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Abstract
Improving methods of automatic deception detection is an im-
portant goal of many researchers from a variety of disciplines,
including psychology, computational linguistics, and criminol-
ogy. We present a system to automatically identify deceptive ut-
terances using acoustic-prosodic, lexical, syntactic, and phono-
tactic features. We train and test our system on the Interspeech
2016 ComParE challenge corpus, and find that our combined
features result in performance well above the challenge base-
line on the development data. We also perform feature ranking
experiments to evaluate the usefulness of each of our feature
sets. Finally, we conduct a cross-corpus evaluation by training
on another deception corpus and testing on the ComParE cor-
pus.
Index Terms: deception detection, computational paralinguis-
tics

1. Introduction
Automatic deception detection is an important goal for many
researchers, from psychologists and computational linguists
to practitioners in law enforcement, military, and intelligence
agencies. Despite many attempts to develop automated decep-
tion detection technologies, there have been few objective suc-
cesses. Researchers have explored the use of several modalities
for deception detection. Perhaps most typically, biometric in-
dicators are measured by the polygraph. In addition, facial ex-
pressions [1], gestures and posture [2], brain imaging [3], and
linguistic information have all been explored as indicators of
deception. Many of these features (e.g. facial expressions, ges-
tures) are expensive to automatically capture, and some (e.g.
brain imaging) are too invasive to be practical for general use.
Language cues have the advantage of being inexpensive and
easy to collect. More importantly, prior research examining lin-
guistic cues to deception has been promising. Such cues include
speech-based and text-based features.

In this paper we present a language-based system for au-
tomatic deception detection. This work was performed as a
submission to the Interspeech 2016 ComParE Deception Sub-
Challenge [4]. We extract acoustic-prosodic, lexical, syntactic,
duration, and phonotactic features from the Deceptive Speech
Database (DSD) provided by the challenge, and we compare
the performance of the feature sets using a variety of machine
learning algorithms. To further evaluate our method, we per-
form a cross-corpus evaluation, training on the Columbia De-

ception Corpus (CDC) [5] and testing on the DSD corpus. Our
results are above the challenge baseline, and our feature ranking
and machine learning experiments provide insight into useful
techniques for deception detection.

In Section 2 we review related work in language-based de-
ception detection. In Section 3 we describe the multiple feature
sets used in our experiments. Section 4 presents the results of
our classification experiments, on both the development set and
the blind test set, and we include an analysis of the contribu-
tions of the different features. In Section 5 we report on our
cross-corpus experiments. We conclude in Section 6 with a dis-
cussion of the results and future directions.

2. Related Work
There have been a number of studies of linguistic cues to de-
ceptive speech and text, mostly conducted by psychologists,
and more recently by computer scientists. Early work by Ek-
man et al. [6] and Streeter et al. [7] found pitch increases
in deceptive speech. An increased effect was observed when
subjects were highly motivated to deceive. Linguistic Inquiry
and Word Count (LIWC) categories were found to be useful in
deception detection studies across five corpora, where subjects
lied or told the truth about their opinions on controversial top-
ics [8]. They achieved as high as 67% accuracy using LIWC
categories. Bachenko et al. [9] analyzed linguistic indicators of
deception in criminal narratives, interrogations, and legal tes-
timony. They found that a mixture of automatic and manually
assigned linguistic indicator tags, including hedges, verb tense,
and negative expressions, were highly predictive of the truth
value of statements. Other studies report similar findings: de-
ceptive statements can be distinguished from truthful statements
using language based cues [10, 11].

There has also been progress in identifying cues to de-
ception drawn from the speech signal. Hirschberg et al.
[12] collected the Columbia-SRI-Colorado (CSC) corpus, the
first cleanly recorded large-scale corpus of deceptive and non-
deceptive speech. They automatically extracted acoustic-
prosodic and lexical features and achieved about 70% accu-
racy. They found that subject-dependent features were espe-
cially useful in capturing individual differences in deceptive be-
havior. Building on this work, with a focus on individual dif-
ferences, Levitan et al. [5] collected a large-scale corpus of
cross-cultural deceptive and non deceptive speech. They also
collected personality information for participants, and found



that including gender, native language, and personality scores
along with acoustic-prosodic features improved classification
accuracy, supporting the notion that deceptive behavior varies
across different groups of people.

