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Abstract
Human decision makers in many domains can
make use of predictions made by machine learning
models in their decision making process, but the
usability of these predictions is limited if the hu-
man is unable to justify his or her trust in the pre-
diction. We propose a novel approach to produc-
ing justifications that is geared towards users with-
out machine learning expertise, focusing on do-
main knowledge and on human reasoning, and uti-
lizing natural language generation. Through a task-
based experiment, we show that our approach sig-
nificantly helps humans to correctly decide whether
or not predictions are accurate, and significantly in-
creases their satisfaction with the justification.

1 Introduction
Machine learning systems are increasingly used to assist hu-
mans in decision making, producing predictions or recom-
mendations which are then considered by a human decision-
maker. It is important that the prediction can be justified: the
user should understand why the system produced its predic-
tion, and make sure she agrees, before making a decision.

For the rule-based expert systems that were prevalent at
the end of the 20th century, it is often enough to explain how
the system reached its conclusion. The human user will be
able to understand the set of rules governing the prediction,
and given the proper information about the particular situa-
tion leading to a specific prediction (the relevant states of the
data and the chain of rules that led to the final decision), will
be able to make up his mind about the prediction’s validity.
This is called the “white box” model, in contrast to the “black
box” model where explanation is not given.

Recently, machine learning (ML) techniques have all but
replaced rule-based methods, resulting in increased accuracy
and an ability to handle more complex problems. In contrast
to rule-based systems, justifying the predictions of ML is not
a straightforward task: it is no longer the case that explaining
how a prediction was reached automatically justifies it to the
user. Due to the complex, quantitative and unintuitive nature
of most models, it is unreasonable to expect that users who are
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not ML experts, even if they are experts in the domain of the
prediction, will understand how the model works, regardless
of how transparently it is presented. In other words, the white
box model is no longer useful for most users.

A black box with no justification at all, however, is even
worse. In this paper, we propose a model where Natural Lan-
guage Generation (NLG) is used to produce simple, short,
qualitative and intuitive justifications for ML predictions, re-
lying on the domain knowledge embodied in the features.

Work on prediction interpretation [Robnik-Sikonja and
Kononenko, 2008; Ribeiro et al., 2016], which is concerned
with creating interpretable (e.g. linear) models that approxi-
mate an uninterpretable model’s behavior for a particular pre-
diction is complementary to ours. In fact, our approach ex-
pects an interpretable model for the prediction we are justi-
fying. Note that “interpretable” in this context means inter-
pretable by a ML expert or a statistician: a model that has a
low enough complexity to be explored in finite time by an ex-
pert, for example through visualization. What we focus on in
this paper is creating a general human-centered narrative from
the quantitative details of the model - a narrative not about
the model, but about the evidence that led to the prediction.
We also present the first work, to our knowledge, that takes
into account missing evidence, which is an important part of
human decision making but often ignored in previous work
on explanation. We show, through an experiment with hu-
man subjects, that our approach helps users accurately judge
whether or not a prediction is correct, as well as increasing
their satisfaction with the explanation. We have made this
work available to the community as an open-source library.

2 Related Work
Related work for producing justifications (or more commonly
explanations, which are presumed to be justifying) come
from multiple fields. Historically, explanations first appeared
in the context of rule-based expert systems [Shortliffe and
Buchanan, 1975; Swartout, 1983; Barzilay et al., 1998], and
were mostly treated as a systems design task (i.e., designing
a system capable of producing explanations and drill-down
into its decisions). In some fields - especially the medical -
probabilistic decision-making systems are still called expert
systems and their explanation is treated as a continuation of
that line of research [Lacave and Dı́ez, 2002; Yap et al., 2008;
Helldin and Riveiro, 2009].
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In the 2000’s justification has also been of particular im-
portance in the field of recommender systems, where a ML
or other probabilistic system needs to justify its recommen-
dation to many users. [Herlocker et al., 2000] measured user
satisfaction with a variety of justification types for a movie
recommendation system. They found that the most satis-
fying were simple and conclusive methods, such as stating
the neighbors’ ratings or focusing on a single strong fea-
ture like a favorite actor. Surprisingly, justifications incor-
porating ML concepts such as model confidence and com-
plex justifications such as a full neighbor graph scored lower
than the baseline black box. Other studies have also shown
that users are overwhelmingly more satisfied with systems
that contain some form of justification [Sinha and Swearin-
gen, 2002] and that feature-based justifications are superior
to those that rely on user history, neighors or model de-
tails [Bilgic and Mooney, 2005; Symeonidis et al., 2009;
Papadimitriou et al., 2012].

