
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 440–449, Osaka, Japan, December 11-17 2016.

Incrementally Learning a Dependency Parser to Support Language
Documentation in Field Linguistics

Morgan Ulinski∗ Julia Hirschberg∗
∗Department of Computer Science

†Center for Computational Learning Systems
Columbia University
New York, NY, USA

{mulinski@cs,julia@cs,rambow@ccls}.columbia.edu

Owen Rambow†

Abstract

We present experiments in incrementally learning a dependency parser. The parser will be used
in the WordsEye Linguistics Tools (WELT) (Ulinski et al., 2014a; Ulinski et al., 2014b) which
supports field linguists documenting a language’s syntax and semantics. Our goal is to make syn-
tactic annotation faster for field linguists. We have created a new parallel corpus of descriptions
of spatial relations and motion events, based on pictures and video clips used by field linguists
for elicitation of language from native speaker informants. We collected descriptions for each
picture and video from native speakers in English, Spanish, German, and Egyptian Arabic. We
compare the performance of MSTParser (McDonald et al., 2006) and MaltParser (Nivre et al.,
2006) when trained on small amounts of this data. We find that MaltParser achieves the best per-
formance. We also present the results of experiments using the parser to assist with annotation.
We find that even when the parser is trained on a single sentence from the corpus, annotation
time significantly decreases.

1 Introduction

Although languages have appeared and disappeared throughout history, today languages are facing ex-
tinction at an unprecedented pace. Over 40% of the estimated 7,000 languages in the world are at risk of
disappearing (Alliance for Linguistic Diversity, 2013). Efforts to document languages become even more
important with the increasing rate of extinction. Bird (2009) emphasizes a particular need to make use of
computational linguistics during fieldwork. One way the WordsEye Linguistics Tools will address this
issue is by providing field linguists with the means to easily document syntax, something that is largely
missing from existing documentation tools. We model our tools for documenting syntax on the tools for
documenting morphology in SIL FieldWorks Language Explorer (FLEx) (SIL FieldWorks, 2014), one
of the most widely-used toolkits for field linguists.

An important part of FLEx is its “linguist-friendly” morphological parser (Black and Simons, 2006),
which is fully integrated into lexicon development and interlinear text analysis. The parser is constructed
“stealthily,” in the background, and can help a linguist by predicting glosses and morphological analyses
for interlinear texts. In the same way, WELT will provide tools for specifying the syntax of sentences
in the form of dependency structures and use them to train a parser in the background. The parser will
provide predictions for new sentences, and, as these are corrected and approved by the linguist, they are
added to the training data and the parser is incrementally improved.

This paper makes three contributions. First, we introduce a new corpus of English, Spanish, German,
and Egyptian Arabic descriptions of spatial relations and motion events, which we have annotated with
dependency structures and other linguistic information. We focused on spatial relations and motion
because one of the other functions of WELT will be to assist field linguists with elicitation of spatial
language and documentation of spatial and motion semantics. We are making the corpus available to the
public. Second, we compare the performance of two existing dependency parsing packages, MSTParser
(McDonald et al., 2006) and MaltParser (Nivre et al., 2006), using incrementally increasing amounts of

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

440

this training data. Third, we show that using a parser trained on small amounts of data can assist with
dependency annotation.

In Section 2, we discuss related work. In Section 3, we describe the new publicly available corpus.
In Section 4, we describe the parsing experiments and discuss the results. Section 5 discusses initial
experiments with nonlexical models. We discuss the annotation experiments and results in Section 6.
We conclude in Section 7.

2 Related Work

There have been a number of investigations into multilingual dependency parsing. For example, Nivre et
al. (2007b) presents detailed results for 11 languages using the arc-eager deterministic parsing algorithm
included in MaltParser. However, results are reported only for the parser trained on the full training
set and would not generalize to situations where training data is limited. Likewise, the 2006 and 2007
CoNLL shared tasks of multilingual dependency parsing (Buchholz and Marsi, 2006; Nivre et al., 2007a)
relied on the existence of ample training data for the languages being investigated. Our work differs in
that we are interested in the performance of a dependency parser trained on very little data.

