Evaluation Metrics for Natural Language Generation

Srinivas Bangalore
srini@research.att.com
Joint work with Owen Rambow and Steve Whittaker

AT&T Labs – Research

Statistical Generation Day,
October 9, 2001
Evaluation in NLP

- Evaluation of systems and technologies have had significant impact on NLP in the past decade.

- Evaluation metrics
 - help identify direction for development effort
 - help in cross-system comparisons
 - But: Research efforts may be limited by evaluation metrics.

- Applies to trainable and hand-crafted technologies.
Evaluation in NLP

• Evaluation of systems under the HLT, MUC, TREC, TIDES programs

• Evaluation of technologies
 – SpeechEval (ATIS, Switchboard, Broadcast News)
 – POSEval (unofficial in US, more official in Europe)
 – ParseEval
 – SenseEval

• Evaluation metrics are hard to come by for output technologies.
 – Machine Translation
 – NL Generation
 – Speech Synthesis
 – Dialog Systems

• Why?
Evaluation Metrics for NL Generation

• Trainable Generation system: Training and Test loop

• Metric needed for developing stochastic generator:
 – objective and automatic
 – without human intervention
 – quick turnaround

• These metrics were not intended to compare realizers (but …)

• In the context of surface realizer, accuracy is measured against a reference string.
Two String-Based Evaluation Metrics

- String edit distance between reference string and result string (length in words: R
 - Substitutions (S)
 - Insertions (I)
 - Deletions (D)
 - Moves = pairs of Deletions and Insertions (M)
 - Remaining Insertions (I') and Deletions (D')

- Example:
 There was no cost estimate for the second phase
 There was estimate for phase the second no cost

 . . d d . . . i . . i s

- Simple String Accuracy $= (1 - \frac{I+D+S}{R})$

- Generation String Accuracy $= (1 - \frac{M+I'+D'+S}{R})$
Experiments and Evaluation

- Training corpus: One million words of WSJ corpus
- Test corpus:
 - 100 randomly chosen sentences
 - average sentence length 16.7 words

<table>
<thead>
<tr>
<th>Model</th>
<th>Generation Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.562</td>
</tr>
<tr>
<td>TM-LM</td>
<td>0.668</td>
</tr>
<tr>
<td>TM-XTAG</td>
<td>0.684</td>
</tr>
<tr>
<td>TM-XTAG-LM</td>
<td>0.724</td>
</tr>
</tbody>
</table>
Two Tree-Based Evaluation Metrics

- Not all moves equally bad: moves which permute nodes in tree better than moves which "scramble" tree (projectivity)
- **Simple Tree Accuracy** metrics: calculate S, D, I on each treelet
- **Generation Tree Accuracy** metrics: calculate S, M, D', I' on each treelet
- Example: There was estimate for phase the second no cost

```
There was no cost estimate for the second phase
```

```
There was estimate for phase the second no cost
```

```
There was second estimate for phase the no cost
```
Details of Tree Metric Computation

Result: there was estimate for **phase the second** no cost

there was estimate **for phase** no cost

there was estimate for no cost

Errors = Insertions=3 + Deletions=3 (Moves=3)
Metric does not need a tree representation for the generated sentence.
Comparing the Evaluation Metrics

Example (repeated):

There was no cost estimate for the second phase.
There was estimate for phase the second no cost.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Simple String Acc</th>
<th>Generation String Acc</th>
<th>Simple Tree Acc</th>
<th>Generation Tree Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tot. # of tokens</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Unchanged</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Substitutions</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insertions</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Deletions</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Moves</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Tot. # of S, I, D, M</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Score</td>
<td>0.44</td>
<td>0.56</td>
<td>0.33</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Measuring Performance Using Evaluation Metrics

- Baseline: randomly assigned dependency structure, learn position of dependent to head
- Training corpus: One million words of WSJ corpus
- Test corpus:
 - 100 randomly chosen sentences
 - average sentence length 16.7 words

<table>
<thead>
<tr>
<th>Tree Model</th>
<th>Simple String Acc</th>
<th>Generation String Acc</th>
<th>Simple Tree Acc</th>
<th>Generation Tree Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline LR Model</td>
<td>0.41</td>
<td>0.56</td>
<td>0.41</td>
<td>0.63</td>
</tr>
<tr>
<td>FERGUS</td>
<td>0.58</td>
<td>0.72</td>
<td>0.65</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Experimental Validation

• Problem: how are these metrics *motivated*?

• Solution (following Walker et al 1997):

 – Perform experiments to elicit human judgments on sentences
 – Relate human judgments to metrics
Experimental Setup

- Web-based
- Human subjects read short paragraph from WSJ and three or five variants of last sentence constructed by hand
- Humans judge:
 - **Understandability**: How easy is this sentence to understand?
 - **Quality**: How well-written is this sentence?
- Values: 1-7; 3 values have qualitative labels
- Ten subjects; each subject made a total of 24 judgments
- Data normalized by Subtracting mean for each subject and dividing by standard deviation; then each variant averaged over subjects
Results of Experimental Validation

- Strong correlations between normalized understanding and quality judgments \((r_{22} = 0.94, p < 0.0001) \)

- The two tree-based metrics correlate with both understandability and quality.

- The string-based metrics do not correlate with either understandability or quality.

