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ABSTRACT
While research has often shown that building dialect-specific Auto-
matic Speech Recognizers is the optimal approach to dealing with
dialectal variations of the same language, we have observed that
dialect-specific recognizers do not always output the best recogni-
tions. Often enough, another dialectal recognizer outputs a better
recognition than the dialect-specific one. In this paper, we present
two methods to select and combine the best decoded hypothesis
from a pool of dialectal recognizers. We follow a Machine Learning
approach and extract features from the Speech Recognition output
along with Word Embeddings and use Shallow Neural Networks for
classification. Our experiments using Dictation and Voice Search
data from the main four Arabic dialects show good WER improve-
ments for the hypothesis selection scheme, reducing the WER by
2.1 to 12.1% depending on the test set, and promising results for the
hypotheses combination scheme.

Index Terms— speech recognition, dialects, system combina-
tion, system selection

1. INTRODUCTION

Dialects are defined as variations of the same language, specific to
geographical regions or social groups. Dialects of the same lan-
guage are differentiated at various linguistic levels. For example, at
the prosodic level, Arabic dialects differ in intonational and rhythm
cues [1]. At the orthographical level, the same word can have dif-
ferent spellings like color vs. colour and center vs. centre in Stan-
dard American English and British English respectively. Vocabu-
laries can evolve quite differently between dialects too, depending
among other factors on the interactions with other languages, eg. in
Castilian Spanish the word for cell phone is móvil, whereas Latin
American speakers will use celular. In some cases, these linguis-
tic differences do not impact speech intelligibility among speakers
of different dialects, as is the case for English or Spanish speakers,
whereas for other languages like Arabic, dialect speakers will under-
stand each other with much difficulty [2].

Inevitably, these variations impact the development of the acous-
tic model, language model, pronunciation model and lexicon of an
Automatic Speech Recognizer (ASR). Therefore, a decision must be
made whether to develop an ensemble of dialect-specific recognizers
or a single unified recognizer. So far, the strategy at Google has been
to build dialect-specific recognizers. This decision was based on lin-
guistic facts as well as rigorous cross-dialect experimental analysis
(e.g., [3]). In an application like VoiceSearch, the issue becomes
how to choose a recognizer to decode an arbitrary spoken query. In
the past, queries have been directed to a dialectal recognizer based
on the user’s language / country preferences, whereas presently the
recognizer is selected based on location information extracted from

ASR (Dataset) # Utts WER
Egyptian (IME) 8439 37.4
Egyptian (VS) 8633 34.7
Gulf (IME) 3536 29.4
Gulf (VS) 8739 21.5
Levantine (IME) 10138 33.7
Levantine (VS) 9677 28.4
Maghrebi (IME) 7829 38.4
Maghrebi (VS) 8090 34.7

Table 1. Number of utterances (column 2) and WER for each
dialect-specific ASR on its own test sets (column 1). These are used
as baseline results throughout the rest of the paper.

the query’s IP address [4]. For example, voice queries that origi-
nate from Egypt are directed to the Egyptian Arabic recognizer. Ta-
ble 1 shows the Word Error Rate (WER) performance of Google’s
production ASR for the main four Arabic Dialects (Egyptian, Gulf,
Levantine and Maghrebi) on Dictation (IME) and VoiceSearch (VS)
data. These systems, despite sharing similar architectures and al-
gorithms, show significantly different WER behaviors that can be
attributed to the data-dependent nature of these algorithms. Unified
Arabic ASRs in [3] were shown to underperform compared to its
dialect-specific counterparts. Since based on these experiments us-
ing dialect-specific is the optimal choice, but their performance show
such variance between them, the question then becomes whether we
can use better dialectal speech recognizers to leverage dialectal sys-
tems of the same language.