Duong et al. (2015) approach dependency parsing for a low-resource language as a domain adaptation
task; a treebank in a high-resource language is considered out-of-domain, and a much smaller treebank
in a low-resource language is considered in-domain. They jointly train a neural network dependency
parser to model the syntax of both the high-resource and the low-resource language. In this paper, we
focus on the alternate approach of training directly on small amounts of data.

Guo et al. (2015) also investigate inducing dependency parsers for low-resource languages using train-
ing data from high-resource languages. They focus on lexical features, which are not directly transferable
among languages, and propose the use of distributed feature representations instead of discrete lexical
features. Lacroix et al. (2016) describe a method for transferring dependency parsers across languages by
projecting annotations across word alignments and learning from the partially annotated data. However,
both of these methods rely on large amounts of (unannotated) data in the target language in order to learn
the word embeddings and alignments. It is unclear how well these approaches would work in the context
of an endangered language where large amounts of unannotated text will not be available.

Our work also differs from the above because our goal is to incorporate a parser into tools for field
linguists studying endangered languages. Currently, there are limited options for creating a syntactic
parser for an endangered language. The ParGram project (ParGram, 2013) aims to produce wide cov-
erage grammars for a variety of languages, but doing so requires knowledge both of the LFG formalism
and the XLE development platform (Crouch et al., 2011). It is unlikely that a field linguist would have
the grammar engineering skills necessary to create a grammar in this way. Similarly, the LinGO Gram-
mar Matrix (Bender et al., 2002) is a framework for creating broad-coverage HPSG grammars. The
Grammar Matrix facilitates grammar engineering by generating “starter grammars” for a language from
the answers to a typological questionnaire. Extending a grammar beyond the prototype, however, does
require extensive knowledge of HPSG, making this tool more feasibly used by computational linguists
than by field linguists. Our work differs from both ParGram and the Grammar Matrix because we do
not require the field linguist to master a particular grammar formalism. Instead, linguists will create a
syntactic parser simply by labeling individual sentences, a procedure that builds easily upon an existing
workflow that already includes annotating sentences with morphological information.

3 Corpus

To obtain a corpus that is similar to sentences that field linguists would probably analyze using WELT,
we started with two stimulus kits used by field linguists to study spatial and motion language: the Picture
Series for Positional Verbs (Ameka et al., 1999) and the Motion Verb Stimulus Kit (Levinson, 2001).
For each picture and video clip, we elicited a one-sentence description from native speakers of English,
Spanish, German, and Egyptian Arabic. We chose languages covering a range of linguistic phenomena.
For example, German uses morphological case, and Spanish and Arabic both use clitics. In future work,
we hope to add languages from other language families, including Chinese and Korean. Our languages

441

are high-resource languages because we needed to have access to linguistically trained native speakers
in order to create the gold standard; however, we did not actually use any additional resources for these
languages in our experiments, and we believe they can therefore stand in for low-resource languages.

sents Avg. len. # words # lemmas # pos tags # features # labels
English 163 7.21 152 135 12 26 20
Spanish 165 8.51 180 149 12 30 20
German 157 7.52 217 175 13 32 19
Arabic 158 10.04 174 117 10 37 15

Table 1: Summary of each language in the corpus

The stick is leaning against the tree
DET NOUN AUX VERB ADP DET NOUN

det

nsubj

aux

ROOT

case

det

nmod

The ball rolls into the cube
DET NOUN VERB ADP DET NOUN

det nsubj

ROOT

case

det

nmod

(a) English

El palo está apoyado en el árbol
DET NOUN AUX VERB ADP DET NOUN
the stick is supported on the tree

det

nsubj

auxpass

ROOT

case

det

nmod

La pelota rueda hasta la pared
DET NOUN VERB ADP DET NOUN
the ball rolls toward the cube

det nsubj

ROOT

case

det

nmod

(b) Spanish

Der Stab lehnt am Baum
DEP NOUN VERB ADP NOUN
the stick leans on.the tree

det nsubj

ROOT

case

nmod

Die Kugel rollt gegen den Würfel
DET NOUN VERB ADP DET NOUN
the ball rolls toward the cube