<table>
<thead>
<tr>
<th>Corr. with</th>
<th>Simple String Acc</th>
<th>Generation String Acc</th>
<th>Simple Tree Acc</th>
<th>Generation Tree Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm. und.</td>
<td>0.08</td>
<td>0.23</td>
<td>0.51</td>
<td>0.48</td>
</tr>
<tr>
<td>Norm. qual.</td>
<td>0.16</td>
<td>0.33</td>
<td>0.45</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Experimental Validation: Finding Linear Models

• Other goal of experiment: find better metrics
• Series of linear regressions
 – Dependent measures: normalized understanding and quality
 – Independent measures: different combinations of:
 * The four metrics
 * Sentence length
 * The “problem” variables \((S, I, D, M, I', D')\)
• One outlier excluded from data set
• Can improve on explanatory power of original four metrics
Experimental Validation: Linear Models

<table>
<thead>
<tr>
<th>Model</th>
<th>User Metric</th>
<th>Exp. Pwr. (R²)</th>
<th>Stat. Sig. (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple String Acc.</td>
<td>Und.</td>
<td>0.02</td>
<td>0.571</td>
</tr>
<tr>
<td>Generation String Acc.</td>
<td>Und.</td>
<td>0.02</td>
<td>0.584</td>
</tr>
<tr>
<td>Simple Tree Acc.</td>
<td>Und.</td>
<td>0.36</td>
<td>0.003</td>
</tr>
<tr>
<td>Generation Tree Acc.</td>
<td>Und.</td>
<td>0.35</td>
<td>0.003</td>
</tr>
<tr>
<td>Simple Tree Acc. + S</td>
<td>Und.</td>
<td>0.48</td>
<td>0.001</td>
</tr>
<tr>
<td>Simple Tree Acc. + S</td>
<td>Qual.</td>
<td>0.47</td>
<td>0.002</td>
</tr>
<tr>
<td>Simple Tree Acc. + M</td>
<td>Und.</td>
<td>0.38</td>
<td>0.008</td>
</tr>
<tr>
<td>Simple Tree Acc. + M</td>
<td>Qual.</td>
<td>0.34</td>
<td>0.015</td>
</tr>
<tr>
<td>Simple Tree Acc. + Length</td>
<td>Und.</td>
<td>0.40</td>
<td>0.006</td>
</tr>
<tr>
<td>Simple Tree Acc. + Length</td>
<td>Qual.</td>
<td>0.42</td>
<td>0.006</td>
</tr>
<tr>
<td>Simple Tree Acc. + S + Length</td>
<td>Und.</td>
<td>0.51</td>
<td>0.003</td>
</tr>
<tr>
<td>Simple Tree Acc. + S + Length</td>
<td>Qual.</td>
<td>0.53</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Experimental Validation: Model of Understanding

- Normalized understanding = 1.4728*simple tree accuracy - 0.1015*substitutions - 0.0228 * length - 0.2127.
Experimental Validation: Model of Quality

- Normalized quality =
 \[1.2134 \times \text{simple tree accuracy} - 0.0839 \times \text{substitutions} - 0.0280 \times \text{length} - 0.0689. \]
Two New Metrics

• Don’t want length to be included in metrics
• **Understandability Accuracy** = \((1.3147*\text{simple tree accuracy} - 0.1039*\text{substitutions} - 0.4458) / 0.8689\)

• **Quality Accuracy** = \((1.0192*\text{simple tree accuracy} - 0.0869*\text{substitutions} - 0.3553) / 0.6639\)

• Scores using new metrics:

<table>
<thead>
<tr>
<th>Tree Model</th>
<th>Understandability Accuracy</th>
<th>Quality Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>-0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>Supertag-based</td>
<td>0.44</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Problems with Evaluation Metrics

The Question of “Gold Standard” in Generation

- There are many ways of saying something
- But: given contextual and genre restrictions, often not that many ways
- Nonetheless, comparison to single reference sentence problematic
- Justification: in stochastic generation, we learn from a corpus because we want to mimic it as closely as possible
- Issues:
 - We are only evaluating word order; word order variation in English is different from other languages
 - We are not taking context into account
Summary

• Need immediate evaluation of performance for development
• Two new metrics which are validated experimentally
• Can also use to compare two different surface realizers
• Ultimate evaluation of a realizer is (probably) in a task-based evaluation of a larger system.
Discussion Topics: Evaluation Metrics

- What about a corpus of paraphrases?
 - Notion of paraphrase: Functional (dialog act), lexico-syntactic, ...
 - Not necessarily naturally occurring, more like a test suite (TSNLP for parsing)
 - Relates to internal and cross-system evaluation
 - Metric for comparing paraphrases (≡ evaluation metric for NLG)
Discussion Topics: Evaluation Metrics

- Why do we evaluate?
- What do we evaluate?
 - things that are annotated in a corpus
 - user experience
- How do we evaluate?
 - Component vs end-to-end
 - Glass-box vs Black-box
- Relevance of human judgements to metrics
- Relevance of metrics to human judgements
- What should human judgements be about?
Discussion Topics: NLG Issues in Applications

- How to choose among NLG approaches: Rule-based vs Template vs Stochastic NLG.
- Possible metric to choose an approach: Perplexity?
- Rapid prototyping: corpus-based NLG might win.
- End-to-End evaluation.
- How much of stochastic parsing has made it into applications, anyway?
Discussion Topics: Corpus Annotation

Separation of corpus annotation from how the corpus is used

- What phenomena are suitable for corpus-based analysis?

Higher NLG tasks (Sentence Planning and Text Planning) more difficult to encode.

- Higher NLG tend to be more application-specific and hence arriving at a annotation standard is difficult.
- Issues of consensus, annotation standard, knowledge about phenomena: guidelines for inter-annotator agreement require deep understanding of issue.
- On-going work on dialog annotation and discourse annotation (Marcu).

- What kinds of annotations are needed?
- Can we reuse corpora created for training parsers and word-sense disambiguation models?