
Cut-and-Paste Text Summarization

Hongyan Jing

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2001

c
�

2001

Hongyan Jing

All Rights Reserved

ABSTRACT

Cut-and-Paste Text Summarization

Hongyan Jing

Automatic text summarization provides a concise summary for a document. In this

thesis, we present a cut-and-paste approach to addressing the text generation problem

in domain-independent, single-document summarization.

We found that professional abstractors often reuse the text in an original docu-

ment for producing the text in a summary. But rather than simply extracting the original

text, as in most existing automatic summarizers, humans often edit the extracted sen-

tences. We call such editing operations “revision operations”. Our summarizer simu-

lates two revision operations that are frequently used by humans: sentence reduction and

sentence combination. Sentence reduction removes inessential phrases from sentences

and sentence combination merges sentences and phrases together. The sentence reduc-

tion algorithm we propose relies on multiple sources of knowledge to decide when it

is appropriate to delete a phrase from a sentence, including linguistic knowledge, prob-

abilities trained from corpus examples, and context information. The sentence combi-

nation module relies on a set of rules to decide how to combine sentences and phrases

and when to combine them. Sentence reduction aims to improve the conciseness of

generated summaries and sentence combination aims to improve the coherence of gen-

erated summaries. We call this approach “cut-and-paste” since it produces summaries

by excerpting and combining sentences and phrases from original documents, unlike

the extraction technique which produces summaries by simply extracting sentences or

passages.

Our work also includes a Hidden Markov Model based sentence decomposition

program which analyzes human-written summaries. The decomposition program iden-

tifies where the phrases of a summary originate in the original document, producing an

aligned corpus of summaries and articles that we use to train and evaluate the summa-

rizer. We also built a large-scale, reusable lexicon by combining multiple, heterogeneous

resources. The lexicon contains lexical, syntactic, and semantic knowledge. It can be

used in many applications.

Contents

List of Figures vi

List of Tables viii

Acknowledgments ix

Chapter 1 Introduction 1

1.1 An Overview of Automatic Text Summarization ������������������������� 2

1.2 Previous Approaches ��� 4

1.3 The Generation Problem in Summarization ����������������������������� 7

1.3.1 The Problems with Extraction ����������������������������������� 8

1.3.2 Traditional Natural Language Generation ����������������������� 10

1.4 This Thesis ��� 11

Chapter 2 System Overview 12

2.1 Reusing Document Text for Summary Generation ����������������������� 13

2.1.1 Abstracting Guidelines ��� 13

2.1.2 Revision Operations ��� 13

2.2 The Cut-and-Paste Summarization ��������������������������������������� 17

2.2.1 The Cut-and-Paste Approach ����������������������������������� 17

i

2.2.2 The Conservative Strategy in Editing ��������������������������� 17

2.2.3 System Architecture ��� 18

Chapter 3 Decomposition of Human-Written Summary Sentences 23

3.1 Using Hidden Markov Model for Decomposition ����������������������� 24

3.1.1 Formulating the problem ��������������������������������������� 25

3.1.2 Hidden Markov Model (HMM) ��������������������������������� 27

3.1.3 The Viterbi Algorithm ��� 30

3.1.4 Post-Editing ��� 31

3.1.5 An Example ��� 32

3.1.6 Formal Description of Our Hidden Markov Model ������������� 34

3.2 Experimental Evaluations ��� 38

3.2.1 Summary Alignment ��� 38

3.2.2 Human Judgments of Decomposition Results ������������������� 41

3.2.3 Portability ��� 42

3.3 Applications of Decomposition Results ��������������������������������� 44

3.4 Related Work ��� 45

3.5 Conclusion ��� 47

Chapter 4 Sentence Reduction 48

4.1 Sentence Reduction Based on Multiple Sources of Knowledge ��������� 50

4.1.1 The Resources ��� 50

4.1.2 The Algorithm ��� 51

4.2 Evaluations of the Reduction Module ����������������������������������� 57

4.2.1 The Evaluation Scheme ��� 58

4.2.2 Evaluation Results ��� 60

ii

4.3 Discussion of Related Topics ��� 62

4.3.1 Reduction for Query-based Summarization ��������������������� 62

4.3.2 Interaction between Reduction and Other Modules ������������� 63

4.3.3 Factors that Affect the Performance ����������������������������� 64

4.4 Related Work ��� 67

4.4.1 Sentence Compression ��� 67

4.4.2 Reduction Based on Syntactic Roles Only ����������������������� 69

4.4.3 Text Simplification ��� 70

4.4.4 Using Lexical Cohesion for Text Understanding ����������������� 70

4.5 Conclusion ��� 71

Chapter 5 Sentence Combination 72

5.1 Combination Operations ��� 74

5.2 Rules for Applying Combination Operations ��������������������������� 78

5.3 Implementing Combination Operations and Rules ����������������������� 80

5.3.1 Implementing Combination Operations ������������������������� 80

5.3.2 Implementing Combination Rules ������������������������������� 84

5.4 Investigating Machine Learning Methods ������������������������������� 86

5.5 Evaluation ��� 89

5.6 Related Work ��� 89

5.7 Conclusion ��� 91

Chapter 6 A Large-Scale, Reusable Lexicon for Natural Language Genera-

tion 92

6.1 Motivation ��� 93

6.2 Introduction of the Lexicon ��� 94

iii

6.3 Combining Multiple Large-Scale Heterogeneous Resources ������������� 97

6.3.1 Step 1: Merging COMLEX with EVCA ������������������������� 98

6.3.2 Step 2: Merging COMLEX/EVCA with WordNet ��������������� 100

6.3.3 Step 3: Adding Corpus Information ����������������������������� 104

6.4 Applications of the Combined Lexicon ��������������������������������� 104

6.4.1 Cut-and-Paste Summarization ����������������������������������� 105

6.4.2 Traditional Natural Language Generation ����������������������� 106

6.4.3 Integration of the Lexicon with a Natural Language Generator � 109

6.4.4 Word Sense Pruning ��� 109

6.4.5 Other Applications ��� 111

6.5 Discussions ��� 112

6.6 Conclusion ��� 113

Chapter 7 Putting it All Together 114

7.1 The Extraction Module ��� 114

7.1.1 The Lexical Links Approach ������������������������������������� 115

7.1.2 Incorporating Other Types of Information ����������������������� 117

7.2 Implementation ��� 118

7.3 An Example ��� 119

7.4 Evaluation of the Overall System ��������������������������������������� 120

7.4.1 Evaluation Methods ��� 120

7.4.2 Evaluation Results ��� 122

7.5 Portability ��� 124

Chapter 8 Conclusion 131

8.1 Summary of Contributions ��� 131

iv

8.2 Future Work ��� 133

v

List of Figures

2.1 System architecture. ��� 19

2.2 Building training corpora for sentence reduction and combination. ����� 21

3.1 The sequences of positions in summary sentence decomposition. ������� 26

3.2 Assigning transition probabilities in the Hidden Markov Model. ��������� 29

3.3 Sample output of the decomposition program. ��������������������������� 33

3.4 Example of the absolute Hidden Markov Model. ����������������������� 37

3.5 Sample output of legal document decomposition. ����������������������� 43

4.1 Sample output of sentence reduction program. ��������������������������� 57

4.2 Sample sentence and parse tree. ��� 58

4.3 Reduced form by a human. ��� 58

4.4 Reduced form by the program. ��� 59

5.1 An example sentence produced by adding names and descriptions for

people or organizations. ��� 76

5.2 An example sentence produced by adding connectives. ����������������� 76

5.3 An example sentence produced by replacing phrases with semantic para-

phrases. ��� 78

vi

5.4 Combination rule for adding names and descriptions for people or orga-

nizations. ��� 79

5.5 Combination rule for extracting common subject of two related sentences. 80

5.6 Sample combination output produced by extracting common subject of

two related sentences. ��� 81

5.7 Tree substitution. ��� 82

5.8 Tree adjoining. ��� 82

5.9 Using substitution and adjoining to realize the combination operation

extracting common object of two sentences. ����������������������������� 83

6.1 Entry for the verb appear in the combined lexicon. ��������������������� 97

6.2 Construction of the combined lexicon and the size of resources. ��������� 98

6.3 Entry for the verb appear in COMLEX. ��������������������������������� 99

6.4 Alternations and subcategorizations from EVCA for the verb appear. ��� 101

6.5 Entry for the verb appear after merging COMLEX with EVCA. ������� 101

6.6 The multi-level feedback architecture for lexical choice and realization. � 107

7.1 Sample input document. ��� 128

7.2 Result after sentence extraction. ��� 129

7.3 Result after sentence reduction (the phrases in italic are removed). ����� 129

7.4 Result after sentence combination. ��������������������������������������� 130

vii

List of Tables

3.1 Evaluation of decomposition program using the Ziff-Davis corpus. ����� 40

5.1 Combination operations. ��� 75

6.1 Valid combinations of syntactic subcategorization /alternations and senses

(marked with
�

) for the verb appear. ����������������������������������� 111

7.1 Result of conciseness comparison. ��������������������������������������� 123

7.2 Result of coherence comparison. ��� 123

viii

Acknowledgments

A number of people deserve special thanks for guiding, encouraging, and supporting me

to complete this thesis.

My advisor, Kathy McKeown, has been wonderful: she encouraged me to ex-

plore on my own while constantly providing insightful advice, she taught me about

research, and she patiently corrected my papers even when she had millions of other

things waiting. I am most grateful to her.

The other members of my dissertation committee, Luis Gravano, Graeme Hirst,

Aravind Joshi, and Judith Klavans, also played an important role in the development of

this thesis. I am very grateful to them for their valuable comments at the thesis proposal

and the defense and also their feedback on the draft of this dissertation.

I had the opportunity to work with some great people outside of Columbia Uni-

versity. Evelyne Tzoukermann was a wonderful mentor during my summer internship at

Bell Laboratories and has been a mentor and friend ever since. Karen Kukich provided

me the first summer internship in my graduate school years and is one of the most caring

people I have met. Oliviero Stock, Emanuele Pianta, and the other members of the nat-

ural language processing group at Istituto per la Ricerca Scientifica e Tecnologica gave

me the opportunity to venture out of my main research area. It was a pleasure to work

with such a wonderful group of people. I not only learned about machine translation,

ix

but also had the most pleasant summer ever. I thank Michael Elhadad and his students at

Ben-Gurion University for the inspiring conversations during our collaboration. I also

thank Yael Ravin for being on my candidacy exam committee.

I am indebted to the members of the natural language group at Columbia Univer-

sity for their help and support. They participated in my evaluations, they sat through my

presentation dry-runs, and they gave me interesting ideas. I want to thank particularly

Shimei Pan and James Shaw for helping me every step along the way, Vasileios Hatzi-

vassiloglou and Dragomir Radev for interesting discussions over many years, Pascale

Fung and Rebecca Passonneau for helping me in my early graduate student years, and

Min-Yen Kan and Barry Schiffman for being great office mates.

Finally, and most importantly, I would like to thank my family and friends for

their encouragement and unwavering support over the years spent on this work.

x

To Mom, Dad, Hongwei, and Ling

xi

1

Chapter 1

Introduction

The automatic construction of abstracts from the texts of documents has gained increas-

ing interest in recent years. Abstracts can help a reader to grasp the central subject matter

of a document without looking at the full document. High-quality text summarization

would improve document search and browsing in a variety of contexts. For example:

� Over the Internet. With such an overwhelming amount of information on the In-

ternet, retrieving and browsing relevant documents in an efficient manner becomes

extremely important to Internet users. Abstracts could help users to quickly judge

the relevance of documents, and therefore, not to waste time accessing and brows-

ing documents that are not at all interesting to them.

� Over Digital Libraries. As documents become increasingly available in electronic

form, the effort of storing and indexing them leads to the construction of digital

libraries. To provide abstracts for documents in digital libraries so that the doc-

uments can be efficiently organized and retrieved, we need to explore automatic

techniques since the number of documents that are to be included in digital li-

braries is enormous and manually constructing abstracts for all documents is im-

2

possible.

� From hand-held devices. Due to the limited display space on hand-held devices

such as Personal Digital Assistants, document condensation is very desirable.

This chapter is organized as follows. First, we give an overview of automatic text

summarization, touching on such matters as types of abstracts, and other aspects that are

used by researchers in the summarization community to describe automatic summaries

and automatic summarization systems. Section 1.2 gives a critical survey of summariza-

tion approaches, informing readers of the state of the art of the field. Section 1.3 is the

major part of this introduction, in which we introduce the problem that this thesis fo-

cuses on — the generation problem in summarization research. This problem has been

relatively neglected by the summarization research community. We reinforce the im-

portance of investigating this problem, and contemplate possible solutions and the most

difficult issues involved in the problem. Section 1.4 gives an overview of this thesis,

outlining the approach we propose to address the generation problem in summarization.

1.1 An Overview of Automatic Text Summarization

According to the American Heritage Dictionary of the English Language (Fourth Edi-

tion, 2000), an abstract is “a statement summarizing the important points of a text”.

Abstracts may contain indicative material, helping a reader to decide whether it will

be worthwhile to look at the full document. Many abstracts are also informative, in-

cluding material such as main results and conclusions so that a reader can gather the

most important information without having to refer to the full document. The indicative

function is regarded as essential and the informative function is desirable. In practice,

most automatically constructed abstracts contain at least some informative material. Al-

3

though some researchers state that their aim is to produce indicative summaries while

others state that they aim to produce informative summaries, the techniques used are

very similar.

Abstracts that are produced manually almost always summarize the important

points of the central subject matter of a text; such abstracts are called generic abstracts.

Many automatic summarization systems can also construct user-focused or query-based

summaries, which do not concentrate on the central topic of a text but contain material

that is most important based on a user's particular interests. A user's queries to a search

engine or to a question-answering system are often regarded as the indication of the

user's particular interests. In practice, many techniques developed for generic summa-

rization are also used for query-based summarization, but with slight modifications.

We might consider a wide variety of text types to construct abstracts from. Much

of the reported work has been concerned with producing summaries for newspaper ar-

ticles or scientific papers. Some summarization systems are domain-dependent, mean-

ing that they can only handle texts from a specific domain. Such systems often rely

on the knowledge of texts in that domain (for example, text structures, keywords or

key phrases) to find the important information. Some systems are domain-independent,

meaning that they do not have strict restrictions on the domain of documents.

Abstracts might be constructed from a single document; they might also be con-

structed from multiple documents. In the latter case, the abstract will summarize the im-

portant points in all the source documents (in practice, the source documents are often a

cluster of documents that report on the same event). When multi-document summariza-

tion is concerned, the source documents can be in a single language (monolingual), or

they can be in different languages (multilingual or translingual).

The majority of automatic systems produce summaries by extracting informative

4

sentences from documents. We call such summaries extracts, meaning that they consist

of sentences extracted from the full documents. Summaries that are constructed by ex-

tracting sentences from the beginning of documents are called lead-based summaries,

and are often used in the evaluation experiments as a baseline with which to compare au-

tomatically constructed summaries. In quite a few studies, lead-based summaries were

actually found to outperform “sophisticated” or “intelligent” summarization systems.

1.2 Previous Approaches

Much of the reported work has been concerned with producing extract-like summaries.

Therefore, the key problem addressed by most previous literature is how to identify the

most important, salient, or informative sentences in the text.

Earlier work (from 1950s to early 1990s) can be roughly divided into two cat-

egories in terms of their approaches: the statistical or surface-clue approach, and the

artificial intelligence (AI) approach. The systems that use the first approach try to find

clues that could possibly indicate the informativeness of sentences. The clues that have

been investigated are many, including the frequency of words, the location of sentences,

cue phrases, and the syntactic structure of sentences, among others. Based on these

clues, the systems compute the informativeness of each sentence, usually indicating it

with a score. The sentences with the highest scores are then regarded as most impor-

tant and extracted. In contrast to the surface-clue approach, the AI approach tries to

understand the meaning of the text using natural language processing techniques. With

current language processing technology, deep understanding of a text is possible only if

the text is in a specific domain, in which fixed text structures or patterns are often used.

Such structures or patterns aid the understanding of the text. Rather than cite individual

5

papers, we refer readers to [Paice, 1990] for a very good overview of the work between

the 1950s and 1990.

The Dagstuhl Seminar on “summarizing text for intelligent communication” held

in Dagstuhl, Germany in 1993 [Endres-Niggemeyer, Hobbs, and Sparck Jones, 1993],

can be seen as the beginning of a new phase in summarization research. There has been

a tremendous surge of publications and interest since then. The reported work has taken

four different paths: statistical, knowledge-based, shallow understanding based, and

hybrid approaches.

Many statistical models, most of which have already been successfully used in

other language applications, are applied to summarization. One of the earliest works is

by Salton and his colleagues [Salton et al., 1994], who use the Vector Space Model in

Information Retrieval to measure the similarities between paragraphs and find impor-

tant paragraph(s). Another representative work is [Kupiec, Pedersen, and Chen, 1995],

which formulates summarization as a statistical classification problem — dividing sen-

tences into two categories: important and unimportant — and deploys the Bayesian

classification algorithm for summarization. Recently, [Knight and Marcu, 2000] applies

statistical machine translation techniques for compressing sentences. Similar techniques

are used for summarizing web pages [Berger and Mittal, 2000]. In our work, we use

Hidden Markov Models to decompose human-written summary sentences (see Chap-

ter 3). Other statistical techniques for summarization include position-based [Lin and

Hovy, 1997] , and signature word based [Brandow, Mitze, and Rau, 1995].

The statistical approach is fast, robust, scalable, and domain-independent. The

disadvantages of this approach include the following: feature selection is experimental,

sentence scoring is heuristic and empirical, a large training corpus is needed, and there

is a performance upper bound due to no real understanding of the text. A particular

6

model may not possess all of the above properties but only a subset of them.

An alternative to the statistical approach is the knowledge-based approach. This

approach is often adopted to summarize text in a specific domain. It relies on rich

knowledge about the domain to understand the text and decide what should be included

in the summaries. Domain knowledge is acquired either through automatic training or

through manual encoding. For example, [Paice and Johns, 1993] uses stylistic clues

and constructs to identify important concepts in highly structured technical papers.

[McKeown and Radev, 1995, Radev, 1999] use the result of information extraction sys-

tems as input to construct fluent summaries for a cluster of documents using natural

language generation techniques.

The knowledge-based approach uses domain knowledge effectively and adapts to

the special requirements of the application. The disadvantages of the approach include

the following: it is expensive to port to a new domain, it is unscalable and knowledge-

intensive, it only summarizes predefined interests, and it may need large training cor-

pora.

The shallow understanding based approach uses shallow linguistic knowledge

to understand the text to some degree; understanding is not as deep as in knowledge-

based systems but is stronger than that in statistical models. This shallow understand-

ing might depend on lexical cohesion and coherence of the text [Morris and Hirst, 1991,

Barzilay and Elhadad, 1997, Benbrahim and Ahmad, 1995, Baldwin and Morton, 1998,

Mani, Bloedorn, and Gates, 1998], discourse structure [Marcu, 1997], or communica-

tive functions.

The shallow understanding based approach has more understanding of the text

than the statistical method, and is more robust and less expensive than the knowledge-

based. The disadvantages of this approach include: it is often fragile, it is not robust

7

enough to deliver good results consistently, and it might be computationally expensive

compared to statistical approaches.

In practice, a summarization system might combine and use more than one of

the above techniques. We refer to any such system as a hybrid system). For example, a

primarily shallow understanding based approach might also adopt statistical techniques.

The hybrid connectionist-symbolic model [Aretoulaki, 1997] is another example of the

hybrid approach; in this case, even more diverse methods are combined.

Evaluation of summarization is a difficult and controversial matter. We defer this

topic until Chapter 7, where we present the evaluation of our summarization system.

1.3 The Generation Problem in Summarization

Conceptually, summarization should include at least two processes: first, identifying the

most important information that ought to be included in the summary, and second, gen-

erate the summary based on the information that has been identified in the first process.

We refer the first process as the understanding process and the second process as the

generation process. As we have indicated in section 1.2, much of the previous work in

summarization is only concerned with the understanding process, specifically extraction

techniques. The generation problem has been a relatively neglected corner in the field

of summarization.

1.3.1 The Problems with Extraction

Automatic summaries are typically generated by extracting sentences (occasionally phrases

or paragraphs) from the original documents. When sentences are removed from their

context and strung together to construct summaries, many problems may arise. Prob-

8

lems with extraction-based summaries include:

(1) Extraneous phrases

Extracted sentences can be very long, containing material that does not need to

be included in a summary.
�

For instance, the following is a sentence extracted from a

newspaper article:

“The five (men) were apprehended along Interstate 95, heading south in vehicles

containing an array of gear including paramilitary uniforms, a stun gun, knives, two-

way radios and smoke grenades, authorities said.”

Instead of including all the details in the original sentence, we might want to

include in the summary only the fact that “The five (men) were apprehended along

Interstate 95, authorities said.” Simple extraction, however, cannot remove extraneous

information from extracted sentences.

(2) Dangling pronouns and noun phrases

Extracted sentences could contain anaphora, definite noun phrases, and logical

and rhetorical connectives, which may be unresolved when the sentences are removed

from their original context. As a result, the automatically generated summaries might

be incoherent, or even worse, incomprehensible. When the above example sentence is

extracted without its original context, it is unclear to readers who “the five” (the subject

of the sentence) refers to.

(3) Misleading information

When sentences are taken out of context and placed one after another in auto-

matic summaries, they may convey meanings that are not at all intended in the original

text, presenting misleading or false information. Consider the following example, which

consists of two sentences extracted from an editorial on human cloning:
�

Longer sentences typically have higher statistic weights and are more likely to be extracted by auto-
matic summarizers.

9

“And who will we clone?”

* “It should include a high percentage of women, since women

are so greatly affected by reproductive issues of all kinds.”

The summary seems to convey that the author of the editorial believes that we

should clone a high percentage of women. But from the text in the original article, as

shown below, it is clear that the author did not advocate the cloning of women:

“And who will we clone? Who will have the resources to order up

a replica? Mainly rich white guys — unless some company orders

up a brace of Michael Jordans or Tiger Woodses.”

... ...

“It (the committee) should include a high percentage of women,

since women are so greatly affected by reproductive issues of all

kinds.”

Moreover, extraction is not an option for all types of documents. Take the exam-

ple of documents in patent databases. Quite often, the documents in patent databases

contain sentences that have as many as hundreds of words (especially in patents that

describe the mechanical components of a device). In such cases, simply extracting sen-

tences without any condensation will not yield acceptable summaries.

Much of the reported work is concerned with how to extract informative sen-

tences to construct summaries; very little research is concerned with the generation

problem in summarization. But given the fact that we have no better summary gener-

ation technique than simple extraction and the very negative effects that extraction has

on the quality of automatic summaries, it is clearly time to investigate better techniques

for generating summaries.

10

The research in this thesis focuses on the generation problem in summarization.

In particular, we are interested in developing techniques that are domain-independent,

robust, and scalable. Our research is primarily concerned with single-document sum-

marization instead of multiple documents, and we aim to generate generic summaries

instead of query-based summaries.

1.3.2 Traditional Natural Language Generation

One possible solution to the generation problem in summarization is to divide the sum-

marization task into two steps: (1) interpret the text using natural language understand-

ing techniques and represent its meaning in some form of semantic representation, and

(2) generate the summary from the semantic representation by using traditional nat-

ural language generation techniques. With this approach, the generation problem in

summarization can be solved using existing techniques in traditional natural language

generation.

While this solution might look plausible in theory, it has many difficulties in

practice. First, we are interested in domain-independent summarization, but traditional

natural language generation systems work in specific domains [Swartout, 1983, McKe-

own, 1985, McCoy, 1986, Meteer et al., 1987, Miller and Rennels, 1988, Meteer, 1989,

Elhadad, 1992, Robin, 1994, McKeown, Kukich, and Shaw, 1994]. Since there are usu-

ally limited types of messages in a specific domain, generation systems can rely on the

deep understanding of the semantic input and comprehensive domain knowledge to de-

cide what to say and how to say it. Such a method, however, cannot be scaled up to a

general domain.

Second, there is a wide gap between what a language interpretation module cur-

rently can provide and the semantic input that a traditional generation system expects.

11

A generation system requires sophisticated semantic information and extensive domain

knowledge, which is impossible to provide by a summarizer that works in a general

domain and relies on text analysis tools to extract information.

For the above reasons, we cannot rely only on available generation techniques

to tackle the generation problem in summarization, but need to develop new techniques

that are particularly suitable for summarization.

1.4 This Thesis

This thesis presents a cut-and-paste approach for the generation problem in summa-

rization. On the one hand, this approach allows the reuse of original text to construct

summaries; on the other hand, it modifies the selected text so that the sentences or

phrases that are selected from disconnected context in the original text can fit together.

The research presented in this thesis is related to three research areas: summarization,

information retrieval, and lexical resources. The next chapter gives an overview of our

cut-and-paste summarization system and it also includes an introduction of the remain-

ing chapters.

12

Chapter 2

System Overview

In this chapter, we give a high level overview of our cut-and-paste summarization sys-

tem. We begin by introducing the cut-and-paste approach for generating summaries.

Then, we present the architecture and major components of our system.