det nsubj

ROOT

case

det

nmod

(c) German

r�K� � Yl� d�AF T§AO`� �

NOUN DET ADP ADJ NOUN DET
tree the on leaning stick the

nmod

det

case

ROOT

nsubj det

�ry�Ak� � �� dy`� �¤dnO� � Ty�A� §r� Cwk� �

NOUN DET ADP NOUN NOUN DET NOUN VERB NOUN DET
camera the from distant box the side run ball the

nmod

det

case
nmod
nmod

det nmod

ROOT

nsubj det

(d) Arabic

Figure 1: Example dependency structures

We start out by tokenizing each sentence; for Spanish and Arabic, this step includes splitting off the cl-
itics. We then annotated each token with its lemma, morphological information, part of speech, syntactic
head, and dependency label. For consistency across languages, we used part of speech tags, morpholog-
ical features, and dependency labels from the Universal Dependencies project (Nivre et al., 2016) and
attempted to follow the universal guidelines as closely as possible. The total number of sentences, aver-

442

age sentence length, and number of unique words, lemmas, part of speech tags, morphological features,
and dependency labels for each language is shown in Table 1. Note the sentence count varies slightly for
each language; this is because for some of the pictures and videos, the native informant gave us several
possible descriptions. English and German have very similar average sentence lengths; average lengths
in Spanish and Arabic are higher. German had the largest vocabulary; English had the smallest vocab-
ulary. All languages used similar numbers of part of speech tags and dependency labels, except Arabic
which used fewer of both. Arabic had the largest number of morphological features, and English the
smallest. Some example sentences with dependency labels are shown in Figure 1.

4 Parsing Experiments and Results

We used four methods of training a dependency parser on our data: MSTParser (McDonald et al., 2006),
two configurations of MaltParser (Nivre et al., 2006), and a baseline. All experiments used 5-fold cross
validation. For each of the four training methods, we trained on a subset of the train fold ranging from 1
sentence to 100 sentences. We tested on the full test fold, and then averaged the accuracy across the five
folds. Results are shown in Table 2. Arc accuracy requires selecting the correct head for a token; Lbl
accuracy requires selecting the correct dependency label; Both requires that both head and dependency
label are correct. The highest accuracy in each row for each metric (Arc, Lbl, Both) is shown in bold.

The baseline is determined by assigning the majority dependency label from the train data. Heads are
selected using left or right attachment, whichever is more common in the train data. For most of the
training sets, we did left attachment and assigned det as the dependency label, and the baseline usually
remained constant across all train sizes. For German with train size = 2, one of the folds had a majority
of right attachment, which resulted in a slight decrease in baseline accuracy. Likewise, for Arabic with
train size = 1 and train size = 2, one fold used right attachment, resulting in a decrease in arc accuracy
for those rows. The Arabic label accuracy was much more variable, since nmod was the majority label
about half of the time. The Arabic baseline used for each train size and train fold is shown in Table 3.

Train Fold 1 Fold 2 Fold 3 Fold 4 Fold 5size

1 det det
nmod

nmod det(right)

2 det det
nmod

det nmod(right)
5 det det det nmod nmod
10 nmod det det det nmod
25 nmod det nmod nmod nmod
50 nmod det det nmod nmod

100 det det det nmod nmod

Table 3: Arabic baseline: majority label per fold; if not
otherwise indicated, the default attachment is left

The first parser we tested was MST-
Parser (McDonald et al., 2006; McDonald
et al., 2005), which uses a two-stage ap-
proach to parsing: an unlabeled parser and
a separate edge labeler. The parser works
by finding a maximum spanning tree; the
label sequence is then found using Viterbi’s
algorithm. MSTParser uses a combination
of lexical, part of speech, and morphologi-
cal features; we did not modify the default
feature set.