We run a series of experiments to explore the potential of such
idea. Table 2 contains two subtables. The first subtable contains
the cross-dialectal performance of the four dialectal Arabic ASRs
(columns two to five) evaluated on the eight test sets. The WER
numbers clearly show that on average the best performing system for
each test set is its own matched ASR. The second subtable shows the
performance of two oracle system experiments. The first oracle (col-
umn six) performs what we refer to as hypothesis selection. It con-
sists of decoding each voice query from each test set using the four
dialect-specific ASR and then hand-picking the one with the lowest
WER. The second oracle (column seven) performs hypotheses com-
bination. It combines the four decoded hypothesis into a word align-
ment similar to the procedure used in ROVER and then selects the
correct word from each bin. In both cases, the WER improvements
are very large, reaching between 23.7% and 59.1% relative improve-
ments over the dialect-specific ASRs. Unsurprisingly, the word-level
combination oracle outperforms the utterance-level selection in ev-
ery test set. From these experiments we can conclude that, even
though on average dialect-specific systems are the best option for
dialectal speech recognition, there is potential for vast improvement
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Fig. 1. Hypotheses Word Alignment. Each arc contains a pair of
word token and confidence score. The epsilon token is represented
as an asterisk. The majority vote function would return the hypoth-
esis ”a b y d e”, whereas the Maximum Sum Confidence hypothesis
would be ”a b y d”. iROVER can potentially return the true refer-
ence transcript ”a b c d”.

if we employ selection and combination techniques across dialectal
hypothesis.

In this paper, we propose selection and combination schemes
that use Machine Learning (ML) classification to improve speech
recognition performance across dialects of the same language. The
paper is organized as follows. In section 2, we give an overview of
work on dialectal speech and hypothesis combination in the speech
recognition field. In section 3, we give an overview of the ASRs
and corpora used in our experiments. Sections 4 and 5 explain the
feature extraction pipeline, the experiments conducted and results
for the hypothesis selection and combination schemes respectively.
Section 6 concludes the paper.

2. PREVIOUS WORK

Similar to the topic of hypothesis selection, there has been a consid-
erable effort from the speech recognition community towards rerank-
ing N-best lists of speech recognition outputs. In [5], the authors
proposed a scheme that consisted of producing an N-best list, per-
forming a rescoring pass on each hypothesis, and then combining
both sets of scores. Later on, [6] used the weighted sum of learned
discriminative scores as the decision function to choose from the
N-best list; [7] used syntactic, semantic and acoustic features and
trained a Linear Regression classifier to rerank N-best hypotheses;
[8] used Comprehensive Information Theory to calculate the amount
of comprehensive information in each utterance and reorder N-best
lists according to it; and [9] used Maximum Entropy classifiers with
speech recognition, semantic and search results features and selected
the utterance with highest prediction confidence as correct. Finally,
in the same spirit of our hypothesis selection task presented here, the
authors in [10] propose to join several N-best lists of Machine Trans-
lation output and use sentence-level features to select on hypothesis.

On the topic of hypothesis combination for speech recognition
output, ROVER [11] is a widely used algorithm for system combi-
nation. It works in two basic steps. First, it finds a linear alignment
between the words of each sentence using the Levenshtein distance
algorithm, and then proceeds to choose a word from each word align-
ment following an aggregation function. Typically, two aggregation

functions are used in the literature: Majority voting, which chooses
the token that appears most often in the word alignment; and Max-
imum Weighted Voting, which sums up the confidence of every arc
with the same token in the word alignment and picks the one with
the highest confidence. This process is illustrated in Figure 1.

Several modifications have been proposed to improve ROVER.
In [12], the authors proposed N-best ROVER, an extension that
merges N-best hypothesis of several systems, and reported relative
gains of 0.8% WER points with respect to ROVER. Following a
ML approach, iROVER [13] proposes to first compute the ROVER
alignment of several 1-best hypotheses and then use a ML classifier
to choose the token from each alignment slot. For their experiments,
they used Adaboost ensembles of decision tree stumps and feature
vectors containing confidence, durational, character-distance and
top error features. They reported between 2.8 and 13.4% relative
WER points with respect to ROVER, depending on the number of
systems being combined.

Another approach to system combination different from com-
bining 1-best and N-best hypotheses has been combining Confu-
sion Networks. A Confusion Network (CN) [14] is a compact linear
representation of a speech recognition lattice, designed to optimize
word error rate. CNs are created by clustering lattice edges into an
ordered series of slots based on time similarity. Confusion Network
Combination [15] finds alignments between the word slots of several
CNs and unifies them into a single graph by substituting the string
match function used during the alignment process with a function
that computes the probability of word match given two word slots.
Some studies have also used ML to select [16] or rerank [17] the CN
word arcs. An alternative approach to CNs for minimizing WER de-
coding on word graphs is Time Frame Error decoding [18], in [19] an
algorithm is presented to combine multiple systems producing word
graphs of different structure and with different segmentations.

