never encounter the non-English documents; we would have translated them into

English first. Thus, to train the summarization system, all we need are the sort of disfluent,

errorful documents that are likely to be the output of a machine translation system for a

low-resource language.

We create simulated errorful translations by automatically translating English input

documents into three low-resource languages, Somali, Swahili, and Tagalog, and then au-

tomatically translating them back into English, accumulating translation errors and dis-

fluencies characteristic of the particular language pair in both directions. The new, noisy

English input documents remain paired with their original, clean English reference sum-

maries, producing a training corpus of synthetic “translations.”

We use the New York Times (NYT) annotated corpus (Sandhaus 2008), which con-

sists of 654,759 articles paired with human-written abstractive summaries. We follow the

train/validation/test split used by Paulus, Xiong, and Socher (2018) and Celikyilmaz et al.

(2018): we sort the article/summary pairs in chronological order and use the first 90%

(589,284 pairs) for training, the next 5% (32,736 pairs) for validation, and the final 5%

(32,739) for testing. We also follow some of Paulus et al.’s preprocessing steps:

• Convert tokens to lower case;
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• Replace numbers with “0”;

• Remove “(s)” and “(m)” marks from summaries;

• Remove the words “photo,” “graph,” “chart,” “map,” “table,” and “drawing” at the

ends of summaries;

• Replace semicolons with periods in summaries.

We differ from Paulus et al.’s preprocessing steps in the following ways:

• We do not anonymize named entities. Named entity anonymization consists of re-

placing proper nouns, which tend to be relatively rare vocabulary items, with a spe-

cial entity token. However, it is difficult to implement in our case. Anonymization

before the round-trip translation process could result in the machine translation sys-

tem mistranslating or deleting the special entity token, while waiting until after the

translation process could result in named entities no longer being automatically iden-

tifiable due to the added noise.

• We do not include headlines and bylines. Paulus et al. used special separator tokens

to indicate which sentences were the article’s headline and byline, but we simply

delete the headline and byline from our articles because we do not intend to evaluate

our system solely on the NYT test set. To do so would mean testing solely on syn-

thetic data; we intend to test on real-world Somali, Swahili, and Tagalog documents,

in addition to the DUC 2004 Arabic articles, which do not necessarily follow Paulus

et al.’s headline/byline formatting.

Due to the computational expense of translating the NYT corpus into three different
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languages and back to English, we focus on a subset of 112k articles. Of these, 100k

are taken from the training set, 6k from the validation set, and 6k from the test set. Half

of the articles are taken from the NYT Opinion section, and the other half are selected

randomly from the other sections. We target the Opinion section in particular because

the reference summaries tend to be more abstracted than those of other sections; many are

indicative summaries, which tell the reader what a document is generally about, rather than

the informative summaries more commonly studied in automatic summarization research

(including in the preceding chapters of this thesis). Emulating these highly abstractive,

indicative summaries seems to us a good strategy for handling errorful input documents

from which we cannot copy directly.

We translate the 112k articles into each of our three low-resource languages, Somali,

Swahili, and Tagalog1; we then translate the articles back into errorful English. Figure 7.1

shows an example of a synthetic noisy English “translation.” While this synthetic “trans-

lation” is not as garbled as the real-world translation that we show in Section 7.5.2, it is

noticeably disfluent.

in the editor: why did president clinton continue to praise a program on welfare-to-work
that failed in half of those assigned? in his comments, he praised the consultation of the
community of kansas city, but was advised by gary j. stangler, director of the department
of social service of missouri, which half of the participants failed. where are these people
helping each other when the government cut them? back to the pantry of food. bad news,
mr. president. the charity of the community will not help everyone who will come to us for
help. glenn classic valley park, mo.

Figure 7.1: A synthetic errorful English article created by translating the original article into Taga-
log and back.

We pair each noisy English “translation” with the clean English reference summary

1The neural machine translation system we use is described in the next section.
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corresponding to the original, clean English article. For simplicity, we refer to the corpus

created by translating into Somali and back as the Somali NYT corpus, and similarly with

Swahili and Tagalog, but all three corpora consist of errorful English input documents,

not Somali, Swahili, or Tagalog documents. Each of the three language-specific corpora,

Somali NYT, Swahili NYT, and Tagalog NYT, is generated from the same 112k original

articles.

7.4 Models

7.4.1 Machine Translation

We use neural machine translation systems developed at the University of Edinburgh to

translate the NYT corpus into Somali, Swahili, and Tagalog, and back to English. The

systems are built on the Marian framework (Junczys-Dowmunt et al. 2018). Table 7.1

shows the performance of the machine translation systems for each of the three language

pairs on human-curated test sets of 500 parallel sentences from the IARPA MATERIAL

project.

BLEU

Language from English to English

Somali 21.8 29.4
Swahili 44.5 37.8
Tagalog 37.2 36.2

Table 7.1: Neural machine translation performance.