We next tested MaltParser (Nivre et al.,
2006), which implements a variety of de-
terministic parsing algorithms. A depen-
dency structure is derived using features of
the current parser state to predict the next
action. Parser state is represented by a stack of partially processed tokens and a list of remaining input
tokens. We tested two algorithms: Nivre arc-eager and Nivre arc-standard. The arc-eager algorithm adds
arcs to the dependency tree as soon as the head and dependent are available; the arc-standard algorithm
requires that the dependent already be complete with respect to its own dependents. We used the default
feature sets for each of the algorithms. Like MSTParser, the feature set includes a combination of lexical,
part of speech, and morphological features; MaltParser also adds dependency features (arcs and labels)
from the current parser state.

Even with only one training sentence, both MSTParser and MaltParser performed well above the
baseline. MaltParser consistently achieved higher accuracy than MSTParser for all languages and train
sizes, especially when predicting the dependency labels. The performance of the arc-eager algorithm vs.

443

Train Baseline MSTParser MaltParser MaltParser

size (Nivre arc-eager) (Nivre arc-standard)
Arc Lbl Both Arc Lbl Both Arc Lbl Both Arc Lbl Both

1 0.452 0.325 0.318 0.669 0.495 0.437 0.720 0.785 0.699 0.741 0.793 0.708
2 0.452 0.325 0.318 0.730 0.702 0.643 0.798 0.831 0.769 0.801 0.826 0.764
5 0.452 0.325 0.318 0.794 0.780 0.723 0.852 0.860 0.822 0.817 0.843 0.789
10 0.452 0.325 0.318 0.826 0.787 0.743 0.872 0.880 0.846 0.829 0.856 0.804
25 0.452 0.325 0.318 0.872 0.830 0.798 0.935 0.925 0.902 0.878 0.901 0.855
50 0.452 0.325 0.318 0.930 0.884 0.865 0.950 0.942 0.919 0.920 0.925 0.897

100 0.452 0.325 0.318 0.939 0.913 0.896 0.961 0.965 0.946 0.945 0.951 0.926

(a) English

Train Baseline MSTParser MaltParser MaltParser

size (Nivre arc-eager) (Nivre arc-standard)
Arc Lbl Both Arc Lbl Both Arc Lbl Both Arc Lbl Both

1 0.397 0.273 0.271 0.454 0.329 0.311 0.504 0.570 0.478 0.533 0.588 0.493
2 0.397 0.273 0.271 0.568 0.444 0.397 0.600 0.650 0.558 0.605 0.663 0.558
5 0.397 0.273 0.271 0.662 0.608 0.541 0.753 0.779 0.713 0.752 0.786 0.702
10 0.397 0.273 0.271 0.758 0.729 0.662 0.797 0.836 0.773 0.810 0.838 0.777
25 0.397 0.273 0.271 0.837 0.813 0.770 0.890 0.905 0.865 0.868 0.887 0.843
50 0.397 0.273 0.271 0.880 0.861 0.817 0.921 0.937 0.905 0.910 0.930 0.895

100 0.397 0.273 0.271 0.923 0.898 0.871 0.947 0.959 0.935 0.932 0.947 0.919

(b) Spanish

Train Baseline MSTParser MaltParser MaltParser

size (Nivre arc-eager) (Nivre arc-standard)
Arc Lbl Both Arc Lbl Both Arc Lbl Both Arc Lbl Both

1 0.446 0.286 0.273 0.575 0.407 0.353 0.643 0.680 0.594 0.655 0.685 0.595
2 0.446 0.269 0.234 0.631 0.494 0.435 0.737 0.738 0.657 0.749 0.770 0.676
5 0.446 0.286 0.273 0.753 0.634 0.585 0.794 0.800 0.732 0.781 0.820 0.730
10 0.446 0.286 0.273 0.770 0.676 0.634 0.819 0.848 0.782 0.810 0.844 0.770
25 0.446 0.286 0.273 0.820 0.751 0.707 0.883 0.896 0.854 0.836 0.895 0.819
50 0.446 0.286 0.273 0.850 0.797 0.758 0.914 0.936 0.899 0.896 0.935 0.879

100 0.446 0.286 0.273 0.908 0.845 0.816 0.942 0.953 0.931 0.916 0.954 0.908

(c) German

Train Baseline MSTParser MaltParser MaltParser

size (Nivre arc-eager) (Nivre arc-standard)
Arc Lbl Both Arc Lbl Both Arc Lbl Both Arc Lbl Both