As discussed in the previous chapter, the focus of this dissertation is on the text

generation problem in summarization. We propose a cut-and-paste approach, which

produces summaries by excerpting and combining sentences and phrases from origi-

nal documents. Unlike simple extraction, the cut-and-paste approach edits the extracted

sentences and phrases. The cut-and-paste approach reuses the text in the original docu-

ments to generate summaries. This is a practice often used by professional abstractors,

as we show in Section 2.1. We also identified operations that are frequentely used by

professionals for editing the sentences and phrases extracted from the original text into

summaries. These operations are explained in details in Section 2.1.2.

13

2.1 Reusing Document Text for Summary Generation

To develop an automatic system that can generate fluent, concise, and coherent sum-

maries, we first studied how humans write summaries, hoping that the human summa-

rization experience can shed some light on developing an automatic system.

2.1.1 Abstracting Guidelines

We found that abstracting guidelines give inconsistent advice on how a summary should

be generated. One school of scholars believes that writers should use their own words

rather than heavily rely on the original wording. For example, an early book on ab-

stracting for American high school students states “(use) your own words... Do not

keep too close to the words before you” [Thurber, 1924]. In contrast, another study

showed that professional abstractors actually rely on cutting and pasting the original

text to produce summaries: “Their professional role tells abstractors to avoid inventing

anything. They follow the author as closely as possible and reintegrate the most impor-

tant points of a document in a shorter text” [Endres-Niggemeyer and Neugebauer, 1995,

Endres-Niggemeyer et al., 1998]. Some studies are somewhere in between: “summary

language may or may not follow that of author's” [Fidel, 1986]. Other guidelines, books,

or studies on abstracting [ANSI, 1997, Cremmins, 1982] do not discuss the issue. Gen-

erally, we found that the abstracting guidelines we could find in books or other literatures

are at a very high level.

2.1.2 Revision Operations

Given that abstracting guidelines are unfortunately not very helpful in building an au-

tomatic system, we analyzed by ourselves a set of articles to observe how they were

14

summarized by human abstractors, hoping in this process to find useful techniques

used by humans that can perhaps be applied in an automatic system as well. The

set of articles we analyzed includes 15 news articles on telecommunications, 5 arti-

cles on medical issues, and 10 articles in the legal domain. Although the articles are

related to particular domains, they cover a wide range of topics, so they are actually

quite general; even the articles in the same domain do not possess the same structure

or writing style. The Telecommunications articles were collected using the free daily

news service, “Communications-related Headlines”, provided by the Benton Founda-

tion (http://www.benton.org). These articles came from various newspapers and their

abstracts were written by staff writers at Benton. The medical news articles were col-

lected from HIV/STD/TB Prevention News Update, provided by the Center for Disease

Control (CDC) (http://www.cdcnpin.org/news/prevnews.htm). The CDC provides syn-

opses of key scientific articles and lay media reports on HIV/AIDS as a public service.

The synopses are written by staff writers daily. The articles in the legal domain were

from the newspaper New York Law Journal. These articles describe court's decisions on

law suits and the summaries were written by the editors of the newspaper.

We found that, in the corpus we studied, reusing the text in the original document

for producing the text in the summary is an almost universal practice by human abstrac-

tors. This is consistent with the finding in [Endres-Niggemeyer and Neugebauer, 1995,

Endres-Niggemeyer et al., 1998], which stated that professional abstractors often rely

on cutting and pasting the original text to produce summaries.

Based on careful analysis of the human-written summaries, we defined six oper-

ations that can be used alone, sequentially, or simultaneously to transform a sentence in

an article into a summary sentence in a human-written abstract. We call these revision

operations. The operations are:

15

(1) sentence reduction

Remove extraneous phrases from a sentence, as in the following example:
�

Document Sentence: When it arrives sometime next year in new TV sets,

the V-chip will give parents a new and potentially revolutionary device

to block out programs they don't want their children to see.

Summary Sentence: The V-chip will give parents a device to block out

programs they don't want their children to see.

The deleted material can be at any granularity: a word, a phrase, or a clause.

Multiple components can be removed from a single sentence.

(2) sentence combination

Merge material from a few sentences. It is typically used together with sentence

reduction, as illustrated in the following example, which also uses paraphrasing:

Document Sentence 1: But it also raises serious questions about the

privacy of such highly personal information wafting about the digital

world.

Document Sentence 2: The issue thus fits squarely into the broader de-

bate about privacy and security on the Internet, whether it involves pro-

tecting credit card number or keeping children from offensive informa-

tion.

Summary Sentence: But it also raises the issue of privacy of such per-

sonal information and this issue hits the nail on the head in the broader

debate about privacy and security on the Internet.
�

All the examples in this section were taken from the 30 articles we analyzed; the summary sentences
are real examples found in human-written abstracts.

16

(3) syntactic transformation

Change the syntactic structure of a sentence. In both sentence reduction and

combination, syntactic transformations may be involved. For example, the subject of a

sentence may be moved from the end of the sentence to the front.

(4) lexical paraphrasing

Replace phrases with their paraphrases. For instance, in the previous example,

the summary sentences substituted fit squarely into with a more picturesque description

hit the nail on the head.

(5) generalization or specification

Replace phrases or clauses with more general or specific descriptions. Examples

of generalization and specification include:

Generalization: “a proposed new law that would require Web publishers

to obtain parental consent before collecting personal information from

children” � “legislation to protect children's privacy on-line”

Specification: “the White House's top drug official” � “Gen. Barry R.

McCaffrey, the White House's top drug official”

(6) reordering

Change the order of extracted sentences. For instance, place an ending sentence

in an article at the beginning of an abstract.

In human-written abstracts, there are, of course, sentences that are not based

on cut-and-paste, but were completely written from scratch. The criteria we used in

distinguishing a sentence based on cut-and-paste and a sentence written from scratch

are the following: if more than half of words in a summary sentence are composed

by phrases borrowed from the original document, then the sentence is considered as

constructed by cut-and-paste; otherwise, it is considered written from scratch. There are

17

also other cut-and-paste operations not listed here due to their infrequent occurrence.

Note that it is often the case that multiple revision operations are involved in order to

produce a single summary sentence.

2.2 The Cut-and-Paste Summarization

2.2.1 The Cut-and-Paste Approach

We decided to use a cut-and-paste approach to addressing the text generation problem

in domain-independent, single-document summarization. This approach goes beyond

simple extraction, to the level of simulating the revision operations to edit the extracted

sentences. In particular, we simulate two revision operations: sentence reduction and

sentence combination. Since this approach generates summaries by extracting and com-

bining sentences and phrases from the original text, we call it the cut-and-paste ap-

proach.

While extraction-based approaches mostly operate at the sentence level, and oc-

casionally at the paragraph or clause level, the cut-and-paste approach often involves

extracting and combining phrases. This cut-and-paste approach addresses only the text

generation problem in summarization; it does not address the document understanding

problem in summarization.

2.2.2 The Conservative Strategy in Editing

Automatic summaries can potentially mislead the users. The extraction-based sum-

maries mislead the users when the sentences that are taken out of context and placed

one after another in an automatic summary happen to convey meanings that are not at

all intended in the original text. We have shown such an example in Chapter 1.

18

By automatic editing of reused text, the cut-and-paste summarization can even

potentially mislead the user in a way that a simple list of extracted sentences cannot, for

the edits are transparent to the users. In order to avoid misleading users, we adopted a

conservative strategy in editing the reused text. The system reduces or combines sen-

tences and phrases only when it is quite confident in doing so. For cases that it is less

confident at, no editing is performed. The goal of sentence reduction and sentence com-

bination is to resolve the problems caused by sentence extraction, such as the existence

of inessential phrases in extracted sentences and the incoherence caused by dangling

anaphora. We want to avoid as much as possible introducing new problems while trying

to solve the problems caused by sentence extraction. It would be useful to inform users

in advance that the summaries are automatically generated and the reused text has been

edited.

2.2.3 System Architecture

We now present the architecture of our cut-and-paste summarization system, focusing

on the relations between different modules and the role of each module.

Figure 2.1 shows the system architecture. This is a domain-independent, single-

document summarization system; therefore, the input to the system is a single document

from any domain, and the output is a summary of the input document. There are two

stages in the summarization process. The first stage, extraction, identifies the most im-

portant sentences in the input document. The second stage, cut-and-paste generation, is

the focus of our research. The cut-and-paste generation component edits the extracted

sentences, particularly by simulating two revision operations: sentence reduction and

sentence combination. The cut-and-paste generation is designed to be a portable com-

ponent; it can be integrated with any extraction-based, single-document summarization

19

system, serving as its generation component.

extracted key sentences

sentence extraction

input document

sentence reduction

sentence combination

parser combined lexicon

output summary

WordNet

 coreference for sentence reduction
training corpus

training corpus
for sentence combination

cu
t−

an
d−

pa
st

e
ge

ne
ra

ti
on

ex
tr

ac
ti

on

resolution

Figure 2.1: System architecture.

The sentence extraction module identifies the most important sentences in the in-

put document. The input of the extraction module is the input document, and the output

is a list of key sentences that have been selected by the extraction module. Our algorithm

for sentence selection is primarily based on the lexical relations between words, and it

also incorporates some other types of information, such as statistical measures used in

information retrieval, sentence positions and cue phrases.

The sentence reduction module removes inessential phrases from an extracted

key sentence, resulting in a shortened version of the extracted sentence.
�

This shortened

text can be used directly in a summary, or it can be fed to the sentence combination

module to be merged with other sentences. Reduction can significantly improve the

conciseness of automatic summaries. Our reduction program uses multiple sources of

knowledge to decide which phrases in an extracted sentence should be removed, includ-
�

It is actually also possible that the reduction program decides no phrase in a sentence should be
removed, thus the result of reduction is the same as the input.

20

ing lexical information, syntactic information from linguistic databases, and statistical

information from corpus.

The reduction module acquires its lexical information from the WordNet lexi-

cal database [Miller et al., 1990]. It also uses syntactic knowledge from a large-scale

lexicon that we have constructed by combining multiple resources. A training corpus,

which consists of example sentences that were constructed by humans using sentence

reduction, is also used by the reduction module. The module also uses a syntactic parser

(the ESG parser licensed from IBM [McCord, 1990]).

The sentence combination module merges the resulting sentences from sentence

reduction with other phrases or reduced sentences together as coherent sentences. The

rule-based combination module can apply different combination operations based on the

phrases and sentences to be combined.

The combination module uses a training corpus that consists of example sen-

tences that were constructed by humans using sentence combination. Besides the syn-

tactic parser, it also uses a coreference resolution system (the coreference module in

Deep Read, a reading comprehension system licensed from the MITRE Corporation

[Hirschman et al., 1999]).

The combined lexicon used by the sentence reduction module was constructed by

merging multiple, large-scale, heterogeneous linguistic resources, including the Word-

Net lexical database [Miller et al., 1990], the COMLEX syntax dictionary [Grishman,

Macleod, and Meyers, 1994], English Verb Classes and Alternations (EVCA) [Levin,

1993], and the Brown Corpus tagged with WordNet senses [Miller et al., 1993]. It pro-

vides necessary syntactic and semantic knowledge for the reduction operation. The

lexicon can also be used in many other applications, such as traditional natural language

generation, word sense disambiguation, and machine translation.

21

human−written
abstracts

automatic decomposition of
summary sentences

aligned summary sentences and
document sentences

building the training corpus
for sentence reduction by extracting
examples that were constructed by

the reduction operation

sentence reduction
training corpus for

documents
original

building the training corpus
for sentence combination by extracting

examples that were constructed by
the combination operation

training corpus for
sentence combination

Figure 2.2: Building training corpora for sentence reduction and combination.

The training corpora for sentence reduction and sentence combination are con-

structed by an automatic summary sentence decomposition program. The process for

building the training corpora is illustrated in Figure 2.2.

The decomposition module is an automatic program for analyzing human-written

abstracts. The statistically based decomposition program can identify where the phrases

of a summary originate in the original document, producing an aligned corpus of sum-

maries and articles that we then used to train and evaluate the sentence reduction and

sentence combination module.

The remainder of this dissertation is organized as follows. We begin in Chapter

3 with decomposing human-written abstracts. In Chapter 4, we present the sentence

reduction algorithm. In Chapter 5, we describe the sentence combination method. In

Chapter 6, we show the large-scale lexicon combined from multiple resources. In Chap-

22

ter 7, we investigate the evaluation and portability issues. Finally, we conclude in Chap-

ter 8 with a summary of research contributions and a number of suggestions for future

work.

23

Chapter 3

Decomposition of Human-Written

Summary Sentences

We stated in the previous chapter that professional abstractors often reuse the text in

the original documents to produce summaries. The task of summary sentence decompo-

sition is to deduce whether a summary sentence is constructed by reusing the original

text and identifying the reused phrases. To be more specific, we define the decomposi-

tion problem as follows: Given a human-written summary sentence, the decomposition

program needs to answer three questions: (1) Is this summary sentence constructed by

reusing the text in the original document?; (2) If so, what phrases in the sentence come

from the original document?; (3) And where in the document do the phrases come from?

The benefits of solving the decomposition problem are two-fold. First, large

corpora for training and evaluating our cut-and-paste summarizer can be built from the

decomposition result. By linking human-written summaries with original texts, we can

mark exactly what phrases humans cut from the original document and how the phrases

were pasted together to produce the summary. By doing it automatically, we can af-

24

ford to mark up a large set of documents, therefore providing valuable training and

testing data sets for our system. Second, the decomposition result also provides large

corpora for extraction-based summarizers. By aligning summary sentences with origi-

nal document sentences, we can automatically annotate the most important sentences in

an input document, therefore constructing large corpora for training and evaluating the

extraction-based summarizers.

While decomposition is useful, it is also difficult. The phrases coming from the

original document can be at any granularity, from a single word to a complicated verb

phrase to a complete sentence. Therefore, identifying the boundary of phrases is a com-

plex issue. Determining the origin of a phrase is also hard since the component may

occur multiple times in the document in slightly different forms. Moreover, multiple re-

vision operations may have been performed on the reused text. As a result, the resulting

summary sentence can be significantly different from the document sentences it comes

from. All these factors add to the difficulty of the decomposition problem.

In the reminder of this chapter, we first present our Hidden Markov Model so-

lution to the decomposition problem. Section 3.1 discusses the design of the Hidden

Markov Model for decomposition purpose and the characteristics of the model. Section

3.2 describe a number of evaluation experiments. In Section 3.3, we show the applica-

tions of decomposition. In Section 3.4, we compare with related work.

3.1 Using Hidden Markov Model for Decomposition

We proposed a Hidden Markov Model [Baum, 1972] solution to the decomposition

problem. There are three steps in this process. First, we formulate the decomposi-

tion problem to an equivalent problem; that is, for each word in a summary sentence, we

25

find a document position that it most likely comes from. This is an important step since

only after this transformation are we able to apply the Hidden Markov Model to solve

the problem. Second, we build the Hidden Markov Model based on a set of general

heuristic rules that we have observed from the text reusing practice of humans. This

is actually quite unconventional in applications that use Hidden Markov Models since

Hidden Markov Models usually require a training corpus to compute transition proba-

bilities, but we believe it is appropriate in our particular application. The evaluations

show that this unconventional Hidden Markov Model is effective for decomposition. In

the last step, a dynamic programming technique, the Viterbi algorithm [Viterbi, 1967],

is used to efficiently find the most likely document position for each word in a summary

sentence and finally find the best decomposition for a summary sentence.

3.1.1 Formulating the problem

We first mathematically formulate the summary sentence decomposition problem. An

input summary sentence can be represented as a word sequence:
���

����������� ��	�
 , where
�

�

is the first word of the sentence and
� 	

is the last word. The position of a word in a docu-

ment can be uniquely represented by the sentence position and the word position within

the sentence: (SNUM, WNUM). For example, (4, 8) uniquely refers to the 8th word in

the 4th sentence. Multiple occurrences of a word in the document can be represented by

a set of word positions: � (������ � , ������� �), ����� , (�������� , ���������) � .
Using the above notation, we formulate the decomposition problem as follows:

Given a word sequence
���

� ��������� � 	
 and the positions � (������ � , ������� �), ����� ,
(�������� , ���������) � for each word in the sequence, determine the most likely doc-

ument position for each word in the sequence.

Through this formulation, we transform the difficult tasks of identifying compo-

26

nent boundaries and determining component origins into the problem of finding a most

likely document position for each word. As shown in Figure 3.1, when each word in

the summary sequence chooses a position, we get a sequence of positions. For example,

((0,21), (2,40), (2,41), (0,31)) is the position sequence we get when every summary word

chooses its first occurrence of the same word in the document. ((0,26), (2,40), (2,41),

(0,31)) is another position sequence. Every time a summary word chooses a different

position, we get a different position sequence. The word “the” in the sequence oc-

curs 44 times in the document, “communication” occurs once, “subcommittee” occurs

twice, and “of” occurs 22 times. For this 4-word sequence, there are a total of 1,936

(�������������	�
�) possible position sequences.
�

Morphological analysis or stemming

can be performed to associate morphologically related words, but it is optional.

the communication subcommittee of

(0,32)

(0,21)

(0,26)

...

(2,39)

...

(23,44)

(2,40) (2,41)

(4,1)

 (0,31)

(1,10)

(2,30)

(2,42)

(23,43)

(4,16)

...

...

Figure 3.1: The sequences of positions in summary sentence decomposition.

Finding a most likely document position for each word is equivalent to finding the

most likely position sequence among all possible position sequences. For the example

in Figure 3.1, as we can see, the most likely position sequence should be ((2,39), (2,40),
�

Given an N-word sequence �� ����������� ����� , supposing ��� occurs ��� times in the document, for �����! " # ,
then the total number of possible position sequences is � �%$ � �&$'�����($ ��� .

27

(2,41), (2,42)); that is, the fragment comes from document sentence 2 and its position

within the sentence is word number 39 to word number 41. However, how can we

automatically find this sequence among 1,936 possible sequences?

3.1.2 Hidden Markov Model (HMM)

Exactly what document position a word comes from depends on the positions of the

words surrounding it. We simply the problem using the bigram model and assume that

the probability a word comes from a certain position in the document only depends on

the word directly before it in the sequence. Suppose
���

and
�����

� are two adjacent words

in a summary sentence and
���

is before
�����

� . We use PROB (
�����

� = (� , � �)
� ���

= (� ,

� �)) to represent the probability that
�	���

� comes from sentence number � and word

number � � of the document when
���

comes from sentence number � and word number

� � .

To decompose a summary sentence, we must consider how humans are likely

to generate it; we draw here revision operations we noted in Section 2.1. There are

two general heuristic rules we can safely assume: first, humans are more likely to cut

phrases than cut single, isolated words; second, humans are more likely to combine

nearby sentences into a single sentence than combine sentences that are far apart. These

two rules are our guidance in the decomposition process.

We translate the heuristic rules into the bigram probability PROB (
�
���

� = (� ,

� �)
�����

= (� , � �)), where
���

,
�����

� represent two adjacent words in the input summary

sentence, as noted earlier. The probability is abbreviated as PROB(
�����

�
� ���

) in the fol-

lowing discussion. The values of PROB(
�	���

�
� ���

) are assigned in the following manner:

� IF ((�� �) and (� �� � ��� �)) (i.e., the words are in two adjacent positions in

the document), THEN PROB(
�����

�
� ���

is assigned the maximal value P1. For ex-

28

ample, PROB((subcommittee = (2,41)
�
communications = (2,40)) in the example

of Figure 3.1 will be assigned the maximal value. (Rule: Two adjacent words in a

summary are most likely to come from two adjacent words in the document.)

� IF ((� �) and (� ��� � � � �)), THEN PROB(
�����

�
� ���

) is assigned the second

highest value P2. For example, PROB(of = (4,16)
�
subcommittee = (4,1)) will

be assigned a high probability. (Rule: Adjacent words in a summary are highly

likely to come from the same sentence in the document, retaining their relative

precedent relation, as in the case of sentence reduction. This rule can be further

refined by adding restrictions on distance between words.)

� IF ((� �) and (� ��� � �)), THEN PROB(
�����

�
� ���

) is assigned the third highest

value P3. For example, PROB(of = (2,30)
�

subcommittee = (2,41)). (Rule:

Adjacent words in a summary can come from the same sentence in the document

but change their relative order. For example, a subject can be moved from the end

of the sentence to the front, as in syntactic transformation.)

� IF
� � ����� ��	� � �
� �

, THEN PROB(

�����
�
� ���

) is assigned the fourth

highest value P4. For example, PROB(of = (3,5)
�
subcommittee = (2,41)). (Rule:

Adjacent words in a summary can come from nearby sentences in the document

and retain their relative order, such as in sentence combination. CONST is a small

constant such as 3 or 5.)

� IF
� ��� ��� � � ��� ��	�
 , THEN PROB(

�����
�
� ���

) is assigned the fifth highest

value P5. For example, PROB(of = (1,10)
�

subcommittee = (2,41)). (Rule:

Adjacent words in a summary can come from nearby sentences in the document

but reverse their relative orders.)

29

� IF
��� � � �

� � ��� ��	�
 , THEN PROB(
�����

�
� ���

) is assigned a small value

P6. For example, PROB(of = (23,43)
�
subcommittee = (2,41)). (Rule: Adjacent

words in a summary are not very likely to come from sentences far apart.)

(S,W) (S,W+1) (S,W+n)
(n>=1) (n>=2)

(S+i,W+j)

(S+i,W+j)
i>=CONST

(S−i,W+j)

(S−i,W+j)
i>=CONST

Sentence (S−CONST)

Sentence (S+CONST)

P1

P2

P3

P6

P6
0< i<CONST

0<i<CONST

P5

P4

(S,W−n)
Sentence S

Figure 3.2: Assigning transition probabilities in the Hidden Markov Model.

Figure 3.2 shows a graphical representation of the above rules for assigning bi-

gram probabilities. The nodes in the figure represent possible positions in the document,

and the edges output the probability of going from one node to another. These bigram

probabilities are used to find the most likely position sequence in the next step. Assign-

ing values to P1-P6 is experimental. In our experiment, the maximal value is assigned

1 and others are assigned evenly decreasing values 0.9, 0.8 and so on. These values,

however, can be adjusted for different corpora.

We consider Figure 3.2 as a very abstract representation of a Hidden Markov

Model for decomposition. Each word position in the figure represents a state in the

30

Hidden Markov Model. For example,
� � �

is a state,
� � � � �
 is another state.

Note here that
� � �

and
� � � � �
 are relative values; the and � in the state

� � �

have different values based on the particular word position we are considering.

However, this relative model can be easily transformed to an absolute model. We can

substitute
� � �

with every possible word position in the document and add transition

probabilities between every pair of positions. In Section 3.1.6, we give a formal descrip-

tion of our Hidden Markov Model for decomposition, in particular, defining the basic

elements of the model using the terminology in formal Hidden Markov Model terms.

3.1.3 The Viterbi Algorithm

To find the most likely sequence we must find a sequence of positions that maximizes

the probability PROB
���

� ��������� � 	
 . Using the bigram model, this probability can be

approximated as:
��� ��� ��� � ��������� � 	
 �� 	�� ��
	�� ��� ��� ������� �

� ���

PROB(
� ���

�
� � �

) has been assigned as shown earlier. Therefore, we have all the

information needed to solve the problem. We use the Viterbi Algorithm [Viterbi, 1967]

to find the most likely sequence. For an N-word sequence, supposing each word occurs

M times in the document, the Viterbi Algorithm is guaranteed to find the most likely

sequence using � � � � �

steps, for some constant k, compared to M
	

for the brute

force search algorithm.

The Viterbi Algorithm finds the most likely sequence incrementally. It first finds

the most likely sequence for
���

�
�

�

, for each possible position of

�
� . This information is

then used to compute the most likely sequence for
���

�
�

�
����

, for each possible position

of
���

. The process repeats until all the words in the sequence have been considered.

We slightly revised the Viterbi algorithm for our application. In the initialization

31

step, equal chance is assumed for each possible document position for the first word in

the sequence. In the iteration step, we take special measures to handle the case when a

summary word does not appear in the document (thus has an empty position list). We

mark the word as non-existent in the original document and continue the computation

as if it had not appeared in the sequence.

3.1.4 Post-Editing

After the phrases have been identified, the program does post-editing to cancel mis-

matchings, annulling the results returned by the Viterbi program for some stop words

and isolated content words in a summary sentence. The mismatchings are caused by the

fact that the Viterbi program assigns each word in the input sequence a position in the

document, as long as the word appears in the document at least once. The program deals

with two types of mismatchings: wrong assignment of document positions for inserted

stop words in a summary sentence and wrong assignment of document positions for

isolated content words in a summary sentence. To correct the first type of mismatching,

if any document sentence contributes only stop words for the summary, the matching

is canceled since the stop words are more likely to be inserted by humans rather than

coming from the original document. To correct the second type of mismatching, if a

document sentence provides only a single non-stop word, we also cancel such match-

ing since humans rarely cut single words from the original text to generate a summary

sentence – they often cut phrases.

3.1.5 An Example

To demonstrate the program, we show an example from beginning to end. The sample

summary sentence is as follows:

32

The input summary sentence (also shown in Figure 3.3):

Arthur B. Sackler, vice president for law and public policy of Time

Warner Inc. and a member of the Direct Marketing Association, told

the communications subcommittee of the Senate Commerce Committee

that legislation to protect children's privacy online could destroy the

spontaneous nature that makes the Internet unique.

We first index the document, listing for each word its possible positions in the

document.
�

Stemming, a procedure to reduce morphologically related words to the

same stem, can be performed before indexing, although it is not used in this example.