A meta-analysis [13] identified cues to deception that were
significant across many studies. Some of these cues were lin-
guistic, including duration, vocal tension, F0, and negative emo-
tion words. It is clear from the literature that acoustic-prosodic
and lexical features are predictive of deceptive speech. In this
work we extract features that have been found useful in previous
work, introduce some new features, and systematically evaluate
machine learning classifiers trained on acoustic-prosodic and
lexical feature sets. We also use the cross-cultural deception
corpus for a cross corpus evaluation of our work.

3. Features
3.1. ComParE Baseline Features

The COMPARE baseline feature set contains 6373 static fea-
tures from the computation of various functionals over low-level
descriptor (LLD) contours extracted from openSMILE [4, 14].
The LLD features include pitch (fundamental frequency), inten-
sity (energy), spectral, cepstral (MFCC), duration, voice qual-
ity (jitter, shimmer, and harmonics-to-noise ratio), spectral har-
monicity, and psychoacoustic spectral sharpness.

3.2. Acoustic-Prosodic Features

In accordance with previous research, we hypothesize that,
when people are deceptive, their pitch, energy, and rhythm pat-
terns may unconsciously change. We measure the pitch and en-
ergy variations by modeling their contours. We extract F0 mea-
surements for each response in the corpus using Snack [15].
Post-processing on the F0 measurements corrects implausible
F0 jumps and interpolates over unvoiced regions with smooth-
ing using a Butterworth filter. Finally, all raw F0 measurements
are normalized to z-scores by speaker. We then fit the normal-
ized F0 measurements using 1- to 7-order polynomial models,
thus developing 48 pitch contour features. Additional details
can be found in [16]. A similar procedure is applied to log-
energy measurements extracted by openSMILE [17].

We measure speaking rate by calculating the ratio of sylla-
bles to the utterance duration. Intra-syllable pause and syllable
duration are used to design duration-related features. We de-
tect the pseudosyllable regions based on the Villing envelope
based approach [18] as implemented in AuToBI [19], and de-
rive the following features for each utterance: 1) total number
of syllables,N ; 2) total duration of syllable regions, sum(syl)
and total duration of the utterance, sum(utt); 3) silence ratio
defined as the ratio of sum(syl) to sum(utt); 4) speaking rate
on the syllable level, namely, N

sum(utt)
; 5) average duration per

syllable, namely, sum(syl)
N

; 6) the maximum, minimum, range,
standard deviation, mean and median values of the duration of
the syllables within each utterance. All the duration values used
in 1) to 5) are raw time duration, while the duration values used
in 6) is normalized by sum(utt).

In addition to our acoustic-prosodic feature set, we extract
lexical, syntactic, and phonotactic features. In order to extract
these feature sets, we required a transcript of each utterance in
the corpus. We used a web-based API available through wit.ai
(https://wit.ai), to acquire ASR output for the audio
samples in the corpus. We hand-corrected some of the tran-
scripts, but the ASR seemed reasonably good for our purposes.

3.3. Linguistic Inquiry and Word Count Features

Previous work has found that deceivers tend to use different pat-
terns of word usage when they are lying [8]. Inspired by [20],
we used LIWC [21] to extract the lexical features from each ut-
terance. LIWC is a text analysis program that computes word
counts for 72 linguistic dimensions. LIWC dimensions have
been used in many studies to predict outcomes including per-
sonality [20], deception [8], and health [22]. We extracted a
total of 130 LIWC features based on 64 LIWC categories: 64
features based upon the ratio of words appearing in each LIWC
categories over total word count; 64 features based on the ratio
of words appearing in each LIWC category over the total words
appearing in any LIWC category; the total number of words
appearing in any LIWC category; and the total word count.

3.4. Dictionary of Affective Language Features

[12] found that Dictionary of Affect in Language (DAL) [23]
scores are useful to distinguish between deceptive and truthful
speech. The DAL is a lexical analysis tool that is used for in-
vestigating emotive content of speech. It lists approximately
4500 English words, along with a rating for Pleasantness (Eval-
uation) and for Activation (Arousal) associated with each word.
We extract nineteen features derived from the DAL scores for
each word in each subject’s baseline interview transcript. From
all words’ pleasantness, activation and imagery scores, we cal-
culated the mean, minimum, maximum, median, standard devi-
ation, and variance. We also added the number of words in the
transcript that appear in the DAL.

