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Abstract
This paper describes experiments in training HMM-based

text-to-speech (TTS) voices on data collected for Automatic
Speech Recognition (ASR) training. We compare a number of
filtering techniques designed to identify the best utterances from
a noisy, multi-speaker corpus for training voices, to exclude
speech containing noise and to include speech close in nature
to more traditionally-collected TTS corpora. We also evaluate
the use of automatic speech recognizers for intelligibility as-
sessment in comparison with crowdsourcing methods. While
the goal of this work is to develop natural-sounding and intel-
ligible TTS voices in Low Resource Languages (LRLs) rapidly
and easily, without the expense of recording data specifically for
this purpose, we focus on English initially to identify the best
filtering techniques and evaluation methods. We find that, when
a large amount of data is available, selecting from the corpus
based on criteria such as standard deviation of f0, fast speak-
ing rate, and hypo-articulation produces the most intelligible
voices.
Index Terms: speech synthesis, parametric synthesis, data se-
lection, found data, crowdsourcing.

1. Introduction
Speech technology has progressed enormously during the past
decade, with widespread adoption of spoken dialogue systems
like Siri, Cortana, and the Echo. There now exists high quality
text-to-speech (TTS) synthesis for High Resource Languages
(HRLs) such as English, German, Mandarin, Japanese, and
Spanish – these languages are fortunate to have expert-built pro-
nunciation rules and dictionaries, part-of-speech taggers, and
language models, as well as large amounts of data from profes-
sional voice talents for developing state-of-the-art TTS systems.
However, this is not the case for every language: There are ap-
proximately 6500 languages in the world, many spoken by mil-
lions of people, which have no such resources. LRLs such as
Telugu, Mongolian, Vietnamese, Cebuano, and Amharic, for
example, have few natural language processing resources avail-
able and have been little studied for TTS. Thus, speakers of
these languages are deprived of speech-related technologies that
allow communication with devices for those without reading
skills or across language barriers in applications such as spoken
dialogue systems or speech-to-speech translation systems. Our
goal is to develop techniques to produce TTS systems for such
languages easily by maximizing the utility of existing sources
of data which have been created for other purposes, choosing
subsets and filtering appropriately to produce material suitable
for building intelligible and natural TTS systems.

In the LRL setting, we do not have access to a large cor-
pus of high-quality, single-speaker data, as this is very expen-

sive and time-consuming to collect and thus typically requires
a major economic motivation. However, for many LRLs, there
are large amounts of “found” data that can be acquired cheaply
and easily (as on mobile phones or by web scraping), or that
have already been collected for other purposes, such as ASR.
While recording conditions, and thus data quality, do not ap-
proach the standards usually required to build TTS systems, the
development of Hidden Markov Model (HMM) and other forms
of parametric speech synthesis [1] have made it possible to train
TTS systems on heterogeneous data. Although there has been
some prior work on training parametric synthesizers with found
data, there has not been a systematic evaluation of the different
types of found data that can be used to produce voices, or of
methods for producing the most natural and intelligible voices
from these sources.

This paper describes research on filtering techniques
needed to produce intelligible TTS voices from noisy, multi-
speaker ASR data. We explore methods of data selection on the
ASR data which can be used to identify the best utterances for
voice training in a corpus, while excluding utterances that intro-
duce excessive noise or artifacts. While our ultimate goal is to
facilitate the rapid development of natural-sounding and intel-
ligible TTS voices in LRL corpora, we first evaluate our meth-
ods on American English telephone speech, to facilitate quicker
experimentation and evaluation. We use crowdsourcing to eval-
uate intelligibility and compare human transcription-based in-
telligibility evaluation to performance of several ASR APIs to
speed the evaluation process.