Augmenting each word with its possible document positions, we therefore have the input

for the Viterbi program, as shown below:

Input to the Viterbi Program (words and their possible document

positions):

arthur : 1,0

b : 1,1

sackler : 1,2 2,34 ... 15,6

...

the : 0,21 0,26 ... 23,44

internet : 0,27 1,39 ... 18,16

unique : 0,28

For this 48-word sentence, there are a total of � ����� � ��� ���
possible position se-

quences. Using the bigram probabilities as assigned in Section 3.1, we run the Viterbi

Program to find the most likely position sequence. After every word is assigned a most

likely document position, we mark the components in the sentence by conjoining words
�

The original document contains 25 sentences and 727 words in total.

33

coming from adjacent document positions.

Summary Sentence:

(F0:S1 arthur b sackler vice president for law and public policy
of time warner inc) (F1:S-1 and) (F2:S0 a member of the direct
marketing association told) (F3:S2 the communications subcom-
mittee of the senate commerce committee) (F4:S-1 that legislation
) (F5:S1to protect) (F6:S4 children' s) (F7:S4 privacy) (F8:S4 on-
line) (F9:S0 could destroy the spontaneous nature that makes the
internet unique)

Source Document Sentences:

Sentence 0: a proposed new law that would require web publishers to
obtain parental consent before collecting personal information from
children (F9 could destroy the spontaneous nature that makes the
internet unique) (F2 a member of the direct marketing association
told) a senate panel thursday

Sentence 1: (F0 arthur b sackler vice president for law and public
policy of time warner inc) said the association supported efforts (F5
to protect) children online but he urged lawmakers to find some middle
ground that also allows for interactivity on the internet

Sentence 2: for example a child's e-mail address is necessary in order
to respond to inquiries such as updates on mark mcguire's and sammy
sosa's home run figures this year or updates of an online magazine sack-
ler said in testimony to (F3 the communications subcommittee of the
senate commerce committee)
Sentence 4: the subcommittee is considering the (F6 children's) (F8
online) (F7 privacy) protection act which was drafted on the recom-
mendation of the federal trade commission

Figure 3.3: Sample output of the decomposition program.

Figure 3.3 shows the final result for the sample input summary sentence. The

components in the summary are tagged as (FNUM:SNUM actual-text), where FNUM

is the sequential number of the component and SNUM is the number of the document

sentence where the component comes from. SNUM = -1 means that the component does

not come from the original document. The borrowed components are tagged as (FNUM

actual-text) in the document sentences.

34

In this example, the program correctly concluded that the summary sentence was

constructed by reusing the original text, and it identified the four document sentences

from which the summary sentence was combined; it correctly divided the summary

sentence into phrases and pinpointed the exact document origin of each phrase. In this

example, the phrases that were borrowed from the document range from a single word

to long clauses. Certain borrowed phrases were also syntactically transformed. Despite

these, the program successfully decomposed the sentence.

3.1.6 Formal Description of Our Hidden Markov Model

This subsection is intended for readers who have an interest in Hidden Markov Models.

It can be skipped without affecting the understanding of the rest of the chapter.

Introduction to HMM
�

Initially introduced and studied in the late 1960s and early 1970s by Baum

and his colleagues [Baum and Petrie, 1966, Baum, 1972], statistical methods of Markov

source or hidden Markov modeling have become increasingly popular in recent years.

Since the models are very rich in mathematical structure, they can form the theoreti-

cal basis for use in a wide range of applications. They particularly work very well in

practice for several important applications, including speech recognition.

To understand HMMs, one needs to first understand weighted finite-state au-

tomata. A weighted automaton augments a finite automaton by associating each arc

with a probability, indicating how likely that path is taken. For a weighted automaton,

the observation probability is either 1 or 0 (that is, a state can either generates a given

symbol or it cannot). However, in an HMM, the observation probability can take on any

value from 0 to 1. It also allows a set of observation symbols separate from the state set.
�

The material in this section is based on the tutorial on Hidden Markov Models by Ra-
biner [Rabiner, 1989].

35

In Rabiner's tutorial, a Hidden Markov Model is characterized by the following:

(1) � , the number of states in the model. We denote the individual states as

� � � � ��������� 	 � and the state at time
�

as ��� . The states can represent different things

in different applications. For example, a state can represent a phone in an HMM for

speech recognition. It represents a document position in our HMM for decomposition.

(2) � , the number of distinct observation symbols per state. The observation

symbols correspond to the physical output of the system being modeled. We denote

the individual symbols as � ��� ��� � ����������� ��� � . The observation symbols can rep-

resent spectral features vectors in an HMM for speech recognition. In our model for

decomposition, the observation symbols represent the words in a document.

(3) The state transition probability distribution � �
	 ��� � where 	 ��� represents

the probability of transitioning from state to state � :

	 ��� ��� ��� � � ��� ��� ��� � ���� � ��� � �

(4) The observation symbol probability distribution in state � � � ��� � �
 � ,
where � ���
 represents the probability of an observation ��� being generated from a state

j:

� ���
 ��� ��� at
� � ��� ��� � ������� � � ��� � � �

(5) The initial state distribution ! �
! � � where ! � represents the probability that

the HMM will start in state :

! � ��� � � � � � �"�#$� � �

Given appropriate values of � � � � � � � � and ! , the HMM can be used as a gen-

erator to produce an observation sequence

� � � � � ����� �&%

36

where each observation � � is one of the symbols from � and � is the number of obser-

vations in the sequence.

“A complete specification of an HMM requires specification of two model pa-

rameters (� and �), specification of observation symbols, and the specification of the

three probability measures � � � � and ! � ”
Description of Our Hidden Markov Model for Decomposition.

We have said in Section 3.1.2 that Figure 3.2 is an abstract representation of a

relative HMM and that it can be transformed into an absolute model. Here, we illustrate

how the absolute model can be created. Then we give a formal description of the model.

Suppose there are only two sentences in the original document and each sentence

has two words, for simplicity. From the relative model in Figure 3.2, we can build an

absolute model as shown in Figure 3.4.

(1, 2)(1, 1)

(2, 1) (2, 2)

Φ

Figure 3.4: Example of the absolute Hidden Markov Model.

In the absolute model, there are four states, (1,1), (1,2), (2,1), and (2,2), each

corresponding to a word position. Each state has only one observation symbol – the

word in that position. Each state is interconnected with the other states in the model.

The transition probabilities can be assigned following the rules shown in Figure 3.2. In

37

this case, however, we need to normalize the values of � � � � � � ��������� ��� � so that for each

state the sum of the transition probabilities is 1, which is a basic requirement for an

HMM. This normalization is needed in theory in order to conform our relative model

to a formal model, but in practice it is not needed in the decomposition process since it

does not affect the final result. The initial state distribution is uniform; that is, the initial

state, labeled as
�

in Figure 3.4, has an equal chance to reach any state in the model.

We give a formal description of our HMM for decomposition as follows. For

each original document, we can build an absolute model based on the relative model in

Figure 3.2. In the absolute model, each state corresponds to a word position, and each

word position corresponds to a state. The observation symbol set includes all the words

in the document, and the observation symbol probabilities are defined as:
� � � � � � �
 �

if word � �
is in position

� �
, and

� � � � � � �
 � if word � �
is not in position

� �
. The

transition probabilities
� � � � � � �

are defined as we described in Figure 3.2, with every

word position linked to every other word position, and state initial probabilities are

uniform as we mentioned. This Markov model is hidden because one symbol sequence

can correspond to many state sequences. �

3.2 Experimental Evaluations

We carried out three experiments to evaluate the decomposition module. In the first ex-

periment, we evaluated decomposition in a task called summary alignment. This mea-

sures how successful the decomposition program can align sentences in the summary

with the document sentences that are semantically equivalent to them. In the second

experiment, we asked humans to judge whether the decomposition results are correct.
�
We thank Jianying Hu from Avaya Research for an interesting discussion on HMMs. This paragraph

mostly comes from a personal communication from her.

38

Compared to the first experiment, this is a more direct evaluation, and it also uses a

larger collection of documents. The third experiment deals with the portability of the

program.

The corpus used in the first experiment consists of 10 documents from Ziff-Davis

corpus, which contains articles that are related to computer products. The corpus used in

the second experiment consists of 50 documents that are related to telecommunication

issues, provided by the Benton Foundation. The corpus used in the third experiment

consists of legal documents on court cases, provided by the Westlaw Company.

3.2.1 Summary Alignment

In this experiment, we tested the decomposition program in a summary alignment task.

The goal of the summary alignment task is to find sentences in the document that are

semantically equivalent to the sentences in the summary. For this kind of alignment, we

use human-written abstracts, which are abundant, to automatically derive their equiva-

lent extracts, thus building large training and testing corpora for extraction-based sum-

marizers.

We used a small collection of 10 documents, collected by Marcu [Marcu, 1999].

Marcu presented these 10 documents together with their human-written summaries from

the Ziff-Davis corpus, which is a collection of newspaper articles announcing computer

products, to 14 human judges. The human judges were instructed to extract sentences

from the original document that are semantically equivalent to the summary sentences.

Sentences selected by the majority of human judges were collected to build an extract

of the document. This extract based on majority opinion of human judges is used as the

gold standard in our evaluation.

Our program can provide a set of relevant document sentences for each sum-

39

mary sentence, as shown in Figure 3.3. Taking the union of the selected sentences, we

can build an automatic extract for the document. We compared this automatic extract

with the gold standard extract based on the majority of human judgments, using the

recall/precision measure computed as follows:

Precision # of sentences in the automatic extract and also in the gold standard extract

total # of sentences in the automatic extract

Recall # of sentences in the automatic extract and also in the gold standard extract

total # of sentences in the gold standard extract

F-measure � � Recall � Precision

Recall
�

Precision

The program achieved an average 81.5% precision, 78.5% recall, and 79.1%

F-measure for 10 documents. In comparison, the average performance of 14 human

judges is 88.8% precision, 84.4% recall, and 85.7% F-measure. The detailed result for

each document is shown in Table 3.1.

Docno Prec Recall F-measure
ZF109-601-903 0.67 0.67 0.67
ZF109-685-555 0.75 1 0.86
ZF109-631-813 1 1 1
ZF109-712-593 0.86 0.55 0.67
ZF109-645-951 1 1 1
ZF109-714-915 0.56 0.64 0.6
ZF109-662-269 0.79 0.79 0.79
ZF109-715-629 0.67 0.67 0.67
ZF109-666-869 0.86 0.55 0.67
ZF109-754-223 1 1 1

Average 0.815 0.785 0.791

Table 3.1: Evaluation of decomposition program using the Ziff-Davis corpus.

Further analysis indicates that there are two types of errors by the program. The

first is that the program missed finding semantically equivalent sentences that have very

40

different wordings. For example, it failed to find the correspondence between the sum-

mary sentence “Running Higgins is much easier than installing it” and the document

sentence “The program is very easy to use, although the installation procedure is some-

what complex”. This is not really an “error” since the program is not designed to find

such paraphrases. For sentence decomposition, the program only needs to indicate that

the summary sentence is not produced by cutting and pasting text from the original

document. The program correctly indicated it by returning no matching sentence.

The second problem is that the program may identify a non-relevant document

sentence as relevant if it contains some common words with the summary sentence. This

typically occurs when a summary sentence is not constructed by cutting and pasting

text from the document but does share some words with certain document sentences.

Our post-editing steps are designed to cancel such false matchings although we can not

remove them completely.

It is worth noting that the extract based on human judgments, which is consid-

ered the gold standard in this evaluation, is not perfect. For example, suppose there are

two document sentences that express the same information (i.e., they are semantic para-

phrases), and all the human subjects consider this information important enough to be

included in the summary, but half of the human subjects selected one of the sentences

and half of the subjects selected the other sentence, then both sentences will be included

in the extract although they are semantic paraphrases. This is exactly what happened in

the extract of document ZF109-601-903. The program picked up only one of the para-

phrases. However, this correct decision is penalized in the evaluation due to the mistake

in the gold standard.

The program won perfect scores for three out of ten documents. We checked

the three summaries and found that their texts were largely produced by cut-and-paste,

41

compared to other summaries that might have sentences written by humans completely

from scratch. This indicates that when only the decomposition task is considered, the

algorithm performs very well.

3.2.2 Human Judgments of Decomposition Results

Since the first experiment does not assess the program's performance for the decompo-

sition task directly, we conducted another experiment to evaluate the correctness of the

decomposition result produced by the system. First, we selected 50 summaries from

a telecommunication corpus we collected and ran the decomposition program on the

documents. The telecommunication corpus contains documents on telecommunication

related issues. They are articles from different newspapers and cover a wide range of

topics related to telecommunication.

A human subject was asked to read the decomposition results to judge whether

they are correct. The program's answer is considered correct when all three questions

we posed in the decomposition problem are correctly answered. As we stated at the

beginning of Section 4, the decomposition program needs to answer the following three

questions: (1) Is a summary sentence constructed by reusing the text from the original

document?; (2) If so, what phrases in the sentence come from the original document?;

(3) And where in the document do the phrases come from?. There are a total of 305

sentences in 50 summaries. 18 (6.2%) sentences were wrongly decomposed, so we

achieved an accuracy of 93.8%. Most of the errors occur when a summary sentence

is not constructed by cutting and pasting but has many overlapping words with certain

sentence in the document. The accuracy rate here is much higher than the precision

and recall results in the first experiment. An important factor for this is that here we do

not require the program to find the semantically equivalent document sentence(s) if a

42

summary sentence uses very different wordings.

3.2.3 Portability

In the third and final evaluation, we tested the program on documents in the legal do-

main. This is a joint experiment with the Westlaw Company. Westlaw provides lawyers

with documents on court cases. Such documents start with a “synopsis” of the case,

written by attorneys. It is then followed by “headnotes”, which are points of law that are

also written by attorneys and are summarized from the discussions. The last part is the

discussion in its entirety, called “opinion”.

The task here is to match each headnote entry with the corresponding text in the

opinion. When lawyers study a legal case document, they can not only see the important

points of law, but also where these points of law are discussed in the opinion. Westlaw

is interested in highlighting such an alignment between headnotes and opinions on a

screen when a user, typically an attorney or an assistant doing research on a legal case,

browses the document using Westlaw's legal document toolkit.

We applied our decomposition program to this task. We made no change to

our HMM used on the telecommunication corpus in the second experiment; even the

parameters were not adjusted. A sample decomposition result is shown in Figure 3.5.

Similar to the notation used in Figure 3.3, the phrases in the headnote are tagged as

(FNUM:SNUM actual-text), where FNUM is the sequential number of the phrase and

SNUM is the number of the document sentence where the phrase comes from. SNUM

= -1 means that the phrase does not come from the original document. The borrowed

phrases are tagged as (FNUM actual-text) in the opinion. Note that in this example

we ignored the difference of the determiners (“a”, “the”, etc.) in the phrases, so the

summary phrase “a motion for issuance of a peremptory writ” is marked the same as the

43

document phrase “the motion for the issuance of the peremptory writ”.

HEADNOTE:

(F0:S0 A motion for issuance of a peremptory writ) (F1:S-1 of man-
damus) (F2:S0 notwithstanding) (F3:S0 the return) (F4:S1 operates
as an admission by relator of truth of facts well pleaded), (F5:S1 but
claims that in law the return presents no sufficient) (F6:S-1 ground)
(F7:S1 why relief sought) (F8:S1 should not be granted).

OPINION:

Sentence 0: As to the effect to be given (F0 the motion for the is-
suance of the peremptory writ) (F3 the return) of the respondents
(F2 notwithstanding), it is well to state at the outset that under our
decided cases such a motion stands as the equivalent of a demurrer to a
pleading in a law action.

Sentence 1: It (F4 operates as an admission by the relator of the
truth of the facts well pleaded) by the respondent (F5 but claims
that in law the return presents no sufficient) reason (F7 why the re-
lief sought) in the alternative writ (F8 should not be granted).

Figure 3.5: Sample output of legal document decomposition.

We received 11 headnotes from Westlaw and examined the decomposition results

for all of them. The program found the correct source document sentences and identified

the correct origins of the phrases for every headnote.

In summary, we performed three experiments in three different domains — com-

puter, telecommunication news, and legal – and in each case achieved good results with

no change or minimal parameter adjustment to the Hidden Markov Model. For the com-

puter related articles, the program found semantically equivalent summary sentences

and document sentences at an average of 81.5% precision and 78.5% recall. For the

telecommunication articles, 93.8% of the decomposition results were considered correct

by human judgment. For the legal documents, the program found correct document sen-

tences and identified the correct origins of the phrases for every headnote we received.

This demonstrates that the decomposition approach we have proposed is portable. The

44

reason for this portability, we believe, is that the heuristic rules that we used to build

the Hidden Markov Model are indeed very general, and they remain true for different

humans abstractors involved and for articles from different domains.

3.3 Applications of Decomposition Results

Usage in our cut-and-paste based summarization system. We have used the decom-

position results to build corpora for training and evaluating the sentence reduction and

combination modules in our system. Using the decomposition program, we were able

to collect a corpus of summary sentences constructed by humans using reduction op-

erations. This corpus of reduction-based, human-written summary sentences was then

used to train as well as evaluate our automatic sentence reduction module. Similarly, we

collected a corpus of combination-based summary sentences, which reveals interesting

techniques that humans use frequently to paste fragments in the original document into

a coherent and informative sentence.

Usage in other summarization systems. As we have shown, in the summary

alignment experiment in the evaluations, decomposition can automatically build extracts

using the abstracts that have been written by humans. These extracts can be used to build

large training and testing corpora for extraction-based summarizers.

Other use. The decomposition result can be also used in other applications.

For example, in the experiment we did with Westlaw (see Section 3.2.3), linking sum-

maries and original documents can potentially improve the user interface, helping users

to browse and find relations between the text.

Corpus study. Using the decomposition program, we analyzed 300 human-

written summaries of news articles. We collected the summaries from a free news ser-

45

vice. The news articles come from various sections of a number of newspapers and

cover broad topics. 300 summaries contain 1,642 sentences in total, ranging from 2

to 21 sentences per summary. The results show that 315 sentences (19%) do not have

matching sentences in the document, 686 sentences (42%) match to a single sentence

in the document, 592 sentences (36%) match to 2 or 3 sentences in the document, and

only 49 sentences (3%) match to more than 3 sentences in the document. These results

suggest that a significant portion (81%) of summary sentences produced by humans are

based on cutting and pasting.

3.4 Related Work

Researchers have previously tried to align sentences in a summary with the sentences

in the document, mostly by manual effort [Edmundson, 1968, Teufel and Moens, 1997,

Kupiec, Pedersen, and Chen, 1995]. Given the cost of this manual annotation process,

only small collections of text were annotated. Decomposition provides a way to perform

this alignment automatically, building large corpora for summarization research.

[Marcu, 1999] presented an approach for automatic construction of large-scale

corpora for summarization research, which essentially is an algorithm for aligning sum-

mary sentences with the semantically equivalent sentences in the document. It adopted

an IR-based approach, coupled with discourse processing. Although our decomposition

also aims to link summaries with the original documents, there are major differences

between the two. While Marcu's algorithm operates at the sentence or clause level,

our decomposition program deals with phrases, which are at various granularities and

could be anything from a word to a complicated phrase to a complete sentence. Further-

more, the approaches used by the two systems are obviously distinct. Marcu's approach

46

first breaks sentences into clauses, then uses rhetorical structures to decide what clauses

should be considered, and finally uses an IR-based similarity measure to decide which

clauses in the document are similar to those in the human-written abstracts. Our HMM

solution first builds the HMM and then uses dynamic programming technique to find

the optimal answer. Marcu reported the performance of 77.45%, 80.06%, and 78.15%

for precision, recall, and F-measure respectively when the system was evaluated at the

sentence level in the summary alignment task that we described in Section 3.2.1. When

tested on the same set of test documents and for the same task, our system has an average

of 81.5% precision, 78.5% recall, and 79.1% F-measure, as shown in Figure 3.1.

We transformed the decomposition problem to the problem of finding the most

likely document position for each word in the summary, which is in some sense similar

to the problem of aligning parallel bilingual corpora [Brown, Lai, and Mercer, 1991,

Gale and Church, 1991]. While they align sentences in a parallel bilingual corpus, we

align phrases in a summary with phrases in a document. [Brown, Lai, and Mercer, 1991]

also used Hidden Markov Model in their solution to bilingual corpora alignment. The

main difference between their model and our model include our choice of features and

how the transition probabilities are assigned. The corpora alignment uses sentence

length as a feature, and we use word position as a feature. While the corpora alignment

has a training corpus so it can compute the transition probabilities based on the training

data, our alignment techniques do not need annotated training data and we assigned the

transition probabilities based on general heuristic rules we observed.

47

3.5 Conclusion

In this chapter, we defined the problem of decomposing a human-written summary sen-

tence and proposed a Hidden Markov Model solution to the problem. The decomposi-

tion program can automatically determine whether a summary sentence is constructed

by reusing text from the original document; it can accurately recognize phrases in a sen-

tence despite the wide variety of their granularities; it can also pinpoint the exact origin

in the document for a phrase. The algorithm is fast and straightforward. It does not

need other tools such as a tagger or parser as preprocessor. It does not have complex

processing steps. The evaluations show that the program performs very well for the de-

composition task. The results from decomposition are used to build training and testing

corpora for sentence reduction and sentence combination.

48

Chapter 4

Sentence Reduction

The decomposition program described in the previous chapter is used to build training

corpora for the sentence reduction module that we describe in this chapter. Decomposi-

tion aligns summary sentences with document sentences, producing for each summary

sentence a list of document sentences that have been used to generate that summary

sentence. From the decomposition results, we can build a corpus for the sentence re-

duction module by selecting the summary sentences that were generated by removing

phrases from document sentences. The corpus contains ¡summary sentence, document

sentence¿ pairs. Each summary sentence is marked with the information of phrase ori-

gins that is provided by the decomposition output.

In a cut-and-paste summarization system, the role of sentence reduction is to per-

form the editing operation of removing extraneous phrases from an extracted sentence.

It can remove material at any granularity: a word, a prepositional phrase, a noun phrase,

a verb phrase, a gerund, a to-infinitive, or a clause. We use the term “phrase” here to

refer to any of the above sentence components that can be removed in the reduction

process.

Reduction improves the conciseness of automatically generated summaries, mak-

49

ing it brief and on target. It can also improve the coherence of generated summaries,

since extraneous phrases can potentially introduce incoherence if not removed. We col-

lected 500 sentences and the corresponding reduced sentences written by humans (see

Section 5.1.1 for the description of the corpus), and found that humans reduced the

length of these 500 sentences by 44.2% on average (calculated in terms of number of

words in the sentences). This indicates that a good sentence reduction system can im-

prove the conciseness of generated summaries significantly.

We implemented an automatic sentence reduction system. Input to the reduc-

tion system includes extracted sentences, as well as the original document. Output of

reduction are reduced forms of the extracted sentences, which can either be used to pro-

duce summaries directly, or be merged with other sentences. The reduction system uses

multiple sources of knowledge to make reduction decisions: it uses the syntactic knowl-

edge from a large-scale lexicon we have constructed to try to guarantee the syntactic

correctness of the reduced sentence; it uses the context in which the sentence appears to

determine the phrases that are of local focus so that they will not be deleted during re-

duction; and it uses statistics computed from a corpus of examples produced by humans

to decide how likely a certain phrase is removed by humans.

In Section 4.1, we describe the sentence reduction algorithm in detail. Then, we

introduce the evaluation scheme we have designed for assessing the performance of the

system and present the evaluation results. In Section 4.3, we discuss other issues that

relate to our reduction system. In particular, we discuss the extension of the program to

query-based summarization and the factors that affect the performance of the system. In

Section 4.4, we compare with related work.

50

4.1 Sentence Reduction Based on Multiple Sources of

Knowledge

Our goal of sentence reduction is to “reduce without major loss”; that is, we want to

remove as many extraneous phrases as possible from an extracted sentence so that it

can be concise, but without detracting from the main idea the sentence conveys. Ideally,

we want to remove a phrase from an extracted sentence only if it is irrelevant to the

main topic. To achieve this, the system relies on multiple sources of knowledge to make

reduction decisions. The reduction module can decide on its own an optimal reduction

length for a sentence; it can also adjust its decisions based on the compression ratio

requested by the user. We first introduce the resources used by the reduction module

and then describe the reduction algorithm.

4.1.1 The Resources

The reduction program uses the following four resources:

(1) The corpus. One of the key features of our reduction module is that it uses

a corpus consisting of original sentences and their corresponding reduced forms written

by humans for training and testing purposes. This corpus was created using the decom-

position program that we presented in the previous chapter. The human-written abstracts

were collected from the free daily news service “Communications-related Headlines”,

provided by the Benton Foundation (http://www.benton.org). The articles in the corpus

are news reports on telecommunication related issues, but they cover a wide range of

topics, such as law, labor, and company mergers.

(2) The lexicon. The system uses a large-scale lexicon we combined from mul-

tiple resources to identify the obligatory arguments of verb phrases. The resources

51

that were combined include the COMLEX syntactic dictionary [Macleod and Grish-

man, 1995], English Verb Classes and Alternations [Levin, 1993], the WordNet lexi-

cal database [Miller et al., 1990], and the Brown Corpus tagged with WordNet senses

[Miller et al., 1993]. The lexicon includes syntactic, lexical, and semantic information

for over 5,000 verbs. The construction of the lexicon and its usage in natural language

generation and other applications are presented in Chapter 6.