3.5. Fundamental Frequency Variation (FFV) Features

Previous work [7] found that there are some correlations be-
tween deception and fundamental frequency. In order to cap-
ture the frequency information, we extracted 42 features which
come from fundamental frequency variation (FFV) spectrum
with 7 components [24]. From each of the 7 spectrum com-
ponents, we extract 6 features: mean, minimum, maximum,
median, standard deviation, and variance. These features have
been found to be helpful in characterizing dialogues [24] and
also in acoustic modeling for speech recognition [25].

3.6. Phonotactic Variation Features

Phonotactic modeling has been shown effective for language
recognition [26]. In this paper, we hypothesize that phonotac-
tic modeling will also be useful for deception detection, since
deceptive speech may result in pronunciation differences, i.e.
a deceptive speaker may tend to choose certain phonotactic
variants or words more frequently than others. We first ap-
ply an English phoneme recognizer developed by Brno Uni-
versity of Technology (BUT) [27] to generate the phoneme
hypotheses for each audio instance. After excluding all the
non-phonetic symbols (‘oth’, ‘pau’, ‘sil’,‘spk’,‘int’), we build
a trigram language model with Witten-Bell smoothing [28] for
each class over training set, using SRILM [29]. Both of the
models (“phonLM”) are used to assign log-probability for each
phoneme sequence in the dev and test sets. Because the per-
plexity reflects the degree of “uncertainty” of language model,
which is approximately to the confidence of the assignment,

we collect the perplexity calculate as 10
log−prob

#sent+#words and

10
log−prob
#words along with the log-probability to construct the fea-

ture set. We develop similar language models (“wordLM”) and
derived features on the word level as well, using the transcripts

https://wit.ai


produced by ASR.

3.7. Additional Lexico-Syntactic Features

We implement a number of lexical features described in [30]
which were used for deception detection. We estimate com-
plexity of an utterance by computing the number of syllables
per speech segment and dividing by the number of words. We
include binary features capturing whether the utterance contains
a hedge word, feeling word, number, or date. We also encode
whether the utterance is only “yes” or “no”, has a direct denial
such as “I did not do it”, or contains a contraction. Finally, we
develop a bag of words model using part of speech tags obtained
using NLTK’s built in POS tagger [31].

4. Deception Detection Experiments
4.1. Development Set Evaluation

After preparing all of the feature sets, we ran classification ex-
periments using each feature set independently, to get an ini-
tial sense of the usefulness of each feature set. We use the
SMO model provided as a baseline (set to the same parame-
ters), training on the train set and and evaluating the perfor-
mance on the dev set, using the UAR metric. In total we
used seven feature sets described in section 3: DAL, LIWC,
FFV, phonotactic (phonLM and wordLM), POS (bag of part-
of-speech tags), lexical (complexity, binary indicator features),
and duration (syllable-based). We compare the performance to
two baselines – a majority class baseline (UAR=50%) and a less
trivial baseline using the openSMILE features provided by the
challenge (UAR=61.9%). As shown in Table 1, three of our
feature sets outperform the openSMILE baseline: LIWC, DAL,
and Phonotactic. The remaining four feature sets yield better
results than the majority class baseline.

Table 1: Deception classification results on dev set, using single
feature sets and single+baseline feature sets

Features UAR +baseline
DAL 63.1 61.5
LIWC 63.9 61.9
FFV 54.3 60.7
Phonotactic 67.7 61.9
POS 57.8 57.8
Lexical 59.3 61.3
Duration 56.9 62.2
Baseline (majority) 50 -
Baseline (openSMILE) 61.9 -

Next, we repeated the experiments, this time combining
each of our feature sets with the baseline openSMILE feature
sets, in order to evaluate their contribution over the baseline fea-
ture set. As shown in the second column of Table 1, only the
duration features combined with the baseline features improved
over using the baseline set alone. Although the DAL, LIWC,
and phonotactic features perform well on their own, combin-
ing them with the baseline feature set decreases performance.
Additionally, we note that the baseline feature set improves per-
formance when combined with FFV and lexical features.