1 0.358 0.253 0.181 0.623 0.491 0.434 0.650 0.707 0.611 0.617 0.681 0.571
2 0.358 0.254 0.184 0.712 0.656 0.598 0.704 0.738 0.646 0.687 0.760 0.654
5 0.424 0.237 0.171 0.787 0.747 0.694 0.842 0.861 0.799 0.844 0.871 0.811
10 0.424 0.235 0.168 0.864 0.808 0.768 0.902 0.907 0.869 0.906 0.923 0.882
25 0.424 0.194 0.062 0.920 0.858 0.827 0.941 0.939 0.917 0.930 0.938 0.909
50 0.424 0.216 0.114 0.948 0.888 0.869 0.954 0.958 0.938 0.957 0.965 0.941

100 0.424 0.237 0.171 0.962 0.912 0.897 0.975 0.972 0.961 0.973 0.973 0.957

(d) Arabic

Table 2: Accuracy of each parsing method.

444

the arc-standard algorithm seems to vary by language and train size. For English, Spanish, and German,
the arc-standard algorithm has higher performance on small training sets, while the arc-eager algorithm
becomes superior as more training data is available. Results are more mixed for the Arabic data.

5 Initial Experiments with Nonlexical Models

One of the goals of WELT will be to encourage sharing of data and analyses among field linguists.
Since stimulus packs (such as the picture series and video series that we used to create our corpus) are
commonly reused across many languages, it would be helpful if a parser trained on a fully-annotated
version of the data for one language could be used by a field linguist just starting out with another,
potentially similar, language. To that end, we performed an initial experiment to see whether a parser
trained on one language could be applied successfully to the other languages in our corpus. To test
this, we used MaltParser (arc-eager algorithm) to train a parser on English data, using only nonlexical
features: part of speech, morphological tags, and dependency labels/arcs. We then applied this model to
the other three languages. Results are shown in Table 4. For this experiment, we used all 163 sentences
from the English corpus.

Arc Label Arc+Label
Spanish 0.767 0.816 0.719
German 0.808 0.840 0.773
Arabic 0.629 0.713 0.567

Table 4: Accuracy of (English) nonlexical
model applied to other languages

Comparing these results to those in Table 2, we see
that, for Spanish, the English nonlexical model per-
forms similarly to MaltParser trained on 5 Spanish sen-
tences. For German, the English nonlexical model per-
forms similarly to MaltParser trained on 5-10 German
sentences. For Arabic, the English nonlexical model
has lower accuracy than MaltParser trained on a single
Arabic sentence. This suggests that a simple nonlexical
model such as this one may only be useful for linguists using WELT if an annotated corpus in a related
language is available.

6 Annotation Experiments and Results

To test whether our parser would help with annotation, we performed annotation experiments using the
English data. We timed how long it took an annotator to label a sentence, when the sentence is prepro-
cessed in one of four ways. In the first method, a baseline assigns a flat structure and the dependency
label det to all nodes. The other methods use MaltParser (Nivre arc-eager algorithm) trained on 1, 5, or
25 sentences to provide an initial parse for the annotator to correct.

Figure 2: Screenshot of annotation software

Annotators labeled 5 trees for each pars-
ing method, for a total of 20 trees. To en-
sure each of the four sets of 5 contained sen-
tences with similar syntactic complexity, the
sentences were chosen as follows. Each pars-
ing method was assigned 1 sentence of each
of 5 lengths: 7 words, 8 words, 9 words, 10-
11 words, and 12-14 words. These were ran-
domly selected from among all sentences of
the required length. The 20 sentences were
then presented to the annotator in random or-
der. To keep the experiment consistent, all an-
notators labeled the same 20 sentences, in the
same order.