(3) The WordNet lexical database. WordNet [Miller et al., 1990] is the largest

lexical database to date. It provides many types of lexical relations between words,

including synonymy, antonymy, meronymy, entailment (e.g., eat � chew), or causation

(e.g., kill � die). These lexical links are used to identify important phrases in the local

context.

(4) The syntactic parser. We use the English Slot Grammar (ESG) parser devel-

oped at IBM [McCord, 1990] to analyze the syntactic structure of an input sentence. The

ESG parser not only annotates the syntactic category of a phrase (e.g., “np” or “vp”), it

also annotates the grammatical role of a phrase (e.g., “subject” or “object”).

4.1.2 The Algorithm

There are five steps in the reduction program:

Step 1: Syntactic Parsing.

We first parse the input sentence using the ESG parser and produce the sentence

parse tree. The operations in all other steps are performed based on this parse tree.

Each following step annotates each node in the parse tree with additional information,

such as syntactic or context importance, which is used later to determine which phrases

(they are represented as subtrees in a parse tree) can be considered extraneous and thus

removed. A discussion on the effect of parsing errors on the performance of the system

52

is in Section 4.3.3.

Step 2: Grammar Checking.

In this step, we determine which components of a sentence must not be deleted

to keep the sentence grammatical. To do this, we traverse the parse tree produced in

the first step in top-down order and mark, for each node in the parse tree, which of

its children are grammatically obligatory. We use two sources of knowledge for this

purpose. One source includes simple, linguistic-based rules that use the grammatical

role structure produced by the ESG parser. For instance, for a sentence, the main verb,

the subject, and the object(s) are essential if they exist, but a prepositional phrase is not;

for a noun phrase, the head noun is essential, but an adjective modifier of the head noun

is not. The other source we rely on is the large-scale lexicon we described earlier. The

information in the lexicon is used to mark the obligatory arguments of verb phrases. For

example, for the verb “convince”, the lexicon has the following entry:

convince

sense 1: NP-PP :PVAL (“of”)

NP-TO-INF-OC

sense 2: NP

This entry indicates that the verb “convince” can be followed by a noun phrase

and a prepositional phrase starting with the preposition “of” (e.g., “he convinced me

of his innocence”). It can also be followed by a noun phrase and a to-infinitive phrase

(e.g., “he convinced me to go to the party”). This information prevents the system from

deleting the “of” prepositional phrase or the to-infinitive that is part of the verb phrase.

At the end of this step, each node in the parse tree — including both leaf nodes

53

and intermediate nodes — is annotated with a value indicating whether it is grammat-

ically obligatory. Note that whether a node is obligatory is relative to its parent node

only. For example, whether a determiner is obligatory is relative to the noun phrase it is

in; whether a prepositional phrase is obligatory is relative to the sentence or the phrase

it is in.

Step 3: Computing Contextual Importance.

In this step, the system decides which components in the sentence are most re-

lated to the main topic being discussed. To measure the importance of a phrase in the

local context, the system relies on lexical links between words. The hypothesis is that

the more connected a word is with other words in the local context, the more likely it

is to be the focus of the local context. We link the words in the extracted sentence with

words in its local context, if they are repetitions, morphologically related, or linked in

WordNet through one of the lexical relations. The system then computes an importance

score for each word in the extracted sentence, based on the number of links it has with

other words and the types of links. The formula for computing the context importance

score for a word � is as follows:

����� ����� � � �
	�� � � �

�
� 	

�

��� � � ����� � � �

Here, represents the different types of lexical relations the system considered,

including repetition, inflectional relation, derivational relation, and the lexical relations

from WordNet. We assigned a weight to each type of lexical relation, represented by
���

in the formula. Relations such as repetition or inflectional relation are considered more

important and are assigned higher weights, while relations such as hypernymy are con-

sidered less important and assigned lower weights. In Section 4.3.3, we discuss how the

weights were experimentally assigned. ����� � � �
 in the formula represents the number

54

of a particular type of lexical links the word � has with words in the local context. Here,

the local context includes five sentences before and after the target sentence.

After an importance score is computed for each word, each phrase in the sentence

gets a score by adding up the scores of its children nodes in the parse tree. This score

indicates how important the phrase is in the local context.

Step 4: Learning from Examples by Humans.

In this step, the program uses the corpus probabilities that are computed before-

hand using a training corpus and stored in a table to determine how likely a phrase is

removed by human professionals.

The training corpus contains sentences reduced by human professionals and their

corresponding original sentences, produced by the decomposition program. The system

first parses the sentences in the corpus using the ESG parser. It then marks which sub-

trees in these parse trees (i.e., phrases in the sentences) were removed by humans, based

on the decomposition result. Using this corpus of marked parse trees, we can compute

how likely it is that a subtree is removed from its parent node. For example, we can

compute the probability that the “when” temporal clause is removed when the main

verb is “give”, represented as
��� � � � “when-clause is removed”

�
“v=give”

, or the proba-

bility that the to-infinitive modifier of the head noun “device” is removed, represented as
��� � � � “to-infinitive modifier is removed”

�
“n=device”

. These probabilities are computed

using Bayes's rule. For example, the probability that the “when” temporal clause is

removed when the main verb is “give”,
��� � � � “when-clause is removed”

�
“v=give”

, is

computed as the product of
��� � � � “v=give”

�
“when-clause is removed”

(i.e., the proba-

bility that the main verb is “give” when the “when” clause is removed) and
��� � � � “when-clause is removed”

(i.e., the probability that the “when” clause is removed),

divided by
��� � � � “v=give”

(i.e., the probability that the main verb is “give”):

55

��� � � � “when-clause is removed”
�
“v=give”

��� � � � “v=give”

�
“when-clause is removed”

 � ��� � � � “when-clause is removed”

� � � � � “v=give”

Besides computing the probability that a phrase is removed, we also compute

two other types of probabilities: the probability that a phrase is reduced (i.e., the phrase

is not removed as a whole, but some components in the phrase are removed), and the

probability that a phrase is unchanged at all (i.e., neither removed nor reduced). These

two types of probabilities are computed in a way similar to the above. The probability

that the “when” temporal clause is reduced when the main verb is “give”, represented as
��� � � � “when-clause is reduced”

�
“v=give”

, is computed as follows:

� � � � � “when-clause is reduced”
�
“v=give”

��� � � � “v=give”

�
“when-clause is reduced”

 � ��� � � � “when-clause is reduced”

� � � � � “v=give”

Similarly, the probability that the “when” temporal clause is unchanged when

the main verb is “give”, represented as
��� � � � “when-clause is unchanged”

�
“v=give”

, is

computed as follows:

��� � � � “when-clause is unchanged”
�
“v=give”

��� � � � “v=give”

�
“when-clause is unchanged”

 � ��� � � � “when-clause is unchanged”

� � � � � “v=give”

These corpus probabilities help us capture human practice. For example, for sen-

tences like “The agency reported that ...”, “The other source says that ...”, “The new

56

study suggests that ...”, the that-clause following the say-verb (i.e., report, say, and sug-

gest) in each sentence is very rarely changed at all by professionals. The system can

capture this human practice, since the probability that that-clause of the verb say or re-

port being unchanged at all will be relatively high, which will help the system to avoid

removing components in the that-clause.

Note that these probabilities are computed off-line. At running time, the system

only loads such information and annotates the parse tree which these probabilities which

indicate the likelihood that a subtree is removed, reduced, or unchanged by humans.

Step 5: Making the Final Decision.

The final reduction decisions are based on the results from all the earlier steps.

To decide which phrases to remove, the system traverses the sentence parse tree, which

now has been annotated with different types of information from earlier steps, in top-

down order and decides which subtrees should be removed, reduced or unchanged. A

subtree (i.e., a phrase) is removed only if it is not grammatically obligatory, not the

focus of the local context (indicated by a low importance score), and has a reasonable

probability of being removed by humans. The program can reduce the sentences into

different lengths by adjusting the thresholds it uses for importance scores and phrase

removal probabilities.

Figure 4.1 shows sample output of the reduction program. The reduced sentences

produced by humans are also provided for comparison.

4.2 Evaluations of the Reduction Module

To evaluate the reduction program, we used summary sentences that were generated by

human professionals as gold standard, and assessed the output of the system against the

57

Example 1:
Original sentence : When it arrives sometime next year in new TV
sets, the V-chip will give parents a new and potentially revolutionary
device to block out programs they don't want their children to see.
Reduction program: The V-chip will give parents a new and potentially
revolutionary device to block out programs they don't want their chil-
dren to see.

Professionals : The V-chip will give parents a device to block out
programs they don't want their children to see.

Example 2:
Original sentence : Som and Hoffman's creation would allow
broadcasters to insert multiple ratings into a show, enabling the V-
chip to filter out racy or violent material but leave unexceptional por-
tions of a show alone.

Reduction Program: Som and Hoffman's creation would allow broad-
casters to insert multiple ratings into a show.

Professionals : Som and Hoffman's creation would allow broad-
casters to insert multiple ratings into a show. (the same as the result by
the reduction program)

Figure 4.1: Sample output of sentence reduction program.

gold standard. We do not believe that there is a single correct way to reduce a sentence.

Just like there is no unique summary that is “ideal” for a document, there is no unique

reduction output that is “ideal” for a sentence. A sentence can be reduced in many ways,

and different human subjects may reduce a sentence differently. But for the evaluation

purpose, we assume that the output by humans is ideal.

4.2.1 The Evaluation Scheme

We define a measure called success rate to evaluate the performance of our sentence

reduction program. The success rate computes the percentage of the system's reduction

decisions that agree with those of humans.

58

The success rate is computed as follows. The reduction process can be consid-

ered as a series of decision-making processes along the edges of a sentence parse tree.

At each node of the parse tree, both the human and the program make a decision whether

to remove the node or to keep it. If a node is removed, the subtree with that node as the

root is removed as a whole, thus no decisions are needed for the descendants of the

removed node. If the node is kept, we consider that node as the root and repeat this

process.

A

B

C

D

E

F

G

H

Input: A B C D E F G H

Figure 4.2: Sample sentence and parse tree.

A

B

C

D

E

F

G

H

Reduced: A B D G H

y

y n

y

n y

n

Figure 4.3: Reduced form by a human.

Suppose we have an input sentence (ABCDEFGH), which has the parse tree

shown in Figure 4.2. The parse tree representation we used in this figure is consis-

tent with that of ESG. It is a dependency tree with each non-terminal node represents

the head word of a phrase. Suppose a human reduces the sentence to (ABDGH), which

59

A

B

C

D

E

F

G

H

y n

n y

n

Reduced: B C D

Figure 4.4: Reduced form by the program.

can be translated to a series of decisions made along edges in the sentence parse tree

as shown in Figure 4.3. The symbol “y” along an edge means the node it points to

will be kept, and “n” means the node will be removed. Suppose the program reduces

the sentence to (BCD), which can be translated similarly to the annotated tree shown in

Figure 4.4.

We can see that along five edges (they are D � B, D � E, D � G, B � A, B � C),

both the human and the program have made decisions. Two out of the five decisions

agree (they are D � B and D � E), so the success rate is 2/5 (40%). The success rate is

defined as:

success rate # of edges along which the human and the program made the same decision

total # of edges along which both the human and the program made decisions

Note that the edges for which no decision needs to be made by the human or the

program because they are covered by other decisions (e.g., G � F and G � F in Figure 4.3

and Figure 4.4) are not considered in the computation of success rate, since there is no

agreement issue in such cases.

Another alternative to the success rate measure we proposed above for evaluating

the reduction results is the recall/precision measure. We can presumably use the reduced

sentences generated by human professionals as gold standards and compute recall and

precision based on the number of words overlapping between the gold standards and

60

the output by the program. The main problem with this alternative is that the recall

and precision results will be greatly affected by the number of words in the sentence

and the number of words in the removed phrases. For example, whether the program

and the human agree on the removal of a relative clause that contains a large number of

words will dramatically change the recall and precision result, while their agreement on

a shorter phrase may not change the result as much. That is the reason why we decided

against using the recall/precision measure but designed the success rate measure, which

counts the reduction decision on any phrase, no matter its length, as one vote and treats

each reduction decision equally.

4.2.2 Evaluation Results

In the evaluation, we used 400 sentences in the corpus to compute the probabilities that

a phrase is removed, reduced, or unchanged. We tested the program on the remaining

100 sentences.

Using five-fold cross validation (i.e., choose 100 different sentences for testing

each time and repeat the experiment five times), the program achieved an average suc-

cess rate of 81.3%. If we consider the baseline as removing all the prepositional phrases,

clauses, to-infinitives and gerunds, the baseline performance is 43.2%.

We also computed the success rate of the program's decisions on particular types

of phrases. For the decisions on removing or keeping a clause, the system has a success

rate of 78.1%; for the decisions on removing or keeping a to-infinitive, the system has a

success rate of 85.2%. We found out that the system has a low success rate on removing

adjectives of noun phrases or removing adverbs of a sentence or a verb phrase. One rea-

son for this is that our probability model can hardly capture the dependencies between

a particular adjective and the head noun since the training corpus is not large enough,

61

while the other sources of information, including grammar or context information, pro-

vide little evidence on whether an adjective or an adverb should be removed. Given that

whether or not an adjective or an adverb is removed does not affect the conciseness of

the sentence significantly and the system lacks reliability in making such decisions, we

decided not to remove adjectives and adverbs.

On average, the system reduced the length of the 500 sentences by 32.7% (based

on the number of words), while humans reduced it by 41.8%.

The probabilities we computed from the training corpus covered 58% of in-

stances in the test corpus. When the corpus probability is absent for a case, the system

makes decisions based on the other two sources of knowledge.

Some of the errors made by the system result from the errors by the syntactic

parser. We randomly checked 50 sentences, and found that 8% of the errors made by

the system are due to parsing errors. There are two main reasons responsible for this

relatively low percentage of errors resulting from mistakes in parsing. One reason is

that we have taken some special measures to avoid errors introduced by mistakes in

parsing. For example, PP attachment is a difficult problem in parsing and it happens

often that a PP is wrongly attached. Therefore, we take this into account when marking

the obligatory components using subcategorization knowledge from the lexicon (step 2)

– we not only look at the PPs that are attached to a verb phrase, but also PPs that are

next to the verb phrase but not attached, in case it is part of the verb phrase. We also

wrote a preprocessor to deal with particular structures that the parser often has problems

with, such as appositions. The other reason is that parsing errors do not always result

in reduction errors. For example, the sentence “The spokesperson of the university said

that ...”, has a that-clause with a complicated structure which the parser gets wrong,

the reduction system is not necessarily affected since it may decide in this case to keep

62

the that-clause as it is, as humans often do, so the parsing errors will not matter in this

example.

4.3 Discussion of Related Topics

In this section, we discuss three topics related to reduction, including adapting the pro-

gram to query-based summarization, the interactive between the reduction module and

other modules in the system, and several factors that affect the system's performance.

4.3.1 Reduction for Query-based Summarization

The reduction algorithm we have presented assumes generic summarization; that is, we

want to generate a summary that includes the most important information in an article.

We can tailor the reduction system to query-based summarization. In that case, the task

of reduction is not to remove phrases that are extraneous in terms of the main topic of an

article, but to remove phrases that are not very relevant to a user's query. We extended

our sentence reduction program to query-based summarization by adding another step

in the algorithm to measure the relevance of a user's query to phrases in the sentence. In

the last step of reduction when the system makes the final decision, the relevance of a

phrase to the query is taken into account, together with syntactic, contextual, and corpus

information.

The method we use to measure the relevance between a user's query and phrases

in the sentence are based on word similarities. For each phrase in the sentence (i.e., each

subtree in the sentence parse tree), we tag it with the number of overlapping words (only

non-stop words are considered) between the phrase and the query. A phrase is consid-

ered important if it has many words in common with the query. In the final decision

63

making step, we keep a phrase that has a high percentage of words overlapping with

the query, even when it is marked removable by the other three criteria (i.e., grammar,

context, and statistics).

We cannot present any quantitative evaluation of the query-based reduction here

due to the lack of corpora that can be used for such purpose.

4.3.2 Interaction between Reduction and Other Modules

Ideally, the sentence reduction module should interact with other modules in a summa-

rization system. It should be able to send feedback to the extraction module if it finds

that a sentence selected by the extraction module may be inappropriate (for example,

having a very low context importance score). It should be able to request more sen-

tences from the extraction module if the length of the summary is less than the required

length after reduction. It should also be able to interact with the modules that run after

it, such as the sentence combination module, so that it can revise reduction decisions

according to feedback from these modules.

Currently, our reduction system can send feedback to the extraction module if it

thinks an extracted sentence should be deleted as a whole (that happens when the context

importance score of the selected sentence is very low, meaning that the sentence is not

very related to other sentences). The reduction system is allowed to completely delete a

sentence proposed by the sentence extractor; it can also request more sentences from the

sentence extractor if the text after sentence reduction is shorter than the required length.

The reduction module does not yet interact with the combination module, revising its

decisions based on feedback from the combination module.

64

4.3.3 Factors that Affect the Performance

We discuss here some significant factors that affect the quality of the reduction result.

In particular, we discuss the influence that the parser has on the syntactic correctness of

a reduced sentence, the effectiveness of using lexical relations to identify the focus of

the context, and the sparse data problem in statistical computation.

Parser Errors and Syntactic Correctness

The syntactic correctness of a reduced sentence largely depends on whether the

output of the parser is right. If the parser analyzes the sentence correctly, it is extremely

likely that the reduced sentence is grammatically correct — the only exception occurs

when the combined lexicon misses indicating an obligatory argument of a verb phrase,

which very rarely occurs given the wide coverage of the lexicon (combined from three

large-scale resources). However, if the parser analyzes the sentence wrongly, the reduc-

tion result can be either grammatically correct or wrong, depending on the nature of the

error(s) by the parser and what phrases the reduction program decides to remove. For

example, if the parser misidentifies the subject of the sentence, it can happen that the

real subject will be deleted during reduction. But as we mentioned in the evaluation sec-

tion, parsing errors do not always result in reduction errors. For example, if reduction

decides that nothing in the sentence should be removed, then even if the parse tree is

wrong, the result is not affected. More detailed information on the parsing errors and

the problems caused by them are presented in the evaluation results in Section 4.2.2.

Lexical Relations

We use lexical relations among words in the context as an approximation of se-

mantic analysis for the purpose of identifying the focus of local context. The following

questions arise immediately: Does such approximation produce good results? Out of the

nine lexical relations we use, which ones are most important? What if WordNet misses

65

some important relations between words? How can this affect the result?

In our analysis of the reduction output, we found that whether lexical relations

can identify the important phrases in a sentence has much to do with the particular con-

tent and writing style of the document. Although we cannot precisely predict whether

lexical relations will produce good results for a particular document, we did observe that

the method tends to work well for a document that has a single, focused central topic

and that has many repeated or related words (newspaper articles are more likely to be

in this category), and the method tends to work less well for a document that does not

have a single, focused central topic and whose words are less related (for example, a

long narrative that describes someone's life story).

In our system, the nine types of lexical relations are considered in the following

order of importance: repetition � inflection � derivation � synonymy � meronymy

(part-of) � hypernymy � antonymy � entailment � causation. This importance is re-

flected in the assignment of weights in the computation of the context importance score;

the more important types of lexical relations have higher weights. Deciding the order

of importance of these lexical relations is experimental — we choose the above order

partly based on linguistic theory [Hoey, 1991] and partly based on whether a particular

type of lexical relation has many instances.

It is inevitable that WordNet misses certain relations between words, although

it does encode many types of lexical relations and represents the largest number of

lexical relations compared to other existing resources. Words such as “Gaza” and

“Palestinians”, “doctor” and “patient”, “Bush” and “Republican” are related, but they

are not represented in WordNet. One way to extract such relations is using lexical

co-occurrence information. In another study we did in the field of Information Re-

trieval [Jing and Tzoukermann, 1999], we show related word pairs such as “Gaza” and

66

“Palestinians” can be found based on whether they frequently appear in the same doc-

uments in a corpus. However, such data computed from lexical co-occurrence informa-

tion can also contain noise (for example, “today” and “government” happen to co-occur

often in the corpus we used for computing lexical co-occurrence, so they are consid-

ered related although they are not). We experimented with adding this type of lexical

co-occurrence based information to our program. We considered this co-occurrence

relation as the tenth type of lexical relation, in addition to the nine types we have intro-

duced before. We assigned its weight (representing its importance) as the lowest. The

overall performance of the reduction system actually slightly dropped after adding this

additional lexical relation. We do not believe that this is a conclusive indication that

lexical co-occurrence is not useful — it is very possible that a different testing corpus

will produce a contradictory result, since the words involved will be different then.

Sparse Data Problem

Our reduction program uses a corpus of reduced sentences written by humans

to compute the probabilities that humans remove certain types of phrases. As in many

statistical models, we also have a sparse data problem. If we compute the probabilities

at a very “specific” level, there may be too few instances to give a reliable estimate, or

worse, there may be zero instances, leaving the probability undefined. For this reason,

when we compute the probability that a subtree in a parse tree (representing a phrase) is

removed from its parent node, we represent the parent node using both its grammatical

role and head word, but for the subtree node, we represent it using only its grammatical

role. Hence, we compute the probability such as PROB(adjective modifier is removed
�

n = “device”) (i.e., the probability that the adjective modifier is removed when the head

noun is “device”), rather than PROB(the word “new” as an adjective modifier is re-

moved
�
n = “device”) (i.e., the probability that the word “new” as an adjective modifier

67

is removed when the head word is “device”). We also decide against representing both

parent node and the subtree node using only their grammatical roles, since a probability

such as PROB(adjective modifier is removed
�
n) (i.e., the probability that the adjective

modifier of a head noun is removed) is too “general” for our reduction purpose.

4.4 Related Work

4.4.1 Sentence Compression

[Knight and Marcu, 2000] discussed the sentence compression problem, which is very

similar to our sentence reduction problem. They devised both noisy-channel and decision-

tree approaches to the problem. The noisy-channel framework has been used in many

applications, including speech recognition, machine translation, and information re-

trieval. Their system first parse the original sentence into a large parse tree, and then

it hypothesizes and ranks various small trees that represent the compressed sentences

using the stochastic model. The decision-tree method compresses sentences by learning

the decisions for “rewriting” input parse trees into smaller trees, which correspond to

the compressed versions of the original sentence.

The main difference between our sentence reduction program and the above com-

pression algorithms include the following: (1) their compression algorithms do not con-

sider the context of the sentences. They treat each sentence as isolated and independent.

In contrast, in our reduction system, the context in which a sentence appears plays a very

important role in determining how the sentence will be reduced.; (2) the compression

algorithms can produce ungrammatical sentences, even when an input sentence is gram-

matical and the parser analyzes the sentence correctly. Both the noisy-channel model

and the decision-tree model are stochastic model only. Our reduction program aims to

68

guarantee the grammaticality of the reduced sentences, by relying on syntactic knowl-

edge from a lexicon. It is unlikely to produce an ungrammatical sentence, if the input

sentence is grammatical and the parser analyzes the sentence correctly.

The similarities between our reduction algorithm and their compression algo-

rithms include the following: (1) both systems perform reduction or compression based

on the parse trees of sentences; (2) both systems need training corpora.

[Knight and Marcu, 2000] evaluated the compression system by asking humans

to assess the grammaticality and importance of the compressed sentences on a scale from

1 to 5 (larger values indicates better results). For the test corpus of 32 sentences from the

Ziff-Davis corpus, the noisy-channel compressed the length of the sentences by 30% on

average and the compressed sentences have an average score of 4.34 for grammaticality

and a score of 3.38 for importance. For the same test corpus, the decision-tree model

compressed the length of the sentences by 43% on average and the compressed sentences

have an average score of 4.30 for grammaticality and a score of 3.54 for importance. The

evaluation scheme we used, as shown in Section 4.2, is very different from the above

evaluation method. We automatically computed the agreement between the reduction

decisions made by humans and the reduction decisions made by our reduction system,

using a measure defined as success rate. For a corpus of 500 sentences from news

articles on Telecommunication issues, our reduction system reduced the length of the

sentences by 33% on average while achieving an average success rate of 81%.

4.4.2 Reduction Based on Syntactic Roles Only

Some researchers suggested removing phrases or clauses from sentences for certain ap-

plications. [Grefenstette, 1998] proposed removing phrases in sentences to produce

a telegraphic text that can be used to provide audio scanning services for the blind.

69

[Corston-Oliver and Dolan, 1999] proposed removing clauses in sentences before in-

dexing documents for Information Retrieval. Both studies removed phrases based only

on their syntactic categories. The reduction can be performed at different levels. For

example, we can retain only subject nouns, head verbs, and object nouns and remove

everything else in the original sentence, or we can retain subject nouns, head verbs,

object nouns, and subclauses but remove the rest.

The fundamental difference between our reduction system and the above systems

is that our focus is on deciding when it is appropriate to remove a phrase, based on such

factors as the context in which a sentence appears and the syntactic properties of the

words involved, whereas the reduction systems that are based on syntactic roles only

perform reduction undistinguishly to each sentence guided only by the syntactic cate-

gories. Reducing sentences relying only on syntactic roles can produce ungrammatical

sentences – for example, when an obligatory clause or to-infinitive or preposition phrase

of a head verb is removed. It can also remove sentence components that are semantically

important. In our evaluation of the reduction program shown in Section 4.2.2, we used

the reduction based on syntactic roles as a baseline. The baseline method retained only

the subject nouns, head verbs, and object nouns and undistinguishly removed everything

else in the sentences. For a corpus of 500 sentences, the baseline method has a reduction

success rate of 43%, in contrast to the success rate of 81% by our reduction system.

