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Abstract

Finding paraphrases in text is an impor-
tant task with implications for genera-
tion, summarization and question answer-
ing, among other applications. Of par-
ticular interest to those applications is the
specific formulation of the task where the
paraphrases are templated, which provides
an easy way to lexicalize one message in
multiple ways by simply plugging in the
relevant entities. Previous work has fo-
cused on mining paraphrases from parallel
and comparable corpora, or mining very
short sub-sentence synonyms and para-
phrases. In this paper we present an ap-
proach which combines distributional and
KB-driven methods to allow robust mining
of sentence-level paraphrasal templates,
utilizing a rich type system for the slots,
from a plain text corpus.

1 Introduction

One of the main difficulties in Natural Language
Generation (NLG) is the surface realization of
messages: transforming a message from its inter-
nal representation to a natural language phrase,
sentence or larger structure expressing it. Often
the simplest way to realize messages is though the
use of templates. For example, any message about
the birth year and place of any person can be ex-
pressed with the template “[Person] was born in
[Place] in [Year]”.

Templates have the advantage that the genera-
tion system does not have to deal with the inter-
nal syntax and coherence of each template, and
can instead focus on document-level discourse co-
herence and on local coreference issues. On the
other hand, templates have two major disadvan-
tages. First, having a human manually compose a

template for each possible message is costly, espe-
cially when a generation system is relatively open-
ended or is expected to deal with many domains.
In addition, a text generated using templates often
lacks variation, which means the system’s output
will be repetitive, unlike natural text produced by
a human.

In this paper, we are concerned with a task
aimed at solving both problems: automatically
mining paraphrasal templates, i.e. groups of tem-
plates which share the same slot types and which,
if their slots are filled with the same entities, re-
sult in paraphrases. We introduce an unsupervised
approach to paraphrasal template mining from the
text of Wikipedia articles.

Most previous work on paraphrase detection fo-
cuses either on a corpus of aligned paraphrase
candidates or on such candidates extracted from
a parallel or comparable corpus. In contrast, we
are concerned with a very large dataset of tem-
plates extracted from a single corpus, where any
two templates are potential paraphrases. Specifi-
cally, paraphrasal templates can be extracted from
sentences which are not in fact paraphrases; for
example, the sentences “The population of Mis-
souri includes more than 1 million African Ameri-
cans” and “Roughly 185,000 Japanese Americans
reside in Hawaii” can produce the templated para-
phrases “The population of [american state] in-
cludes more than [number] [ethnic group]” and
“Roughly [number] [ethnic group] reside in [amer-
ican state]”. Looking for paraphrases among tem-
plates, instead of among sentences, allows us to
avoid using an aligned corpus.

Our approach consists of three stages. First, we
process the entire corpus and determine slot lo-
cations, transforming the sentences to templates
(Section 4). Next, we find most approriate type for
each slot using a large taxonomy, and group to-
gether templates which share the same set of types

1913



as potential paraphrases (Section 5). Finally, we
cluster the templates in each group into sets of
paraphrasal templates (Section 6).

We apply our approach to six corpora represent-
ing diverse subject domains, and show through a
crowd-sourced evaluation that we can achieve a
high precision of over 80% with a reasonable sim-
ilarity threshold setting. We also show that our
threshold parameter directly controls the trade-off
between the number of paraphrases found and the
precision, which makes it easy to adjust our ap-
proach to the needs of various applications.

2 Related Work

To our knowledge, although several works exist
which utilize paraphrasal templates in some way,
the task of extracting them has not been defined
as such in the literature. The reason seems to be a
difference in priorities. In the context of NLG, An-
geli et al. (2010) as well as Kondadadi et al. (2013)
used paraphrasal templates extracted from aligned
corpora of text and data representations in specific
domains, which were grouped by the data types
they relate to. Duma and Klein (2013) extract
templates from Wikipedia pages aligned with RDF
information from DBPedia, and although they do
not explicitly mention aligning multiple templates
to the same set of RDF templates, the possibility
seems to exist in their framework. In contrast, we
are interested in extracting paraphrasal templates
from non-aligned text for general NLG, as aligned
corpora are difficult to obtain for most domains.

