
Strategies for Rescoring Keyword Search Results Using Word-Burst and
Acoustic Features

Min Ma1, Justin Richards2, Victor Soto3, Julia Hirschberg3, Andrew Rosenberg1

1Department of Computer Science, The CUNY Graduate Center, New York, USA
2Department of Linguistics, The CUNY Graduate Center, New York, USA
3Department of Computer Science, Columbia University, New York, USA

{mma,jrichards}@gc.cuny.edu, {vsoto,julia}@cs.columbia.edu, andrew@cs.qc.cuny.edu

Abstract
The identification of keyword queries in speech data from low-
resources languages poses a challenge for current methods as
speech recognition algorithms lack sufficient training data to
produce high accuracy transcript. To compensate for these
shortcomings, we extract signals from the data that are useful in
keyword identification but are not being used by the speech rec-
ognizer. These signals take multiple forms — word burstiness,
rescored confusion network posteriors and acoustic/prosodic
qualities. The former denotes the tendency for keywords to oc-
cur in bursts within a conversational topic. We employ three dif-
ferent strategies to exploit this information: 1) a four-way clas-
sification of keyword hypotheses that targets low-scoring cor-
rect hits and high-scoring false alarms, 2) ranking algorithms,
and 3) a direct adjustment of keyword hit scores based on hy-
pothesized repetition. We find that interpolating the results of
these three strategies in an ensemble provides a reliable way to
improve the results of keyword search.
Index Terms: keyword search, word burst, burstiness, IARPA-
BABEL, ensemble, rank learning

1. Introduction
In this work, we improve on current methods of keyword search
(KWS) for conversational speech in low-resource languages.
These languages present a special challenge for KWS because
the performance of automatic speech recognition (ASR) is poor
due to a paucity of training data. We elaborate on standard
ASR-based approaches by extracting new signals from KWS
hypotheses to rescore hypotheses.

The first signal this work depends on is so-called word burst
information. The assumption here is that word mentions occur
in bursts as conversational topics emerge and shift. Thus, when
analyzing a hypothesized keyword hit, we examine the tempo-
ral neighborhood of that hit, assess the number and strength of
similar hypotheses in the neighborhood, and then rescore the
candidate accordingly. If a hit candidate is surrounded by other
hypotheses for the same keyword, its confidence score should
be higher than that of a candidate that stands alone.

Building on the success of previous work using this
approach[1, 2], we combine several methods of word burst anal-
ysis in an ensemble. Two of them are machine-learning ap-
proaches: a classifier that seeks to distinguish correct from in-
correct hypotheses and a ranker that seeks an ideal ordering
of hypotheses. The third seeks to boost a keyword hypothesis
directly based on observations of similar hypotheses within a
temporal window. Though these methods exploit the same phe-
nomenon, they utilize different strategies. By ensembling them

we seek to maximize our inclusion of the word-burst signal. We
use this ensemble method on data from five low-resource lan-
guages: Pashto, Turkish, Tagalog, Vietnamese, and Zulu.

For the fifth language, Zulu, we construct a rescoring sys-
tem based a distinct feature set that includes, for each hit, a
prosodic analysis, data about that hit’s potential impact on our
KWS evaluation metric, and structural information about the
ASR output that yielded the hit. These features have proven
effective in rescoring the entire ASR system for low-resource
languages [3] and here we examine their efficacy in late-stage
rescoring. Finally, we ensemble results from this method with
the results from word-burst experiments. By combining these
presumably unrelated and complementary approaches, we seek
a comprehensive rescoring strategy that uses disparate signals
not captured by ASR to improve the efficacy of keyword search.