4.4.3 Text Simplification

Other researchers worked on the text simplification problem, which usually involves

simplifying text but not removing any phrases. For example, [Carroll et al., 1998] dis-

cussed simplifying newspaper text by replacing uncommon words with common words,

or replacing complicated syntactic structures with simpler structures to assist people

70

with reading disabilities. [Chandrasekar, Doran, and Srinivas, 1996] discussed text sim-

plification in general. The difference between these studies on text simplification and

our system is that a text simplification system usually does not remove anything from an

original sentence, although it may change its structure or words, but our system removes

extraneous phrases from the extracted sentences.

4.4.4 Using Lexical Cohesion for Text Understanding

The way we use lexical relations is very close to the method proposed by Hoey in his

book “Patterns of Lexis in Text” [Hoey, 1991]. As a linguist, he manually analyzed some

documents and showed that lexical relations can possibly help to find most important

sentences in the documents. He distinguished different types of lexical relations and

gave them different weights in the computation, which we also did in our system. We

made some modifications to his algorithms to suit our sentence reduction purpose. For

instance, we consider only local context instead of the entire document while computing

lexical relations.

Many other researchers have explored using lexical relations as an indicator of

the structure of the text or the representation of the context. [Morris and Hirst, 1991]

proposed using lexical cohesion computed by thesaural relations as an indicator of the

structure of text. [Hirst and St-Onge, 1998] used lexical chains as representation of con-

text for the detection and correction of malapropisms. [Barzilay and Elhadad, 1997] ex-

tended the lexical chains to the summarization purpose. [Benbrahim and Ahmad, 1995]

adopted an approach similar to Hoey's method [Hoey, 1991] for extraction-based sum-

marization.

71

4.5 Conclusion

We have presented a sentence reduction system that removes extraneous phrases from

sentences that are extracted from an article in text summarization. The deleted phrases

can be single words, noun phrases, verb phrases, preposition phrases, gerunds, to-

infinitives, or clauses, and multiple phrases can be removed from a single sentence. The

focus of this work is on determining, for a sentence in a particular context, which phrases

in the sentence are less important and thus can be removed. Our system makes intel-

ligent reduction decisions based on multiple sources of knowledge, including syntactic

knowledge, context, and probabilities computed from corpus analysis. We also created a

corpus consisting of 500 sentences and their reduced forms produced by human profes-

sionals, and used this corpus for training and testing the system. The evaluation shows

that 81.3% of reduction decisions made by the system agreed with those of humans.

72

Chapter 5

Sentence Combination

Sentence combination merges the reduced sentences from sentence reduction with other

sentences or phrases. For example, the combination operation can be performed on

two sentences both of which have been compressed by sentence reduction, or it can be

performed on a reduced sentence and a phrase selected from the original text.

Combination improves the coherence of generated summaries. As we indicated

in Chapter 1, a main source of incoherence in extraction-based summaries is dangling

pronouns and noun phrases present in extracted sentences. One type of combination

operation that is performed by our combination system is to replace the dangling pro-

nouns and phrases with the names of the entities they refer to in the original text. Thus,

a main source of incoherence can be eliminated. Moreover, by grouping closely related

sentences together and merging them as a single sentence, combination helps readers to

understand the relations between sentences. Sentence combination is a technique widely

used by expert summarizers.

We implemented an automatic sentence combination module. Input to the mod-

ule includes the sentences that have already been reduced by the reduction module,

as well as the original document. The output of the combination module is merged

73

sentences, which are used to produce summaries. Our investigation of the sentence

combination problem can be summarized into four steps. In the first step, we study

what operations can be used to combine sentences. These operations are identified

by analyzing combination examples produced by human experts. In the second step,

we look into the restrictions that determine when to use which combination operation.

Such restrictions are formalized as a set of rules. In the third step, we implement the

combination operations and rules using a formalism based on Tree Adjoining Gram-

mars (TAG) [Joshi, 1987, Joshi, Levy, and Takahashi, 1975, Joshi and Schabes, 1996].

Finally, we explored using machine learning techniques to automatically learn combi-

nation operations and combination rules.

The reminder of this chapter is organized as follows. In Section 5.1, we describe

the operations that can be used to merge sentences and phrases. A total of 13 operations

are identified and classified into 5 categories. In Section 5.2, we present the combination

rules that are used to determine when to use which combination operation. The next sec-

tion is on the implementation of the combination operations and rules, explaining why

we chose the Tree Adjoining Grammar formalism for this purpose and how it is used. In

Section 5.4, we describe our experiments of using machine learning techniques for au-

tomatically discovering combination operations and combination rules. In Section 5.5,

we discuss the issues involved in the evaluation of sentence combination and show the

evaluation results. Finally, we compare with related work and conclude the chapter with

a short summary.

74

5.1 Combination Operations

Our first task in developing the sentence combination system is to investigate what op-

erations can be used to combine sentences and phrases. One way to identify these oper-

ations is to rely on linguistic theories and list all the operations that we believe could be

used to combine sentences and phrases. Another way is to analyze a corpus of example

summary sentences that have already been produced by humans using the combination

technique. We decide to use the latter approach, for the reasons that the examples in

the corpus give a real sense of what operations are actually useful and widely used in

combination, and more importantly, the examples give the actual context in which the

combination operations are performed, which is very important later on when we con-

struct combination rules to decide when to use which combination operation.

The corpus for sentence combination was built from the decomposition results.

It contains sample summary sentences that were produced by humans using the combi-

nation technique, and the corresponding document sentences that were used to generate

these summary sentences. For analysis purpose, each summary sentence is marked with

the information of phrase origins, provided by the decomposition results.

After analyzing the examples in the above corpus, we identified 13 operations

that can be used to combine sentences and phrases, and classified them into 5 categories

based on their similarity. Table 5.1 shows the combination operations and their cate-

gories. We now elaborate in more details a couple of combination operations listed in

this table and show some example summary sentences that were generated by human

professionals using these combination operations.

One of the most frequently used operations is to add names or descriptions for

people or organizations, as shown by the example in Figure 5.1.

In this example, the phrase “Clayton at Columbia” from sentence 77 was sub-

75

Categories Combination Operations
add descriptions for people or organizations

Add descriptions or names
add names for people or organizations
extract common subjects or objects of sentences
transform a sentence to a clause of the merged sentence

Aggregations
add connectives (e.g., “and”) to merge sentences
add punctuations (e.g., “;”) to merge sentences
replace a dangling pronoun with the entity it refers to
replace a dangling noun phrase with the entity it refers to
replace a location adverb (e.g., “here”) with the name

Replace incoherent phrases
of the place it refers to
remove connectives (e.g., “moreover”) if the previous
sentence is not included
replace a phrase with a shorter phrase containing more

Replace with more general general description
or specific information replace a phrase with a longer phrase containing more

specific information
Mixed operations combination of any of above operations

Table 5.1: Combination operations.

stituted by the more complete description “Paul Clayton, Chairman of the department

dealing with computerized medical information at Columbia” from sentence 34. We

can think of the scenario under which the human summarizer produced this example:

the human considered sentence 77 as important so he extracted it, he noticed that the

short description “Clayton at Columbia” in the extracted sentence did not give enough

background information for the person that was quoted, he looked in the original doc-

ument to search for the more detailed description of the person, he found it in sentence

34 in which the person was first mentioned, and then he replaced the short description

of the person in sentence 77 with the more detailed information in sentence 34.

This is a very simple operation, but it has a very positive impact on the quality of

generated summaries. Examples in our corpus indicate that this operation is extremely

widely used by expert summarizers.

76

Combination Operation: add names and descriptions for people or organiza-
tions
Source Document Sentences:
Sentence 34: “We're trying to prove that there are big benefits to the patients by
involving them more deeply in their treatment”, said Paul Clayton, Chairman of
the department dealing with computerized medical information at Columbia.

Sentence 77: “The economic payoff from breaking into health care records is a
lot less than for banks”, said Clayton at Columbia.

The output by a human professional:
“The economic payoff from breaking into health care records is a lot less than for
banks”, said Paul Clayton, Chairman of the department dealing with computerized
medical information at Columbia.

Figure 5.1: An example sentence produced by adding names and descriptions for people
or organizations.

Another frequently used operation is to add connectives to merge two reduced

sentences into a single sentences, as shown by the example in Figure 5.2.

Combination Operation: add connectives
Source Document Sentences:
Sentence 8: But it also raises serious questions about the privacy of such highly
personal information wafting about the digital world.

Sentence 10: The issue thus fits squarely into the broader debate about privacy
and security on the Internet, whether it involves protecting credit card number or
keeping children from offensive information.

The output by a human professional:
But it also raises the issue of privacy of such personal information and this issue hits
the nail on the head in the broader debate about privacy and security on the Internet.

Figure 5.2: An example sentence produced by adding connectives.

This operation is performed on two sentences that have both been compressed

by sentence reduction. The sentences that are merged by this operation are often close

to each other in the original text and they are also semantically related. As we can see,

this is very different from the operation of adding names and descriptions for people

and organizations, which performs combination between a sentence and a phrase, and

77

the source sentences can be very far apart in the original text.

Note that the second category of combination operation listed in Table 5.1 —

aggregation — is also used in traditional natural language generation. The first three

operations in that category — extracting common subjects or objects, changing one

sentence to a clause, and adding connectives — have been well studied in genera-

tion [Shaw, 1995, Dalianis and Hovy, 1993], while the last operation — adding punc-

tuations — has not been mentioned before. The fundamental difference between ag-

gregation in traditional natural language generation and aggregation in our work is that,

in summarization, we do not have the deep understanding of the semantic meanings of

the input as in traditional generation systems. Therefore, we have to make aggregation

decisions based on whatever understanding we have of the input sentences and phrases.

There are some combination operations performed by expert summarizers that

we do not attempt to simulate in our automatic systems, for the reason that they are too

complicated and need such deep semantic understanding that we do not yet have means

to acquire such understanding automatically. For instance, an expert summarizer may

change the subject of a sentence to a semantically equivalent substitute in order to merge

sentences, as shown by the example in Figure 5.3.

In this example, the human summarizer produced a parallel structure in the com-

bined sentence by substituting “but the big ticket items in the proposal are requirements

stipulating that” with the roughly semantically equivalent expression “BSA is ask-

ing”. We cannot yet automatically decide such semantic equivalence in a reliable

way.

78

Combination operation: replace phrases with semantic paraphrases
Source Document Sentences:
Sentence 1: The Business Software Alliance is asking, among other things, that
the school district pay $300,000 — the approximate value of the copies — to the
group's anti-privacy fund.

Sentence 2: But the big ticket items in the proposal are requirements stipulating
that any unlicensed software running in other Los Angeles schools be replaced
with licensed copies and that the district establish a team to train staff members
in copyright do's and don'ts — efforts that district officials say would cost about
$4.5 million.

The output by a human professional:
BSA is asking the school district pay $300,000 — the approximate value of the
copies — to the group's anti-privacy fund, replace any unlicensed software with
licensed copies, and that the district establish a team to train staff members in copy-
right regulations — efforts that the LA school district say would cost about $4.5
million.

Figure 5.3: An example sentence produced by replacing phrases with semantic para-
phrases.

5.2 Rules for Applying Combination Operations

Once we have identified the operations that can be used to combine sentences and

phrases, the next step is to decide when to use which combination operation. We ex-

perimented with two different approaches. The first approach is manual: we analyzed

examples by humans and manually wrote a set of combination rules. In the second ap-

proach, we explored using various machine learning techniques to automatically learn

combination rules from examples in the corpus. This section focuses on the manual

approach, while Section 5.4 focuses on the automatic learning approach.

Each combination operation identified in Table 5.1 should be performed only

on certain types of sentences and phrases and only under certain conditions. The role

of combination rules is to state the restrictions for applying a combination operation.

By analyzing the examples produced by humans and generalizing the conditions un-

79

der which a combination operation was performed, we manually constructed a set of

combination rules.

A sample combination rule is shown in Figure 5.4. This rule was constructed

to decide when to perform the combination operation adding names or descriptions for

people or organizations. Using this rule, the system can produce exactly the same result

as that of the human summarizer for the example shown in Figure 5.1.

Operation: add names and descriptions for people or organizations:
IF: ((a person or an organization is mentioned the first time in a summary) and (the
complete name or the complete description of the person or the organization is not
used) and (there exists in the original document the complete name and description
of the person or the organization))

THEN: replace the short phrase with the more complete name and description (or
descriptions, if there are more than one)

Figure 5.4: Combination rule for adding names and descriptions for people or organiza-
tions.

Figure 5.5 shows the rule for extracting common subject of two closely related

sentences. An example sentence produced using this combination rule is presented in

Figure 5.6. The output by a human professional is also presented for comparison. As

we can see, the expert actually combined three source document sentences into one,

by first extracting common subject of two sentences and merging them into one, and

then merging the result with the third sentence by adding the connective while. Our

combination system performed the first operation, extracting common subject, but did

not perform the second. Although the final result is not exactly the same as that of the

human professional, it is quite similar to it, and we consider it clear and correct enough

to be acceptable.

80

Operation: extract common subject of two related sentences:
IF: ((two sentences are close to each other in the original document) and (their
subjects refer to the same entity) and (at least one of the sentences is reduced by
sentence reduction))

THEN: merge the two sentences by removing the subject in the second sentence,
and then combining it with the first sentence using connective and.

Figure 5.5: Combination rule for extracting common subject of two related sentences.

5.3 Implementing Combination Operations and Rules

After we have identified combination operations and constructed combination rules, the

next task is to implement them. As we recall from previous chapters, the extracted sen-

tences are first sent to the sentence reduction module, which parses them and marks

which phrases (represented by subtrees in a parse tree) can possibly be deleted. These

pruned parse trees — representing the reduced sentences — are then sent to the combi-

nation module. The actual combinations are performed on top of these parse trees.

5.3.1 Implementing Combination Operations

To implement the 13 combination operations presented in Table 5.1, we first defined

and implemented two primitive operations, adjoining and substitution, to manipulate

the parse trees, and then implemented all the combination operations by expressing

them using these two primitive operations.

Substitution replaces a node of a parse tree. Let Tree1 be a tree with nodes

�
� � � � ��� � ��� � , and Tree2 be a tree with nodes � � � � � � , as shown in Figure 5.7.

The substitution function Replace([Tree1, node D]), [Tree2, node S]) results in the sub-

stitution of node D in Tree1 by node S in Tree2, as shown in Figure 5.7.

Adjoining merges two nodes into a new node. The adjoining function Com-

bine([Tree1, node D]), [Tree2, node S], [new parent node] merges node D from Tree1

81

Operation: extract common subject of two related sentences
Source Document Sentences: Sentence 1: The new measure is an echo of the orig-
inal bad idea, blurred just enough to cloud prospects both for enforcement and for
court review.

Sentence 2: Unlike the 1996 act, this one applies only to commercial Web sites
— thus sidestepping 1996 objections to the burden such regulations would pose for
museums, libraries and freewheeling conversation deemed “indecent” by somebody
somewhere.

Sentence 3: The new version also replaces the vague “indecency” standard, to which
the court objected, with the better-defined one of material ruled ”harmful to minors.”

The output by the system:
The new measure is an echo of the original bad idea.

The new version applies only to commercial web sites and also replaces the vague
“indecency” standard with the better-defined one of material ruled ”harmful to mi-
nors.”

The output by a human professional:
While the new law replaces the “indecency” standard with “harmful to minors” and
now only applies to commercial Web sites, the ”new measure is an echo of the
original bad idea.”

Figure 5.6: Sample combination output produced by extracting common subject of two
related sentences.

and node S from Tree2 into a new tree and uses the new parent node as the root of the

new tree, as shown in Figure 5.8.

The above two functions — Replace(old node, new node) and Combine(node1,

node2, new parent node) — are the only two functions we define in our system; all the

combination operations are expressed and realized using these two primitive functions.

Some of the combination operations can be implemented using these two primitive func-

tions directly, while others need to be implemented as a series of primitive functions. We

show a couple of examples here.

For instance, the combination operation adding names and descriptions for peo-

ple or organizations can be realized using the Replace function directly. Suppose that

82

Tree1:

A

C

ED

B

Tree2:

S

R

W C

S E

Substitution: Replace ([Tree1, node_D], [Tree2, node_S])

A

B

Figure 5.7: Tree substitution.

Tree1:

A

C

ED

B

Tree2:

S

R

W

Adjoining: Combine([Tree1, node_D], [Tree2, node_S], [new_parent_node])

new_parent_node

D S

Figure 5.8: Tree adjoining.

in Figure 5.7, node D in Tree1 represents a phrase that is a short name of a person, and

node S in Tree2 represents a phrase that is the detailed description of the same person.

Then the function Replace([Tree1, node D]), [Tree2, node S]) realizes the operation of

adding descriptions for that person.

The combination operation extracting common object of two related sentences

can be realized by first calling the adjoining function and then calling the substitution

function, as shown in Figure 5.9. Suppose there are two sentences: � S, V, � � � and � S,

V, � � � , and , � , � � and � � represent subject, verb, and objects respectively. The re-

sult after extracting common object should be � S, V, � � and � � � . This involves first

83

combining the two objects, � � and � � , and adding the connective and, and then sub-

stituting the object � � in sentence � S, V, � � � with the result after adjoining.
�

We can

express the above two steps using the following function: Replace([Tree1, � ��� � � �],

Combine([Tree1, � ��� � � �], [Tree2, � ��� � � �], [new parent node and])).

S O1 S O2

Tree2:

and

and V

(2) substitution: Replace([Tree1, node_O1], result_from_(1))

Tree1:

O1

S

O1 O2

and

V

O2

O1 O2O1S

(1) adjoining: Combine([Tree1, node_O1], [Tree2, node_O2], [new_parent_node_and])

V V

Figure 5.9: Using substitution and adjoining to realize the combination operation ex-
tracting common object of two sentences.

Similarly, all the 13 combination operations can be expressed using the Replace

and Combine function. Note that in the discussion in this section, we use the term node

to refer to a node in a tree, as well as the subtree which has that node as its root. Thus,

Replace and Combine function can be performed on both words and phrases.
�

The formalism we use here is based on Tree Adjoining Grammars (TAG) [Joshi,

Levy, and Takahashi, 1975, Joshi, 1987, Joshi and Schabes, 1996]. As a tree-generating
�

We could also substitute the object � � in sentence � S, V, � ��� with the result after adjoining; the final
results would be the same.

�

Phrases are represented by subtrees in a parse tree.

84

system, TAG uses two composition operations: adjoining and substitution. We should

state, however, that the definitions of adjoining and substitution in TAG are quite dif-

ferent from the Replace and Combine functions we have defined. For instance, the

adjoining composition operation defined in TAG takes only two parameters as input:

an auxiliary tree and a tree (it can be any tree, initial, auxiliary, or derived); adjoining

builds a new tree from the two input trees. In contrast, the � ��� � � � function we have

defined takes three parameters: the two nodes (i.e., trees) to be combined and the new

root node; it builds a new tree from the two input trees and adds the new node as the

root. We may understand the relations between the substitution and adjoining operation

defined in TAG and the Replace and Combine function defined in our system in this

way: Replace and Combine are functions defined by taking into account the particular

actions to be performed on parse trees for sentence combination purpose; they are not

equivalent to substitution and adjoining tree composition operations in TAG, but can be

implemented using the substitution and adjoining compositions.

5.3.2 Implementing Combination Rules

The combination rules we have shown earlier are very high level descriptions of the con-

ditions under which particular combination operations are to be performed. In practice,

to realize these rules, many tasks need to be accomplished.

For example, to realize the rule for adding names and descriptions for people or

organizations, shown in Figure 5.4, the following tasks need to be accomplished. First,

we need a tool that can recognize the names of people or organizations. For this, we

use a named entity recognizer. Second, we need a tool that can recognize descriptions

of people and organizations. For this, we implemented a tool of our own, which finds

descriptions by analyzing appositions following a proper name. We consider an appo-

85

sition immediately following a proper name as a description if it starts with “a”, “an”,

“the”, or a capitalized word and it does not end with verbs such as “say”, “said” or “re-

ports”. This tool can find descriptions such as “a member in the Congress Intelligence

Committee”, “the non-profit organization that promotes international education”, or

“President of the United States”, but will eliminate phrases such as “a London-based

newspaper reported”.
�

Third, we need to recognize which names and descriptions ac-

tually refer to the same person or organization. For instance, in the example shown in

Figure 5.1, the system needs to detect that Clayton and Paul Clayton refer to the same

person. We rely on a coreference system to find such connections. Last, the actual ac-

tion of combining sentences and phrases needs to be implemented, which was presented

in the previous subsection.

A couple of tools used in our sentence combination module are licensed from the

MITRE Corporation. They are:

� Named Entity Recognizer. A named entity recognizer can identify entities (orga-

nizations, persons, and locations), times (dates, times), and quantities (monetary

values, percentages). We use in our system the named entity recognizer provided

by Alembic Workbench [Day et al., 1997].

� Coreference Resolution System. A coreference resolution system links together

multiple expressions designating a given entity. The coreference relations are

marked between elements of the following categories: nouns, noun phrases, and

pronouns. We use the coreference system in the DeepRead system [Hirschman et

al., 1999].
�

[Radev, 1999] developed a tool for extracting person descriptions from multiple documents. It uses
a finite-state grammar for noun phrases to represent different syntactic structures of pre-modifiers and
appositions. Our person description tool is somewhat similar to his in that both systems rely on analyzing
the syntactic structure of appositions to extract descriptions; the difference is that we do not consider
pre-modifiers.

86

5.4 Investigating Machine Learning Methods

Having identified the combination operations and constructed a set of combination rules

by manually analyzing examples, we are interested in exploring machine learning tech-

niques that can possibly be used to automatically discover combination operations or

rules that we have not found by hand.

We mainly experimented with symbolic machine learning techniques. Symbolic

machine learning methods acquire non-numerical knowledge from supervised or unsu-

pervised data. Standard supervised symbolic approaches include: decision tree induc-

tion, logical rule induction, and instance-based learning.

The machine learning program we experimented with is ripper [Cohen, 1995,

Cohen, 1996]. Ripper learns a rule set from examples, which seems to suit our applica-

tion quite well. It induces classification rules from a set of pre-classified examples. The

user provides a set of examples, each of which has been labeled with the appropriate

class. Ripper will then look at the examples and find a set of rules that will predict the

class of later examples.

There are several reasons why we choose Ripper over other machine learning

systems. First, ripper's hypothesis is expressed as a set of if-then rules. These rules

are relatively easy for people to understand; if the ultimate goal is to gain insight into

the data, then ripper is probably a better choice than a neural network learning method,

or even a decision tree induction system. The combination rules we have manually

constructed are also represented as a set of if-then rules; we would like to compare the

manual rules with the rules learned by ripper to see exactly what we have gained by

using automatic learning technique. Second, ripper is faster than other competitive rule

learning algorithms. Third, ripper allows the user to specify constraints on the format

of the learned if-then rules. If there is some prior knowledge about the concept to be

87

learned, then these constraints can often lead to more accurate hypotheses.

In order to use ripper, we must first formulate the sentence combination problem

as a classification problem and represent each combination example as a feature vector.

We let each type of combination operation correspond to a class; therefore, the number

of classes equals to the total number of combination operations. As for the features, we

selected them by looking at the information that is used in the if-then rules that we have

manually constructed before. The features include:

1. distance between source sentences

2. common element in source sentences (no common element, common subject,

common verb, or common object)

3. named entities in source sentences (people or organizations)

4. coreference links

Sample rules learned by ripper are shown below:

� IF (common element: “subject”) THEN operation: “extract common subject”

� IF ((named entity type: people) and (named entity length: short)) THEN opera-

tion: “add names and descriptions”

If we compare the second rule with the rule that we have manually constructed

for adding names and descriptions for people or organizations, shown in Figure 5.4, we

can see that the manual rule includes additional, useful constraints that the rule learned

by ripper does not include: for instance, whether the named entity has appeared in

the summary before. � An analysis of the rules learned by ripper indicates that: (1)
�
If a person or organization has been mentioned before in the summary, supposedly the names and

descriptions have been added then, so there is no need to add the names and descriptions again.

88

they generally have fewer constraints than the manual rules, and (2) one manual rule

typically corresponds to more than one rules learned by ripper. The first finding can

be explained by the fact that some of the constraint information in the manual rules are

not represented as a feature in the input data to ripper. The learning program cannot

possibly learn these constraints without such information. The second finding suggests

that the rules that we manually constructed are more generalized and they cover more

examples.

There are two main limitations with using ripper to learn combination operations

and rules. First, the program cannot learn new combination operations. Ripper uses

supervised data; the user need to label the examples into one of the pre-defined classes.

Since each class corresponds to a combination operation, this requires the user to iden-

tify all the combination operations beforehand. Second, it is very difficult to represent

combination examples as feature vectors. Ripper allows values of attributes to be either

nominal, continuous, or set-valued. Therefore, we must represent the information about

the two source documents sentences, such as named entity information, coreference in-

formation, and the relations between phrases and sentences, in the acceptable formats.

Such representation is difficult.

Other well-known and widely used machine learning programs, such as CART,

C4.5, and ID3, also learn classification rules using supervised data. Therefore, we will

have above problems as well while using these programs to learn combination rules.