The Somali systems (Somali-to-English and English-to-Somali) are transformer net-

works (Vaswani et al. 2017) trained on a mix of real-world parallel data, some human-
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curated (23k sentences from the IARPA MATERIAL project and 46k from the DARPA

LORELEI project) and some web-crawled (354k sentences from the ParaCrawl corpus), as

well as just under two million sentences of synthetic parallel data generated by automat-

ically translating CommonCrawl, NewsCrawl, and Wikipedia data from English into So-

mali and vice versa. The synthetic sentences, which were generated from source sentences

by one neural machine translation model, were rescored using the word-normalized con-

ditional cross-entropy of their source sentences under a neural machine translation model

for the other direction (i.e., synthetic Somali sentences, which were generated from En-

glish source sentences using an English-to-Somali model, were rescored under a Somali-

to-English model). Synthetic sentences with low source sentence cross-entropy scores were

filtered out and not used for training. The real-world parallel data was oversampled three

or five times (Somali-to-English and English-to-Somali, respectively).

The Swahili and Tagalog systems are ensembles of four BiDeep recurrent neural net-

works (Barone et al. 2017). The systems were trained on 24k and 51k sentences, respec-

tively, of real-world parallel data from IARPA MATERIAL, as well as one million synthetic

Swahili or Tagalog sentences automatically translated from English NewsCrawl data and

600k synthetic English sentences automatically translated from Swahili and Tagalog Com-

monCrawl data. The real-world parallel data was oversampled four or six times (to and

from English, respectively).
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7.4.2 Abstractive Summarization

For our abstractive summarization systems, we implement See, Liu, and Manning (2017)’s

pointer-generator network in PyTorch (Paszke et al. 2017). We pre-train for 12 epochs on

the full NYT training set (589,284 clean English document/summary pairs, as opposed to

the 100k pairs in our synthetic “translation” training sets) to obtain a baseline system, using

early stopping based on performance on the validation set; Table 7.2 shows the performance

of this baseline on the NYT test set of 32,739 documents.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT Baseline 48.26 29.30 36.81
Paulus et al. 47.03 30.51 43.27
Celikyilmaz et al. 48.08 31.19 42.33

Table 7.2: Baseline abstractive summarizer performance.

The baseline underperforms the more complex systems of Paulus, Xiong, and Socher

(2018) and Celikyilmaz et al. (2018) on ROUGE-2 and ROUGE-L, but not on ROUGE-

1. This is expected – although the pointer-generator has not previously been evaluated

on the NYT corpus, it was outperformed by Paulus et al. and Celikyilmaz et al. on the

CNN/Daily Mail corpus. The advantage of using the pointer-generator is that the simpler

network is faster to train; See et al.’s reported training time on the CNN/Daily Mail corpus

was roughly 60% of Celikyilmaz et al.’s reported training time. Having already invested

a great deal of time creating the synthetic “translation” training sets, we choose to use

the simpler, faster system; we are more interested in the improvements our cross-lingual

approach can make over a baseline system than in the baseline’s performance compared to

state-of-the-art systems.
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We use each of the three synthetic “translation” corpora to train a copy of the baseline

system for another eight (Somali) or ten (Swahili and Tagalog) epochs, using early stop-

ping based on performance on each language’s validation set of 6k document/summary

pairs. We train three language-specific cross-lingual abstractive summarization systems,

and also a fourth, mixed-language system using 100k documents evenly and randomly se-

lected from the Somali, Swahili, and Tagalog training sets. Thus, all four cross-lingual

systems are trained on the same 100k document/summary pairs, with the only difference

among systems being the language-specific noise added to the “translated” documents; all

100k training documents, in their original, clean English forms, had also already been used

to train the baseline system.

7.5 Evaluation

7.5.1 Synthetic NYT “Translations”

Evaluating on the synthetic “translated” NYT test sets is more of a sanity check than a true

evaluation; evaluating on test data created in the same way that our training and valida-

tion data were created can only tell us that our cross-lingual summarizers have learned to

handle our synthetic “translated” data, but not necessarily that they can handle real-world

translations. Despite this limitation, the sanity check evaluation results are promising.

Table 7.3 shows the performance of our cross-lingual abstractive summarizers on the

synthetic Somali, Swahili, and Tagalog NYT test sets. Differences among the three language-

specific models are not statistically significant, and the more general mixed model achieves
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Model ROUGE-1 ROUGE-2 ROUGE-L

NYT Baseline 32.94 10.36 22.51
Cross-lingual Somali* 37.72 15.39 26.56
Cross-lingual Swahili* † 37.26 14.94 25.92
Cross-lingual Tagalog* † 36.89 14.41 25.53
Cross-lingual Mixed* 38.07 15.76 26.82

(a) Performance on Somali NYT test set.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT Baseline 35.28 12.96 25.64
Cross-lingual Somali* † 38.42 16.34 29.06
Cross-lingual Swahili* 39.24 17.01 29.88
Cross-lingual Tagalog* † 38.24 16.02 28.79
Cross-lingual Mixed* 39.96 17.56 30.24

(b) Performance on Swahili NYT test set.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT Baseline 37.17 14.67 27.26
Cross-lingual Somali* † 38.97 17.01 29.16
Cross-lingual Swahili* † 39.14 17.28 29.43
Cross-lingual Tagalog* 40.96 18.72 31.06
Cross-lingual Mixed* 40.87 18.91 31.14

(c) Performance on Tagalog NYT test set.