In this paper, we build on previous hypothesis selection and
combination algorithms and focus on its application and impact on
dialectal speech recognition. We also introduce the use of Neural
Networks and Word Embeddings for this task.

3. ASR AND CORPORA

We have four dialect-specific ASRs for Egyptian, Gulf, Levantine
and Maghrebi Arabic. Each ASR was trained on corpora of its own
dialect comprising around 3M anonymized user utterances. The
acoustic model of our speech recognizers is a very similar archi-
tecture as the one described in [20]. It is a fully-connected feed-
forward bottleneck network trained on minibatch stochastic gradient
descent. Our network is composed of an input layer, eight hidden
layers, a bottleneck layer and a softmax layer. The input layer to
the network is a 1040 dimensional vector composed of 26 frames of
40 log filterbanks each. The 26 frames contain 20 past frames, the
current frame and 5 following frames. The eight hidden layers have
2560 ReLU units each [21]. The bottleneck layer [22] has 256 lin-
ear activations and a soft-max layer holds 14336 units, one for each
context-dependent state in our inventory. In total, the DNN holds
around 53 million parameters.

The ASR test sets consist of 25K of anonymized and manually-
transcribed utterances each. Manual transcribers were asked to fol-
low specific guidelines that take into account the spoken form of the
Arabic dialects, and the plethora of colloquial words in them. The
test sets are 50% balanced between VoiceSearch and dictation logs.
Hence, there are eight test sets: two test sets per dialect of dictation
and VoiceSearch. For our hypothesis selection and combination ex-
periments we used the decoded output of those ASR test sets, and



Production ASRs Oracles
Dataset Egyptian Gulf Levantine Maghrebi Selection ROVER
Egyptian (IME) 37.4 43.5 44.3 53.1 26.9 (+28.1%) 23.1 (+38.2%)
Egyptian (VS) 34.7 38.2 42.2 48.2 23.6 (+47.0%) 19.4 (+44.1%)
Gulf (IME) 36.2 29.4 34 47.4 20.8 (+29.3%) 18.7 (+36.4%)
Gulf (VS) 27.6 21.5 26.3 37.3 14.3 (+33.5%) 12.7 (+59.1%)
Levantine (IME) 41.2 38 33.7 48.9 25.7 (+23.7%) 23.1 (+31.5%)
Levantine (VS) 34.7 29.9 28.4 41 19.9 (+29.9%) 17.7 (+37.7%)
Maghrebi (IME) 44.2 41.5 41.6 38.4 24.6 (+35.9%) 21.1 (+45.1%)
Maghrebi (VS) 42.6 38.2 41.5 34.7 21.9 (+36.9%) 18.6 (+46.4%)

Table 2. Left subtable shows the cross-dialectal performance of each ASR in two test sets. Right subtable contains the performance of
the hypothesis selection and hypotheses combination oracles. Relative improvements (%) with respect to the matched systems are between
parentheses.

Best Hyp Rel. Rel.
Dataset Selection Imp + BWE Imp.
Egyptian (IME) 36.1 +3.4 35.4 +5.3
Egyptian (VS) 31.8 +8.4 31.7 +8.6
Gulf (IME) 28.6 +2.7 28.3 +3.7
Gulf (VS) 20.7 +3.7 20.4 +5.1
Levantine (IME) 33.3 +1.2 33 +2.1
Levantine (VS) 26.4 +7.0 26.3 +7.4
Maghrebi (IME) 34 +11.5 33.7 +12.2
Maghrebi (VS) 30.7 +11.5 30.5 +12.1

Table 3. Left subtable shows the WER performance of the best hy-
pothesis selection systems trained on the baseline feature set and its
Relative Improvements (%). Right subtable contains WER results
and Relative improvements after adding the Bag-of-Words embed-
ding (BWE) layer. Relative improvements are calculated with respect
the matched-dialect systems WER.

ran 5-fold cross-validation to train and test on it.