While template extraction has been a relatively
small part of NLG research, it is very prominent
in the field of Information Extraction (IE), begin-
ning with Hearst (1992). There, however, the goal
is to extract good data and not to extract templates
that are good for generation. Many pattern extrac-
tion (as it is more commonly referred to in IE) ap-
proaches focus on semantic patterns that are not
coherent lexically or syntactically, and the idea of
paraphrasal templates is not important (Chambers
and Jurafsky, 2011). One exception which expic-
itly contains a paraphrase detection component is
(Sekine, 2006).

Meanwhile, independently of templates, detect-
ing paraphrases is an important, difficult and well-
researched problem of Natural Language Process-
ing. It has implications for the general study of se-
mantics as well as many specific applications such
as Question Answering and Summarization. Re-

search that focuses on mining paraphrases from
large text corpora is especially relevant for our
work. Typically, these approaches utilize a paral-
lel (Barzilay and McKeown, 2001; Ibrahim et al.,
2003; Pang et al., 2003; Quirk et al., 2004; Fujita
et al., 2012; Regneri and Wang, 2012) or compa-
rable corpus (Shinyama et al., 2002; Barzilay and
Lee, 2003; Sekine, 2005; Shen et al., 2006; Zhao
et al., 2009; Wang and Callison-Burch, 2011), and
there have been approaches that leverage bilingual
aligned corpora as well (Bannard and Callison-
Burch, 2005; Madnani et al., 2008).

Of the above, two are particularly relevant.
Barzilay and Lee (2003) produce slotted lattices
that are in some ways similar to templates, and
their work can be seen as the most closely related
to ours. However, as they rely on a comparable
corpus and produce untyped slots, it is not directly
comparable. In our approach, it is precisely the
fact that we use a rich type system that allows us to
extract paraphrasal templates from sentences that
are not, by themselves, paraphrases and avoid us-
ing a comparable corpus. Sekine (2005) produces
typed phrase templates, but the approach does
not allow learning non-trivial paraphrases (that is,
paraphrases that do not share the exact same key-
words) from sentences that do not share the same
entities (thus remaining dependent on a compara-
ble corpus), and the type system is not very rich. In
addition, that approach is limited to learning short
paraphrases of relations between two entities.

Another line of research is based on contex-
tual similarity (Lin and Pantel, 2001; Paşca and
Dienes, 2005; Bhagat and Ravichandran, 2008).
Here, shorter (phrase-level) paraphrases are ex-
tracted from a single corpus when they appear
in a similar lexical (and in later approaches, also
syntactic) context. The main drawbacks of these
methods are their inability to handle longer para-
phrases and their tendency to find phrase pairs that
are semantically related but not real paraphrases
(e.g. antonyms or taxonomic siblings).

More recent work on paraphrase detection has,
for the most part, focused on classifying provided
sentence pairs as paraphrases or not, using the Mi-
crosoft Paraphrase Corpus (Dolan et al., 2004).
Mihalcea et al. (2006) evaluated a wide range of
lexical and semantic measures of similarity and in-
troduced a combined metric that outperformed all
previous measures. Madnani et al. (2012) showed
that metrics from Machine Translation can be used
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to find paraphrases with high accuracy. Another
line of research uses the similarity of texts in a
latent space created through matrix factorization
(Guo and Diab, 2012; Ji and Eisenstein, 2013).
Other approaches that have been explored are ex-
plicit alignment models (Das and Smith, 2009),
distributional memory tensors (Baroni and Lenci,
2010) and syntax-aware representations of multi-
word phrases using word embeddings (Socher et
al., 2011). Word embeddings were also used by
Milajevs et al. (2014). These approaches are not
comparable to ours because they focus on classifi-
cation, as opposed to mining, of paraphrases.