In the machine learning literature, work on explanation has
often focused on producing visualizations of the prediction
in order to assist ML experts in evaluating the correctness
of the model. One very common visualization technique is
nomograms. It was first applied to logistic regression models
by [Lubsen et al., 1978], and later to Naive Bayes [Možina
et al., 2004], SVM [Jakulin et al., 2005] and other models.
[Szafron et al., 2003] proposed a more detailed visualization-
based framework for Naive Bayes.

Other work has focused on interpreting the predictions of
specific complex models, often by proposing to isolate the
contributions of individual features to the prediction. Such
proposals were made for Bayesian networks [Suermondt,
1992], multi-layer Perceptrons [Feraud and Clerot, 2002],
SVMs [Carrizosa et al., 2006] and other models.

In addition to model-specific methods, there have been
suggestions for model-agnostic frameworks. [Robnik-
Sikonja and Kononenko, 2008] and [Kononenko et al., 2013]
measure the effect of a feature on an unknown classifier’s pre-
diction by checking what the prediction would have been if
that feature value was absent and comparing the two using
various distance measures. The effects are displayed visually
to show the main contributors towards a prediction or to com-
pare the feature’s effect in various models. [Baehrens et al.,
2010] describe an alternative approach using explanation vec-
tors (class probability gradients) which highlight the effect of
the most important features. [Ribeiro et al., 2016] introduced
a method which learns an interpretable (linear) model locally
around the prediction, approximating how the global model
behaves in that region.

Further removed yet relevant lines of research include com-
putational argumentation [Rahwan and Simari, 2009]; expla-
nation of statistical information in forensic science [Vlek et
al., 2016; Timmer et al., 2017]; and explanation in context-
aware applications [Tullio et al., 2007; Lim and Dey, 2010].

3 Justification Narratives
While it is not reasonable to expect non-experts to under-
stand the details of how a prediction was made by a ML
model, it is still important that they understand the variables

affecting the prediction enough to satisfy the question of
justification. It has been shown that evidence-based causal
models of justification are more satisfactory to users than
white box models and that replacing numeric values with
qualifying linguistic expressions (high, strong, etc) also en-
hances satisfaction [Druzdzel, 1996; Herlocker et al., 2000;
Lacave and Dı́ez, 2002]. The features used in ML models of-
ten correspond to real-world evidence that non-experts under-
stand well (and when they do not, such real-world evidence
can sometimes be approximated, e.g. as shown by [Ribeiro et
al., 2016]). A justification for a prediction can rely on these
variables, their importance to the model, their effect on the
prediction, and their interactions.

A robust method of automatically generating prediction
justification, then, should focus on selecting the most impor-
tant pieces of evidence for the prediction and on analyzing
and presenting their roles in the prediction. The selected ev-
idence should be presented to the user in a qualitative way
that is invariant across different models and readily under-
standable by a non-expert.

This section describes a framework for producing justifica-
tion narratives from ML predictions. Each narrative is com-
posed of a subset of the relevant features, where each feature
has a discrete role. The framework enables us to more easily
decide what an appropriate feature subset looks like and to
present it in a way that is more qualitative than quantitative.
This plays a role somewhat similar to the Signal Analysis and
Data Interpretation modules described in [Reiter, 2007] for
data-to-text generation systems.

3.1 Narrative Roles
The first step in producing a narrative is determining the role
of each feature. One important concept that is well-explored
in the literature is a feature’s effect on the prediction - its
contribution towards or against the predicted class [Robnik-
Sikonja and Kononenko, 2008; Carrizosa et al., 2006; Yap
et al., 2008]. In addition, we are interested in a feature’s im-
portance in the model - the expected effect of the feature for a
prediction of the particular class, regardless of its actual value
in the current prediction.