4. HYPOTHESIS SELECTION

Hypothesis selection consists of predicting the hypothesis to pick
from a set of recognition hypotheses (from multiple systems) that
will have the lowest WER. In this setting each voice query is de-
coded by the dialect-specific ASRs, a feature vector is created that
describes every hypothesis at the utterance level, and a classifier pre-
dicts the best one.

We pose the classification problem as a multi-label learning task.
Since more than one hypothesis can minimize the WER, each feature
vector can have more than one label. The utterance-level features
are: frame-averaged acoustic model cost, frame-averaged language
model cost, minimum, maximum and average word confidence and
word posterior, number of words, and the lattice density defined as
the number of arcs in the decoding lattice divided by the duration of
the utterance in seconds. Each feature has as many instances as the
number of dialectal hypotheses (four for Arabic). Finally, we add
the Levenshtein distance between each pair of hypotheses, making a
total of forty-two features. All features are normalized to a mean of
zero and a standard deviation of one. We train fully-connected feed-
forward neural networks on this feature dataset. The architecture of
the networks is the following: an input layer of forty-two dimen-
sions, a single hidden layer of 512 ReLU units, and an output layer
of four Logistic Regression units (one per hypothesis). The network
is trained using minibatch stochastic gradient descent and a learning

parameter with exponential decay.
The results of this first batch of experiments, show significant

improvements, as can be seen in columns 2 and 3 of Table 3. The
WER is reduced for every test set with respect to the matched system
baseline, and we obtain relative improvements ranging between 1.2
and 11.5%. The largest improvements are obtained for Maghrebi.

We ran another batch of experiments using the baseline feature
set and adding bag-of-word embeddings to our neural network in-
put layer. Our word embedding implementation works as follows:
each word in the corpus lexicon that appears more than five times
is assigned an ID and the rest of the words are hashed into shared
IDs. For a bag-of-words a vector is created with ones on the IDs
of the words in the utterance and zeros in the rest of them. This
vector is then fully connected to a hidden layer of 64 dimensions
which is learnt during training. The embedded layer is then fully
connected to the main hidden-layer. Running experiments with this
setup and a hidden layer with 2048 ReLU units we obtain additional
improvements with respect to the previous results and raise the rela-
tive improvement to 2.1 to 12.1% with respect to the matched system
baseline, as shown in columns 4 and 5 of Table 3. Experiments us-
ing extra hidden layers on the neural networks were conducted and
showed performance reductions.

5. HYPOTHESES COMBINATION

The idea behind hypotheses combination is to fuse all hypotheses
into one that potentially has lower WER. We follow the approach
taken by iROVER and create word alignments of the four dialect
hypotheses. We do so by iteratively aligning hypothesis into a word
finite-state transducer (FST) [23]. The alignment is done using the
tokens in the hypothesis and ignoring any time information.

After the word alignment is created, the task becomes selecting
the arcs from each word bin, which when combined together, create
the best possible hypothesis. In order to do so, we create a feature
vector per word bin and label it with the indices of each correct word
arc. Finding the correct word arcs is done by aligning the FST and
the reference transcript. Once again the task is a multi-label classifi-
cation problem since more than one arc can be correct. The features
extracted for each word bin are: acoustic model cost and language
model cost of the FST arc and its frame-averaged values; weighted
value of language model and acoustic model cost; word confidence
and lattice posterior; number of phones in the token from the pronun-
ciation lexicon; mean, standard deviation, best, worst and difference
between mean and best acoustic model scores at the frame level; and
epsilon arc flag. Notice that as in the hypothesis selection case, each
feature has as many instances as the number of dialectal hypothe-



ROVER i-ROVER
Dataset Maj.Vote Max.SumConf. Rel. Imp Best iROVER Rel Imp. +Context Rel. Imp.
Egyptian (IME) 39.9 38.4 -2.7 37.6 -0.5 37.6 0.0
Egyptian (VS) 35.7 34.5 +0.6 32.7 +5.8 32.9 -0.6
Gulf (IME) 31.6 30.7 -4.4 29.8 -1.3 29.4 +1.3
Gulf (VS) 23.3 22.5 -4.7 21.2 +1.4 21 +0.9
Levantine (IME) 35.8 34.6 -2.7 35.2 -4.5 35.2 0.0
Levantine (VS) 28.5 27.9 +1.8 27.6 +2.8 27.6 0.0
Maghrebi (IME) 37 34.4 +10.4 35.3 +8.1 35.2 +0.3
Maghrebi (VS) 34.4 32.6 +6.1 31.2 +10.1 31.4 -0.6