2. Related Work
Other work on the use of “found” data for building TTS voices
has often involved adaptation of voices trained on clean data
with noisier recordings. In [2], noisy recordings of political
speeches were used to adapt an average HMM voice trained
on clean data from many speakers. The authors obtained a ro-
bust, natural-sounding voice with performance minimally de-
graded by the inclusion of noisy data. [3] trained an average
voice on data collected in an office environment and adapted to
cleanly-recorded speech. They found that using both noisy and
clean data together produced a voice with a slightly (but not
statistically-significantly) higher mean opinion score (MOS)
than a voice trained on clean data alone, and concluded that
more data, even of a lesser quality, can be beneficial. [4] also
trained average voices on clean data from a TTS corpus and
adapted it using data with added noise. They found that listeners
could distinguish between voices adapted with clean and noisy
data, but that naturalness and speaker similarity were not af-
fected. [5] used radio broadcast news recordings to train voices,
investigating different speaker diarization and background mu-



sic and noise detection techniques to remove noisy utterances
automatically. Finally, audiobooks have been a popular source
of “found” data for building TTS voices due to their clean
recording conditions and the fact that they typically contain
large amounts of speech from a single speaker [6] [7] [8].

While these researchers have begun to investigate the use of
“found” data for TTS synthesis, many questions remain, includ-
ing the best types and combinations of data to use and the best
ways to filter data from sources such as ASR corpora. In this
paper we present evaluations of different filtering techniques at
the utterance level and their effect on TTS intelligibilty.

3. Characteristics of a “Good” TTS Voice
In previous work [9] [10], we trained HMM voices on radio
broadcast news speech from the Boston University Radio News
Corpus (BURNC) [11]. We selected subsets of utterances based
on a number of different factors we hypothesized might be use-
ful in optimizing for naturalness, such as speaking rate, f0 and
energy mean and standard deviation, and level of articulation.
We were guided in choosing our features by the instructions that
are typically given to voice talents when recording audio data
for a unit selection voice. TTS speakers are usually professional
voice talents who are instructed to speak as clearly and consis-
tently as possible, without varying their voice quality, speak-
ing style, pitch, volume, or tempo significantly [12]. While
these requirements are critical for creating a concatenative or
unit-selection voice, in which recorded audio is segmented and
then joined with other pieces of the recording, we propose that
these constraints will also lead to more consistent models for a
parametric voice built from found data. We therefore look at
prosodic characteristics such as mean and standard deviation of
fundamental frequency (f0), energy, and speaking rate as well
as presence of disfluencies and transcribed noise in selecting
training material. We have also found in our previous work us-
ing political speeches, ads, and interviews that certain ranges of
some of these types of features correspond to speech rated as
charismatic across multiple cultures [13] [14] [15] [16], lead-
ing us to hypothesize that selecting training utterances based
on these features may also produce voices that are preferred by
listeners. When applying this knowledge to utterance selection
for training voices on broadcast news data, we found that hyper-
articulated and slow speaking rate utterances produced the least
natural-sounding voices. We also discovered that removing ut-
terances that are outliers with respect to hyper-articulation, as
well as combining the selection of hypo-articulated utterances
and low mean f0 utterances, produced the most natural voices.

4. Corpora and Tools
In our current work, we train voices on data selected from the
MACROPHONE [17] corpus, which was designed for the de-
velopment of telephone-based dialogue systems such as travel
booking and other database-related tasks. The utterances were
read by 5,000 speakers over the phone. The data contains 83
hours and 31 minutes of data from adult female speakers, 63
hours and 10 minutes from adult male speakers, 1 hour and 33
minutes from adult speakers of unknown gender, 5 hours and
52 minutes from female children, 6 hours and 52 minutes from
male children, and 1 hour and 16 minutes from children of un-
known gender. This is a representative ASR training corpus of
the sort that has begun to become available for LRLs.

We trained our TTS voices using the Hidden Markov Model
Based Speech Synthesis System (HTS) [18]. We used the
speaker-independent (SI) training recipe for HTS version 2.3. In

our prior work [9], we found that using speaker-adaptive train-
ing (SAT) did not give a significant improvement in naturalness
for voices trained on BURNC. While there is the possibility that
using SAT may improve intelligibility, the time and computa-
tional resources required for SAT on the large number of speak-
ers represented in MACROPHONE would be prohibitive to our
goal of rapid experimental iteration, so in this work all of our
voices are trained speaker-independently. We will examine the
benefits of SAT on our most highly rated voices in future work.
We obtain the standard set of full-context phonetic labels using
the Festival Speech Synthesis System front-end [19]. Synthesis
and vocoding were done using hts-engine.