Detecting paraphrases is closely related to re-
search on the mathematical representation of sen-
tences and other short texts, which draws on a vast
literature on semantics, including but not limited
to lexical, distributional and knowledge-based se-
mantics. Of particular interest to us is the work of
Blacoe and Lapata (2012), which show that simple
combination methods (e.g., vector multiplication)
in classic vector space representations outperform
more sophisticated alternatives which take into ac-
count syntax and which use deep representations
(e.g. word embeddings, or the distributional mem-
ory approach). This finding is appealing since
classic vector space representation (distributional
vectors) are easy to obtain and are interpretable,
making it possible to drill into errors.

3 Taxonomy

Our method relies on a type system which links
entities to one another in a taxonomy. We use
a combination of WordNet (Fellbaum, 1998) and
DBPedia (Auer et al., 2007), which provides both
a rich top-level type system with lexicalizations
of multiple senses and a large database of enti-
ties linked through the type system (the top-level
DBPedia categories all have cognates in WordNet,
which make the two easy to combine). Leveraging
the fact that DBPedia entities have corresponding
Wikipedia pages, we also use the redirect terms
for those pages as alternative lexicalizations of the
entity (e.g., the Wikipedia article “United States”
has “USA” as a redirect term, among others).

4 Creating Templates

The first step to creating the templates is to find
entities, which are candidates to becoming slots
in the templates. Since we are trying to find

sentence-level paraphrasal templates, each sen-
tence in the corpus is a potential template.

Entities are found in multiple ways. First, we
use regular expressions to find dates, percentages,
currencies, counters (e.g., “9th”) and general num-
bers. Those special cases are immediately given
their known type (e.g., “date” or “percentage”).
Next, after POS-tagging the entire corpus, we look
for candidate entities of the following kinds: terms
that contain only NNP (including NNPS) tags;
terms that begin and end with an NNP and con-
tain only NNP, TO, IN and DT tags; and terms
that contain only capitalized words, regardless of
the POS tags. Of these candidates, we only keep
ones that appear in the taxonomy. Unlike the spe-
cial cases above, the type of the slots created from
these general entities is not yet known and will be
decided in the next step.

At the end of this step, we have a set of partially-
typed templates: one made from each sentence in
the corpus, with its slots (but not their types in
most cases) defined by the location of entities. We
remove from this set all templates which have less
than two slots as these are not likely to be interest-
ing, and all templates which have more than five
slots to avoid excessively complicated templates.

We originally experimented with simply accept-
ing any term that appears in the taxonomy as an
entity. That method, however, resulted in a large
number of both errors and entities that were too
general to be useful (e.g, “table”, “world” and sim-
ilar terms are in the taxonomy). Note that NER ap-
proaches, even relatively fine-grained ones, would
not give us the same richness of types that directly
comparing to the taxonomy allows (and the next
step requires that each entity we handle exist in
the taxonomy, anyway).

5 Template Typing and Grouping

Determining the type of a slot in the template
presents two difficulties. First, there is a sense dis-
ambiuation problem, as many lexical terms have
more than one sense (that is, they can correspond
to more than one entry in the taxonomy). Sec-
ond, even if the sense is known, it is not clear
which level of the taxonomy the type should be
chosen from. For example, consider the sentence
“[JFK] is [New York]’s largest airport” (the terms
in square brackets will become slots once their
types are determined). “JFK” is ambiguous: it can
be an airport, a president, a school, etc. The first
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step in this process is, then, to determine which of
the possible senses of the term best fits the sen-
tence. But once we determine that the sense of
“JFK” here is of an airport, there are different
types we can choose. JFK is a New York Air-
port, which is a type of Airport, which is a type
of Air Field, which is a type of Facility and so
on. The specificity of the type we choose will de-
termine the correctness of the template, and also
which other templates we can consider as poten-
tial paraphrases.

Our solution is a two-stage distributional ap-
proach: choosing the sense, and then choosing the
type level that best fit the context of the slot. In
each stage, we construct a pseudo − sentence (a
collection of words in arbitrary, non-grammatical
order) from words used in the taxonomy to de-
scribe each option (a sense in the first stage, and a
type level in the second stage), and then use their
vector representations to find the option that best
matches the context.