In this paper, we focus on linear classifiers which utilize
linear discriminant functions. This family contains many
commonly-used ML classifiers, including Logistic Regres-
sion, Perceptrons and Linear SVMs, and log-linear models
such as Naive Bayes can also be formulated in a way that
fits this framework. For more complex models (e.g. Kernel
SVMs or Neural Nets), a linear model that approximates the
local behavior can be found using the a method like the one
proposed by [Ribeiro et al., 2016]. Alternatively, a feature’s
effect on a prediction (and with many predictions, its ex-
pected effect) can be approximated in other ways [Kononenko
et al., 2013].

A linear discriminant function for data instance x in the
general multi-class linear classifier is

f(y, x) =
∑
i

θyixi

Where each xi is a feature value and the coefficients θyi
have been learned from the training data for each class y us-
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aaaaaaaaa
Importance

Effect High
positive Low High

negative

High positive Normal evidence Missing evidence Contrarian counter-evidence
Low Exceptional evidence Negligible Exceptional counter-evidence
High negative Contrarian evidence Missing counter-evidence Normal counter-evidence

Table 1: Narrative roles assignment for the range of feature effect and importance

ing some learning algorithm, and may include an intercept.1
The classifier predicts the class of the instance as the one that
maximizes the predictor function, possibly through a mono-
tonic non-linear distortion function ϕ:

ŷ = argmax
y

ϕ (f(y, x))

= argmax
y

f(y, x)

The linear effect of a feature i towards or against predict-
ing class y for a data instance is the product of the feature’s
coefficient and its value in the instance:

Effectyi = θyixi

While its importance, the expected effect for predictions of
the class, can be estimated using the mean feature value for
the class (Xy is the set of all instances in the training set with
class y):

Importanceyi = θyi

∑
x∈Xy

xi

|Xy|
Intersecting these two concepts, we assign a narrative role

for each feature. Narrative roles are assigned based on the
sign and magnitude of the importance and effect of a fea-
ture for the predicted class. They represent semantically clear
concepts that non-experts readily understand, and are rooted
in the true details of the prediction. Table 1 shows the roles
for all possible combinations.

Table 1 assumes that we have discretized the importance
and effect values of the features into high positive, high neg-
ative and low. We discretize the values as follows.

To discretize importance, we first separate the features with
positive and negative importance in the model. For each of
these groups, we normalize the (absolute) importance values
of the features, and find the smallest subset H such that∑

i∈H

Importanceyi > τ

where τ is a tunable parameter that we set to 0.75 in our
experiments. We then set the high/low threshold halfway be-
tween the lowest importance of any feature inH and the high-
est importance of a feature not in H . In other words, the
smallest set of features that together have over 75% of the
total importance of the features (on the positive side, and sep-
arately on the negative side) have high importance, while all

1This is a generalization of the binary classifier case, where there
is only one coefficient vector θ for the positive class, and the negative
class implicitly has the negation of the positive class coefficients

others have a low importance. The same threshold is used to
discretize the effect of features for each instance. If the fea-
ture importance values have a non-uniform distribution, this
strategy optimizes succinctness and informativeness.

The initial content selection for a justification is to exclude
negligible features. Features that have one of the other eight
roles represent the most important evidence which a user will
need to see in order to make up her mind about the prediction:
they either had a direct effect on the prediction, or else they
were expected to but did not.

Narrative Role Descriptions
Narrative roles can be broadly divided into three groups: evi-
dence, missing evidence, and counter-evidence roles.

Features having evidence roles are those that had a positive
contribution toward making the prediction. Normal evidence
is evidence that is expected to be present in many instances
predicted to be in the class: with high importance, high ef-
fect is not surprising. Exceptional evidence is evidence that
is not usually expected to be present. With low importance,
high effect means that the feature value is surprisingly high.
The user may decide that this makes the prediction dubious
(especially if the result would be different if this feature were
within the normal range), or on the contrary - perhaps this
feature represents rare but solid causal evidence. Contrarian
evidence is strongly unexpected, since the effect has the op-
posite sign than expected. Note that contrarian evidence (and
contrarian counter-evidence) is only possible for features that
may have negative values, and may not appear in many real-
world applications.