Table 4. ROVER (left subtable) and iROVER (right subtable) WER performance. For ROVER we try the Majority Voting and Maximum
Confidence Sum aggregation functions and the relative improvement of the last one with respect the baseline matched systems. For iROVER
we report the best trained systems on the baseline features along with its relative improvements and the WER of the contextual systems and
its relative improvement with respect the baseline iROVER systems.

ses. However, the features here are extracted at the word level rather
than at the utterance level. We also add boolean features that indi-
cate whether these features are ranked first in the word bin, and the
lattice density defined as the time overlap of all FST arcs with the
reference segment divided by the duration of that arc. Finally we
add four layers of word embeddings, one per dialectal token.

We first test the performance of ROVER on our dataset (Table
4, columns 2-4) and find the following. Using the majority voting
function, ROVER only has WER improvements on the Maghrebi
test sets. For maximum sum confidence, it achieves additional WER
points on Egyptian voice search and Levantine voice search datasets.
In our experiments ROVER’s performance is impacted severely by
the number of systems being combined. Specifically, the Maghrebi
hypotheses are causing performance drops and even though ex-
periments conducted using ROVER with only three systems show
small improvements, the Oracle experiments also show that the four
system combination has the potential for great improvements too.
Therefore, all iROVER experiments will be conducted using the
four-system alignments.

For the combination experiments we use the same type of feed-
forward neural networks and learning setup with two exceptions: the
single hidden layer has 2048 ReLU units and the output layer con-
sists of five logistic regression units, where four of the units predict
one of the word tokens as correct and the other unit predicts all of
them as incorrect and outputs an epsilon token. Columns 5-7 in Ta-
ble 4 contain the WER, relative improvements by the best hypothesis
combination systems. Comparing these results to Table 2, we ob-
serve that: a) iROVER not always improves the WER over the base-
line ROVER, e.g., for Levantine IME and Maghrebi IME, iROVER
actually yields slightly worse results; b) with respect to the matched
systems, we obtain relative improvements of between 1.4 and 10.1%
for five out of eight test sets and relative declines of 0.5 to 4.5%; and
c) these relative improvements are smaller than the ones we obtained
for hypothesis selection. As with hypothesis selection, adding extra
hidden layers did not improve WER. To gain a deeper understanding
of why our implementation of iROVER underperforms compared to
the baseline and hypothesis selection we looked at the prediction per-
formance class by class and found out that in all our experiments the
F-score of the all-arcs-incorrect class had very low F-score (between
0.29 and 0.47, depending on the test set), which adds extra deletions
to the WER measure.

In an effort to improve our hypothesis combination systems, we
added context features, i.e., added the feature vectors of the two pre-
vious word bins. This gave us an extra 0.3%, 0.9% and 1.3% rela-
tive improvements on three datasets, no improvements in other three

datasets and caused performance drops in two test sets. Therefore, it
cannot be concluded that context helps iROVER performance.

6. CONCLUSIONS AND FUTURE WORK

We have presented a hypothesis selection and combination schemes
and run experiments with them on the context of dialectal speech
recognition. We found that using a limited amount of features
from the speech recognition pipeline, the selection scheme achieved
between 1.2 and 12.1% relative WER improvements (depending
mainly on the performance of the dialect-specific ASR). Adding a
word-of-bags embedding layer to the Neural Network has further
improved WER by 2.1 to 12.2% relatively. For the combination
experiments, we tried an implementation of iROVER with our own
set of features and word embeddings. The combination system,
despite having greater potential for improvements, underperformed
in every test set when compared to the selection systems. We tried
adding contextual features to the classification task but these did not
seem to help the classification performance.

For future work we plan on exploring ways of improving the hy-
potheses combination systems. We also plan on using the hypothe-
ses combination scheme to deal with utterances with instances of
code-switching by combining the output of ASRs trained on differ-
ent languages and mixed-language into time-aligned alignments.
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