Following the observation of Blacoe and Lapata
(2012) that simple similarity metrics in traditional
vector representations match and even outperform
more sophisticated representations in finding rela-
tions among short texts as long as multiplication
is used in forming vector representations for the
texts, we use traditional context vectors as the ba-
sis of our comparisons in both stages. We collect
context vectors from the entire English Wikipedia
corpus, with a token window of 5. To avoid noise
from rarely occuring words and reduce the size of
the vectors, we remove any feature with a count
below a threshold of log10(Σ) where Σ is the
sum of all feature counts in the vector. Finally,
the vector features are weighted with (normalized)
TF*IDF.1

For a multi-word collection (e.g. a pseudo-
sentence) ψ, we define the features of the com-
bined vector Vψ using the vectors of member
words Vw as:

Vjψ = (
∏
w∈ψ

Vjw)
1

|S| (1)

Where Vjw is the value of the jth feature of Vw.
To choose the sense of the slot (the first stage),

we start with S, the set of all possible senses (in
the taxonomy) for the entity in the slot. We cre-
ate a pseudo-sentence ψs from the primary lexi-

1A “term” being a single feature count, and a “document”
being a vector

calizations of all types in the hierarchy above each
sense s - e.g., for the airport sense of JFK we cre-
ate a single pseudo-sentence ψJFK−airport−sense
consisting of the terms “New York airport”, “air-
port”, “air field”, “facility” and so on.2 We create a
vector representation Vψs for each ψs using Equa-
tion 1. Then, we create a pseudo-sentence ψcontext
for the context of the slot, composed of the words
in a 5-word window to the left and right of the
slot in the original sentence, and create the vector
Vψcontext . We choose the sense ŝ with the highest
cosine similarity to the contex:

ŝ = arg max
s∈S

cos(Vψs , Vψcontext)

Note that this is a deep similarity - the similarity
of the (corpus) context of the sense and the (cor-
pus) context of the slot context; the words in the
sentence themselves are not used directly.

We use the lexicalizations of all types in the hi-
erarchy to achieve a more robust vector represen-
tation that has higher values for features that co-
occur with many levels in the sense’s hierarchy.
For example, we can imagine that “airplane” will
co-occur with many of the types for the JFK air-
port sense, but “La Guardia” will not (helping to
lower the score of the first, too-specific sense of
“New York airport”) and neither will features that
co-occur with other senses of a particular type -
e.g., “Apple” for the “airport” type.3

Once the sense is chosen, we choose the proper
type level to use (the second stage). Here we cre-
ate a pseudo-sentence for each type level sepa-
rately, composed of all possible lexicalizations for
the type. For example, the “air field” type contains
the lexicalizations “air field”, “landing field”, and
“flying field”. These pseudo-sentences are then
compared to the context in the same way as above,
and the one with highest similarity is chosen. The
reason for using all lexicalizations is similar to
the one for using all types when determining the
sense: to create a more robust representation that
down-scores arbitrary co-occurences.

At the end of this step, the templates are fully
typed. Before continuing to the next step of
finding paraphrases, we group all potential para-
phrases together. Potential paraphrases are simply

2But we exclude a fixed, small set of the most abstract
types from the first few levels of the WordNet hierarchy, as
these turn out to never be useful

3AirPort is the name of an Apple product
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groups of templates which share exactly the same
set of slot types (regardless of ordering).

6 Finding Paraphrases within Groups

Each group of potential paraphrases may contain
multiple sub-groups such that each of the members
of the subgroup is a paraphrase of all the others. In
this last stage, we use a clustering algorithm to find
these sub-groups.

We define the distance between any two tem-
plates in a group as the Euclidean distance be-
tween the vectors (created using Equation 1) of the
two templates with the entity slots removed (that
is, the pseudo-sentences created with all words in
the template outside of the slots). We tried other
distance metrics as well (for example, averaging
the distances between the contexts surrounding
each pair of corresponding slots in both templates)
but the Euclidean distance seemed to work best.