5.5 Evaluation

The evaluation of sentence combination module is not as straightforward as that of de-

composition or reduction since combination happens later in the pipeline and its result

89

depends on the output from prior modules. To evaluate only the combination compo-

nent, we need to assume that the system makes the same reduction decision as humans

and the coreference system has perfect performance. This involves manual tagging of

some examples to prepare for the evaluation. The evaluation of sentence combination

focuses on the assessment of the effectiveness of combination rules.

We manually tagged 30 examples, each of which includes a combined sentence

and original document sentences. We then applied our combination rules to the original

document sentences to see whether the system can reproduce human output. For the 30

examples, the output of 14 examples (47%) is exactly the same as that from humans,

the output of 8 examples (27%) is similar to that from humans, and the output of the

remaining 8 examples (27%) is dissimilar but considered clear and coherent enough to

be acceptable.

5.6 Related Work

[Mani, Gates, and Bloedorn, 1999] addressed the problem of revising summaries to im-

prove their quality. They suggested three types of operations: elimination, aggregation,

and smoothing. The goal of the elimination operation is similar to that of the sen-

tence reduction operation in our system. The goal of the aggregation operation and

the smoothing operation is similar to that of the sentence combination operation in our

system. The aggregation operation in their system deals only with sentences that have

coreferential NPs. Sample actions include changing sentences to relative clauses, and

copying and inserting non-restrictive relative clause modifiers, appositive modifiers of

proper names, and proper name appositive modifiers of definite NPs. The smoothing

operation performs tasks such as extracting common element of two sentences and sub-

90

stituting dangling noun phrases or pronouns with the names of entities they refer to in the

original text. As we can see, there is some overlap between the set of combination op-

erations we have identified and their set of aggregation and smoothing operations. This

is not surprising, since there is only a finite set of operations that are frequently used

to combine sentences and phrases. Such operations are also investigated for traditional

natural language generation [Robin, 1994].

The difference between our approach and the above work is that instead of just

relying on linguistic knowledge to derive these combination operations, we rely on a

corpus, which not only provides us with the most frequently used operations by humans,

but also lets us discover combination operations that would be neglected if relying on

linguistic knowledge alone. Also, our system has explicit rules to constrict when to

use which combination operation. These rules take into account the context in which

the sentences appear and choose an operation that is considered appropriate for that

context.

Sentence and phrase combination has also been used for multi-document summa-

rization. For example, [Barzilay, McKeown, and Elhadad, 1999] proposed generating a

summary for multiple documents by identifying and synthesizing related text across re-

lated text. [Radev, 1999] proposed generating summaries from multiple on-line sources

using language reuse and regeneration technique. The fact that our work is on single

document summarization and theirs is on multiple document summarization decides

that we have very different focuses. In multiple document summarization, the focus is

on how to integrate texts that come from different documents, which may overlap or

contradict each other, while the focus in our single document summarization system is

on how to integrate texts that come from different units within a document and generally

do not have overlapping or contradiction problems.

91

5.7 Conclusion

We have presented a sentence combination program that merges sentences reduced by

sentence reduction with other reduced sentences or phrases. A total of 13 combination

operations are identified, and they are classified into 5 categories. A set of combination

rules have been constructed to determine when to use which combination operation.

The implementation of combination operations uses a formalism based on Tree Adjoin-

ing Grammars. We also explored using rule induction machine learning technique to

automatically acquire combination rules.

92

Chapter 6

A Large-Scale, Reusable Lexicon for

Natural Language Generation

Many types of knowledge are needed by the cut-and-paste summarization system for

it to edit extracted sentences correctly. An important type of knowledge required by

the system is the syntactic information. The sentence reduction module, presented in

Chapter 4, relies on a large-scale lexicon we have constructed to provide the knowledge

about the syntactic properties of verbs.

In this chapter, we present this large-scale lexicon that we constructed by com-

bining multiple heterogeneous resources. In Section 6.1, we discuss the motivation for

building such a lexicon. In Section 6.2, we give a brief introduction to the combined lex-

icon, presenting the resources that the lexicon was combined from, the types of knowl-

edge included in the lexicon, and the size of the lexicon. In Section 6.3, we describe in

detail how the lexicon was constructed by merging multiple, large-scale, heterogeneous

resources. Our construction process is semi-automatic; the actual merging of different

resources was all done automatically, but some databases used in the merging process

93

were created manually. The combined lexicon has been used in many applications,

including our cut-and-paste summarization system, traditional natural language gener-

ation, word sense disambiguation, and machine translation. We briefly describe the

applications of the combined lexicon in Section 6.4. Finally, we conclude the chapter

with a discussion of related work and a short summary of the chapter.

6.1 Motivation

The lexicon was initially constructed for traditional Natural Language Generation pur-

poses. There are two main reasons for building this lexicon. First and foremost, we want

to provide language generation with a lexicon that is indexed at the semantic concept

level. Most existing large-scale resources encode their knowledge at the word level.

While such resources are suitable for language interpretation, they are not particularly

suitable for generation. An ideal generation lexicon should represent its knowledge at

the semantic concept level rather than at the word level, because the input of a gener-

ation system generally consists of semantic concepts and most of the processing in the

generation process is based on these semantic concepts.

The second reason is that we want to be able to use the knowledge from multiple

resources simultaneously in a single generation system. Generally, generation requires

many types of knowledge, such as lexical, syntactic, and semantic knowledge, but these

different types of knowledge are often encoded in separate resources. Because the de-

notation and format used by one resource can be completely different from those used

by another resource, it is difficult to directly use multiple resources in a single system.

Combining these resources into a single, reusable lexicon makes sharing the knowledge

from multiple resources possible.

94

Most traditional natural language generation systems that have been developed so

far are supported by small lexicons with limited entries and hand-coded knowledge. Al-

though such lexicons are reported to be sufficient for the specific domains in which gen-

eration systems work, there are some obvious deficiencies: (1) Hand-coding is time and

labor intensive, and introduction of errors is likely; (2) Even though some knowledge,

such as syntactic structures for a verb, is domain-independent, often it is re-encoded

each time a new application is under development; (3) Hand-coding seriously restricts

the scale and expressive power of a generation system.

The problem with hand-coding becomes more acute when we aim to develop a

domain-independent system, like our cut-and-paste generation system for summariza-

tion. In such a situation, the entries needed to be included in a lexicon is are so many that

the practice of hand-coding the lexicon by individual developers becomes impractical.

6.2 Introduction of the Lexicon

We selected four large-scale, heterogeneous resources as the information sources of the

combined lexicon. In our selection of resources, we aim primarily for accuracy of the

resource, large-coverage, and provision of a particular type of information especially

useful for natural language generation. The four resources are:

1. The WordNet on-line lexical database [Miller et al., 1990]. WordNet is a well

known on-line dictionary, consisting of 121,962 unique words, 99,642 synsets

(each synset is a lexical concept represented by a set of synonymous words), and

173,941 senses of words.
�

It is especially useful for generation because it is based

on lexical concepts, rather than words.
�

As of Version 1.6, released in December 1997.

95

2. English Verb Classes and Alternations (EVCA) [Levin, 1993]. EVCA is an exten-

sive linguistic study of diathesis alternations, which are variations in the realiza-

tion of verb arguments. For example, the alternation “there-insertion” transforms

“A ship appeared on the horizon” to “There appeared a ship on the horizon”.

Knowledge of alternations facilitates the generation of paraphrases. [Levin, 1993]

studied 80 alternations for 3,104 verbs.

3. The COMLEX (COMmon LEXicon) syntax dictionary [Grishman, Macleod, and

Meyers, 1994]. The COMLEX Syntax dictionary consists of 38,000 head words

(including approximately 21,000 nouns, 8,000 adjectives and 6,000 verbs), all of

which are marked with a rich set of syntactic features and complements. Nouns

have 9 possible features and 9 possible complements; adjectives have 7 features

and 14 complements; and verbs have 5 features and 92 complements. The com-

plements/subcategorization for verbs represent the arguments verbs can take. For

example, verbs marked with subcategorization “np” take a noun phrase comple-

ment (e.g., “John like Mary”), and verbs marked with subcategorization “np-to-

inf” take a noun phrase complement followed by a to-infinitive complement (e.g.,

“I want John to go”).

4. The Brown Corpus tagged with WordNet senses [Miller et al., 1993]. The Brown

corpus [Kucera and Francis, 1967] consists of about a million words, all labeled

with their parts of speech. Part of the Brown Corpus has been manually tagged

with WordNet senses by the WordNet group. We use this corpus for frequency

measurements.

In the construction of the lexicon, we focus on verbs, since they play the most

important role in deciding phrase and sentence structure. The combined lexicon contains

96

syntactic, semantic, and lexical knowledge for verbs, indexed by senses of verbs as

required by generation, including:

� A complete list of syntactic subcategorizations for each sense of a verb.

� A large variety of transitivity alternations for each sense of a verb.

� Frequency of lexical items and verb subcategorizations and also selectional con-

straints derived from a corpus.

� Rich lexical relations between lexical concepts.

Figure 6.1 shows a sample entry of the lexicon. This entry shows that, as a verb,

the word appear has 8 senses. For each sense, the lexicon lists the complements that

appear can take when used in that particular sense, the syntactic alternations, and the

semantic constraints on the subject and object of the sentence. The frequency informa-

tion derived from corpus and the lexicon relations from WordNet are not shown in this

figure, although they are included in the lexicon.

Figure 6.2 shows the construction process and the size of the combined lexicon.

EVCA (consisting of 3,104 verbs), was first combined with COMLEX (5,583 verbs).

The result after merging COMLEX with EVCA (5,920 verbs) was then combined with

WordNet (14,738 verbs and phrases). The final lexicon consists of 5,676 verbs, each

of which is represented at the sense level. On average, each verb in the lexicon has

2.5 senses. Each sense of a verb is marked with a rich set of subcategorizations and

alternations, as shown in the sample entry for appear in Figure 6.1. Each sense has an

average of 3.1 subcategorizations and 0.2 alternations.

97

appear:
sense 1 give an impression
((PP-TO-INF-RS :PVAL (”to”) :SO ((sb, �)))
(TO-INF-RS :SO ((sb, �)))
(NP-PRED-RS :SO ((sb, �)))
(ADJP-PRED-RS :SO ((sb, �) (sth, �)))))

sense 2 become visible
((PP-TO-INF-RS :PVAL (”to”)

:SO ((sb, �) (sth, �)))
...
(INTRANS THERE-V-SUBJ

:ALT there-insertion
:SO ((sb, �) (sth, �))))

...

sense 8 have an outward expression
((NP-PRED-RS :SO ((sth, �)))
(ADJP-PRED-RS :SO ((sb, �) (sth, �))))

Figure 6.1: Entry for the verb appear in the combined lexicon.

6.3 Combining Multiple Large-Scale Heterogeneous Re-

sources

This section describes in detail how the lexicon was constructed by combining the four

linguistic resources we introduced in the previous section. We merged data from the

four resources in a manner that aims to achieve high accuracy and completeness.

Our algorithm first merges COMLEX and EVCA, producing a list of syntactic

subcategorizations and alternations for each verb. Distinctions in these syntactic restric-

tions according to each sense of a verb are achieved in the second stage, where WordNet

is merged with the result of the first step. Finally, corpus information is added, comple-

menting the static resources with actual usage counts for each syntactic pattern. This

allows us to detect rarely used constructs that should be avoided during generation, and

98

Combined Lexicon

14,738 verbs and phrases

WordNet

5,676 verbs
EVCA&COMLEX

5,920 verbs

0.2 alt/sense
3.1 subc/sense

2,5 senses/verb

5,583 verbs

COMLEX

EVCA

3,104 verbs

Figure 6.2: Construction of the combined lexicon and the size of resources.

possibly to identify alternatives that are not included in the lexical databases.

6.3.1 Step 1: Merging COMLEX with EVCA

COMLEX uses 92 frames to represent the structure of verb phrases. Figure 6.3 shows

the entry for the verb appear in the COMLEX syntax dictionary. Most of these frames

are self-explanatory. For example, “INTRANS” means that a verb is intransitive. De-

tailed explanation of these frames can be found in COMLEX Syntax Reference Man-

ual [Macleod and Grishman, 1995].

EVCA contains subcategorization and alternation information for verbs and verb

classes. Alternations involve syntactic transformations of verb arguments. They are thus

a means to alleviate the usual lack of alternative ways to express the same concept in

current generation systems.

To be able to merge the syntactic information from EVCA with that from COM-

LEX, we first need to represent the information in EVCA in a format that can be au-

tomatically analyzed. Therefore, we first convert the verb subcategorization and alter-

nation information present in Levin's book [Levin, 1993] to a format that is readable

by computers and that is compatible with the representation used in COMLEX. We ex-

99

appear:
((INTRANS)
(SEEM-S)
(SEEM-TO-NP-S)
(TO-INF-RS)
(NP-PRED-RS)
(ADJP-PRED-RS)
(ADVP-PRED-RS)
(AS-NP)
(EXTRAP-TO-NP-S)
(PP-TO-INF-RS :PVAL (”to”))
(PP-PRED-RS :PVAL (”to”

”of”
”under”
”against”
”in favor of”
”before”
”at”)))

Figure 6.3: Entry for the verb appear in COMLEX.

tracted the relevant information for each verb using the verb classes to which the various

verbs are assigned; verbs of the same class have the same syntactic properties. EVCA

specifies a mapping between words and word classes, associating each class with al-

ternations and with subcategorization frames. Using the mapping from word to word

classes, and from word classes to alternations, alternations for each verb are extracted.

We manually formatted the alternate patterns in each alternation in COMLEX

format. The reason to choose manual formatting rather than automating the process is

to guarantee the reliability of the result. In terms of time, manual formatting is no more

expensive than automation since the total number of alternations is small (80). When an

alternate pattern cannot be represented by the labels in COMLEX, we need to add new

labels during the formatting process; this also makes automating the process difficult.

The formatted EVCA consists of sets of applicable alternations and subcatego-

100

rizations for 3,104 verbs. We show the sample entry for the verb appear in Figure 6.4.

Each verb has 1.9 alternations and 2.4 subcategorizations on average. The maximum

number of alternations (13) is realized for the verb “roll”.

The merging of COMLEX and EVCA is achieved by unification, which is pos-

sible due to the usage of similar representations. Two points are worth mentioning: (a)

When a more general form is unified with a specific one, the latter is adopted in the

final result. For example, the unification of PP
�

and PP-PRED-RS
�

is PP-PRED-RS.

(b) Alternations are validated by the subcategorization information. An alternation is

applicable only if both alternate patterns are applicable.

Applying this algorithm to our lexical resources, we obtain rich subcategoriza-

tion and alternation information for each verb. COMLEX provides most subcategoriza-

tions, while EVCA provides certain rare usages of a verb which might be missing from

COMLEX. Conversely, the alternations in EVCA are validated by the subcategoriza-

tions in COMLEX. The merging operation produces entries for 5,920 verbs out of 5,583

in COMLEX and 3,104 in EVCA. � Each of these verbs is associated with 5.2 subcatego-

rizations and 1.0 alternations on average. Figure 6.5 is an updated version of Figure 6.4

after this merging operation.

6.3.2 Step 2: Merging COMLEX/EVCA with WordNet

WordNet is a valuable resource for generation because, most importantly, the synsets

provide a mapping between concepts and words. Its inclusion of rich lexical relations

also provide a basis for lexical choice. Despite these advantages, the syntactic informa-

tion in WordNet is relatively poor. Conversely, the result we obtained after combining
�

A verb can take a prepositional phrase complement.
�

A verb can take a prepositional phrase complement, and the subject of the prepositional phrase is the
surface subject of the sentence. E.g., “The work appears of great significance.”�

2,947 words appear in both resources.

101

appear:
((INTRANS)
(LOCPP)
(PP)
(ADJ-PER-PART)
(INTRANS THERE-V-SUBJ :ALT There-Insertion)
(LOCPP THERE-V-SUBJ-LOCPP :ALT There-Insertion)
(LOCPP LOCPP-V-SUBJ :ALT Locative Inversion))

Figure 6.4: Alternations and subcategorizations from EVCA for the verb appear.

appear:
((PP-TO-INF-RS :PVAL (”to”))
(PP-PRED-RS :PVAL (”to” ”of” ”under” ”against”

”in favor of” ”before” ”at”))
(EXTRAP-TO-NP-S)
(INTRANS)
...
(INTRANS THERE-V-SUBJ :ALT There-Insertion)
(LOCPP THERE-V-SUBJ-LOCPP :ALT There-Insertion)
(LOCPP LOCPP-V-SUBJ :ALT Locative Inversion)))

Figure 6.5: Entry for the verb appear after merging COMLEX with EVCA.

COMLEX and EVCA has rich syntactic information, but this information is provided at

the word level and thus is unsuitable to use for generation directly. These complemen-

tary resources are therefore combined in the second stage, where the subcategorizations

and alternations from COMLEX/EVCA for each word are assigned to each sense of the

word.

Each synset in WordNet is linked to a list of verb frames, each of which repre-

sents a simple syntactic pattern and general semantic constraints on verb arguments. A

sample verb frame used in WordNet is “Somebody –s something”, which means that a

verb takes an inanimate object as complement and the subject of the sentence is animate

102

(e.g., “Women like chocolates”). A total of 35 verb frames are used in WordNet. The

fact that WordNet contains this syntactic information (albeit poor) makes it possible to

link the result from COMLEX/EVCA with WordNet.

The merging operation is based on a compatibility matrix, which indicates the

compatibility of each subcategorization in COMLEX/EVCA with each verb frame in

WordNet. The subcategorizations and alternations listed in COMLEX/EVCA for each

word is then assigned to different senses of the word based on their compatibility with

the verbs frames listed under that sense of the word in WordNet. For example, if for

a certain word, the subcategorizations PP-PRED-RS and NP are listed for the word in

COMLEX/EVCA, and the verb frame “Somebody –s PP” is listed for the first sense of

the word in WordNet, then PP-PRED-RS will be assigned to the first sense of the word

while NP will not, because PP-PRED-RS and “Somebody –s PP” are compatible, while

NP and “Somebody –s PP” are not. We also keep in the lexicon the general constraint

on verb arguments from WordNet frames. Therefore, for this example, the entry for the

first sense of the word will be “PP-PRED-RS :subject(somebody)”, which indicates that

the verb can take a prepositional phrase as a complement, the underlying subject of the

prepositional phrase is the surface subject, and the subject of the sentence should be in

the semantic category “somebody”. As you can see, the result incorporates information

from three resources, but is more informative than any of them. An alternation is con-

sidered applicable to a word sense if both alternate patterns have matchable verb frames

under that sense.

The compatibility matrix is the kernel of the merging operations. The �!� � �����
matrix (147 subcategorizations from COMLEX/EVCA, 35 verb frames from WordNet)

was first manually constructed based on human understanding. In order to achieve high

accuracy, very strict restrictions are used to decide whether a pair of labels are com-

103

patible when the matrix was first constructed. We then use regressive testing to adjust

the matrix based on the analysis of merging results. During regressive testing, we first

merge WordNet with COMLEX/EVCA using a current version of the compatibility ma-

trix, and write all inconsistencies to a log file. In our case, an inconsistency occurs if a

subcategorization or alternation in COMLEX/EVCA for a word cannot be assigned to

any sense of the word, or a verb frame for a word sense does not match any subcatego-

rization for that word. We then analyze the log file and adjust the compatibility matrix

accordingly. This process is repeated 6 times until when we analyze a fair amount of

inconsistencies in the log file, they are no longer caused by the restrictions in the com-

patibility matrix.

Inconsistencies between WordNet and COMLEX/EVCA result in subcategoriza-

tions that cannot be assigned to any sense of a verb and verb frames that do not match

any of the subcategorizations for the verb. On average, 15% of subcategorizations and

alternations for a word cannot be assigned to any sense of the word, mostly due to in-

complete syntactic information in WordNet; 2% verb frames for each sense of a word

do not match any subcategorizations for the word, either due to incomplete information

in COMLEX/EVCA or erroneous entries in WordNet.

The lexicon at this stage contains a rich set of subcategorizations and alterna-

tions for each sense of a word, coupled with semantic constraints on verb arguments.

For 5,920 words in the result after combining COMLEX and EVCA, 5,676 words also

appear in WordNet and each word has 2.5 senses on average. After the merging oper-

ation, the average number of subcategorizations is refined from 5.2 per verb in COM-

LEX/EVCA to 3.1 per sense, and the average number of alternations is refined from

1.0 per verb to 0.2 per sense. Figure 6.1 shows the result for the verb appear after the

merging operation.

104

6.3.3 Step 3: Adding Corpus Information

Finally, we enriched the lexicon with language usage information derived from cor-

pus analysis. The corpus used here is the Brown Corpus tagged with WordNet senses.

The language usage information in the lexicon includes: (1) frequency of each word

sense; (2) frequency of subcategorizations for each word sense. The corpus analysis

information complements the subcategorizations from the static resources by marking

potential superfluous entries and supplying entries that are possibly missing in the lexi-

cal databases; (3) semantic constraints of verb arguments. The arguments of each verb

are clustered based on hyponymy hierarchy in WordNet. The semantic categories we

thus obtained are more specific compared to the general constraint (animate or inani-

mate) encoded in WordNet frame representation. The language usage information is

especially useful for lexical choice in traditional natural language generation.

6.4 Applications of the Combined Lexicon

The combined lexicon has been used in many applications. We used it in our cut-and-

paste summarization system to prevent removing obligatory verb arguments during the

sentence reduction process; we used it in a practical, traditional natural language gen-

eration system [McKeown, Kukich, and Shaw, 1994, Jing and McKeown, 1998] to im-

prove the reusability of the lexical choice and realization components and to improve the

power of generating paraphrases; we integrated it with a unification-based natural lan-

guage generator [Elhadad, 1992, Robin, 1994] to improve the system's ability to avoid

generating non-grammatical output and to allow the lexicon to be usable by many gen-

eration systems; we used it in word sense disambiguation to prune verb senses. Other

researchers have also used it for machine translation and language generation. Next, we

105

briefly present the usage of the lexicon in these applications. Details can be found in

relevant papers.

6.4.1 Cut-and-Paste Summarization

As shown in Section 4.1, the combined lexicon was used in the sentence reduction pro-

cess to prevent removing obligatory verb arguments. The example shown earlier is the

verb convince, which has the following entry in the combined lexicon:

convince

sense 1: NP-PP :PVAL (“of”)

NP-TO-INF-OC

sense 2: NP

This entry indicates that the verb “convince” can be followed by a noun phrase

and a prepositional phrase starting with the preposition “of” (e.g., he convinced me

of his innocence). It can also be followed by a noun phrase and a to-infinitive phrase

(e.g., he convinced me to go to the party). This information is used in step 2 of the

reduction algorithm to mark that the “of” prepositional phrase or the to-infinitive are

obligatory parts of the verb phrase, and therefore, they will not be deleted even if context

information or other types of information may indicate that they are not essential.

Two points are critical for the application of the lexicon in the summarization

system to be successful: first, the lexicon must have broad word coverage, because we

aim to develop a domain-independent system and the summarizer must be able to handle

all the words that are commonly encountered; second, the syntactic information in the

lexicon should be as complete as possible, since missing subcategorizations for verbs

106

may result in the wrongful removal of obligatory verb arguments and thus incoherent

output. Our lexicon has broad coverage and includes extensive syntactic information, so

it meets the requirements of summarization.

6.4.2 Traditional Natural Language Generation

The fact that knowledge in the combined lexicon is encoded at the semantic concept

level makes it particularly suitable for traditional natural language generation applica-

tions. PlanDOC [McKeown, Kukich, and Shaw, 1994, Jing and McKeown, 1998] is a

practical generation system that we developed for the former Bellcore company (now

called Telcordia Technologies). It is an enhancement to Bellcore's LEIS-PLANTM net-

work planning product. PlanDOC transforms lengthy execution traces of engineer's

interaction with LEIX-PLAN into human-readable summaries.

We proposed a multi-level feedback architecture for lexical choice and realiza-

tion. When used together with our combined lexicon, this architecture improves the

reusability of lexical choice and realization modules. Figure 6.6 shows the multi-level

feedback architecture.

To understand this architecture, we first need to distinguish three different types

of paraphrases: semantic paraphrases, lexical paraphrases, and syntactic paraphrases. If

one is asked whether one will be at home tomorrow, then answers such as “I'll be at

work tomorrow”, “No, I won't be at home.”, and “I'm leaving for vacation tonight” can

be considered paraphrases at the semantic level since they all express the same facts, that

is, the person won't be at home tomorrow. Paraphrases like “He bought an umbrella”

and “He purchased an umbrella” are at the lexical level since they are acquired by

substituting certain words with synonymous words. Paraphrases like “A ship appeared

on the horizon” and “On the horizon appeared a ship” are at the syntactic level since

107

Mapping from Lexical

Lexical Concepts

Semantic Concepts

Content and Sentence Planner

Mapping from Semantic
Concepts to Lexical Concepts

Concepts to Words

L
ex

ic
al

 C
ho

ic
e

User-defined Database

WordNet

Combined Lexicon

Natural Language Output

Words

Grammar Checking
and Syntactic Paraphrases

Surface Realization

Figure 6.6: The multi-level feedback architecture for lexical choice and realization.

they only involve syntactic transformations.