A feature that has Missing evidence as a role is an im-
portant feature that was expected to contribute positively, but
was weak for the particular instance. We want to include it
in the narrative because it means that the prediction was un-
characteristically made without the typically important con-
tribution of that feature (depending on the prediction domain,
this may tell the human that this prediction is likely to be
wrong. It may also signal the opposite - that the other evi-
dence for the prediction is exceptionally sound). Similarly,
missing counter-evidence is given to features that were ex-
pected to contribute negatively but did not.

Finally, there are counter-evidence roles. Features having
these roles contributed against the prediction, although they
were not strong enough to overturn it. They are important be-
cause the human may think one or more of these are reason
to mistrust the prediction, even though the evidence features
had a higher effect in the model. Normal counter-evidence
is expected: it is normal for this feature to have a high neg-
ative effect, even if the positive effects from other features
ultimately overpower it. Exceptional counter-evidence is
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unusual. Finally, contrarian counter-evidence means that
a feature we normally expect to contribute positively con-
tributes negatively instead.

4 Generation
Given a model definition, a data instance and a prediction,
we generate a text comprised of two types of messages. Core
messages are messages about the roles of key features, as de-
termined by the justification narrative created for the predic-
tion as detailed in the previous section. These are realized us-
ing hand-crafted sets of templates for the eight possible role
types. For example, “[feature] exhibits typical evidence in
support of the prediction” is one of the templates for the nor-
mal evidence role. Each role descriptions has 5 associated
templates which are paraphrases of one another.

In addition, the justification contains secondary messages
which define and describe the importance (not in terms of
weight in the model or the prediction, but in a real-world
sense) of key features. These aim to explain to the reader,
in plain language, why the feature might be important. Sec-
ondary messages are definitional sentences that were ex-
tracted ahead of time from Wikipedia, in a process that only
takes place once for each model whose predictions are to
be justified: Wikipedia is scanned for sentences that con-
tain a feature name as a subject; if the sentence is below a
length threshold and does not contain more than one other
proper noun (to avoid sentences that are complex and context-
heavy), it is extracted and kept as a secondary message about
the feature, which can be added to justifications where the
feature appears. Because features are not always given names
that correspond to real-world concepts, secondary messages
in general are not available for all features.

Content selection, therefore, is done in two parts: first, core
messages are created according to the narrative; then, a subset
of possible secondary messages for the participating features
is selected using [Barzilay and Lapata, 2005]’s energy mini-
mization framework approach, by minimizing∑

m∈S

ind(m) +
∑
mi∈S
mj∈N

link(mi,mj)

where S is the subset of selected secondary messages and N
is the subset of unselected messages;

ind(m) = − 1∑
c∈C J(c,m)

|C|

whereC is the set of core messages and J(c,m) is the Jaccard
Coefficient between the member entities of messages c and
m; and link(mi,mj) is the Jaccard Coefficient between the
types of the member entities of messages mi and mj .

Minimizing this function means that we tend towards se-
lecting more secondary messages that contain the exact enti-
ties contained by many core messages; more secondary mes-
sages that share entity types with other secondary messages
(so that a justification tends to focus on one or a few themes);
and few secondary messages overall (since the individual
scores are always negative).

To order the selected messages (both core and secondary),
we use the discourse model of [Biran and McKeown, 2015],
which gives transitional probabilities between discourse re-
lations that potentially hold between messages (they use
the four top-level relations of the Penn Discourse TreeBank
[Prasad et al., 2008], of which we are only interested in two:
expansion and comparison). To use this model, we define
which discourse relations are allowed to occur between mes-
sages as follows:

1. Possible comparison relation for two core messages
if one describes an evidence role (including missing
counter-evidence) and the other describes a counter-
evidence role (including missing evidence)

2. Possible expansion relation for two core messages if
both describe an evidence role, or if both describe a
counter-evidence role

3. Possible expansion for any two messages which describe
the same feature (most relevant to secondary messages)

4. Possibly no relation for any two messages

The first message to be generated is a special one that
states the prediction result. From there, we let the model de-
cide stochastically what follows, but we augment [Biran and
McKeown, 2015]’s original model by weighting the proba-
bilities by J(c,m) as defined above, to encourage messages
about the same entities to appear together. Note that the
model gives us both the ordering and the discourse relations
(if any) between messages.