2. Previous Work
Many information retrieval techniques have been borrowed
from text-based information retrieval (IR) to improve the perfor-
mance of KWS. A primary approach is to transcribe the speech
into text first, then directly employ the text-based IR techinques
[4]. Two significant flaws are: 1) limitations on the performance
of the ASR system and 2) the loss, during transcription, of po-
tentially useful information [5, 7]. An alternative solution is
to directly make use of additional information carried by the
speech signal, measuring similarities of acoustic/prosodic and
other non-linguistic features [8, 9]. Church pointed out that the
word-burst phenomenon is common to many languages [10].
Exploiting this word-burst pattern, Chiu et al. modified lat-
tice and consensus network (CN) confidence scores to improve
KWS performance [1]. This approach improved KWS perfor-
mance derived from limited data packs in five low-resource lan-
gauges. However, the performance gains on full language pack
results were more modest. Richards et al. proposed burst-
based machine learning models to bolster KWS performance
on full language pack results [2]. Also in the context of rescor-
ing KWS results, Soto et al. introduced a two-pass scheme to
rescore KWS results for low-resource languages [3]. In the
first pass, based on a set of lexical, phonetic, and structural fea-
tures, they rescore ASR lattices to improve word error rate. In
the second pass, they adjust result scores based on the rescored
lattices. We use features from this system in our experiments
(cf. Section 3.3.2). The investigation of various KWS methods
by Mamou et al. demonstrated that an ensemble of diverse ASR
systems can outperform the best single system [6]. Karakos et
al. combined different rescoring systems by interpolating their
respective scores for keyword hits [11]. Their work employed

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

2769

Powell’s method to optimize the interpolation coefficients. Both
of these approaches show that KWS performance benefits from
system combination as well as score normalization, a technique
also used in this work.

3. Methods
3.1. Data

All data for this project is disseminated by the National Institute
of Standards and Technology (NIST) on behalf of the Intelli-
gence Advanced Research Projects Activity (IARPA). Our anal-
yses here are based on conversation speech data provided by the
IARPA Babel Keyword Search project[14]. The language packs
are named IARPA-babel104b-v0.4bY, IARPA-babel105b-v0.4,
IARPA-babel106b-v0.2g, IARPA-babel107b-v0.7, and IARPA-
babel206b-v0.1e, for Pashto, Turkish, Tagalog, Vietnamese and
Zulu, respectively. We use results from an ASR system trained
on the full language pack of 40 speech hours for the first four
languages and on the limited language pack of 10 speech hours
for Zulu. An additional set of development and evaluation data,
with a distinct list of keyword queries for each data pack, is re-
leased by IARPA. Development queries number approximately
300; evaluation queries number approximately 3,000. A key-
word query may comprise one or more words.

The KWS result data we use is generated by the IBM
Speaker-Adapted Deep Neural Network (SA-DNN) system for
speech recognition, which outputs a pruned lattice of word hy-
potheses termed a consensus net (CN) [15]. In a lattice, multiple
hypotheses of word boundaries are entertained, but a CN forces
consensus on word boundaries. The arcs betweeen boundary
nodes are potential transcriptions, with each arc weighted ac-
cording to that transcription’s likelihood. A set of arcs is known
as a“bin.” From this output, lists of putative keyword search
results, designated as posting lists, are generated on the devel-
opment and evaluation data. Each hit candidate in a posting list
is assigned a confidence value, and it is this score that we target
with our rescoring strategies.

NIST has released a subset of evaluation data for certain
languages, so that Babel teams can evaluate their own systems.
When we report results for Pashto, Turkish, Tagalog and Viet-
namese, we do so on this subset, dubbed evalpart1, which con-
stitutes our “test” set. The development and test audio each
contain 10-15 hours of speech, depending on the language. For
Zulu, we report results on development (dev) data, but using a
keyword set distinct from the set we tune and train on.

3.2. Evaluation Metric

Term-weighted value (TWV) is the evaluation metric for the Ba-
bel KWS task. TWV involves a linear combination of PMiss ,
the probability that a true hit for a given keyword was missed,
and PFA , the probability that a one-second window of time
in the conversation was incorrectly identified as a hit for the
given keyword[16]. The formula for TWV is TWV (θ) =
1−PMiss(θ) + β ∗ PFA(θ), where β is a constant set to 999.9
and θ is a decision threshold. Hypotheses with confidence
scores below the threshold will not be scored [16]. TWVs for
each keyword are averaged to yield actual TWV (ATWV).

Maximum TWV (MTWV) is the score that results after a
search over possible thresholds is conducted and an optimal θ is
chosen. In a posting list that yields a perfect MTWV, every cor-
rect hypothesis will have a higher confidence score than every
incorrect hypothesis. The target of our rescoring is MTWV.

For parameter tuning, however, we employ a slightly differ-

ent tactic. Since it involves a search over all possible thresholds,
the calculation of MTWV is costly. Calculating ATWV is ap-
proximately 30 times faster. We use the threshold yielded by a
baseline MTWV calculation as input to an ATWV formula that
becomes our objective function in parameter tuning. Experi-
ments have proven that this method is sufficient to yield gains
in MTWV scoring in the test phase.