Three annotators participated in the experi-
ment. The first was the first author of this pa-
per. She is an expert annotator, very familiar with the universal guidelines for dependency annotation
and the annotation software. The other two annotators were undergraduate students who participated in a
brief training session to familiarize them with the desired analysis and the software. They were given ref-

445

erence materials showing sample trees covering a variety of syntactic phenomena including: auxiliaries,
copulas, coordination, secondary predication, and subordinate clauses. They were permitted to refer to
this material throughout the annotation task. Before participating in the annotation task, they annotated
10 additional trees for practice.

Figure 3: Annotation time across all sentence sizes

The software used for annotation was Tree
Editor (TrEd) (Pajas and Štěpánek, 2008) with
a simple Java wrapper that handled opening files
in TrEd and keeping track of annotation time.
A screenshot of the setup is shown in Figure 2.
Upon pressing the Next button, the annotator
was shown the next tree in TrEd and the program
recorded the start time. When the annotator fin-
ished labeling a tree, they saved the file in TrEd
and pressed the Done button. The wrapper pro-
gram closed the current file in TrEd and recorded
the end time.

A graph showing the average time (across all
sentence lengths) it took each annotator to label
a tree for each of the four parsing types is shown in Figure 3. A detailed listing of the time each annotator
took for each sentence size is shown in Table 5. A graph showing the average time (across annotators) for
each sentence size is shown in Figure 4(a). All times are given in seconds. The accuracy of MaltParser
(arc-eager) on sentences of different lengths is shown in Figure 4(b).

Sent.
size Baseline Malt-1 Malt-5 Malt-25

7 87.0 54.9 14.4 14.3
8 73.0 83.6 65.1 17.7
9 85.9 67.2 61.7 43.3

10-11 144.3 70.6 65.7 86.6
12-14 104.5 107.5 237.1 57.3
Avg 98.9 76.8 88.8 43.8

Sent.
size Baseline Malt-1 Malt-5 Malt-25

7 132.7 54.0 23.6 26.3
8 97.8 98.9 24.3 30.4
9 90.8 153.0 96.9 102.4

10-11 203.4 66.2 139.9 138.9
12-14 240.8 274.1 203.7 68.7
Avg 153.1 129.2 97.7 73.4

(a) Student1 (b) Student2

Sent.
size Baseline Malt-1 Malt-5 Malt-25

7 59.2 25.4 8.1 8.7
8 44.7 42.0 8.6 9.2
9 52.3 29.7 21.4 21.0

10-11 75.8 34.9 11.2 36.8
12-14 75.5 36.0 62.0 12.8
Avg 61.5 33.6 22.3 17.7

Sent.
size Baseline Malt-1 Malt-5 Malt-25

7 93.0 44.8 15.4 16.5
8 71.8 74.8 32.7 19.1
9 76.3 83.3 60.0 55.6

10-11 141.1 57.3 72.3 87.5
12-14 140.3 139.2 167.6 46.3
Avg 104.5 79.9 69.6 45.0

(c) Expert (d) Average

Table 5: Time (seconds) to annotate each sentence

Results vary slightly across annotators, but it is clear that, even when training on a single sentence,
annotation time is improved. Average annotation time decreases from 104.5 seconds for the baseline
parse to 79.9 seconds for the parser trained on one sentence. Using the parser trained on 5 sentences,
average annotation time decreases again to 69.6 seconds. Using the parser trained 25 sentences, we
see a decrease in annotation time to an average of 45 seconds. Statistical significance testing was done
with a paired t-test. Significant decreases in annotation time are: between the baseline and 1 training
sentence (p = 0.034), between the baseline and 5 training sentences (p = 0.015), between the baseline

446

(a) (b)

Figure 4: Graphs of (a) annotation time for each sentence size, across all annotators (b) parser accuracy
on each sentence size

and 25 training sentences (p = 2.51e−5), and between 1 training sentence and 25 training sentences
(p = 0.018).

There are several reasons to account for the fact that training on a single sentence significantly de-
creases annotation time. MaltParser works by predicting steps in a derivation, so one sentence actually
translates into more than one data point. With only one sentence, the parser can learn that a determiner
should be the left child of a noun, or that a noun should be the left child of the root predicate. Having
these dependencies already attached reduces the work the annotator must do compared to a completely
flat structure. In addition, our corpus consists only of descriptions of spatial relations and motion events,
so we expect a much more limited range of grammatical constructs than one finds in other treebanks.