To realize the ordered messages as text, we use a cross-
sentence bigram language model extracted from Wikipedia,
and choose the template to use for each message stochasti-
cally (given the template chosen for the previous message).

For messages that have discourse relations between them,
we generate a discourse connective from a short list of 7 tem-
plates for each relation type (e.g., “mi. In addition, mj”
is one template for the expansion relation). We choose the
empty template (no connective) with 50% probability, and
the others initially have an equal chance of being chosen.
Each time a connective is used, its probability of being chosen
again is halved.

5 Evaluation
To see if our generated justifications really help the end-user
in correctly deciding whether or not the prediction is correct,
we devised a task based evaluation. Our subject domain in
this evaluation is a stock price prediction classifier (Logis-
tic Regression) which predicts whether the price of a stock is
going to rise or fall in the following 10 business days (that is,
whether the close price after 10 business days will be higher
or lower than the current close price). The classifier uses the
23 features shown in Table 2 and is trained on two years of
daily pricing data for the S&P500 companies, available on
Yahoo! Finance. The accuracy of the classifier (for the same
S&P500 companies, for predictions made on the day follow-
ing the training period) is 58.5% (F1 is 68.7). In our evalua-
tion, we present a prediction about the price of an anonymized
stock to a human, along with a justification or a baseline and
ask whether she would buy or avoid this stock. The task is
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Technical 2 day high / current 2 day momentum
Analysis 5 day high / current 5 day momentum
Signals 10 day high / current 10 day momentum

30 day high / current 30 day momentum
Prior 2 day returns neutral 2day returns
Returns 5 day returns neutral 5day returns

10 day returns neut. 10day returns
Valuation price/earnings ratio price/sales ratio
Multiples price/book ratio dividend yield

ev/ebitda ratio return on assets
return on equity return on revenue
debt to equity ratio

Table 2: Features used by the stock price prediction classifier.

to make as much money as possible betting on the stocks; we
hypothesize that humans who saw our generated justification
will make more accurate decisions, and therefore make more
money, than those who saw the baseline.

For each prediction in our evaluation, we create four jus-
tification versions. In the first, we show only the prediction
and no justification. In the second, we show the prediction
with a graphic representation of the effect of key features. In
the third, we give the prediction along with a textual justifica-
tion, and in the fourth, we provide both the graphic represen-
tation and the textual justification. In that way, we evaluate
the relative importance of the textual justification we propose
in this paper and a more traditional graphic visualization (in
fact, the graphic visualization is very similar to the one used
by [Ribeiro et al., 2016]). An example of the full justifica-
tion, with the textual and graphic components, is shown in
Figure 1. The text-only and graphic-only versions look the
same, except they consist of only one of the parts.

We used predictions made by the classifier for 487 mem-
bers of the S&P500 (pricing data was missing for the other
13) on July 7th, 2016 predicting the difference in price on July
21st, 2016. We then conducted a crowd-sourced experiment
on CrowdFlower where annotators (taskers) were shown the
prediction for one of the stocks (they were anonymized to
avoid bias from any real-world knowledge the annotators may
have had) along with one of the four justification options: pre-
diction only; graphic only; text only; or text + graphic. The
annotators, who had no special experience with financial in-
vestment or ML, were asked three questions: whether they
would buy or avoid the stock, given the prediction and jus-
tification they saw; whether or not the information provided
helped them in making their choice; and to what extent (on
a scale of 1-5) they were satisfied with the information they
were presented. Overall, we had 33 annotators answer 1, 948
questions. To keep it interesting and encourage the annotators
to behave like investors, we offered (relatively) large bonuses
to the two annotators who made the most virtual money.

The results are shown in Table 3. We show the average
accuracy, precision, recall, F1 and financial returns achieved
by the annotators for each justification category (these were
measured based on the agreement of the annotator’s choice
with the true returns of the stock, regardless of the classifier’s
prediction), as well as the ratio of annotators’ agreement with
the prediction for each justification category. In addition, we

None Graphic Text Both
Accuracy 23.85% 28.67% 29.1% 32.17%
Precision 56.57 63.16 64.57 68.09
Recall 15.51 23.27 22.71 26.59
F1 24.35 34.01 33.61 38.25
Returns 1.71% 2.1% 2.79% 2.42%
Agreement 85.22% 81.93% 83.98% 81.31%
Help 45.79% 78.44% 75.36% 84.39%
Satisfaction 2.54 3.17 3.21 3.38

Table 3: Results of the task-based evaluation. Precision, Recall and
F1 are measured with respect to the positive class.

show the ratio of annotators who said the information helped
them in making the decision, and the average satisfaction rat-
ing for each category.