The distribution of scores among hit candidates can differ
drastically from one keyword to the next, due in part to the
language-model scores for keywords. Yet NIST requires that
the same threshold be used for scoring each keyword query’s
hit candidates, so these distributions must be made compara-
ble. Previous work has shown sum-to-one normalization by
keyword to be an effective strategy [11]. Because posting list
scores have been normalized this way prior to rescoring, we
perform the same normalization on our rescore values. For four-
class experiments (cf. Section 3.4.2) we re-normalize after the
interpolation stage, but for ranking experiments we do not, as
this degrades results.

In a modified form of sum-to-one (STO) normalization, hits
with scores above .8 are left untouched, so that high-scoring
hits are not too intensely diminished when a query yields many
hypotheses. This modified STO strategy is involved in some of
the features described in 3.3.2, but it is not used in experiments.

3.3. Features

We extract three types of features, each useful for rescoring. For
experiments on Pashto, Turkish, Tagalog and Vietamese, we use
only word-burst features to train a model. For experiments on
Zulu, we incorporate additional speech features based on CN
structure and acoustics.

3.3.1. Word-burst Features

We extract 25 burst-related features from each target hit hypoth-
esis t in a posting list. These features involve calculations re-
garding the number, strength, and proximity of neighbor hy-
potheses n within a conversation. They include the length of
the set Nt of neighbor hits; the maximum, minimum and stan-
dard deviations of Nt; score(n)

|dist(n,t)| ; and
∑Nt

i=1
score(ni)
|dist(ni,t)|

, where
dist(n, t) denotes the distance in seconds between a neighbor
hit to a target hit. Variations of the latter two formulae are com-
puted using log- and square-root distance. Eleven of these fea-
tures are computed twice: once for the speaker’s side of the
conversation only, and once across both sides of the conversa-
tion. The full feature set is enumerated and described in [2].

3.3.2. Consensus Net Features

To extract these we revisit the consensus bins described in 3.1.
For each posting list entry we take the original and rescored
CN posterior and aggregate them using several functions (mean,
standard deviation, geometric mean, product, max and min).
We also include the number of CN bins matching that hit, the
total number of arcs, the average arcs per bin, the average num-
ber of epsilon arcs, the number of tokens and the ratio between
the number of matched bins and the number of tokens in the
keyword term. Additional details can be found in [3]. From the
posting list itself we include the posterior score, the duration of
the entry and whether the keyword is out-of-vocabulary.

We compute rank-normalized probabilities of false alarm
for each pair of keyword query kw and posterior score ps in
the corpus, following [17] and global re-ranked posterior scores
as described in [11]. The reranked posterior is computed by

2770

first mapping the pair (kw, ps) to its rank r and then mapping
back the rank to the average of the posterior scores with that
rank. Also included are the exponential normalization posterior
score, its keyword-dependent threshold [18], the STO posterior
score and the 0.8-STO posterior score described in 3.2.

3.3.3. Acoustic Features

We extract the pitch contour of the of the posting list entry and
compute its median, mean, standard deviation, maximum and
minimum, the number of unvoiced cycles in the segment and
its percentage, the harmonics to noise ratio (dB) and noise to
harmonics ratio, and the autocorrelation of the pitch contour.
We also extract the pulses and include the number of pulses,
the number of periods and their mean and standard deviation,
along with the number of voice breaks and their percentage. Fi-
nally we include jitter values (local, local in seconds, its relative
average perturbation (RAP) and its 5-point period perturbation
quotient) and shimmer values (local, local in dB, and its 3, 5,
and 11- amplitude perturbation quotient) as computed in Praat.
All acoustic features are normalized at the segment level. Into-
national phrase boundaries and pitch accents are detected using
prosodic event detectors trained in cross-language corpus [19].

To create discriminative duration features, we start by
computing the average duration of a hit given it is correct
dur(kw|CORR) and given it is a false alarm dur(kw|FA),
in the train partition. The following features are then computed
for the feature vector: the absolute value and square power of
the difference of the duration of the posting list and the average
duration of correct hits |dur(hit, kw)− dur(kw|CORR)|,
(dur(hit, kw) − dur(kw|CORR))2; the absolute value
and the square power of the difference of the dura-
tion of the posting list and the average duration of false
alarm hits |dur(hit, kw)− dur(kw|FA)|, (dur(hit, kw) −
dur(kw|FA))2; and the corresponding ratios and inverses.