There are three stages in the multi-level architecture we proposed. The first

stage is semantic paraphrasing, which maps semantic concepts to lexical concepts using

a user-defined database. The second stage is lexical paraphrasing, which maps lexi-

cal concepts to words, using the synsets in WordNet and the syntactic and semantic

constraints in our combined lexicon. The third stage is syntactic paraphrasing, which

does grammatical checking and generates syntactic paraphrases using the subcatego-

rization/alternation information in our combined lexicon. The first stage is domain-

dependent, while the modules that implement the second and the third stage can be

reused. The combined lexicon, which is used in the second and third stage, can also be

108

reused by many generation systems. By refining the processing steps in lexical choice

and realization into multiple levels, we aim to separate the processes that are domain-

independent from the processes that are domain-independent, and therefore, reuse the

domain-independent modules when a new application is under development.

In PlanDOC, at least three paraphrases were defined for each message at the se-

mantic level. For example, “The base plan called for one fiber activation at CSA 2100”

and “There was one fiber activation at CSA 2100” are semantic paraphrases in Plan-

DOC. At the lexical level, we use synonymous words from WordNet to generate lexical

paraphrases. A sample lexical paraphrase for “The base plan called for one fiber ac-

tivation at CSA 2100” is “The base plan proposed one fiber activation at CSA 2100”

Subcategorizations and alternations from the lexicon are then applied at the syntactic

level. After three levels of paraphrasing, each message in PlanDOC has over ten para-

phrases on average.

For a specific domain such as PlanDOC, an enormous proportion of a general

lexicon like the one we constructed is unrelated and thus not used at all. On the other

hand, domain-specific knowledge may need to be added to the lexicon. The problem

of how to adapt a general lexicon to a particular application domain and merge domain

ontologies with a general lexicon was discussed in [Jing, 1998].

6.4.3 Integration of the Lexicon with a Natural Language Genera-

tor

We integrated the lexicon with FUF/SURGE [Elhadad, 1992, Robin, 1994], a unification-

based syntactic realizer. This integration makes it possible to reuse major parts of a lex-

ical chooser, which is the component in a generation system that is responsible for map-

ping semantic input to surface generator input. We show that although the whole lexical

109

chooser cannot be made domain-independent, it is possible to reuse a large amount of

lexical, syntactic, and semantic knowledge across applications.

In addition, the lexicon bring other benefits to a generation system, including the

ability to automatically generate many lexical and syntactic paraphrases and to avoid

non-grammatical output. Once integrated into the FUF/SURGE package, the lexicon

can be easily used by any generation system which uses FUF/SURGE as its surface

generator.

The integration of the lexicon with FUF/SURGE is implemented through incre-

mental unification. The main problems involved include how to represent the lexicon

in FUF format, how to unify input with the lexicon incrementally to generate more so-

phisticated and informative representations, and how to design an appropriate semantic

input format so that the integration of the lexicon and FUF/SURGE can be done easily.

For details, refer to [Jing et al., 2000].

6.4.4 Word Sense Pruning

We explored using the syntactic and semantic constraints encoded in the combined lexi-

con for word sense disambiguation. A given word may have � distinct senses and appear

within � different syntactic contexts, but typically, not all � � � combinations are valid.

The syntactic context can partly disambiguate the semantic content. For example, when

the verb appear has a to-infinitive complement, it can only have the sense of “give an

impression” (sense 1 in Figure 6.1) out of 8 possible senses. The lexicon entry for the

verb appear, as shown in Figure 6.1, can be converted to a syntax-semantics restriction

matrix, shown in Table 6.1. When appear is encountered in a particular syntactic struc-

ture, an automatic program can consult the restriction matrix to eliminate senses that can

be excluded. In the case of appear, only 47 cells of the � � � � matrix represent possible

110

combinations of syntactic patterns with senses, corresponding to a 74.5% reduction in

ambiguity.

For the 5,676 verbs present in the combined lexicon, the average reduction in

ambiguity was 36.82% for words with two to four senses, 59.36% for words with five

to ten senses, and 73.86% for words with more than ten senses; the overall average for

all polysemous words was 47.91%.

This method of word sense pruning has two significant advantages: first, it can

be automatically applied, assuming a robust method for parsing the relevant verb phrase

context; second, it can be applied to any text since it is domain-independent.

To further restrict the size of the set of valid senses produced, we also explored

using domain-dependent, automatically constructed semantic classifications to identify

predominant senses of words in a specific-domain. Applying this method and the syn-

tactic constraints method in tandem and intersecting the sense sets produced by them,

we can reduce the size of the final tag.

[Jing et al., 1997] described our experiments in verb sense pruning in detail.

6.4.5 Other Applications

The lexicon can also be used for other purposes, such as machine translation. [Baldwin,

Bond, and Hutchinson, 1999] proposed a valency dictionary architecture for machine

translation. The architecture uses a sense-based dictionary structure to describe mono-

lingual lexicons and a set of transfer links to indicate correspondences between lexicons

in different languages. The proposed dictionary structure comprises of, in descending

order, the word, sense and frame levels. Our combined lexicon can be easily represented

in the proposed structure and used in machine translation.

111

Subcategorization/Alternation Sense
S1 S2 S3 S4 S5 S6 S7 S8

�����������
	�����
��� �
����� �
 � � ��
������� �
 � � �

������������������� �
����� �
 � ��
������� �
 � � �

����� ��!"���������
�"����� �

	���� ��!"�#� �
����� �
 � ��
������� �
 � � �

�$����%&��� �

�$����%&�
������������� �

�����
	���'����� �
����� �
 ��
������� �

�����
���������
��� �
����� �
 ��
������� �
 +

�

!���()�����*���������+� �
����� �
 � ��
������� �
 � �

!�� ,����
�����*���
��� �
����� �
 � ��
������� �
 � �

!#�)����� �
����� �
 � ��
������� �
 � � �

-'��./�*� �
����� �
 � ��
������� �
 � � �

� 0���������	��#�$����� 	1�"� � � �

-'��./!*� 	
,�����	���,����+�2	3�"� � � �

Table 6.1: Valid combinations of syntactic subcategorization /alternations and senses
(marked with

�
) for the verb appear.

6.5 Discussions

Merging resources is not a new idea; previous work has investigated integration of

resources for machine translation and interpretation [Klavans and Tzoukermann, 1990,

Knight and Luk, 1994]. Our work differs from previous work in that for the first time,

a generation lexicon is built by this technique. Unlike other work that aims to combine

resources with similar type of information, we select and combine multiple resources

containing different types of information. While others combine lexicons like LDOCE

112

(Longman Dictionary of Contemporary English) in which the definitions are written in

natural language, we chose resources in which the information is well encoded for com-

puter use or manually formated the resource so as to get reliable and usable results. A

semi-automatic rather than a fully automatic approach is adopted to ensure accuracy.

Corpus analysis information is also linked with information from static resources. Us-

ing these measures, we are able to acquire an accurate, reusable, rich, and large-scale

lexicon for natural language generation.

The lexicon we have constructed focus on verbs, since we are interested in syn-

tactic properties and such properties are mostly associated with verbs. For other part-

of-speeches, such as nouns and adjectives, the properties that we need to focus on while

combining multiple resources may be different. Nouns have much less possible com-

plements than verbs; COMLEX have 9 possible complements for nouns compared to

92 complements for verbs, and WordNet does not include complement information for

nouns. But there are other features that are important for nouns: for example, whether a

noun is aggregate (that is, it can occur as the subject of both definitely singular and defi-

nitely plural verbs, as in “the GROUP have changed their minds” and “the GROUP has

changed its mind”, or whether a noun is countable, or whether it can precede a person's

name. Such features are encoded in COMLEX. Therefore, if we combine the noun en-

tries in COMLEX with the noun entries in WordNet, we need to include these features

in addition to the complement information. Similarly to nouns, adjectives also have less

complements than verbs — 14 complements for adjectives in COMLEX compared to

92 complements for verbs — but they have other important features, such as whether an

adjective has a comparative or superlative form, or whether it can occur before a quan-

tifier. Such features, in addition to the complement information, need to be considered

when adjective entries from multiple resources are combined.

113

6.6 Conclusion

We have presented research on building a rich, large-scale, and reusable lexicon for

generation by combining multiple heterogeneous linguistic resources. Novel semi-

automatic transformation and integration were used in combining resources to ensure

reliability of the resulting lexicon. The lexicon has been used in many applications,

including summarization, traditional natural language generation, word sense disam-

biguation, and machine translation.

114

Chapter 7

Putting it All Together

In this chapter, we first describe the sentence extraction module in our summarization

system. Our extraction module primarily relies on lexical coherence information to iden-

tify key sentences, and also uses other types of information, including tf � idf scores, cue

phrases, and sentence positions. In Section 7.2, we briefly describe the implementation

of the system and give an example to show how a document goes through the system

pipeline. Section 7.3 is devoted to evaluation issues. We discuss the techniques that are

used for summarization evaluations and present the result of our evaluation experiment.

Section 7.4 is concerned with portability issues. We describe our experiments in four

different domains to test the portability of our cut-and-paste summarization system.

7.1 The Extraction Module

The role of the extraction module is to identify key sentences in a document. We de-

veloped an extraction module that primarily relies on lexical coherence information to

identify key sentences and also incorporates other types of information, including tf �
idf scores, cue phrases, and sentence positions.

115

7.1.1 The Lexical Links Approach

The extraction module uses the lexical coherence information in a way that is very sim-

ilar to the lexical links approach used in step 3 of the sentence reduction algorithm (see

Section 4.1.2). The only difference is that besides considering the number and types of

lexical links, here we also consider the directions of those links. We distinguish two di-

rections of lexical links: forward and backward. A forward link connects a word in the

current sentence with a word in a subsequent sentence, while a backward link connects

a word from the current sentence with a word in a preceding sentence.

The algorithm for computing lexical links can be summarized as follows. First,

content words in each sentence are linked with related words in other sentences of the

document. Two words are considered related if they are repetitions, morphologically

related, or linked through one of the lexical relations represented in WordNet. The

system then computes an importance score for each word in the sentence, based on the

number of lexical links it has with other words in the document, the types of the links,

and the directions of the links. The formulae for computing the lexical links score for a

word � are shown below:

� � � � 	 � � � �
	�� � � �

�
�
	

�

� � � � � � � � 	 � � ��� � � � �

� 	�� � 	 � � � �
	�� � � �

�
�
	

�

� � � � � 	�� � 	 � � ��� � � � �

�� � � � � �
 ��
	�� � � � � � 	 � � � �
	�� � � �
 � � 	�� � 	 � � � � 	�� � � �

Here, represents the different types of lexical relations the system considers.

The nine types of lexical relations that is considered by the system include repetition,

116

inflection, derivation, synonymy, meronymy (part-of), hypernymy, antonymy, entail-

ment, and causation. We assign a weight to each type of lexical relation, represented by
� �

in the formula. Relations such as repetition or inflection are considered more impor-

tant and are assigned higher weights, while relations such as hypernymy are considered

less important and assigned lower weights.
� � � � 	 � � � �
	�� � � �
 computes the weight of all the forward links for a given

word w.
� � � � 	 � � ��� � ��� �
 represents the number of a particular type of lexical links

that the word � has with other words in the document. Similarly, � 	�� � 	 � � � � 	�� � � �

computes the weight of all the backward links for the word w.

The final score for word w, �� � � � � �
 , indicates the importance of the word w.

It is computed as the larger value of the forward weight and the backward weight. The

idea is that if a word has many links with other words in the document and the links are

mostly in one direction, then the word is probably important since it is likely to start a

new topic (if most of the lexical links are forward links) or conclude a topic (if most of

the lexical links are backward links). If a word has many links but the links distribute

in both directions about equally, then the word is not considered as important as the

previous case since it is more likely to be in a middle of a discussion. If a word has few

links, then it is considered not important because it is less likely to be related to the main

topic.

After computing an importance score for each content word in a sentence, we

can compute an importance score for the sentence by adding up the scores for the words

in the sentence. This score indicates how important the sentence is based on the lexical

coherence information.

117

7.1.2 Incorporating Other Types of Information

Besides lexical coherence information, the extraction module incorporates three other

types of information while determining sentence importance: tf � idf scores, cue phrases,

and sentence positions. The different types of information are integrated as follows

when we rank the importance of sentences:

� If a sentence contains cue phrases, such as “in summary” and “in conclusion”,

and it is at the beginning or at the end of the document, and it has a high score

based on lexical links or tf � idf, then the sentence is ranked most important.

� If a sentence does not include a cue phrase but it has a high lexical links score or

tf � idf score, and it appears at the beginning or at the end of the document, it is

considered very important.

� If a sentence does not include a cue phrase, and it does not appear at the beginning

or at the end of the document, but it has a high score based on both lexical links

and tf � idf, then it is considered important.

� If a sentence does not include a cue phrase, and it does not appear at the beginning

or at the end of the document, but it has a high lexical links score, then it is

considered somewhat important.

� If a sentence does not include a cue phrase, and it does not appear at the beginning

or at the end of the document, and it has a low lexical links score and a low tf �

idf score, then it is considered least important.

Sentences are extracted in the order of their importance until the summary reaches

the required length.

118

7.2 Implementation

We have developed a full-fledged summarization system using the cut-and-paste tech-

niques presented in this thesis. The programs were mostly written in the PERL language.

The main components of the system include:

� Decomposition Module

� Sentence Reduction Module

� Sentence Combination Module

� Extraction Module

� The Large-scale Lexicon

Each component of the system is quite independent of others. The sentence re-

duction module and sentence combination module can be integrated into other extraction-

based summarizers to serve as its generation component. The decomposition module

can be used by any summarization system that needs to automatically build training and

testing corpora. The large-scale lexicon can be used in various types of applications, as

we have shown in Chapter 6.

The tools that we licensed from other research organizations include:

� Syntactic Parser (ESG from IBM)

� Named Entity Recognizer (Alembic from MITRE)

� Coreference Resolution System (DeepRead from MITRE)

119

7.3 An Example

We show an example from the beginning to the end to illustrate how a document goes

through the pipeline of the system and what result is produced at each step.

Figure 7.1
�

shows a newspaper article that tells a story of five men being arrested

after they tried to free drug prisoners from a county jail. The input document is first sent

to the extraction module, which extracts key sentences. In this example, sentence 1, 2, 5,

10, 11 are selected, as shown in Figure 7.2. For most of automatic summarizers, this is

the end of the summarization process. The result shown in Figure 7.2 will be considered

as the output summary and presented to readers.

In contrast, our system sends the above result to the sentence reduction module,

which removes extraneous information from extracted sentences. The result after re-

duction is shown in Figure 7.3. In this case, the reduction module removed a temporal

phrase from sentence 1, a clause from sentence 2, and the entire sentence 5.
�

In the next step, the reduction result is sent to the combination module, which

merges reduced sentences with other sentences and phrases. The result after sentence

combination is shown in Figure 7.4. As we can see, the reduced sentence 2 was merged

with sentence 3 by extracting common subject. Note that sentence 3 was not extracted

by the extraction module, but since it is closely related to sentence 2, the combination

module merged the two sentences. Also, reduced sentence 10 and reduced sentence 11

are merged by adding the connective and.

Finally, the sentences after sentence combination are concatenated to produce the

summary. A comparison of the extraction-based result, shown in Figure 7.2, and the cut-

and-paste result, shown in Figure 7.4, demonstrates that, for this example, the cut-and-
�

The figures for the example are at the end of this chapter.
�

Because the reduction program finds that the sentence has a low context importance score, suggesting
that it is not very related to the topic and may not be a good candidate for extraction

120

paste method has improved the conciseness and coherence of the generated summary.

7.4 Evaluation of the Overall System

In previous chapters, we presented the results of numerous experiments that evaluate

individual modules of our cut-and-paste summarization system. In this section, we focus

on the evaluation of the overall system.

7.4.1 Evaluation Methods

Evaluation of summarization is a difficult issue. We do not yet know what is the best

method to evaluate a summarization system. Many techniques have been proposed,

but there is no consensus as to which one is superior than all others. The truth of the

matter, we believe, is that there is no single best method for summarization evaluation.

Each method has its advantages and limitations, and we need to make sensible choices

as to which method to use based on the characteristics of an individual summarization

system. Next, we briefly describe the techniques that have been used for summarization

evaluation.

Evaluation of summarization systems can be intrinsic or extrinsic [Sparck Jones

and Galliers, 1996]. Intrinsic methods measure a system's quality; extrinsic methods

measure a system's performance in a particular task. Much of the early work in summa-

rization evaluations uses the intrinsic method: the qualities of the summaries are judged

by direct human assessment of, for example, informativeness, coverage, or fluency, or

by comparing them with an “ideal” summary. In contrast, most of the recent work in

evaluation uses the extrinsic approach, also called the task-based approach. In the ex-

trinsic approach, the performance of a summarization system is evaluated based on its

121

helpfulness in performing a particular task, such as information retrieval, text catego-

rization, or news analysis.

The most frequently used intrinsic evaluation technique is the ideal summary

method [Edmunson, 1969, Paice, 1990, Kupiec, Pedersen, and Chen, 1995, Marcu, 1997,

Salton et al., 1997, Ono, Sumita, and Miike, 1994]. Typically, an “ideal” summary is

created, either by professional abstractors or by merging summaries provided by mul-

tiple human subjects using methods such as majority opinion, union, or intersection.

Automatic summaries are then compared with the “ideal” summary. Precision and

recall are used to measure the quality of the summary. The main problem with this

method is obvious and is mentioned by other researchers [Edmunson, 1969, Paice, 1990,

Hand, 1997]: there is no single correct summary. Johnson [Johnson et al., 1993] pro-

posed matching a template of manually generated key concepts with the concepts in-

cluded in an abstract, but again, there is no single correct template of key concepts and

matching of concepts is a fuzzy problem too.

Extrinsic methods evaluate the performance of a summarization system in a given

task, such as GMAT test [Morris, Kasper, and Adams, 1992], news analysis [Miike et

al., 1994] and information retrieval [Mani and Bloedorn, 1997]. The most significant

step in task-based evaluation is the TIPSTER Text Summarization Evaluation (SUM-

MAC) conducted by the U.S. Government in May 1998 [Mani et al., 1998]. The text

categorization task is used to evaluate generic summaries; systems were scored on how

well the summaries, in lieu of full text, helped users in categorizing documents into dif-

ferent topics. The ad hoc information retrieval task was used to evaluate query-based

summaries. Time and accuracy were used to measure system performance.

122

7.4.2 Evaluation Results

The focus of our evaluation is on comparing the quality of the summaries that have been

edited by our cut-and-paste generation system with that of the extraction-based sum-

maries, in order to measure whether the cut-and-paste technique improves the quality of

generated summaries and to what extent. We conducted an evaluation experiment that

is based on human judgment.

In the experiment, three human subjects were asked to compare the quality of

extraction-based summaries and their revised versions produced by our sentence re-

duction and combination modules. We selected 20 documents from the SUMMAC

evaluation data collection. Three different automatic summarizers generated a generic

summary for each document respectively, producing 60 summaries in total. These sum-

maries were all extraction-based. We then ran our sentence reduction and sentence

combination system to revise these extraction-based summaries, producing a revised

version for each extraction-based summary. We presented each human subject with the

full documents (20 in total), the extraction-based summaries (60 in total), and their re-

vised versions (60 in total) at the same time, and asked them to compare the quality of

extraction-based summaries and that of their revised versions. The human subjects were

asked to score the conciseness of the summaries based on a scale from 0 to 10 — the

higher the score, the more concise a summary is. They were also asked to score the

coherence of the summaries based on a scale from 0 to 10. The three human subjects

were graduate students in humanities at Columbia University.

The results are shown in Table 7.1 and Table 7.2. System A, B, and C represent

the three extraction-based summarizers. For each summarizer, the table shows the aver-

age score given by human subjects for the extraction-based summaries and the average

score for the revised summaries.

123

Score System A System B System C Average
Extract 4.6 3.8 4.1 4.2
Revised 8.2 7.8 7.7 7.9
Improvement 3.6 4.0 3.6 3.7

Table 7.1: Result of conciseness comparison.

Score System A System B System C Average
Extract 3.5 4.2 4.0 3.9
Revised 5.9 6.6 6.1 6.2
Improvement 2.4 2.4 2.1 2.3

Table 7.2: Result of coherence comparison.

On average, the extraction-based summaries achieved a score of 4.2 for concise-

ness, while the revised summaries achieved a score of 7.9 (an improvement of 3.7 on a

scale of 10). The improvement for the three systems are 3.6, 4.0, and 3.6 respectively.

The revised summaries are on average 41% shorter than the original extraction-based

summaries. For summary coherence, the average score for the extraction-based sum-

maries is 3.9, while the average score for the revised summaries is 6.2 (an improvement

of 2.3 on a scale of 10). The improvement for the three systems are 2.4, 2.4, and 2.1 re-

spectively. This demonstrates that the cut-and-paste approach is effective in improving

the conciseness and coherence of automatic summaries.

We decided not to carry out the SUMMAC style task-based evaluation. From

the result of SUMMAC evaluation, we observed that the result from task-based evalu-

ation can have very small correlation with the quality of the generated summaries. For

example, in the SUMMAC evaluation, the 14 teams that participated in the text catego-

rization task achieved very close scores. This is despite the fact that the acceptabilities

of the summaries, which are scores given by human to indicate whether a summary is

124

“acceptable”, ranged widely from 11% to 71%. The lack of correlation between the

acceptability of the summaries and the result of text categorization based evaluation is

especially problematic for our evaluation purpose. If we want to use data from SUM-

MAC so that we can compare with other systems, we need to choose the text categoriza-

tion task because it is the only task used to evaluate generic summaries and our system

works on generic summaries. But given the lack of correlation between the acceptability

of the summaries and the scores of text categorization based evaluation, it is very possi-

ble that our cut-and-paste approach will achieve scores very similar to extraction-based

systems, even if it has significantly improved the quality of generated summaries. Given

that the result from text categorization based evaluations is not conclusive of the qual-

ity of generated summaries and that performing such a large-scale evaluation requires a

significant number of human subjects to be involved and a fair amount of funding, we

did not perform the task-based evaluation.

7.5 Portability

The research presented in this thesis aims to develop generation techniques for domain-

independent summarization. Our system does not assume a specific domain for input

documents and it does not rely on domain knowledge to aid the understanding. We

tested our system using four different collections to study the portability of the sentence

reduction and combination program. The portability of the decomposition program was

discussed in Chapter 3.

The main collection we use in the system is the Benton Collection, which contain

news reports on telecommunication related issues. We have mentioned this corpus a few

times in previous chapters. It was used to train and evaluate the decomposition module,

125

the reduction module, and the combination module.

After training the sentence reduction module and sentence combination module

using the Benton collection, we tested the programs on documents from three other

domains: general medical news, legal documents, and travel guides.

The medical news articles were collected from the HIV/STD/TB Prevention News

Update provided by the Center for Disease Control (CDC) (http://www.cdcnpin.org/news

/prevnews.htm). The CDC provides synopses of key scientific articles and lay media re-

ports on HIV/AIDS, other sexually transmitted diseases, and tuberculosis as a public

service. The synopses are written by staff writers daily. We collected 20 synopses from

the CDC website and downloaded the full text of the articles from the web. We first used

the decomposition program to align the synopses with the original documents and build

the corpus for testing the sentence reduction and combination program. Our sentence

reduction program achieved a success rate of 72% for the medical news articles, com-

pared to 81.3% for the Benton Collection on which it is trained. This shows that when

we apply the reduction program to a domain that it is not trained on, there is a decrease

in the performance, but the decrease is not significant. One reason for this may be that

both collections contain news articles, although they focus on different topics (telecom-

munication vs. HIV/AIDS). We also checked the coverage of the probability values that

were computed from training corpus and that indicate how likely a certain type of phrase

is removed. The probabilities were computed using 400 example sentences in the Ben-

ton Collection. When we tested the reduction program on 100 sentences from the same

Benton collection, we found that the computed probabilities covered 58% of instances

in the test corpus. The probability coverage declined to 30% for the medical news.

For sentence combination, we found that the combination operations and combi-

nation rules we constructed using the Benton Collection can still apply to the medical

126

news. This suggests that the operations and rules in our combination program are gen-

eral enough to be used on documents from other domains.

The above results show that once we have trained the sentence reduction and

combination module on one collection, it can be used on collections with similar type

of text and the performance does not decrease significantly. Of course, we can also use

decomposition program to build a large training corpus for the new collection and train

the system using the new corpus, which is likely to lead to better performance.

The legal document collection contain documents that describe courts' decisions

on law suits. The documents in this collection have more specific structure and writing

style than newspaper articles. Also, they may contain extremely long sentences. The

following is an example sentence in a sample document:

“In an action to recover damages for personal injuries, etc., the defendant Chesebro-

Whitman Co. appeals, as limited by its brief, from so much of an order of the Supreme

Court, Nassau County (Winslow, J.), dated August 28, 1998, as, upon reargument of

an order of the same court dated March 31, 1998, denied those branches of its motion

which were for summary judgment dismissing the causes of action to recover damages

for negligence and strict products liability insofar as asserted against it.”

Experiments on legal documents show that although we can still apply the re-

duction module and combination module that have been trained on Benton Collection

to the legal documents, the performance is much worse. We cannot present quantita-

tive results here since we do not have human-written summaries for comparison. Given

that the sentences in this collection tend to have a very fixed structure, we expect that

if we can train the reduction and combination system on the examples from the same

collection, the performance should improve significantly.

The travel guides collection contain documents on Caribbean travel that we

127

downloaded from the Web. The results show that sentence reduction and combina-

tion can still apply, but the performance of the system is very sensitive to the errors in

the input document. One misspelling of a word may cause the parser not to analyze a

sentence correctly, which in turn may lead to incoherent output by the reduction and

combination system.