Table 7.3: * indicates significant improvement over NYT Baseline (p < 1.16× 10−19); † indicates
significant difference between the mixed model and the language-specific models (p < 0.05).

the best scores overall. However, we find that summarizers trained solely on one language

and tested on another language significantly underperform the mixed model (p < 0.05),

which is trained on all three languages. That is, the differences between the mixed model

and the two language-specific models not trained on a given test language are significant;

for example, the difference between Cross-lingual Mixed and Cross-lingual Swahili and

the difference between Cross-lingual Mixed and Cross-lingual Tagalog are significant on

the Somali test set. The mixed model is trained on the same amount of data as each of

the language-specific models, and differs from them only in that it has access to multiple
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types of language-specific noise. This suggests that training on different types of language-

specific noise generally improves performance, but training on some same-language data

is still important.

Perplexity

Model Somali NYT Swahili NYT Tagalog NYT

NYT Baseline 4986 4428 4707
Cross-lingual Somali 3357 3429 3528
Cross-lingual Swahili 3384 3247 3312
Cross-lingual Tagalog 3501 3476 3457
Cross-lingual Mixed 3464 3285 3402

Table 7.4: Language model perplexity of generated summaries on Somali, Swahili, and Tagalog
NYT test sets.

We also train a bigram language model on the entire set of NYT reference summaries

and calculate the average perplexity of our cross-lingual summarizers’ output on the So-

mali, Swahili, and Tagalog test sets as a proxy for fluency (Table 7.4). We find that Somali

is the most difficult source language overall, which is unsurprising given the relatively

poor performance of the Somali neural machine translation systems, compared with those

for Swahili and Tagalog (Table 7.1). However, all three language-specific models and the

mixed model produce more fluent English, regardless of source language, than does the

base model.

7.5.2 Real-World Weblog Evaluation

In order to evaluate our cross-lingual summarization systems on real-world Somali, Swahili,

and Tagalog documents, we perform a human evaluation on twenty Somali, twenty Swahili,
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and twenty Tagalog weblog entries from the IARPA MATERIAL project2. We translate the

documents into English using the same neural machine translation systems we used to cre-

ate our noisy NYT “translation” corpora, but unlike our synthetic NYT data, which we

translated from English into the low-resource languages, these weblog entries are real-

world, naturally occurring Somali, Swahili, and Tagalog documents. Thus, this evaluation

demonstrates the performance of our cross-lingual summarizers in a real use-case.

Document: mange kimambi ‘i pray for the parliamentary seat for kinondoni constituency
for ticket of ccm. not special seats’ kinondoni without drugs is possible i pray for the
parliamentary seat for kinondoni constituency on the ticket of ccm. yes, it’s not a special
seats, khuini kinondoni, what will i do for kinondoni? tension is many i get but we must
remember no good that is available easily. kinondoni without drugs is possible. as a friend,
fan or patriotism i urge you to grant your contribution to the situation and propert. you can
use western union or money to go to mange john kimambi. account of crdb bank is on
blog. reduce my profile in my blog understand why i have decided to vie for kinondoni
constituency. you will understand more.

NYT Baseline: mange kimambi, who pray for parliamentary seat for kinondoni con-
stituency for ticket of ccm , is on blog, and not special seats’ kinondoni without drugs.

Cross-lingual Mixed: mange kimambi, who pray for parliamentary seat for kinondoni
constituency for ticket of ccm, comments on his plans to vie for ‘kinondoni’ without drugs.

Figure 7.2: A Swahili weblog entry, automatically translated into English, and its baseline and
mixed model summaries.

Figure 7.2 shows a translated Swahili weblog entry and its NYT Baseline and Cross-

lingual Mixed summaries3; phrases that are copied from the input document are color-

coded. This example shows the advantage of our approach: unlike a machine translation

system, which must translate every part of its input, our summarizer is able to delete most

of the long, rambling, and disfluent weblog entry, summing it up fluently with the purely

2These documents are taken from one of the held-out test sets for the project.
3All four cross-lingual summarizers produce very similar summaries on this document.
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generated phrase “comments on his plans” and the completely repurposed phrase “to vie

for”.