For very short sentences (length 7), the graph in Figure 4(b) shows a clear downward trend as the
amount of training data increases. For sentences of length 8-9, we do not see improvement with one
training sentence, but annotation time begins to decrease substantially when there are 5 training sen-
tences. For longer sentences, the downward trend is less clear. This makes sense, since we can expect
to find a wider range of syntactic structures in a longer sentence, and parser performance on these will
require that a similar structure was seen in the train set. For sentences length 10-11, there is a substantial
drop in annotation time from baseline to 1 training sentence, at which point it seems to plateau. For
sentences length 12-14, average annotation time does not decrease until we have 25 training sentences.

Parser Student1 Student2 Expert
Arc Lbl Both Arc Lbl Both Arc Lbl Both

Baseline 0.951 1.000 0.951 1.000 1.000 1.000 1.000 1.000 1.000
Malt-1 0.971 1.000 0.971 1.000 1.000 1.000 1.000 1.000 1.000
Malt-5 0.930 0.950 0.905 0.980 1.000 0.980 0.980 1.000 0.980
Malt-25 0.962 0.982 0.962 1.000 1.000 1.000 1.000 1.000 1.000

Table 6: Annotation accuracy

One concern with using a parser to assist with annotation is whether there will be any effect on overall
accuracy. When presented with a mostly-correct parse, will annotators be able to see all the errors and
fix them? The accuracy of the annotators for each of the four parsing types is shown in Table 6. We do
see a drop in accuracy for all annotators when training on 5 sentences, especially for Student1. However,
this decrease is very slight for both Student2 and Expert. We suspect there may have been several
difficult sentences in this set; all annotators made errors on the sentence of length 10, and Student1 had
particularly low accuracy (0.625) on the sentence of length 8.

7 Summary and Future Work

We have reported results for incrementally training a dependency parser across four languages. Our
results show that such a parser can improve on baseline performance even when trained on a single

447

sentence, making our method particularly useful in the documentation of endangered and low-resource
languages. We found that MaltParser achieved the highest accuracy overall; the arc-standard algorithm
seems preferable for very small training sizes and arc-eager for slightly larger training sizes. We found
that using a parser to predict each sentence before annotation did significantly improve annotation time,
without a substantial decrease in accuracy.

The results of our experiments demonstrate that it is possible to extend FieldWorks’ “stealthy” ap-
proach to learning a morphological parser into the realm of syntax. By providing a way to assign de-
pendency structures to sentences, WELT will allow field linguists to incorporate syntax into language
documentation. The incrementally trained parser will reduce their workload by letting them correct er-
rors in a dependency structure rather than starting from scratch. This method of syntactic documentation
does not limit the field linguist to a particular syntactic theory. We chose to use the universal labels and
analyses in our corpus, but WELT users will have complete control over assignment of heads and choice
of dependency labels. The only requirement is that they are consistent across sentences.

In future work, we will experiment with other parsers, such as TurboParser (Martins et al., 2010),
Mate (Bohnet, 2010), and Easy-First (Goldberg and Elhadad, 2010). Furthermore, we will continue to
investigate methods of re-using existing parsers and dependency annotations with new languages (see
Section 5); specifically, we will investigate more effective methods of adapting existing parsers to other
languages. For example, we will investigate how to combine a non-lexical model with a lexical model
obtained from a small number of target language sentences. We will also investigate ways for linguists
to directly specify syntactic properties that can be used by the parser, similar to the way FLEx converts
morphological properties specified by users into formal rules compatible with the underlying parser.
Finally, we plan to try our WELT system in actual fieldwork.

Acknowledgements

We would like to thank Bob Coyne, Victor Soto, Daniel Bauer, and Heba Elfardy for their help creating
and annotating the parallel corpus. We would like to thank the anonymous reviewers for their comments
that helped us improve the paper.

References
Alliance for Linguistic Diversity. 2013. The Endangered Languages Project. http://www.
endangeredlanguages.com/.