The four collections we use contain documents of two genres: news documents

and legal documents. The Benton collection, the medical documents, and the travel

guides all contain news articles; the legal document collection contain legal documents

with a fixed text structure. The sentence reduction and combination modules work better

on the news articles than on the legal documents, partly because the programs were

trained on news articles. To improve the performance on documents of a particular

genre, we need to retrain the system using documents of that genre. we may also need

to include techniques that are specifically developed to handle documents of that specific

genre.

128

TITLE: Five Accused of Trying to Spring Drug Prisoners

Five men reputed to be members of a terrorist squad linked to Colombian drug lords were
arrested Friday in what authorities say was a plot to free prisoners from a county jail.
The five were apprehended along Interstate 95, heading south in vehicles containing an
array of gear including paramilitary uniforms, a stun gun, knives, two-way radios and smoke
grenades, authorities said.
They were charged with interstate transportation in aid of racketeering and could face state
charges as well, said U.S. Attorney Bart Daniel.
Agent Fred Verinder of the FBI said law agencies around the nation have received threats
that “Colombian drug cartels would use Colombian terrorist squads known as `narco-
terrorism' to free Colombians held in American jails.”
Juan Carlos Perez, a Cuban national, was in the Charleston County Jail on charges stemming
from last year's seizure of 1,069 pounds of cocaine on Hilton Head Island. He goes on trial
Monday.
A defendant convicted earlier in that case, Jorge Samuel Cruz of Puerto Rico, was also in
the jail awaiting sentencing. Testimony in the trial linked the drugs seized on the island to
the Medellin drug cartel in Colombia.
In addition, a Colombian national, Alphonso Parada, was in the jail awaiting trial on state
drug charges, authorities said.
Charleston County Sheriff Al Cannon said authorities received a tip last week concerning a
possible escape attempt by a prisoner.
The five men arrested were seen outside the jail early Friday morning in two vehicles with
Florida license tags.
Among other items seized, authorities who searched the cars found paramilitary uniforms,
two-way radios, binoculars, stun guns, mace containers, black baseball caps and ski masks,
flares, hunting knives, flashlights and about $10,000 in cash.
The five were arrested without incident, officials said.
Lydia Glover of the U.S. Marshals Service said the agency has increased security and noti-
fied jails where other federal prisoners are incarcerated.
Verinder said the FBI has created a special unit to handle such cases “because we're con-
cerned about intelligence reports that this is going to happen more and more as the extra-
dictables are returned to the United States.”
The five arrested were Fernando Botero, 32, of Miami; Jesus Walter Jaramillo, 45, of Home-
stead, Fla.; Pedro Aragon, 41, of New York; Roberto Rego, 47, of Miami; and another
individual who authorities said refused to identify himself.

Figure 7.1: Sample input document.

129

TITLE: Five Accused of Trying to Spring Drug Prisoners

Sentence 1: Five men reputed to be members of a terrorist squad linked to
Colombian drug lords were arrested Friday in what authorities say was a plot
to free prisoners from a county jail.

Sentence 2: The five were apprehended along Interstate 95, heading south in
vehicles containing an array of gear including paramilitary uniforms, a stun
gun, knives, two-way radios and smoke grenades, authorities said.

Sentence 5: Juan Carlos Perez, a Cuban national, was in the Charleston
County Jail on charges stemming from last year's seizure of 1,069 pounds
of cocaine on Hilton Head Island. He goes on trial Monday.

Sentence 10: Charleston County Sheriff Al Cannon said authorities received
a tip last week concerning a possible escape attempt by a prisoner.

Sentence 11: The five men arrested were seen outside the jail early Friday
morning in two vehicles with Florida license tags.

Figure 7.2: Result after sentence extraction.

TITLE: Five Accused of Trying to Spring Drug Prisoners

Sentence 1: Five men reputed to be members of a terrorist squad linked to
Colombian drug lords were arrested Friday in what authorities say was a plot
to free prisoners from a county jail.

Sentence 2: The five were apprehended along Interstate 95, heading south in
vehicles containing an array of gear including paramilitary uniforms, a stun
gun, knives, two-way radios and smoke grenades, authorities said.

Sentence 5: Juan Carlos Perez, a Cuban national, was in the Charleston
County Jail on charges stemming from last year's seizure of 1,069 pounds of
cocaine on Hilton Head Island.

Sentence 10: Charleston County Sheriff Al Cannon said authorities received
a tip last week concerning a possible escape attempt by a prisoner.

Sentence 11: The five men arrested were seen outside the jail early Friday
morning in two vehicles with Florida license tags.

Figure 7.3: Result after sentence reduction (the phrases in italic are removed).

130

TITLE: Five Accused of Trying to Spring Drug Prisoners

Sentence 1: Five men reputed to be members of a terrorist squad linked to
Colombian drug lords were arrested in what authorities say was a plot to free
prisoners from a county jail.

Sentence 2 + 3: The five were apprehended along Interstate 95 and were
charged with interstate transportation in aid of racketeering, authorities said.

Sentence 10 + 11: Charleston County Sheriff Al Cannon said authorities re-
ceived a tip last week concerning a possible escape attempt by a prisoner and
the five men arrested were seen outside the jail in two vehicles.

Figure 7.4: Result after sentence combination.

131

Chapter 8

Conclusion

In this thesis we have described a new approach to the generation problem in summa-

rization, called cut-and-paste summarization. In this approach, the text of summaries is

constructed by reformulating the text in the original documents. Our approach is better

than a simple extraction-based method since we edit and smooth extracted sentences;

it also has advantages over a deep natural language generation based approach since it

does not assume a sophisticated semantic representation as input.

8.1 Summary of Contributions

The main contributions of this thesis include:

� Decomposition of human-written summary sentences. We developed a Hid-

den Markov Model based decomposition program for analyzing human-written

summaries. Decomposition offers valuable insight into the summary construc-

tion process that expert summarizers use and provides much needed corpora for

the training and evaluation of automatic summarizers. The Hidden Markov Model

solution we proposed for this problem is unique in that it creatively uses estimated

132

probabilities and achieves good performance without requiring a large-scale, an-

notated training corpus.

� Sentence reduction techniques. We developed a sentence reduction algorithm to

identify and remove inessential information from extracted sentences. Reduction

significantly improves the conciseness of generated summaries and is frequently

used by expert summarizers. The algorithm we proposed uses multiple types

of knowledge, including linguistic knowledge, probabilities from corpora, and

contextual information to determine whether a phrase can be deleted.

� Sentence combination techniques. We developed a sentence combination algo-

rithm to merge sentences and phrases. Combination improves the coherence of

generated summaries. Like sentence reduction, it is also frequently used by ex-

pert summarizers. We identified a number of combination operations, constructed

a set of combination rules, implemented the operations using the TAG formalism,

and also investigated using machine learning techniques to automatically acquire

combination rules.

� A large-scale, reusable lexicon. We built a large-scale lexicon by strategically

combining multiple, large-scale, heterogeneous resources. The combined lexicon

includes rich syntactic and lexical information. It is particularly suitable for lan-

guage generation applications since the information in the lexicon is indexed at

the semantic concept level. It can also be used in many other applications, such

as word sense disambiguation, machine translation, and summarization.

133

� New sentence extraction techniques. We developed a sentence extraction algo-

rithm to identify key sentences in a document.
�

We integrated several different

approaches that have been used for sentence selection. Our extraction technique

uses primarily lexical coherence information to identify key sentences, but it also

incorporates other types of information, such as tf � idf scores, cue phrases, and

sentence positions.

Using the techniques presented in this thesis, I have developed a full-fledged,

cut-and-paste text summarization system.

8.2 Future Work

There are a number of directions for future work, including:

1. Interaction between sentence reduction and sentence combination. It would

be interesting to look at how the reduction decisions should be revised if we con-

sider whether the reduction result will make a good candidate for performing sen-

tence combination at a later stage. For example, reduction might be required to

delete a clause it would otherwise not delete to allow the reduced sentence to be

merged with other sentences. Reduction and combination are not independent

processes; the decisions made by one should in some way influence the decisions

made by the other. A feedback architecture between the reduction module and the

combination module might be desirable. Thus, reduction can revise its decisions

based on the feedback from the combination module.
�

We should state that developing extraction techniques is not the main focus of the research presented
in this thesis.

134

2. Improving robustness on ill-formatted text. Emails, faxes, speech transcripts,

OCR results, and many Web pages often contain ill-formatted text. Such text

may have numerous spelling errors, it may not have punctuation marks, or it may

include ill-structured sentences. How to improve the robustness of our system for

this kind of text is an interesting topic. We can either develop a preprocessor that

can transform the ill-formatted text into well-formatted text, or make our system

accept this kind of text by improving the robustness of the syntactic parser and

other tools in the system. Probably we will need to do both to achieve good

performance.

3. Query-based Summarization. When we summarize a document based on a

user's interests, we should aim to include information that is highly relevant to the

particular user. How to modify our cut-and-paste system so that it can be used for

query-based summarization is an interesting topic. Both sentence reduction and

combination module should take a user's interest into account while removing or

combining phrases. The challenges associated with this task include representing

a user's interests based on his or her query, matching the user's interest to the text

in the document, deciding the relevance between a phrase and the query, and de-

termining whether a phrase should be removed or combined with others based on

its relevance to the user's interests.

4. Reformulating the text for other summarization purposes. In this thesis, we

have looked at how to reformulate the text from a document into a text summary

that can be read by readers. If a summary is used for a different purpose, the

style of the generated summary may need to change accordingly. For example,

a summary can be sent to a text to speech synthesizer and provided to a listener.

135

In speech, we typically prefer sentences to be short and have simple syntactic

structures. How to reformulate the text in a document into a a speech summary is

an interesting problem. Sentence reduction and combination may still be useful,

but we may need to introduce other operations to produce desirable output.

136

Bibliography

[ANSI, 1997] ANSI. 1997. Guidelines for abstracts. Technical Report Z39.14-1997,

NISO Press, Bethesda, Maryland.

[Aretoulaki, 1997] Aretoulaki, M. 1997. Cosy-mats: an intelligent and scalable sum-

marization shell. In Proceedings of ACL/EVAL'97 Workshop on Intelligent Text Sum-

marization, pages 74–81, Madrid, Spain.

[Baldwin and Morton, 1998] Baldwin, B. and T. Morton. 1998. Coreference-based

summarization. In Proceedings of the TIPSTER Text Phase III Workshop, Washing-

ton.

[Barzilay and Elhadad, 1997] Barzilay, R. and M. Elhadad. 1997. Using lexical chains

for text summarization. In Proceedings of the ACL/EACL'97 Summarization Work-

shop, Madrid, Spain.

[Barzilay, McKeown, and Elhadad, 1999] Barzilay, R., K. R. McKeown, and M. El-

hadad. 1999. Information fusion in the context of multi-document summarization.

In Proceedings of the 37th Annual Meeting of the Association for Computational

Linguistics, pages 550–557, University of Maryland, Maryland, June.

137

[Baum, 1972] Baum, L. E. 1972. An inequality and associated maximization technique

in statistical estimation of probabilistic functions of a Markov process. Inequalities,

3:1–8.

[Baum and Petrie, 1966] Baum, L. E. and T. Petrie. 1966. Statistical inference for prob-

abilistic functions of finite state markov chains. Annals of Mathematical Statistics,

37(6):1554–1563.

[Benbrahim and Ahmad, 1995] Benbrahim, M. and K. Ahmad. 1995. Text summarisa-

tion: The role of lexical cohesion analysis. The New Review of Document and Text

Management, 1:321–335.

[Berger and Mittal, 2000] Berger, A. and V. Mittal. 2000. OCELOT: A system for sum-

marizing web pages. In Proceedings of the 23rd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, Athens, Greece.

[Brandow, Mitze, and Rau, 1995] Brandow, R., K. Mitze, and L. F. Rau. 1995. Au-

tomatic condensation of electronic publications by sentence selection. Information

Processing and Management, 31(5):675–685.

[Brown, Lai, and Mercer, 1991] Brown, P. F., J. C. Lai, and R. L. Mercer. 1991. Align-

ing sentences in parallel corpora. In Proceedings of the 29th Annual Meeting of

the Association for Computational Linguistics, pages 169–176, Berkeley, California,

June.

[Carroll et al., 1998] Carroll, J., G. Minnen, Y. Canning, S. Devlin, and J. Tait. 1998.

Practical simplification of English newspaper text to assist aphasic readers. In Pro-

ceedings of the AAAI 1998 Workshop on Integrating Artificial Intelligence and Assis-

tive Technology, Madison, Wisconsin, July.

138

[Chandrasekar, Doran, and Srinivas, 1996] Chandrasekar, R., C. Doran, and B. Srini-

vas. 1996. Motivations and methods for text simplification. In Proceedings of

the 16th International Conference on Computational Linguistics, Copenhagen, Den-

mark, August.

[Cohen, 1995] Cohen, W. W. 1995. Fast effective rule induction. In Proceedings of the

12th International Conference on Machine Learning.

[Cohen, 1996] Cohen, W. W. 1996. Learning trees and rules with set-valued features.

In Proceedings of the Thirteenth National Conference on Artificial Intelligence.

[Corston-Oliver and Dolan, 1999] Corston-Oliver, S. H. and W. B. Dolan. 1999. Less is

more: eliminating index terms from subordinate clauses. In Proceedings of the 37th

Annual Meeting of the Association for Computational Linguistics, pages 349–356,

University of Maryland, Maryland, June.

[Cremmins, 1982] Cremmins, E. T. 1982. The Art of Abstracting. ISI Press, Philadel-

phia.

[Dalianis and Hovy, 1993] Dalianis, H. and E. Hovy. 1993. Aggregation in natural

language generation. In Proceedings of the 4th European Workshop on Natural Lan-

guage Generation, Pisa, Italy.

[Day et al., 1997] Day, D., J. Aberdeen, L. Hirschman, R. Kozierok, P. Robinson, and

M. Vilain. 1997. Mixed-initiative development of language processing systems.

In Proceedings of the Fifth Conference on Applied Natural Language Processing,

Washington D.C.

[Edmundson, 1968] Edmundson, H. P. 1968. New methods in automatic extracting.

Journal of the Association for Computing Machinery, 16(2):264–285.

139

[Edmunson, 1969] Edmunson, H. P. 1969. New methods in automatic abstracting.

Journal of the ACM, 16(2):264–285.

[Elhadad, 1992] Elhadad, M. 1992. Using Argumentation to Control Lexical Choice:

A Functional Unification-Based Approach. Ph.D. thesis, Department of Computer

Science, Columbia University, New York.

[Endres-Niggemeyer et al., 1998] Endres-Niggemeyer, B., K. Haseloh, J. Müller,

S. Peist, I. Santini de Sigel, A. Sigel, E. Wansorra, J. Wheeler, and B. Wollny. 1998.

Summarizing Information. Springer, Berlin.

[Endres-Niggemeyer, Hobbs, and Sparck Jones, 1993] Endres-Niggemeyer, B.,

J. Hobbs, and K. Sparck Jones. 1993. Summarizing text for intelligent communica-

tion. Technical report, Universität des Saarlandes, Dagstuhl, Germany, December.

Also available at http://www.ik.fh-hannover.de/ik/projekte/Dagstuhl/Abstract/.

[Endres-Niggemeyer and Neugebauer, 1995] Endres-Niggemeyer, B. and E. Neuge-

bauer. 1995. Professional summarising: no cognitive simulation without observation.

In Proceedings of the International Conference in Cognitive Science, San Sebastian,

May.

[Fidel, 1986] Fidel, R. 1986. Writing abstracts for free-text searching. Journal of

Documentation, 42(1):11–21, March.

[Grefenstette, 1998] Grefenstette, G. 1998. Producing intelligent telegraphic text re-

duction to provide an audio scanning service for the blind. In Working Notes of the

AAAI 1998 Spring Symposium on Intelligent Text Summarization, Stanford Univer-

sity, Stanford, California, March.

140

[Hand, 1997] Hand, T. F. 1997. A proposal for task-based evaluation of text summa-

rization systems. In Proceedings of the ACL/EACL'97 Workshop on Intelligent Text

Summarization, pages 31–36, Madrid, Spain.

[Hirst and St-Onge, 1998] Hirst, G. and D. St-Onge. 1998. Lexical chains as represen-

tations of context for the detection and correction of malapropisms. In C. Fellbaum,

editor, WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, MA,

pages 305–332.

[Hoey, 1991] Hoey, M. 1991. Patterns of Lexis in Text. Oxford University Press.

[Jing, 1998] Jing, H. 1998. Usage of wordnet in natural language generation. In Pro-

ceedings of the WorkShop on the Usage of WordNet in Natural Language Processing

Systems, pages 128–134, Université de Montréal, Quebec, Canada, August.

[Jing et al., 1997] Jing, H., V. Hatzivassiloglou, R. Passonneau, and K. R. McKeown.

1997. Investigating complementary methods for verb sense pruning. In Proceedings

of ANLP'97 Lexical Semantics Workshop, pages 58–65, Washington, D.C., April.

[Jing and McKeown, 1998] Jing, H. and K. R. McKeown. 1998. Combining multiple,

large-scale resources in a reusable lexicon for natural language generation. In Pro-

ceedings of the 36th Annual Meeting of the Association for Computational Linguis-

tics and the 17th International Conference on Computational Linguistics, volume 1,

pages 607–613, Université de Montréal, Quebec, Canada, August.

[Jing et al., 2000] Jing, H., Y. D. Netzer, M. Elhadad, and K. R. McKeown. 2000. Inte-

grating a large-scale, reusable lexicon with a natural language generator. In Proceed-

ings of the First International Conference on Natural Language Generation, Mitzpe

Ramon, Israel, June.

141

[Jing and Tzoukermann, 1999] Jing, H. and E. Tzoukermann. 1999. Information re-

trieval based on context distance and morphology. In Proceedings of the 22nd In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 90–96, University of Berkeley, CA, August.

[Johnson et al., 1993] Johnson, F. C., C. D. Paice, W. J. Black, and A. P. Neal. 1993.

The application of linguistic processing to automatic abstract generation. Journal of

Document and Text Management, 1(3):215–241.

[Joshi, 1987] Joshi, A. K. 1987. Introduction to tree-adjoining grammars. In

A. Manaster-Ramis, editor, Mathematics of Language. John Benjamins, Amsterdam.

[Joshi, Levy, and Takahashi, 1975] Joshi, A. K., L. S. Levy, and M. Takahashi. 1975.

Tree adjunct grammars. Journal of Computer and System Sciences, 10(1).

[Joshi and Schabes, 1996] Joshi, A. K. and Y. Schabes. 1996. Tree-adjoining gram-

mars. In G. Rosenberg and A. Salomaa, editors, Handbook of Formal Languages,

volume 3. Springer-Verlag, New York, NY, pages 69–123.

[Klavans and Tzoukermann, 1990] Klavans, J. L. and E. Tzoukermann. 1990. The

BICORD system: combining lexical information from bilingual corpora and machine

readable dictionaries. In Proceedings of the Thirteenth International Conference on

Computational Linguistics, Helsinki, Finland.

[Knight and Luk, 1994] Knight, K. and S. K. Luk. 1994. Building a large-scale knowl-

edge base for machine translation. In Proceedings of AAAI'94.

[Knight and Marcu, 2000] Knight, K. and D. Marcu. 2000. Statistics-based summa-

rization - step one: sentence compression. In Proceedings of the 17th National Con-

ference of the American Association for Artificial Intelligence, Austin, Texas.

142

[Kupiec, Pedersen, and Chen, 1995] Kupiec, J., J. Pedersen, and F. Chen. 1995. A

trainable document summarizer. In Proceedings of the 18th International Confer-

ence on Research and Development in Information Retrieval, pages 68–73, Seattle,

Washington.

[Kucera and Francis, 1967] Kucera, H and W. N. Francis. 1967. Computational Anal-

ysis of Present-day American English. Brown University Press, Providence, RI.

[Levin, 1993] Levin, B. 1993. English Verb Classes and Alternations: A Preliminary

Investigation. University of Chicago Press, Chicago, Illinois.

[Macleod and Grishman, 1995] Macleod, C. and R. Grishman, 1995. COMLEX Syntax

Reference Manual. Computer Science Department, New York University, February.

[Mani and Bloedorn, 1997] Mani, I. and E. Bloedorn. 1997. Multi-document summa-

rization by graph search and matching. In Proceedings of AAAI'97, pages 622–628,

Providence, Rhode Island.

[Mani, Bloedorn, and Gates, 1998] Mani, I., E. Bloedorn, and B. Gates. 1998. Using

cohesion and coherence models for text summarization. In Working Notes of the

AAAI'98 Spring Symposium on Intelligent Text Summarization, pages 69–76, Stan-

ford, CA.

[Mani, Gates, and Bloedorn, 1999] Mani, I., B. Gates, and E. Bloedorn. 1999. Improv-

ing summaries by revising them. In Proceedings of the 37th Annual Meeting of the

Association for Computational Linguistics, pages 558–565, University of Maryland,

Maryland, June.

[Mani et al., 1998] Mani, I., D. House, G. Klein, L. Hirschman, L. Obrst, T. Firmin,

M. Chrzanowski, and B. Sundheim. 1998. The TIPSTER SUMMAC text summa-

143

rization evaluation final report. Technical Report MTR 98W0000138, The MITRE

Corporation.

[Marcu, 1997] Marcu, D. 1997. From discourse structures to text summaries. In Pro-

ceedings of ACL/EACL'97 Workshop on Intelligent Text Summarization, pages 82–

88, Madrid, Spain.

[Marcu, 1999] Marcu, D. 1999. The automatic construction of large-scale corpora

for summarization research. In Proceedings of the 22nd International Conference

on Research and Development in Information Retrieval, University of California,

Berkeley, August.

[McCord, 1990] McCord, M., 1990. English Slot Grammar. IBM.

[McKeown, Kukich, and Shaw, 1994] McKeown, K. R., K. Kukich, and J. Shaw. 1994.

Practical issues in automatic documentation generation. In Proceedings of the Fourth

Conference on Applied Natural Language Processing, pages 7–14, Stuttgart, Ger-

many, October.

[McKeown and Radev, 1995] McKeown, K. R. and D. R. Radev. 1995. Generating

summaries of multiple news articles. In Proceedings of the Eighteenth Annual In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 74–82, Seattle, Washington, July.

[Miller et al., 1990] Miller, G. A., R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller.

1990. Introduction to WordNet: an on-line lexical database. International Journal of

Lexicography (special issue), 3(4):235–312.

[Miller et al., 1993] Miller, G. A., C. Leacock, R. Tengi, and R. T. Bunker. 1993. A

semantic concordance. Cognitive Science Laboratory, Princeton University.

144

[Morris, Kasper, and Adams, 1992] Morris, A. H., G. M. Kasper, and D. A. Adams.

1992. The effects and limitations of automated text condensing on reading compre-

hension. Information Systems Research, 3(1):17–35.

[Morris and Hirst, 1991] Morris, J. and G. Hirst. 1991. Lexical cohesion computed by

thesaural relations as an indicator of the structure of text. Computational Linguistics,

17(1):21–48, March.

[Ono, Sumita, and Miike, 1994] Ono, K., K. Sumita, and S. Miike. 1994. Abstract gen-

eration based on rhetorical structure extraction. In Proceedings of the 15th Interna-

tional Conference on Computational Linguistics, volume 1, pages 344–384, Kyoto,

Japan.

[Paice, 1990] Paice, C. D. 1990. Constructing literature abstracts by computer: tech-

niques and prospects. Information Processing and Management, 26(1):171–186.

[Paice and Johns, 1993] Paice, C. D. and A. P. Johns. 1993. The identification of impor-

tant concepts in highly structured technical papers. In Proceedings of the 16th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval.

[Rabiner, 1989] Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2):257–286.

[Radev, 1999] Radev, D. 1999. Language Reuse and Regeneration: Generating Natural

Language Summaries from Multiple On-Line Sources. Ph.D. thesis, Department of

Computer Science, Columbia University, New York.

[Robin, 1994] Robin, J. 1994. Revision-Based Generation of Natural Language

Summaries Providing Historical Background: Corpus-Based Analysis, Design, Im-

145

plementation, and Evaluation. Ph.D. thesis, Department of Computer Science,

Columbia University, New York.

[Salton et al., 1994] Salton, G., J. Allan, C. Buckley, and A. Singhal. 1994. Automatic

analysis, theme generation, and summarization of machine readable texts. Science,

264(5164):1421–1426, June.

[Salton et al., 1997] Salton, G., A. Singhal, M. Mitra, and C. Buckley. 1997. Auto-

matic text structuring and summarization. Information Processing and Management,

33(2):193–208.

[Shaw, 1995] Shaw, J. 1995. Conciseness through aggregation in text generation. In

Proceedings of the 33rd Annual Meeting of the Association for Computational Lin-

guistics (Student Session), pages 329–331.

[Teufel and Moens, 1997] Teufel, S. and M. Moens. 1997. Sentence extraction as a

classification task. In Proceedings of the ACL/EACL'97 Workshop on Intelligent

Scalable Text Summarization, pages 58–65, Madrid, Spain.

[Thurber, 1924] Thurber, S., editor. 1924. Précis Writing for American Schools. The

Atlantic Monthly Press, INC., Boston.

[Viterbi, 1967] Viterbi, A. J. 1967. Error bounds for convolution codes and an asymp-

totically optimal decoding algorithm. IEEE Transactions on Information Theory,

13:260–269.