3.4. Rescoring Strategies

Our classification and ranking methods are applied on all the
feature sets described above. The rule-based method does not
utilize any extracted features and is used only for word-burst ex-
periments. All of them, meanwhile, depend on a set of parame-
ters; in order to find an optimal parameter setting, we perform a
grid search on the tuning data. In the case of machine-learning
experiments, we tune on the same data used to train our models,
dev query results found in dev audio.

Ultimately, we use a linear interpolation of rule-based, 4-
class and Ranking rescoring approaches to ensemble results.
We perform a grid search to identify optimal interpolation
weights on tuning data, and we apply these to the eval results.

3.4.1. Rule-based

The rule-based method of rescoring is an algorithm for selec-
tively boosting the scores of hits that depends on three parame-
ters: a score threshold τ , an increment size ι, and window size
ω, expressed in seconds. For a target hit t in a given conversa-
tion file, we perform the following steps:

1) Assemble a listNt of neighbor hits for the same keyword
within the time window.

2) FindmaxNt , the highest-scoring hit inNt, and compare
its confidence score to τ .

3) If maxNt is higher than τ , then boost the score of t by
adding to it ι * the score of maxNt .

For tuning, we search a 0 to 1 range for the increment and

threshold parameters, and we search a range of 0 to 600 seconds
(the duration of a conversation file) for the window parameter.

3.4.2. Four-way Classification

In training a machine-learning model, we assign to each hit
one of four class labels: low-scoring correct hits, low-scoring
false alarms, high-scoring correct hits, and high-scoring false
alarms, with an intention to target low-scoring correct hits for
rescoring. To incorporate the KWS evaluation metric into our
learning model, we append a weight to the hits for each key-
word according to that keyword’s term-weighted value (TWV)
in a baseline experiment. Because Zulu contains 2,000 key-
word queries, compared to a few hundred for other languages,
we downsample this data down to 503 queries before training.

We then train a logistic regression model, implemented by
the Weka machine-learning toolkit[20], using 10-fold cross-
validation. We generate predictions on the training data, out-
putting for each hit a distribution of confidence scores over the
four class labels. We take a weighted average of these four
class confidences and interpolate that average with the score
of a given hit using the coefficient η, yielding the formula
R(t) = (1− η) ∗ s(t) + η ∗

∑4
k∈C wk ∗ ck, where R(t) is the

rescore value, s(t) is the original score of a target hypothesis t,
C is the label set {LowCORR, LowFA, HighCORR, HighFA}
of class confidences, andW is the set of co-indexed weights for
those confidences. However, we replace s(t) only if the new
score is higher, so that we don’t risk bringing correct hypothe-
ses below the decision threshold. The TWV formula dictates
that when the number of true hits for a keyword is low, which
is quite common, the cost of erroneously shrinking a good hit is
much higher than the cost of erroneously boosting a false alarm.

In tuning, we seek optimal values for each of the four class
weights as well as the interpolation coefficient η. We find that
setting non-zero weights for all high-scoring hits improves our
rescoring result. This improvement seems to follow from sub-
tle changes in our normalization step. In boosting predicted
low correct hits, we erroneously boost some low false alarms as
well. Then we perform sum-to-one normalization over a key-
word’s hits, and by boosting high hits before normalization, we
seem to mitigate the damage done by boosting false alarms by
pushing enough of them back down below the decision thresh-
old. Since what improves rescoring is to boost all high-scoring
hits, we tie those two classes together with the same weight.

This method is an elaboration of a previously published ap-
proach. We find that each addition to that approach — tied
HiFA and HiCORR weights, the allowance of score boosting
only, and the use of TWV instance weighting in learning — in-
crementally improves results. Another distinction is the use of
ATWV as a highly efficient proxy for MTWV in tuning.

3.4.3. Rank Learning

Here we seek to reorder the scores in a posting list not by clas-
sifying each hit individually, but by learning and predicting an
ideal ranking of the entire list[21]. To rank our training data
accordingly, we balance the input of reference labels and ASR
confidence. For each keyword in a posting list, we order its
correct hits by CN score, followed by the a simliar ordering
of false alarm hits, such that the highest-scoring false alarm is
ranked directly below the lowest-scoring correct hit. After as-
signing ranks to hits, we append the features described in 3.3.1,
then shuffle the list of instances to reduce learning bias.