In order to evaluate which features were the most useful,
we used Weka’s attribute evaluator to rank all 6644 of our fea-
tures using Information Gain[32]. The rank was determined by
the information gain using four-fold cross validation over the
training data. We then selected all features with an informa-
tion gain above zero – there were 172 such features. The top

ranked features were the phonotactic features, many of the au-
ditory spectrum features from openSMILE, selected LIWC and
DAL features, FFV features, and some of the additional lexi-
cal features. The POS tags were not included in the top ranked
features, nor were the duration features. It was interesting to
observe that ‘hasDate’ (a binary feature indicating whether the
speech segment included a date) and the LIWC number cate-
gory were both particularly useful features, and both were more
frequent in non-deceptive speech. In the DSD corpus, sub-
jects were asked to describe their activities, and some subjects
provided great details including dates, times, and room num-
bers. Our observation that the truthful students used these de-
tails more supports the finding that liars provide fewer details
than truth-tellers [13]. Another useful feature was ‘isYes’ – a
binary feature that indicated whether the response was a one
word ‘yes’. We found that these affirmative statements were
more frequent in truthful responses, supporting the finding that
truth-tellers are generally more positive [13].

After obtaining the top-ranked features, we compared the
performance of a variety of machine learning classifiers trained
on these top features, using Weka. We do the same for the base-
line feature set. Table 2 displays the top five classifiers along
with the UAR for the top feature set and the baseline feature
set. The five algorithms that yielded the best performance were
SMO, Bagging, Dagging, BayesNet and NaiveBayes. All of the
models were trained and tested using the default parameters.
Two of the classifiers are ensemble-based learning algorithms
(Bagging and Dagging), both of which are robust in noisy con-
ditions. It is interesting that both these models perform well on
our feature set, but poorly on the baseline features – perhaps be-
cause our feature set encompasses many types of features and
therefore has more variance. Another two of the classifiers are
Bayesian network models, which are known to perform well
on text classification problems. For all five algorithms, our top
feature set outperforms the baseline feature set.

Table 2: Deception classification results (UAR) on dev set, using
top 172 features vs. baseline feature set

Algorithm Top Features Baseline Features
SMO 63.8 61.9
Bagging 63.5 55.4
Dagging 63.9 54.9
BayesNet 64.1 62.2
NaiveBayes 64.7 61.7
Majority voting 63.8 62.9

We also evaluate a classifier which takes as input predic-
tions of the five best classifiers and outputs the majority vote.
For our top feature set, this approach results in a UAR of 63.8%,
which is the same as using the SMO classifier alone. On the
other hand, the majority voting classifier yields a higher UAR
(62.9%) than any of the single classifiers for the baseline feature
set. It is not obvious why this is true only for this feature set,
but it suggests combining the predictions of multiple indepen-
dent classifiers can indeed improve performance.

4.2. Test Set Evaluation

After experimenting with several feature sets and machine
learning algorithms using the dev data, we used our best mod-
els to get predictions on the test data. We submitted five
predictions: (1) DAL+LIWC (2) Phonotactic (3) openSMILE
(OS)+DAL+LIWC (4) OS+DAL+LIWC+Phonotactic (5) Ma-
jority voting (Ensemble) using top ranked features. Results are



shown in Table 3.

Table 3: Deception classification results on test set
Algorithm Features UAR test UAR dev
SMO DAL+LIWC 64.7 66.3
SMO Phonotactic 64.2 67.7
SMO OS+DAL+LIWC 69.3 61.5
SMO OS+DAL+LIWC+Phon 69.4 61.9
Ensemble top ranked 65.4 63.8
Baseline openSMILE 68.3 61.9

Our results indicate that the phonotactic features and
DAL+LIWC features on their own do not generalize well to
the unseen test data. Although they performed best on the
dev data, with 67.7% and 66.3% UAR, they performed worse
on the test data. It is possible that the language used in the
test set is different from the train and dev data, and there-
fore these lexical features do not work well on the test data.
Our best performing model on the test set use an SMO clas-
sifier and a combination of the baseline openSMILE features
with DAL+LIWC+Phonotactic. This model achieved a UAR of
69.4%, which was better than the results on the dev set (61.9%)
and than the challenge baseline for the test set (68.3%). We
were unable to perform error analysis on the test set (due to un-
known class labels), but our results suggest that a combination
of acoustic-prosodic features and lexical features are the most
robust for deception detection.