Using this metric, we apply single-linkage ag-
glomerative clustering, with the stopping criteria
defined as a threshold τ for the maximum sum of
squared errors (SSE) within any cluster. Specifi-
cally, the algorithm stops linking if the cluster C
that would be created by the next link satisfies:

log(
C∑
v

d(v, µC)2) ≥ τ

Where µC is the centroid of C and d is the Eu-
clidean distance. The logarithm is added for con-
venience, since the SSE can get quite large and we
want to keep τ on a smaller scale.

The intuition behind this algorithm is that some
paraphrases will be very similar (lexically or on a
deeper level) and easy to find, while some will be
more difficult to distinguish from template pairs
that are related but not paraphrasal. The single-
linkage approach is essentially transductive, al-
lowing the most obvious clusters to emerge first
and avoiding the creation of a central model that
will become less precise over time. The threshold
is a direct mechanism for controlling the trade-off
between precision and recall.

At the end of this step, any pair of templates
within the same cluster is considered a para-
phrase. Clusters that contain only a single tem-
plate are discarded (in groups that have high dis-
tances among their member templates, often the
entire group is discarded since even a single link
violates the threshold).

7 Evaluation

To evaluate our method, we applied it to the six do-
mains described in Table 1. We tried to choose a
set of domains that are diverse in topic, size and
degree of repeated structure across documents.
For each domain, we collected a corpus com-
posed of relevant Wikipedia articles (as described
in the table) and used the method described in
Sections 4-6 to extract paraphrasal templates. We
used Wikipedia for convenience, since it allows us
to easily select domain corpora, but there is noth-
ing in our approach that is specific to Wikipedia;
it can be applied to any text corpus.

We sampled 400 pairs of paraphrases extracted
from each domain and used this set of 2400 pairs
to conduct a crowd-sourced human evaluation on
CrowdFlower. For each template pair, we ran-
domly selected one and used its original entities
in both templates to create two sentences about
the same set of entities. The annotators were pre-
sented with this pair and asked to score the extent
to which they are paraphrases on a scale from 1 to
5. Table 2 shows the labels and a brief version of
the explanations provided for each. To ensure the
quality of annotations, we used a set of hidden test
questions throughout the evaluation and rejected
the contributions of annotators which did not get at
least 70% of the test questions correctly. Of those
that did perform well on the test questions, we had
three annotators score each pair and used the aver-
age as the final score for the pair. In 39.4% of the
cases, all three annotators agreed; two annotators
agreed in another 47% of the cases, and in the re-
maining 13.6% there was complete disagreement.
The inter-annotator agreement for the two anno-
tators that had the highest overlap (27 annotated
pairs), using Cohen’s Kappa, was κ = 0.35.

The overall results are shown in Figure 1. Note
that because of our clustering approach, we have
a choice of similarity threshold. The results are
shown across a range of thresholds from 8 to 11
- it is clear from the figure that the threshold pro-
vides a way to control the trade-off between the
number of paraphrases generated and their preci-
sion. Table 3 shows the results with our preferred
threshold of 9.5.

The number of paraphrase clusters found
changes with the threshold. For the 9.5 threshold
we find 512 clusters over all domains, a little over
60% of the number of paraphrases. The distribu-
tion of their sizes is Zipfian: a few very large clus-
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Domain Description Size Source article link
NBA NBA teams 30 National_Basketball_Association
States US states 50 N/A
AuMa Automobile manufacturers 241 List_of_automobile_manufacturers
Metal Heavy Metal bands (original

movement, 1967-1981)
291 List_of_heavy_metal_bands

CWB Battles of the American
Civil War

446 List_of_American_Civil_War_battles

Marvel Superheroes from the Mar-
vel Comics universe

932 Category:Marvel_Comics_superheroes

Table 1: Evaluation domains. Source article links are preceded by https://en.wikipedia.org/wiki/

