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Figure 3: Examples of learned comparatives for each test condition

5 Results

Figure 3 shows examples of learned groundings of
comparatives for each of the five test conditions
(Test Type column). It shows the reference RGB
color datapoint 7“2 (always unseen), the compara-
tive word w, the learned grounding vector g, the
target color ., and two scores: cosine similarity
and Delta-E. The upper sample for each test type
is an example of a highly accurate result, while the
lower sample exemplifies failure.

Delta-E is a metric for understanding how the
human eye perceives color differences (Table 2).
This is a useful metric as distances in RGB space
are not perceived linearly. Figure 4 shows two
example pairs of colors which are spaced equally
in terms of distance in RGB, but in terms of the
Delta-E metric the green colors are closer together.

As seen in Figure 3, grounding comparatives in
directional vectors over RGB allows them to cap-
ture a full range of modification of the reference
color. Even for some of the error cases the re-
sulting outputs tend to capture directions which
are reasonable illustrations of the color the com-
parative described. Though the ‘darker’ ground-
ing example from unseen pairings is incorrectly
de-saturating the reference color, it is also in fact
making the color darker. Most impressive is the
‘paler’ example at the bottom, which is able to
capture the direction of the comparative almost
perfectly. Regarding failures, we see that they tend
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Delta-E | Perception

1.0 Imperceptible
1-2 Requires close observation
2-10 Perceivable
11-49 | More similar than opposite
100 Exact opposites

Table 2: Delta-E Ranges

to be of comparatives words that relate to a differ-
ent color, such as ‘more greenish’ and ‘bluer’,
rather than comparatives such as ‘lighter’.

Table 3 provides quantitative results in terms
of average cosine similarity and average Delta-E.
Overall, the average cosine similarity is 0.65, with
an average Delta-E of 6.8. Separating the perfor-
mance by test condition, we see that the conditions
where the reference and comparatives were both
seen perform the best (independent of whether the
pairing was seen in training); again ‘seen refer-
ence’ refers only to the label being seen and not the
reference color datapoint itself. The fully unseen
case performs the worst by far with respect to co-
sine similarity, though it is not as deviant in Delta-
E. It is again apparent that the performance of the
model drops when given comparatives which refer
to another color.

Figure 5 shows the comparative ‘electric’ ap-
plied to colors outside of our dataset. With no
known t.s we cannot quantitatively measure the
accuracy, but we can qualitatively assess the re-



Figure 4: Same RGB distance, different Delta-E

Test Condition Avg Cos | Avg Delta-E
Seen Pairings 0.68 6.1

Unseen Pairings 0.68 7.9

Unseen Ref. Color 0.40 114

Unseen Comparative | 0.41 10.5

Fully Unseen -0.21 15.9
Overall 0.65 6.8

Table 3: Results

sults as plausible.

We also examined whether the model could
generate plausible comparative terms given a 7.
and t.. All of the comparatives in the model’s vo-
cabulary were applied to 7., and the correspond-
ing W, were sorted by cosine similarity to given
reference-target direction. When given a green
reference and a dark green target (both sampled
from the test data), the model outputs ‘truer’,
‘deeper’, and ‘darker’ as the closest compara-
tives.

In Figure 6, given a reference sampled from
‘purple’ and a target sampled from ‘soft
purple’, the model outputs the 5 most plausible
comparatives - ‘softer’ was the 9 closest. They
are presented in descending order by distance be-
tween the target color and its projection on the
modifying vector. We see that the comparatives
the model returns are semantically very similar, as
are their corresponding w, vectors.

6 Related Work

Though color has been studied in terms of its con-
textual dependence and vagueness in grounding

Figure 5: Groundings for ‘more electric’
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Figure 6: Top comparatives generated by the
model
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(Egré et al., 2013; McMahan and Stone, 2015;
Monroe et al., 2016, 2017), no approaches have
focused explicitly on learning to ground compar-
atives. Related to this work is that of image
ranking, which is inherently a form of compar-
ison (Parikh and Grauman, 2011; Yu and Grau-
man, 2014). However, ranking methods do not
ground the comparatives themselves in image fea-
tures. Besides the fact that no ranked color data
exists, ranking methods are not flexible enough to
handle the high dependence of color comparatives
on the individual reference color.

7 Conclusion

We propose a new paradigm of grounding com-
parative adjectives describing colors as directions
in RGB space such that the colors along the vector,
rooted at the reference color, satisfy the compari-
son. We introduce a new methodology for trans-
forming labeled color data into comparative color
data, and propose a simple but effective learning
model that is able to accurately modify unseen col-
ors and comparatives. With respect to the desired
output, the representations have an average accu-
racy of 0.65 cosine similarity, and average Delta-
E scores of under 7. Our model can also pro-
vide plausible descriptions of the difference be-
tween a given reference and target pair, as well as
the grounded representations of the comparatives
generated, providing an explanation for the model
decision. This model is the first step towards
fine-grained object recognition through compar-
ative descriptions, providing a way to utilize re-
lational descriptive text. This approach could be
extended to other properties such as size, tex-
ture, or curvature. It could also be used to aid
in zero-shot learning from text sources, generat-
ing human-understandable explanations for cate-
gorization of similar objects, or providing descrip-
tions of new, unknown objects with respect to
known ones.
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