Compared with the baseline system, which is trained on the full NYT corpus, the cross-

lingual system, which is trained on a subset of the NYT corpus that is balanced between

the Opinion section and the other sections, produces a more indicative summary: it de-

scribes what the document is about (Mange Kimambi’s campaign platform), rather than

attempting to compress the important information in the document. While the baseline

summarizer was also trained on some Opinion document/summary pairs, the Opinion sec-

tion contains only 70,995 total document/summary pairs, compared to 583,764 pairs from

other sections, and so it behaves more like an informative news summarizer than an indica-

tive editorial summarizer: it mainly copies from the beginning of the document, with only

a small amount of reordering and rephrasing.

We used five human judges, all native English speakers. The judges were shown a trans-

lated document and one of the summaries generated for that document and asked to rate

the summary’s content (i.e., informational correctness and faithfulness to the document)

and fluency (i.e., grammatical correctness and pleasantness to read) on a scale of 1–3 (Ta-

ble 7.5). Each judge was shown two different summaries for each of the sixty documents

in this evaluation, for a total of twenty-four summaries from each of the four cross-lingual

models and the baseline; each document/summary pair was shown to two different judges,

and each judge overlapped with every other judge on thirty document/summary pairs.

Our human judges rated the cross-lingual summarization systems higher in both fluency

and content than the baseline system, and we find again that while the language-specific

systems are more fluent on their own languages than are the language-specific systems for
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Somali Weblogs

Model Content Fluency

NYT Baseline 1.66 1.62
Cross-lingual Somali 1.92 1.90
Cross-lingual Swahili 1.94 1.88
Cross-lingual Tagalog 1.86 1.82
Cross-lingual Mixed 2.08 2.04

Swahili Weblogs

Model Content Fluency

NYT Baseline 1.88 1.76
Cross-lingual Somali 2.14 1.90
Cross-lingual Swahili 2.22 2.08
Cross-lingual Tagalog 2.18 1.86
Cross-lingual Mixed 2.36 2.08

Tagalog Weblogs

Model Content Fluency

NYT Baseline 1.72 1.76
Cross-lingual Somali 1.76 1.88
Cross-lingual Swahili 1.94 1.92
Cross-lingual Tagalog 1.80 2.08
Cross-lingual Mixed 2.08 2.16

Table 7.5: Average human-rated content and fluency scores on Somali, Swahili, and Tagalog we-
blog entries.

the other languages, the mixed model still performs the best. We also find that, while our

improvement in content is more modest, our improvement in fluency is large. The judges

achieved substantial agreement on their ratings (Fleiss’s κ = 0.72).

7.5.3 DUC 2004 Arabic Evaluation

Given the computational expense of creating a training corpus of errorful “translations”

for a low-resource language, and given the mixed-language model’s strong performance, a

natural question that arises from this work is whether or not the cross-lingual summarizers
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can generalize across languages. To answer this question, we perform a final evaluation on

a new, unseen language: Arabic. We use the DUC 2004 Task 3 test set, which we briefly

described in Section 7.3.

The DUC 2004 Task 3 test set consists of 25 clusters of topically-related Arabic news

articles taken from the Agence France Presse and the Arabic Newswire corpus, totaling

of 480 articles; the clusters were used for multi-document summarization in Task 4, while

the articles were used for single-document summarization in Task 3. Three different sets

of English translations were provided: human translations from the Linguistic Data Con-

sortium (LDC) and two sets of machine translations provided by IBM and the Information

Sciences Institute (ISI)4. Human annotators wrote ten-word reference summaries for each

article, using the human translations from the LDC.

Document: washington 10-23 (afp) was signed by benjamin netanyahu and yasser arafat on friday
at the white house agreed on the israeli military withdrawal from the west bank in return for
palestinian additional security guarantees.

NYT Baseline: washington 10-23, signed by benjamin netanyahu and yasser arafat, agrees on
israeli military withdrawal from west bank in return for palestinian additional security guarantees.

Cross-lingual Mixed: benjamin netanyahu and yasser arafat agree on israeli military withdrawal
from west bank in return for palestinian security guarantees.

Figure 7.3: An Arabic article, automatically translated into English, and its baseline and mixed
model summaries.

Figure 7.3 shows a machine-translated Arabic document (the ISI translation) and its

NYT Baseline and Cross-lingual Mixed summaries5; phrases that are copied from the input

document are color-coded. While the difference between the baseline and mixed models is

4Both IBM and ISI provided multiple machine translation variants; we use only the highest-scoring
translation for each article.

5All four cross-lingual summarizers produce identical summaries on this document.
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less dramatic in this example than in the weblog example in the previous section, the mixed

model clearly produces a fluent summary, while the baseline does not. NYT Baseline again

copies heavily from the beginning of the document: the unnecessary “washington 10-23”

(shown in red) and the phrase “signed by” (shown in green), whose subject is missing.