Score Label Explanation
5 Perfect Paraphrase The two sentences are equivalent in meaning (but allow differences

in e.g. tense, wordiness or sentiment)
4 Almost Paraphrase The two sentences are equivalent in meaning with one minor differ-

ence (e.g., change or remove one word)
3 Somewhat Paraphrase The two sentences are equivalent in meaning with a few minor dif-

ferences, or are complex sentences with a part that is a paraphrase
and a part that is not

2 Related The sentences are related in meaning, but are not paraphrases
1 Unrelated The meanings of the sentences are unrelated

Table 2: Annotation score labels and explanations

Figure 1: The average scores for each domain,
for a range of threshold choices. The number in
parentheses for each threshold is the number of
paraphrases generated

Domain # paraphrases Avg. %3+ %4+
NBA 30 4.1 88% 70%
States 171 4.1 86% 76%
AuMa 58 3.5 80% 50%
Metal 98 3.7 82% 63%
CWB 81 3.6 75% 56%
Marvel 428 3.7 83% 63%

Table 3: Size, average score, % of pairs with a
score above 3 (paraphrases), and % of pairs with
a score above 4 (high quality paraphrases) for the
different domains with a 9.5 threshold

ters, dozens of increasingly smaller medium-sized
ones and a long tail of clusters that contain only
two templates.

The vast majority of paraphrase pairs come
from sentences that were not originally para-
phrases (i.e, sentences that originally had differ-
ent entities). With a 9.5 threshold, 86% of para-
phrases answer that criteria. While that number
varies somewhat across thresholds, it is always
above 80% and does not consistently increase or
decrease as the threshold increases.
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Corpus type Prec. PPS
This paper, τ = 8 Unaligned 94% 0.005
This paper, τ = 9.5 Unaligned 82% 0.013
This paper, τ = 11 Unaligned 65% 0.1
Barzilay and McKeown (2001) Parallel 86.5% 0.1 *
Ibrahim et al. (2003) Parallel 41.2% 0.11 *
Pang et al. (2003) Parallel 81.5% 0.33
Barzilay and Lee (2003) Comparable 78.5% 0.07
Bannard and Callison-Burch (2005) Parallel bilingual 61.9% n/a **
Zhao et al. (2009) Parallel or Comparable 70.6% n/a **
Wang and Callison-Burch (2011) Comparable 67% 0.01
Fujita et al. (2012) Parallel bilingual + unaligned 58% 0.34
Regneri and Wang (2012) Parallel 79% 0.17
* These papers do not report the number of sentences in the corpus, but do report enough for us to estimate it

(e.g. the number of documents or the size in MB)
**These papers do not report the number of paraphrases extracted, or such a number does not exist in their approach

Table 4: Comparison with the precision and paraphrases generated per input sentence (PPS) of relevant
prior work

While we wanted to show a meaningful com-
parison with another method from previous work,
none of them do what we are doing here - extrac-
tion of sentence-size paraphrasal templates from
a non-aligned corpus - and so a comparison us-
ing the same data would not be fair (and in most
cases, not possible). While it seems that provid-
ing the results of human evaluation without com-
parison to prior methods is the norm in most rel-
evant prior work (Ibrahim et al., 2003; Paşca and
Dienes, 2005; Bannard and Callison-Burch, 2005;
Fujita et al., 2012), we wanted to at least get some
sense of where we stand in comparison to other
methods, and so we provide a list of (not directly
comparable) results reported by other authors in
Table 4.4 While it is impossible to meaningfully
compare and rate such different methods, these
numbers support the conclusion that our single-
corpus, domain-agnostic approach achieves a pre-
cision that is similar to or better than other meth-
ods. We also include the paraphrase per sentence
(PPS) value - the ratio of paraphrases extracted to
the number of input sentences of the corpus - for
each method in the table. We intend this figure
as the closest thing to recall that we can conceive

4We always show the results of the best system described.
Where needed, if results were reported in a different way than
simple percentages, we use averages and other appropriate
measures. Some previous work defines related sentences (as
opposed to paraphrases) as positives and some does not; we
do not change their numbers to fit a single definition, but we
use the harsher measure for our own results

for mining paraphrases. However, keep in mind
that it is not a comparable figure across the meth-
ods, since different corpora are used. In partic-
ular, it is expected to be significantly higher for
parallel corpora, where the entire corpus consists
of potential paraphrases (and that fact is reflected
in Table 4, where some methods that use parallel
corpora have a PPS that is an order of magnitude
higher than other methods).