5. Crowdsourced Evaluation of
Intelligibility

To evaluate the intelligibility of our voices, we published
crowdsourced listening tests online using Amazon Mechanical
Turk (MTurk), a popular crowdsourcing platform. To restrict
our listeners to native speakers of English, we required all work-
ers to complete a qualification test in which workers choose the
languages they have spoken since birth from a list of options
before attempting any of our tasks. We only allowed workers
who selected English as one of these languages to participate in
our evaluation and also excluded workers who chose more than
three languages in total in order to safeguard against those who
might select many languages in an attempt simply to pass the
test. We also restricted our tasks’ visibility to workers within
the United States.

We produced 10 syntactically-sound but semantically un-
predictable sentences (SUS) of the standard form det adj
noun verb det adj noun as used in the Blizzard chal-
lenge [20], and synthesized them with each of the voices de-
scribed below. We also included one semantically-predictable
sentence spoken clearly as an attention check question. This is
a standard intelligibility test for TTS which has been shown to
be viable for crowdsourcing [21]. Workers were asked to tran-
scribe each of the eleven sentences, presented in random order.
Since the sentences were the same for each voice, to enable a
sensible comparison across voices, workers were only allowed
to transcribe sentences for one voice, to remove any bias aris-
ing from the workers remembering the sentences. Five workers
transcribed all sentences for each voice.

After sentences were transcribed, we computed word er-
ror rate (WER) for each voice (averaging over each of the five
workers) to measure intelligibility, comparing results to the text
that was actually synthesized. Since the transcriptions were
typed by humans, they were prone to typographical errors and
misspellings, which we hand-corrected. We also allowed singu-
lar/plural confusions, such as “musical” / “musicals,” but we did
not allow confusions between words with the same stem, such
as “fragrant” / “fragrance.” We also allowed compound word
variants, such as “blackbird” / “black bird.”

We also explored the use of automatic speech recognition
(ASR) as an alternative method of evaluating for intelligibility.
This is further described in Section 7.

6. Filtering Techniques
We began with the first 10 hours of utterances labeled as being
spoken by adult female speakers in the MACROPHONE cor-
pus, and then extended it to the entire 83 hours of female speech,
to compare the effects of having a smaller or larger pool of data
from which to select. We selected 2-hour subsets from just the



first 10 hours of data, and then 2- and 4-hour subsets from the
full 83 hours. We selected our training subsets based on criteria
such as mean and standard deviation of f0 and energy, as well
as speaking rate (computed as syllables per second), level of ar-
ticulation (computed as mean energy divided by speaking rate),
and utterance length. For each feature, we computed its value
for each utterance, and then sorted the list of utterances from
low to high. Then, we obtained subsets by selecting e.g. the
first two hours’ worth of utterances from that list. We also ex-
perimented with removing different types of utterances that we
hypothesized might hurt the quality of the voice, such as very
short utterances of only one or two words; utterances contain-
ing clipped audio; utterances containing transcribed noise (such
as “[unintelligible],” “[bg speech],” and “[line noise]”); and ut-
terances consisting of a word spelled out letter-by-letter, which
are indicated in the corpus by “spword” in the file name.

We trained our baseline voice on all of the first 10 hours of
female utterances since training on the full 83 hours would be
prohibitively computationally expensive. This produced a voice
with a word error rate of 67.7% when transcribed by MTurk
workers. We compare all of our MACROPHONE subset voices
to this baseline. Results are shown in Tables 1 and 2. Voices
that did better than the 10-hour baseline appear in bold.

Table 1: Word error rates for voices trained on 2-hour subsets
of the first 10 hours of female MACROPHONE data, selected
based on prosodic features.

Feature Low Med High
Mean f0 98.6 85.7 100.3
Stdv f0 83.1 80.0 87.1
Mean energy 98.6 95.7 70.6
Stdv energy 100.9 85.4 79.7
Speaking rate - 99.1 54.3
Articulation 76.0 87.7 -
Utterance length 96.6 85.4 96.9

Training on the two hours of slowest speaking rate utter-
ances and most hyper-articulated utterances both failed due to
lack of phonetic coverage.

Table 2: Word error rates for voices trained on subsets of the
10 hours of data minus utterances removed based on different
noise criteria.