We then train several ranking models using the learning-to-
rank algorithms provided by the RankLib toolkit[22]. These

2771

Table 1: Results of Parameter Tuning on Multiple Languages.
Vietnamese Tagalog Turkish Pashto

RB:(ι, τ , ω) (1.0, 0.4, 250) (0.8, 0.1, 50) (0.6, 0.2, 200) (0.8, 0.1, 50)
4C:(LoFA, LoC, HiFA, HiC, η) (0, 0.7, 0.3, 0.3, 0.2) (0, 0.3, 0.7, 0.7, 0.9) (0, 0.5, 0.5, 0.5, 0.9) (0, 0.4, 0.6, 0.6, 1.0)

R:(η, ranker) (0.1, RF) (0.1, LMART) (0.1, CA) (0.1, MART)
Ensemble:(RB, 4C, R) (1.0, 0, 0) (0.1, 0.9, 0) (0, 1.0, 0.0) (1.0, 0, 0)

comprise pointwise (Multiple Additive Regression Trees, or
MART), pairwise (RankNet,RankBoost and LambdaRank),
listwise (AdaRank, Coordinate Ascent, LambdaMart, and List-
Net), and bipartite (Random Forest) rankers.

We treat the choice of ranker as a system parameter, and
we tune this parameter on our development data. (For Zulu,
in order to expedite training on this larger dataset, we fix the
ranker parameter at Random Forest, the most reliable algorithm
on average in other trials.)

In generating predictions, the ranker outputs a list of global
rank scores. In the event that some of the scores are negative,
we preprocess the list by shifting it into a positive range. This is
necessary for the STO step that follows. After normalizing the
rank scores we combine them with posting list scores with an
interpolation coefficient η.

4. Results and Discussion
Table 1 shows the parameters that yielded the best results on de-
velopment data for our word-burst experiments on Vietnamese,
Tagalog, Turkish and Pashto. For ranking, MART , CA,
LMART , andRF correspond to Multiple Additive Regression
Trees, Coordinate Ascent, Lambda Multiple Additive Regres-
sion Trees, and Random Forest, respectively. For the ensem-
ble, RB, 4C and R correspond to the rule-based, four-class,
and ranking results, respectively. Table 2 shows MTWV results
with the best result for each language is shown in bold.

Table 2: MTWV Results for Different Methods.
Method Viet. Tagalog Turkish Pashto Avg. / ∆
Baseline .2980 .4899 .4492 .3923 .4074/NA

Rule-based .3013 .5035 .4489 .4004 .4135/+1.52%
4-Class .3026 .4993 .4577 .4006 .4151/+1.89%
Ranking .3008 .4961 .4558 .3947 .4119/+1.10%

Ensemble .3013 .5024 .4577 .4004 .4155/+1.99%

Table 3: Results of Parameter Tuning on Zulu Data
Speech Word-Burst Combined

(ι,τ ,ω) NA (.1,.5,50) NA
(LFA,LC,HFA,HC,η) (0,.9,.1,.1,.9) (0,.9,.1,.1,.9) (0,.3,.7,.7,.2)

(RB,4C,R) (NA,.6,.4) (0,0,1.0) (NA,.8,.2)

Table 4: MTWV Results on Zulu
Speech Word-Burst Combined

Baseline .2006 .2006 .2006
Rule-based NA .2023 NA

4-Class .2120 .1973 .1965
Ranking .2008 .2009 .2008

Ensemble .2083 .2023 .1978

For nearly every strategy assessed and every language stud-
ied, we find improvement to MTWV. The ensemble method,
though it does not improve over the highest-scoring strategy,
proves a reliable way to choose a strategy. There is no strat-
egy that consistently performs the highest regardless of the lan-
guage studied, but on average, the combined or selected strat-

egy yielded by the ensemble method generates a higher MTWV
than would any single strategy.

Our Zulu case study was the exception. Although word-
burst features produced MTWV gains on nearly every language,
the four-class and ranking methods did not significantly im-
prove MTWV on Zulu. Burst-based predictions that improved
results on development data were included in ensemble fu-
sions, only to drive the ensemble result beneath that of the best-
performing member. In addition to the Zulu ensembles pre-
sented in Table 2, we combine the three highest-performing
Zulu results. The setting that maximized dev results gave a
weight of 0, 0.5, and 0.5 to ranking burst, rule-based burst,
and four-class speech, but the test result of .2082 did not out-
perform four-class speech alone. This lack of robustness from
tuning to testing further indicates that the burst signal is weak
for Zulu, which agrees with our understanding of that language.
Zulu is highly agglutinative, meaning that a word rarely appears
without prefixes, infixes, or suffixes that depend on the word’s
grammatical context. This complicates our burstiness assump-
tion, especially when keyword queries are multi-word phrases,
which they often are.