Model ROUGE-1 ROUGE-2 ROUGE-L

DUC 2004 Best MT 21.41 5.04 17.14
DUC 2004 Summarize-Translate 23.56 5.16 20.72
DUC 2004 Best Human 25.87 7.63 21.98

NYT Baseline 26.56 5.86 15.76
Cross-lingual Somali* 28.64 6.66 19.62
Cross-lingual Swahili* † 28.08 6.39 18.36
Cross-lingual Tagalog* † 29.43 7.02 19.89
Cross-lingual Mixed* 28.79 6.74 19.79

Table 7.6: DUC 2004 with ISI translations. * indicates significant improvement over NYT Baseline
(p < 2.09× 10−6); † indicates significant difference between cross-lingual models (p < 0.05).

Table 7.6 shows the performance of our cross-lingual abstractive summarizers on the

DUC 2004 Task 3 data, demonstrating their ability to generalize and improve the fluency

of input documents automatically translated from a previously unseen language, yielding a

significant improvement in ROUGE. Task 3 had two subtasks: summarizing the machine-

translated documents and summarizing the human-translated documents. There were ten

submitted systems, each of which performed and was evaluated on both subtasks. An addi-

tional submitted system took the summarize-then-translate approach instead, summarizing

the documents in Arabic and translating the summaries into English.

Table 7.6 shows the ROUGE scores of best-performing DUC 2004 system in each cat-

egory – the row “DUC 2004 Best MT,” for example, does not show the results of a single

system, but rather the best scores that any DUC 2004 submitted system achieved using
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machine-translated input documents. Compared to the ten DUC 2004 systems, our base-

line performs reasonably well – some of the performance gain of our systems over the

DUC 2004 systems must be due to the fifteen years of general advances in summarization

research that separate us. However, we still find that the cross-lingual abstractive summa-

rizers give improved performance over the baseline, despite never having been trained on

Arabic data, suggesting that our approach does generalize to new and unseen languages.

Our cross-lingual abstractive summarizers would have ranked first on summarizing the

machine-translated documents. Further, despite our use of these lower-quality translations,

we would have performed extremely well even in comparison with the DUC 2004 systems

on high-quality, human-translations – we would have ranked first on ROUGE-1, fourth on

ROUGE-2, and fifth on ROUGE-L.

7.6 Conclusion

The main contributions described in this chapter (based on work published in Ouyang,

Song, and McKeown (2019)) are as follows:

• We develop a new approach for training cross-lingual abstractive summarization sys-

tems for low resource languages. For such languages, there would be no training data

available for summarization systems, and as a result, documents must first be trans-

lated into English, likely by relatively poor-performing machine translation systems,

which would also have suffered from a lack of training data. Our new approach

provides a potential summarization solution for thousands of such low-resource lan-

guages.
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• We create summarization corpora simulating automatically translated documents

from three low-resource languages: Somali, Swahili, and Tagalog. Our corpora con-

sist of noisy English “translations” paired with clean English reference summaries.

Our method for producing these corpora can be easily applied to new source-target

language pairs.

• By training on simulated “translated” input and clean reference summaries, many

of which were highly abstracted, indicative summaries, we outperform a standard

copy-attention abstractive summarizer on real-world Somali, Swahili, and Tagalog

documents. Our cross-lingual abstractive summarizers are rated more highly in both

content and fluency by human judges.

• Our evaluation on Arabic documents demonstrates that our cross-lingual summariza-

tion systems are robust and can generalize to new, unseen languages. Our evaluations

show that while training a system for a specific source language gave the strongest

performance, our cross-lingual systems can improve summarization performance for

any source language.

The key advantage of our approach is in making use of an abstractive summarization

system’s ability to delete phrases that were translated awkwardly or incorrectly, and to

generate new text to use instead. The approach is also general enough to apply to any

source-target language pair, and it can be adapted to new languages very easily. The main

limitation is that our approach assumes the existence of a machine translation system for the

language pair, which may not be the case for extremely low-resource languages. Although

our systems are able to handle errorful, disfluent translations, they do not perform the
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full cross-lingual summarization task directly; they cannot take a non-English document

as input directly. In the case where there are no translations of any kind available, our

systems would not work; in such a case, a language-independent approach or a language-

pair-specific approach, such as cross-lingual word embeddings, would be necessary.

A relatively new and very interesting idea that contrasts with this work is the problem

of summary faithfulness. Cao et al. (2018) observed that, since abstractive summarization

systems rewrite their input sentences, there is nothing preventing them from producing

summaries that are factually incorrect. In their experiments on the Gigaword corpus, pre-

viously used by Rush et al., Chopra et al., and Nallapati et al., Cao et al. found that almost

30% of the summaries generated by a basic pointer-generator-style abstractive summarizer

were factually incorrect, often due to mistaking a word that happened to appeared near a

predicate in the input sentence for subject of that predicate.