F. Ameka, C. de Witte, and D. Wilkins. 1999. Picture series for positional verbs: Eliciting the verbal component
in locative descriptions. In D. Wilkins, editor, Manual for the 1999 Field Season, pages 48–54. Max Planck
Institute for Psycholinguistics.

E. Bender, D. Flickinger, and S. Oepen. 2002. The Grammar Matrix. In J. Carroll, N. Oostdijk, and R. Sut-
cliffe, editors, Workshop on Grammar Engineering and Evaluation at the 19th International Conference on
Computational Linguistics, pages 8–14, Taipei, Taiwan.

S. Bird. 2009. Natural language processing and linguistic fieldwork. Computational Linguistics, 35(3):469–474.

H.A. Black and G.F. Simons. 2006. The SIL FieldWorks Language Explorer approach to morphological parsing.
In Computational Linguistics for Less-studied Languages: Texas Linguistics Society 10, Austin, TX, November.

Bernd Bohnet. 2010. Very high accuracy and fast dependency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational Linguistics, COLING ’10, pages 89–97, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared task on multilingual dependency parsing. In Proceedings
of the Tenth Conference on Computational Natural Language Learning, pages 149–164.

D. Crouch, M. Dalrymple, R. Kaplan, T. King, J. Maxwell, and P. Newman. 2011. XLE Documentation. http:
//www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. 2015. A neural network model for low-resource univer-
sal dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 339–348, Lisbon, Portugal, September. Association for Computational Linguistics.

448

Yoav Goldberg and Michael Elhadad. 2010. An efficient algorithm for easy-first non-directional dependency
parsing. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, HLT ’10, pages 742–750, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. 2015. Cross-lingual dependency
parsing based on distributed representations. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1234–1244, Beijing, China, July. Association for Computational Linguistics.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and François Yvon. 2016. Frustratingly easy cross-
lingual transfer for transition-based dependency parsing. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1058–1063, San Diego, California, June. Association for Computational Linguistics.

Stephen C. Levinson. 2001. Motion verb stimul, version 2. In Stephen C. Levinson and N. J. Enfield, editors,
Manual for the field season 2001, pages 9–13. Max Planck Institute for Psycholinguistics.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and Mário A. T. Figueiredo. 2010. Turbo
parsers: Dependency parsing by approximate variational inference. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, EMNLP ’10, pages 34–44, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT ’05, pages 523–530, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006. Multilingual dependency analysis with a two-stage
discriminative parser. In Proceedings of the Tenth Conference on Computational Natural Language Learning,
CoNLL-X ’06, pages 216–220, Stroudsburg, PA, USA. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. MaltParser: A data-driven parser-generator for dependency
parsing. In Proc. of LREC-2006.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007a. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 915–932.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Sandra Kübler, Svetoslav Marinov, and Erwin Marsi.
2007b. MaltParser: A language-independent system for data-driven dependency parsing. Natural Language
Engineering, 13(2):95–135.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Uni-
versal dependencies v1: A multilingual treebank collection. In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC 2016), Paris, France, may. European Language Resources
Association (ELRA).

Petr Pajas and Jan Štěpánek. 2008. Recent advances in a feature-rich framework for treebank annotation. In
Proceedings of the 22Nd International Conference on Computational Linguistics - Volume 1, COLING ’08,
pages 673–680, Stroudsburg, PA, USA. Association for Computational Linguistics.

ParGram. 2013. ParGram/ParSem. http://pargram.b.uib.no/.

SIL FieldWorks. 2014. SIL FieldWorks. http://fieldworks.sil.org.

Morgan Ulinski, Anusha Balakrishnan, Daniel Bauer, Bob Coyne, Julia Hirschberg, and Owen Rambow. 2014a.
Documenting endangered languages with the WordsEye Linguistics Tool. In Proceedings of the 2014 Workshop
on the Use of Computational Methods in the Study of Endangered Languages, pages 6–14.

Morgan Ulinski, Anusha Balakrishnan, Bob Coyne, Julia Hirschberg, and Owen Rambow. 2014b. WELT: Using
graphics generation in linguistic fieldwork. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 49–54.

449