Subset Hours WER
Baseline 10:00 67.7
3 or more words 7:34 79.7
No clipping 9:57 77.7
No transcribed noise 5:53 58.9
No spelled words 9:24 94.3

While the baseline MACROPHONE voice is not rated as
highly intelligible, the amount of room for improvement al-
lows us to see approaches that do well — namely, the two-hour
subset of utterances with the fastest speaking rate and the sub-
set that excludes utterances with transcribed noise that do beat
the MACROPHONE baseline. Removing utterances containing
transcribed noise did improve intelligibility, but surprisingly, re-
moving the shortest utterances, utterances containing clipping,
and utterances containing spelled-out words did not.

Next, we extended some experiments for our five best se-
lection approaches so far – high mean energy, high standard de-
viation of energy, fast speaking rate, low articulation level, and

middle standard deviation of f0. Rather than limiting ourselves
to selecting from just the first 10 hours of data, we selected 2-
and 4-hour training subsets from the entire 83 hours of data, mi-
nus any utterances containing transcribed noise (since we have
shown already that this removal improves synthesis output), to
observe whether there is an improvement from having a larger
pool of data to select from. Results are shown in Table 3.

Table 3: Word error rates for voices trained on 2- and 4-hour
subsets selected from the full 83 hours of data.

Feature 2hrs 4hrs
High mean energy 60.0 48.3
High stdv energy 83.1 64.6
Fast speaking rate 66.6 48.3
Hypo-articulation 64.6 49.1
Middle stdv f0 48.0 45.1

When looking at results for selecting 2-hour subsets from
just the first 10 hours of data (Table 1), versus selecting 2-hour
subsets from the full data set (Table 3, first column), we no-
ticed that selecting subsets from the full dataset does usually
produce more intelligible voices than selecting just from the
first 10 hours, with most of these voices being rated as more
intelligible than the 10-hour baseline, despite being trained on
only 1/5 of the amount of data. Extending to 4-hour subsets
consistently produces better voices than the baseline, as well.
This indicates that more data is only better if it is chosen in a
principled way, and validates our hypothesis that better voices
can be trained by identifying the best training utterances in a
noisy corpus, even if this results in less training data.

Three of our best voices were created from fast speaking
rate utterances – both the 4-hour and 2-hour sets selected from
the full data set, and the 2-hour set selected from just the first 10
hours. A low level of articulation, which encodes fast speaking
rate, also proved to be a preferable feature – voices trained on
the 4 hours and 2 hours of most hypo-articulated utterances se-
lected from the full data set scored better than the baseline. Our
top two voices were based on selecting utterances with middle
values for standard deviation of f0, with the 2-hour subset of
the full data at 48% and the 4-hour subset at 45.1%. This was
surprising as we would expect low values of f0 standard devia-
tion to be more consistent with the speaking style in a standard
text-to-speech corpus; however, these corpora are optimizing
for naturalness, generally in a unit selection setting, whereas
we are optimizing for intelligibility.

7. Automatic Intelligibility Evaluation
A limitation of our approach is the long turnaround time for
crowdsourcing voice transcriptions. Since each worker is al-
lowed to transcribe only a single voice, evaluation proceeds
slowly regardless of individual workers’ interest in the task.
This led us to investigate the possibility of using automatic
speech recognition (ASR) to evaluate intelligibility. Although
an ASR system will not interpret a voice exactly as a human
would, depending heavily upon the type of data on which it was
trained, it would nevertheless return results very quickly and not
have the limitation of remembering and being influenced by re-
peat sentences. We therefore thought it worthwhile to see how
this type of evaluation compares to that done by humans and
whether in fact there are some reliable correlations.

We tested three different general-purpose, state-of-the-art,
industry-level ASR APIs (Application Programming Interfaces)
to determine the viability of their use for evaluating voices:



wit.ai [22], a natural language API toolkit owned by Facebook;
Watson [23], IBM’s API for cognitive applications; and the
Google Cloud Speech API [24]. We decided to try APIs rather
than building our own ASR because using state-of-the-art rec-
ognizers should presumably provide the best possible proxy for
a human listener. Our hypothesis was that some of these rec-
ognizers might correlate well with human transcription perfor-
mance, so we can use these as a first step to choosing our best
candidate voices to send to MTurk.

For each voice, we ran the same set of synthesized SUS
that we gave to MTurk workers through each ASR API. We
then computed WER from the returned transcripts. We allowed
the same singular/plural and compound word confusions that
we allowed in the transcriptions from Mechanical Turk, but we
did not need to correct for spelling or typographical errors.