Summary faithfulness is a serious concern, particularly as in this work, we want our

abstractive summarizer to heavily rewrite its input sentences. In the example shown in

Figure 7.2, our summarizer goes so far as to invent four words out of whole cloth – words

that are not present in the input document at all. In our experiments, our approach seems to

have avoided the problem of factually incorrect summaries; our systems are rated slightly

higher in correctness and faithfulness than is the baseline pointer-generator model in our

human weblog evaluation. Still, the problem of faithfulness is one to keep in mind, even

if we do not encounter it in these experiments – Cao et al.’s proposed solution of encoding

dependency relations found in the input document, in addition to the document itself, could

not be applied to the disfluent and errorful translations for which our approach is designed.
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Conclusion

With the tremendous amounts of text published on the Web every day, automatic text sum-

marization is more relevant than ever. As the Web has changed how people seek out and

interact with information, so must summarization techniques change and adapt to these new

sources of information. In this thesis, we have developed novel approaches for automatic

summarization of two new sources of information: personal narratives and non-English

documents.

Contributions

Our main contributions are as follows:

A summarization corpus for personal narrative.

Our Reddit summarization corpus is unique in three respects. First, it is the only sum-

marization corpus for the genre of personal narrative. While other collections of personal

narratives exist, they are of significantly lower quality; our method for collecting narratives

from Reddit achieved 94% precision on extracting only narrative text, compared to Gordon,

Cao, and Swanson (2007)’s 50% and Gordon and Swanson (2009)’s 66%. Our corpus also

includes meta information not found in other collections of narrative: the topical prompt

that elicited a narrative, readers’ comments, and TL;DR short summaries – we were the

first to use the TL;DR for summarization, predating the Webis-TLDR-17 corpus (Völske
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et al. 2017) by two years.

Second, our Reddit summarization corpus is unusual among summarization corpora in

that it not only provides both human-written abstractive summaries and human-selected

extractive summaries, but that the extractive summaries are explicitly constructed to match

the abstractive summaries as closely as possible and are aligned back to the abstractive

summaries. Summarization corpora that provide both abstractive and extractive summaries

are already uncommon; only one other corpus, the ISCI Meeting Corpus (Murray et al.

2005), provides paired and aligned abstractive and extractive summaries. There has been

recent interest in two-stage, extract-then-abstract summarization (Nallapati, Zhai, and Zhou

2017; Liu et al. 2018; Gehrmann, Deng, and Rush 2018), and although our corpus is not

large enough to train a neural summarizer, it allowed us to perform two-stage summariza-

tion using a mix of non-neural techniques and neural models with other distantly-labeled

datasets.

Finally, our extractive-abstractive summary alignments are annotated with the six sum-

mary rewriting operations identified by Jing and McKeown (1999). Our Reddit summariza-

tion corpus captures interactions among rewriting operations, rather than focusing on only

one operation in isolation. The presence of multiple different rewriting operation annota-

tions in each alignment allows the corpus to serve as a very challenging dataset for research

on compression, fusion, reordering, generalization, specification, and paraphrasing.
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A narratology-inspired approach to extractive summarization.

The success of our change-based approach to extractively summarizing personal narrative

validated the contextualist theory that authors draw attention to important content in their

narratives by varying their writing style. Our work shows that this theory can be empir-

ically verified: using only stylistic and affectual features to compare sentences within a

narrative to their neighbors, we can learn to make sentence selection decisions that match

those of human extractive summarizers. The change-based approach outperforms tradi-

tional extractive summarization techniques designed for the news genre, demonstrating the

importance of tailoring summarization approaches to one’s genre of input and goals for

output.

An investigation of paraphrasing for summarization.

We conduct the first experiments on paraphrasing specifically in the context of abstractive

summarization. Prior work on paraphrase generation has resorted to a “shotgun” approach

of generating as many paraphrases as possible, in the hopes that one will be useful, but

our evaluations quantify the profound limitations of this approach. No prior work has at-

tempted to learn which inputs ought to be paraphrased, and which ought to be left alone;

it was assumed that if a sentence could be paraphrased, then it should be. Our two-stage,

classify-then-paraphrase approach shows that, not only is it possible to identify which doc-

ument sentences should or should not be paraphrased for summarization, but doing so

improves the performance of the downstream paraphrasing system by removing spurious

inputs before it encounters them.
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Our analysis of the affectual and stylistic features we used to augment the word embed-

dings in our neural classifier and paraphraser also represent the first attempt to learn why

human summarizers perform paraphrasing: to modify the activeness and subjectivity – and

to a lesser extent, the pleasantness, imagery, formality, and complexity – of a document

sentence into something more appropriate for a summary.

An alignment system for sentential quasi-paraphrases.

Our pointer-network-based alignment system is one of only six phrase-based monolingual

aligners in existence. It is specifically designed to be able to align the longer and more

lexically diverse paraphrases that have been neglected in prior work, and it is the first to

perform alignment using a neural network.