We included our phonotactic features based on the hypothe-
sis that deception would affect a speaker’s phonotactic patterns;
the performance of these features on the dev data supports our
hypothesis to some extent. However, it is possible that these
features are speaker-dependent, so the resulting language mod-
els might not accurately capture the deceptive phonotactic styles
of speakers not present in training data. This might explain why
these features, which performed best on the dev set, were not
as effective on the test set, and did not make better predictions
on the dev data when combined with the acoustic-prosodic and
lexical features.

5. Cross-Corpus Evaluation
In order to assess whether these techniques are generalizable
across domains for deception detection, we experiment with
training on another deception corpus and testing on the Com-
ParE corpus. We use the Columbia Deception Corpus (CDC)
[33] for training. This corpus was collected using a fake resume
paradigm, where subjects are asked 24 biographical questions
and are told to lie for a random half of them. The dialogues in
CDC are markedly different from the ComParE corpus: subject
turns are longer, are asked more open-ended questions, and the
vocabulary is less constrained. The CDC is also much larger:
it includes data from 344 subjects, constituting about 122 hours
of subject speech. Additionally, the recording conditions and
sample rate of the audio files are not consistent. To minimize
the differences between the two corpora, we randomly select
a subset of 500 turns from the CDC that fulfill the following
criteria: (1) has <= 30 words and (2) contains “yes” or “no”.
This gives us a subset with similar length and style of turns.
We extract the following feature sets from this subset of CDC:
openSMILE acoustic-prosodic, LIWC, and DAL. The results,
measured by UAR, are shown in Table 4. We compare the re-
sults to a simple baseline of 50%, obtained by predicting the
majority class (ND). As expected, lexical features do not gener-
alize across the two corpora. Although the LIWC and DAL fea-

Table 4: Cross-corpus results: train on CDC, test on ComParE
dev

Features UAR
DAL 47.4
LIWC 47.6
DAL+LIWC 49.7
Acoustic 59.8
Baseline 50

tures were particularly useful when training and testing on the
ComParE corpus, they do not yield results above the baseline
when training on the CDC. This is probably due to the differ-
ence in domain between the corpora. Another challenge is that
we are using noisy ASR output as transcription for the Com-
ParE corpus, while the CDC has clean transcription obtained
via Amazon Mechanical Turk and hand-corrected by human
transcribers. This difference is likely a factor in the poor perfor-
mance of lexical features across corpora. On the other hand, the
acoustic feature set performs surprisingly well. When using the
same set of openSMILE features for training and testing on the
ComParE data, we obtain a UAR of 60.7%, only slightly better
than our cross-corpus performance of 59.8% UAR. It appears
that the acoustic-prosodic features do generalize to a different
domain. This is promising for deception detection applications
outside of a laboratory experiment.

6. Conclusion and Future Work
We have presented classification experiments for automatic de-
ception detection using a combination of acoustic-prosodic, lex-
ical, and phonotactic features. We experimented with feature
combinations and ranking, and a variety of machine learning al-
gorithms, and found that we can achieve results above the chal-
lenge baseline with our system. We extract lexical features by
running ASR on the sound files, and performing minor hand
correction of the ASR output. It is impressive that this simple
approach results in lexical features that are ultimately useful in
our classifer. This suggests that ASR output can be used for a
flexible system to get real-time lexical features without waiting
for a quality transcript of a speech sample.

We also present results of a cross-corpus evaluation, where
we train a classifier using the CDC, and evaluate it on the Com-
ParE corpus. Our results are quite promising; we find that we
can obtain almost the same results as training and testing on the
ComParE corpus – 59.8% compared to 60.7% UAR. This sug-
gests that the features and models used are general enough to be
applied to different data, which is important for any model that
will be deployed in a real-world deception situation.

One area for improvement is to obtain quality transcription
instead of relying on noisy ASR output. It would be interest-
ing to see if lexical features extracted from quality transcription
are more useful than the lexical features used in this work. Al-
though this is less practical than using ASR, it can provide an
upper bound on the performance. Another possible extension
of this work is to model individual differences between sub-
jects, perhaps by grouping similar speakers into clusters as a
pre-processing step.
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