8 Discussion and Examples

The first thing to note about the results shown
in Figure 1 is that even for the highest threshold
considered, which gives us a ×21 improvement
in size over the smallest threshold considered, all
domains except CWB achieve an average score
higher than 3, meaning most of the pairs extracted
are paraphrases (CWB is close - a little over 2.9
on average). For the lowest threshold considered,
all domains are at a precision above 88%, and for
three of them it is 100%. In general, across all do-
mains, there seems to be a significant drop in pre-
cision (and a significant boost in size) for thresh-
olds between 9 and 10, while the precisions and
sizes are fairly stable for thresholds between 8 and
9 and between 10 and 11. This result is encourag-
ing: since the method seems to behave fairly simi-
larly for different domains with regard to changes
in the threshold, we should be able to expect sim-
ilar behavior for new domains as the threshold is

1919



adjusted.

The magnitude of precision across domains is
another matter. It is clear from the results that
some domains are more difficult than others. The
Metal domain seems to be the hardest: it never
achieves an average score higher than 3.8. For
the highest threshold, however, Metal is not dif-
ferent from most of the others, while CWB is sig-
nificantly lower in precision. The reason seems to
be the styles of the domain articles: some domains
tend to have a more structured form. For exam-
ple, each article in the States domain will discuss
the economy, demographics, formation etc. of the
state, and we are more likely to find paraphrases
there (simply by virtue of there being 50×49 can-
didates). Articles in the Metal domain are much
less structured, and there are fewer obvious para-
phrase candidates. In CWB articles, there are a
few repetitive themes: the outcome of the battle,
the casualties, the generals involved etc., but be-
yond that it is fairly unstructured. This “struc-
turality” of the domain also affects the number of
paraphrases that can be found, as evident from the
number of paraphrases found in the states domain
in Table 3 as compared with the (much larger)
Metal and CWB domains.

Table 5 shows a number of examples from each
domain, along with the score given to each by the
annotators. In an informal error analysis, we saw
a few scenarios recurring in low-scored pairs. The
Metal example at the bottom of Table 5 is a dou-
ble case of bad sense disambiguation: the album
in the second sentence (“Pyromania” in the origi-
nal) happened to have a name that is also a patho-
logical state. In addition, the number in the sec-
ond sentence really was a date (“1980”). If we
had correctly assigned the senses, these two tem-
plates would not be paraphrase candidates. The
process of grouping by type is an important part
of improving precision: two sentences can be mis-
leadingly similar in the vector space, but it is less
likely to have two sentences with the exact same
entity types and a high vector similarity that are
not close in meaning.

Another scenario is the one seen in the NBA
example that was scored as 1. Here the senses
were chosen correctly, but the level of the hierar-
chy chosen for the person slot was too high. If
instead we had chosen basketball coach and bas-
ketball player for the two sentences respectively,
they would not be considered as paraphrase can-

didates (and note that both meanings are implied
by the templates). This sort of error does not cre-
ate a problem (in our evaluation, at least) if the
more accurate sense is the same in both sentences
- for example, in the other NBA example (which
scored 4), the place slot could be more accurately
replaced with sports arena in both templates.

Cases where the types are chosen correctly do
not always result in perfect paraphrases, but are
typically at least related (e.g. in the examples that
scored 2, and to a lesser extent those that scored
3). That scenario can be controlled using a lower
threshold, with the downside that the number of
paraphrases found decreases.