The pointer-aligner can align phrases that mean approximately, rather than exactly, the

same thing, in constrast with previous approaches, which aligned shared words or close

synonym pairs. We represent each phrase with a learned phrase embedding, which captures

the general meaning of the phrase as a whole, rather than representing each phrase by the

individual words it contains; a difference of a single function word, for example, would

have little to no effect on the phrase embedding level. Our use of phrase embeddings

also allows the pointer-aligner to align phrases of any length. Where previous approaches

were limited due to the computational expense of aligning long phrases, our system does

not distinguish between full sentences and single words; both are represented by a single

embedding.

While it is able to align very long phrases, the pointer-aligner is not required to do so.
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Unlike previous approaches, where the maximum allowable phrase length must be set by

the user, or where the system must commit to a single arbitrary chunking of the input, we

are able to discover the optimal phrase size during alignment. By aligning multiple differ-

ent chunkings of the input and allowing the different alignments to vote on the final output,

the pointer-aligner allows high-confidence alignments between phrases of the optimal size

to outvote low-confidence alignments between phrases of sub-optimal sizes.

The success of our approach, even when pared down for faster run times, on the para-

phrases in the Reddit summarization corpus and on both the sure and possible alignments

in the MSR RTE corpus (Brockett 2007), proves that the long, lexically diverse paraphrases

that were ignored in prior work can be aligned.

A cross-lingual summarization pipeline for low-resource languages.

We develop cross-lingual, abstractive summarization systems for three low-resource lan-

guages, Somali, Swahili, and Tagalog, for which no summarization systems of any kind,

cross-lingual or otherwise, previously existed. Our approach of creating synthetic, low-

quality “translations” for training can be applied to any low-resource source language/high-

resource target language pair. However, as long as English remains the target language, our

evaluation on Arabic shows that, while retraining the summarizer for a new source language

may give the best performance, it is not necessary to do so; the cross-lingual system trained

on three languages is already robust enough to perform well on unseen languages.
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Limitations

The limitations of the work described in this thesis are as follows:

The Reddit summarization corpus alignments and rewriting

annotations are imprecise.

The main difficulty we encounter in lexical paraphrasing is that the alignments in the Reddit

summarization corpus can be of any size. Many are full clauses, or even sentences, and as a

result, they contain multiple other rewriting operations, in addition to lexical paraphrasing.

While capturing the presence of multiple rewriting operations is a feature of the corpus, the

operations are difficult to disentangle in downstream tasks. An additional layer of anno-

tations indicating precisely which word(s) in an alignment demonstrate a given rewriting

operation may have been useful, although, having looked at a great many examples over the

course of the work described in this thesis, we are not confident that it is always possible

to identify where exactly an operation applies.

The pointer-aligner is computationally expensive.

Towards the end of Chapter 5, we analyzed the run time of our paraphrase alignment sys-

tem. While the pointer-aligner’s run time is independent of the lengths of the phrases to be

aligned – which was a key design goal – it remains bound by the lengths of the input sen-

tences. On long sentences of around 70 words, the full pointer-aligner takes several hours

to run. The pared-down version of the aligner that we used in Chapter 6 trades performance

for speed; its aligned word pair precision and recall are both lower than those of the full
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system, but it takes only seconds to align input sentences, regardless of their length. How-

ever, one source of computational overhead that cannot be disentangled from our approach

is the need to perform constituent parsing on all input sentences. While it is possible to

arbitrarily chunk the input sentences without using a constituent parse (e.g., by imposing a

chunk boundary every so many words), we have seen in our experiments in Chapter 6 that

sentence structure does matter to neural encoders, so we suspect that arbitrary chunkings

would perform poorly.

The cross-lingual summarization system assumes the availability of

machine translation.

Although our cross-lingual abstractive summarization system is able to handle errorful, dis-

fluent translations, for extremely low-resource languages there may be no machine trans-

lations of any kind available. In such a situation, our system will not work; it requires that

the input document be in some form of English, even if it is poor English. Similarly, for

source/target language pairs for which machine translations are not available, our approach

and training pipeline will not work. Another approach, such as summarization using cross-

lingual word embeddings, would be necessary.

Two-stage approaches cannot recover from errors in the first stage.

The final limitation is a more general one. We use two different two-stage approaches in

this thesis: first, we used an extract-then-abstract summarization approach over the course

of most of this thesis; second, we used a classify-then-paraphrase approach to lexical para-
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phrasing for summarization in Chapter 6. The limitations of the two-stage approach can be

seen in the examples shown in Chapter 6, which not only contained a two-stage approach

of its own, but was the second stage of the overarching two-stage approach covering the

bulk of this thesis.

The difficulty with two-stage approaches is that errors in the first stage are propagated

to, and often cannot be recovered by, the second stage. For example, a character in a

narrative may be referenced several times but named only once; if the sentence containing

the character’s name is not extracted during the first stage of summarization, the abstractive

second-stage system will never see it. In this particular example, some post-processing

after the first stage would help: performing coreference resolution on the input document

and replacing pronouns in selected extractive summary sentences with their antecedents

would solve this particular problem.