For the accuracy metrics, all differences between cate-
gories are statistically significant with the exception of the
difference between grapical only and text only, and the dif-
ference between text + graphic and text only. For “help” and
satisfaction, all differences are statistically significant except
for the difference between graphic only and text only.

5.1 Discussion
The first thing to notice in Table 3 is that having any kind of
justification significantly increases all accuracy measures as
well as the financial returns achieved by the annotators. It
also reduces the agreement with the prediction of the classi-
fier, which suggests that the justification is doing what it is
intended to: give annotators enough information to decide (in
some cases) that the classifier is wrong.

It is interesting to see how low the annotators’ recall is with
respect to precision. This suggests that the annotators be-
haved like fearful investors: they chose to “buy” a stock more
rarely. The classifier itself predicted that stocks will rise and
fall approximately equally for the test period (in fact, with a
slight advantage to rising) - this, combined with the relatively
high agreement annotators had with the prediction, suggests
that most deviations from the classifier’s prediction were to
not buy a stock even when it predicted it will rise, presum-
ably because the justification was not convincing enough.

Looking at the three types of justification (graphic, tex-
tual, and both), it is clear that having a combined textual
and graphic justification achieves the best results on all ac-
curacy measures. While the returns achieved with text-only
are higher than those achieved by the combined justifica-
tion, keep in mind that the returns are heavily affected by the
amount by which each stock increases or decreases, which is
not modeled in any way by the classifier or the justification,
and so are more volatile than the accuracy metrics.

We were not able to show statistical significance for any of
the differences between the graphic-only and the textual-only
variations: either the two are complementary, or different an-
notators have different preferences. It is clear, however, that
having both is significantly better than having just the graphic
justification, on all counts - accuracy metrics (including ac-
tual financial returns), helpfulness, and satisfaction - which
shows the value of using justification narratives, actualized
via NLG, for justifying predictions.
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Figure 1: Example of a full justification produced for a prediction in the evaluation.

6 PreJu
PreJu is a Java package that generates justifications for clas-
sifier predictions using the method described in this paper.
We have made it publicly available2 for researchers who are
interested in justifying their classifiers’ predictions.

PreJu works in one of two ways: as a stand-alone config-
urable tool, it accepts input in the form of XML providing the
effect and importance scores of the features, leaving the im-
plementation details to the user, and allows the configuration
of key feature selection, output types and other parameters via
XML. As an API, it provides simple interfaces for producing
justifications programmatically and currently contains imple-
mentations for Weka’s Logistic Regression and SMO classi-
fiers as integrated input sources.

7 Conclusion and Future Work
We tackled the relatively unexplored task of ML prediction
justification via NLG. We proposed a novel human-centric
method of determining the most important core information
(and consequently, core messages) of the prediction justifica-
tion task using narrative roles. We then applied this approach
to a stock price prediction classifier and conducted a human
study which showed our generated justification significantly
enhances users’ ability to determine whether or not the clas-
sifier prediction is accurate, as well as their satisfaction and
inclination to say the justification is helpful. These effects

2http://www.cs.columbia.edu/˜orb/preju/

hold when comparing a text-only justification to no justifica-
tion, and also when comparing a text+graphic justification to
a graphic-only justification, suggesting that the textual part is
key to all three evaluation metrics. We made our justification
method publicly available as a Java package.

While the work in this paper provides a solid proof of con-
cept, there are clear paths to improving our method in future
work. One phenomenon we neglect in our handling of fea-
ture contributions is the case of highly-correlated features: in
such a scenario, we may miss some very important evidence
because it has been separated into multiple features, all of
which have relatively low weights in the classifier. A solution
to this would be to use a feature aggregation method which
combines highly correlated features into groups. A more opti-
mal (from the classifier’s point of view) solution, though more
problematic from an interpretability point of view, would be
a transformation such as Principal Components Analysis.
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