9 Conclusion and Future Work

We presented a method for extracting paraphrasal
templates from a plain text corpus in three steps:
templatizing the sentences of the corpus; finding
the most appropriate type for each slot; and clus-
tering groups of templates that share the same
set of types into paraphrasal sub-groups. We
conducted a crowd-sourced human evaluation and
showed that our method performs similarly to or
better than prior work on mining paraphrases, with
three major improvements. First, we do not rely
on a parallel or comparable corpus, which are not
as easily obtained; second, we produce typed tem-
plates that utilize a rich, fine-grained type system,
which can make them more suitable for genera-
tion; and third, by using such a type system we are
able to find paraphrases from sentence pairs that
are not, before templatization, really paraphrases.

Many, if not most, of the worst misidentifica-
tions seem to be the result of errors in the sec-
ond stage of the approach - disambiguating the
sense and specificity of the slot types. In this paper
we focused on a traditional distributional approach
that has the advantage of being explainable, but it
would be interesting and useful to explore other
options such as word embeddings, matrix factor-
ization and semantic similarity metrics. We leave
these to future work.

Another task for future work is semantic align-
ment. Our approach discovers paraphrasal tem-
plates without aligning them to a semantic mean-
ing representation; while these are perfectly usable
by summarization, question answering, and other
text-to-text generation applications, it would be
useful for concept-to-text generation and other ap-
plications to have each cluster of templates aligned
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Score Domain Templates
5 States Per dollar of federal tax collected in [date 1], [american state 1] citizens received approximately [money

1] in the way of federal spending.
In [date) 1] the federal government spent [money 1] on [american state 1] for every dollar of tax revenue
collected from the state.

AuMa Designed as a competitor to the [car 1], [car 2] and [car 3].
It is expected to rival the [car 1], [car 2], and [car 3].

4 CWB Federal casualties were heavy with at least [number 1] killed or mortally wounded, [number 2] wounded
, and [number 3] made prisoner.
Federal losses were [number 1] killed, [number 2] wounded, and [number 3] unaccounted for – primar-
ily prisoners.

NBA For the [date 1] season, the [basketball team 1] moved into their new arena , the [place 1], with a seating
capacity of [number 1].
As a result of their success on the court, the [basketball team 1] moved into the [place 1] in [date 1],
which seats over [number 1] fans.

3 Marvel [imaginary being 1] approached [imaginary being 2], hunting for leads about the whereabouts of the
X-Men.
[imaginary being 1] and [imaginary being 2] eventually found the X-Men and became full time mem-
bers.

Metal In [date 1], [band) 1] recorded their third studio album, “[album 1]”, which was produced by Kornelije
Kovač.
[band 1] released their next full-length studio album, “[album 1]” in [date 1].

2 Auma [company 1] and its subsidiaries created a variety of initiatives in the social sphere, initially in [country
1] and then internationally as the company expanded.
[company 1] participated in [country 1]’s unprecedented economic growth of the 1950s and 1960s.

Marvel Using her powers of psychological deduction, she picked up on [first name 1]’s attraction towards her,
and then [first name 2] admits she is attracted to him as well.
While [first name 1] became shy, reserved and bookish, [first name 2] became athletically inclined,
aggressive, and arrogant.

1 NBA Though the [date 1] 76ers exceeded many on-court expectations, there was a great deal of behind-the-
scenes tension between [person 1], his players, and the front office.
After an [date 1] start, with [person 1] already hurt, these critics seemed to have been proven right.

Metal Within [number 1] hours of the statement, he died of bronchial pneumonia, which was brought on as a
complication of [pathological state 1].
With the album’s massive success, “[pathological state 1]” was the catalyst for the [number 1] pop-metal
movement.

Table 5: Examples of template pairs and their scores

to a semantic representation of the meaning ex-
pressed. Since we already discover all the entity
types involved, all that is missing is the proposi-
tion (or frame, or set of propositions); this seems
to be a straightforward, though not necessarily
easy, task to tackle in the near future.
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