However, not all first-stage errors can be so easily addressed. In the case of the classify-

then-paraphrase approach, the sentence-level paraphrasing evaluations shown in Chapter

6 used only the gold standard paraphrasing input sentences. If we evaluate instead on

the input sentences classified as paraphrasing by the first-stage classifier (reverting to the

end-to-end evaluation procedure of comparing paraphrasing sentence outputs against their

target paraphrases and non-paraphrasing sentence outputs against the input), we find that

the word error rate increases by about 7.48, and ROUGE decreases by about 6.52 across

the board. There is no easy solution to the problem of classification error; there is no way

for the paraphrasing system to tell that the classification system has made an error in the

first place. Similarly, if it is not a pronoun’s antecedent that is omitted from the extractive

summary, but an entire event, the second-stage abstractive summarization system cannot
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recover the event unless it miraculously manages to invent it from whole cloth.

Future Directions

Some future directions for adapting automatic summarization to even more new sources of

information are as follows:

Cross-Lingual Summarization.

Combining ideas from our work in both cross-lingual summarization and paraphrasing, we

would like to make use of multiple translations of non-English input documents. We can

obtain multiple translations of a document, not only by using multiple machine translation

systems, but also by taking advantage of the n-best word candidate lists produced by neural

machine translation systems. Different translation systems may have different strengths

and weaknesses. For example, a statistical machine translation system that copies input

words not found in its phrase table is better at preserving non-English named entities than

are neural systems that simply delete unknown words without any indication to the user, but

the neural systems generally produce more fluent English. Some ideas we hope to explore

are

• applying multi-document summarization techniques to combine multiple translations

into a single high-quality summary, and

• designing a summarization system that takes a lattice of candidate translations as

input, rather than a single sequence, allowing it to learn which path will produce the

best summary.
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Query-Focused Summarization

People make use of query-focused extractive summaries every day, in the form of search

engine results, where relevent web pages are accompanied by excerpts showing where the

user’s search term occurs in each web page. These query-focused extractive summaries

are sometimes helpful, and sometimes not – we find the summaries for results from Stack

Overflow, for example, to be distressingly unhelpful. To improve the coherence and use-

fulness of these summaries, we need better techniques for query-focused summarization.

While there has been recent interest in query-focused abstractive summarization Has-

selqvist, Helmertz, and Kågebäck (2017) and Nema et al. (2017), the summarization part

of query-focused summarization has been lost – recent work considers the query-focused

abstractive summarization task to be simply question-answering with complete sentences.

We believe that a query-focused summary should address the query, but it should also

function as a reasonable summary of the whole document; to continue the search engine

example, most queries are not specific questions, but rather topics that the user wants to

know more about. Some ideas we hope to explore are

• using reinforcement learning to fine-tune a pre-trained abstractive summarization

system to focus on user queries, without losing its ability to produce general-purpose

summaries; and

• providing the query to the system in different ways, such as learning a query embed-

ding, or extracting a topic based on both the query and the document and focusing

on words from that topic.
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Multimodal Summarization.

Besides new text genres, information on the Web is increasingly found in other media,

such as videos or podcasts. Previous work on summarizing recorded speech has been

split between two approaches: transcribe into text using automatic speech recognition and

summarize the transcript, or extract speech segments directly from the audio signal. We

hope to combine these two modes of information in order to make use of both what is said

(the transcript) and how it is said (the audio) in creating a summary, and videos introduce

a third medium that can likewise assist in selecting content for a summary.

A challenge of multimodal summarization is that, in a video or audio recording, there

may be multiple speakers who interrupt or speak over each other, or who hold different

or even opposing views. In this case, the traditional informative summary may not be

the most useful format. When one speaker responds to another, for instance, he or she

will likely refer to what the other person said, without repeating it; if such an utterance is

excerpted for the summary, it will be impossible for a user to understand in isolation. We

hope to experiment with different summary structures, such as highly-abstracted, indicative

summaries, or separate summaries for each speaker, to better organize and present the

content of multimodal documents.

User-Oriented Summarization.

Finally, in the course of our work on summarization, we have performed many human

evaluations, and we have found that users are very sensitive to how information is presented

– a user is likely to reject a poorly-written summary as useless, even if it contains all of
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the information they need. How something is said can be just as important as what is

said. From our work on lexical paraphrasing in Chapter 6, we discovered that 1) encoder-

decoder models are good at learning sentence structure, and 2) they can also learn human

summarizers’ affectual and stylistic choices. Can we apply these abilities to customize

summaries in other ways? Some ideas we hope to explore are

• customizing summaries for a particular dialect of English, and

• tailoring summaries for a particular user by customizing the text to mimic the writing

style of that user’s demographic group.
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