7.1. Results

We found strong correlations between our three different ASR
APIs’ WERs and those from MTurk. We report correlations
across our 34 different voices in Table 4. Furthermore, for all
voices that humans rated as better than baseline, all three ASRs
agreed that these voices were better than the baseline. This in-
dicates that using ASR APIs is a promising pre-selection ap-
proach to decide which voices should get evaluated on MTurk.

While using ASR is much faster than crowdsourcing, it
comes with its own challenges. For example, we noticed that
sending the same audio clip multiple times to the same ASR did
not necessarily always return the same transcription. A major
downside of using an ASR API is that we have no information
on the internal system — not just the type of models they are us-
ing, but how often they are updated, or whether some machines
in their cloud are running different versions of the recognizer.
So we can only speculate as to why repeated recognition of the
same audio file would result in multiple different 1-best tran-
scripts each time. We originally thought that using an ASR API
would serve as a very consistent way of evaluating the voices,
but this may not be the case.

Nevertheless, the human evaluations are also somewhat in-
consistent and, in fact, they tend to be more inconsistent than
the ASR evaluations. We have measured standard deviations in
word error rate for the baseline MACROPHONE voice across
the 5 workers who transcribed it, as well as standard deviations
for those same utterances sent 5 times each to our three ASR
APIs, as a way to measure variability of the different systems;
these are also reported in Table 4.

Table 4: Correlation of ASR APIs with MTurk on 34 voices,
and standard deviation in WER when evaluating the baseline
MACROPHONE voice 5 times.

Evaluation Correlation (r) Std.Dev (%)
MTurk — 4.52
wit.ai 0.728 1.20
Watson 0.797 0.00
Google 0.876 0.00

Both Watson and Google returned the same transcripts all
five times, indicating that they have the least variability.

We have also found challenges related to task specification.
While we were able to tell MTurk workers in the instructions
that the sentences they were transcribing would not necessar-
ily make sense, we could give no such instructions to an ASR.
We noticed that, for example, wit.ai appeared to be attempt-
ing to recognize sentences or parts of sentences that “made

sense” – most likely because its language model was trained
on semantically-predictable data. While wit.ai had the most ob-
vious language model effects, this also applies to any ASR API
over which we do not have control. Ideally we would be able
to “tell” an ASR that the sentences will not necessarily make
sense by specifying a very simple language model such as a
unigram or bigram, but unfortunately we have no such control
over a cloud-based ASR API. Thus, for future work, we plan to
see whether using ASR systems trained on the same data as the
TTS voices correlates with human judgments, since in the case
of actual LRLs, this may be all we have available. This will al-
low us complete control over the language model and over the
system in general so that we can ensure consistent evaluation.

For future work, we also plan to compare more traditional
objective measures. Objective measures for intelligibility are
typically used for measuring signal loss of natural speech in
noise environments or over a noisy transmission line and are
often only applicable in limited circumstances [25]; it is rare
for these measures to be used for evaluating synthetic speech.
However, [26] explored the use of a variety of such metrics to
evaluate speech from a state-of-the-art HMM synthesizer under
a number of additive noise conditions, finding that some mea-
sures correlated well with human intelligibility ratings. While a
voice trained on high-quality, single-speaker, TTS-specific data
and played in noisy environments is likely to have different in-
telligibility issues than a voice originally trained on noisy data,
it may nevertheless be worthwhile to see whether these mea-
sures correlate with human judgments for our voices as well.

8. Conclusions and Future Work

We have found that selecting for utterances with fast speaking
rate and removing utterances with transcribed noise can produce
an improved TTS voice when only noisy “found” data from
multiple speakers is available. We have also found that level of
articulation, mean and standard deviation of energy, and stan-
dard deviation of f0 are useful selection features. We are cur-
rently exploring additional filters and combinations of filters.
We also plan to explore different modeling approaches such as
adaptation and neural network based synthesis. Using ASR for
intelligibility evaluation has shown promise for reducing our ex-
perimental iteration time by identifying voices that are the best
candidates for human evaluation. Finally, we have begun us-
ing these approaches on LRLs (currently, Amharic, Telugu, and
Turkish) in addition to English corpora to see how well filters
that suit one language generalize to others.
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