5. Conclusion and Future work
We demonstrate several KWS rescoring strategies that each
prove effective, as well as an ensemble tool which serves as a
broker ensuring that a reliable strategy or combination of strate-
gies will be employed. Our application of a learning-to-rank
method is novel in the low-rescource KWS context. We also in-
troduce a separate set of features, drawn from acoustic signals
and from the structure of the ASR output, which proves effec-
tive on the data that was most challenging for the word-burst ap-
proaches. This suggests that where word-burst rescoring fails,
a complementary model in the rescoring ensemble can provide
support. The challege of word-burst rescoring on Zulu indicates
an avenue for future work. The burst method yielded middling
results on Zulu due to the agglutinative nature of that language.
We hope to overcome this obstacle by decomposing Zulu key-
words into morphological segments. Thus we will search the
conversation for the stem of the target keyword, replacing our
word-burst analysis with a “morph-burst” approach.

Likewise, the union of burst features with speech features
did not yield improvements for Zulu. This should not discour-
age future work with this augmented feature set. The individual
feature sets have each proven their effectiveness in isolation.

6. Acknowledgment
This work was supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Defense
U.S. Army Research Laboratory (DoD / ARL) contract num-
ber W911NF-12-C-0012. The data used in our experiments is
provided by the IARPA Babel Program language collection re-
leased in 2013. Disclaimer: The paper should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoD/ARL, or the U.S.
Government.

2772

7. References
[1] Chiu, Justin, and Alexander Rudnicky. ”Using Conversational

Word Bursts in Spoken Term Detection.” (2013).

[2] Justin Richards and Min Ma and Andrew Rosenberg. “Using
Word Burst Analysis to Rescore Keyword Search Candidates on
Low-resource Languages.” Proceedings of the 39th annual inter-
national IEEE ICASSP conference. 2014.

[3] Victor Soto and Erica Cooper and Lidia Mangu and Andrew
Rosenberg and Julia Hirschberg. “Rescoring Confusion Networks
for Keyword Search” Proceedings of the 39th annual international
IEEE ICASSP conference, 2014.

[4] Zhou, Bowen, and John H. Director-Hansen. ”Audio parsing and
rapid speaker adaptation in speech recognition for spoken docu-
ment retrieval.” (2003).

[5] Mamou, Jonathan, Bhuvana Ramabhadran, and Olivier Siohan.
”Vocabulary independent spoken term detection.” Proceedings of
the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, 2007.

[6] Mamou, Jonathan, et al. ”System combination and score normal-
ization for spoken term detection.” Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013.

[7] Lee, H.-y., et al. “Improved open-vocabulary spoken content re-
trieval with word and subword lattices using acoustic feature sim-
ilarity.” Comput. Speech Lang. 2014.

[8] Tejedor, Javier, et al. ”Query-by-Example Spoken Term Detec-
tion ALBAYZIN 2012 evaluation: overview, systems, results, and
discussion.” EURASIP Journal on Audio, Speech, and Music Pro-
cessing 2013.1 (2013): 1-17.

[9] Chen, Chia-ping, et al. ”Improved spoken term detection by fea-
ture space pseudo-relevance feedback.” INTERSPEECH. 2010.

[10] Church, Kenneth W. ”Empirical estimates of adaptation: the
chance of two noriegas is closer to p/2 than p2.” Proceedings of
the 18th conference on Computational linguistics-Volume 1. As-
sociation for Computational Linguistics, 2000.

[11] Karakos, Damianos, et al. ”Score normalization and system
combination for improved keyword spotting.” Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Workshop
on. IEEE, 2013.

[12] Kingsbury, Brian, et al. ”A high-performance Cantonese key-
word search system.” Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on. IEEE, 2013.

[13] Cui, Jia, et al. ”Developing speech recognition systems for corpus
indexing under the IARPA Babel program.” Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Con-
ference on. IEEE, 2013.

[14] Draft KWS14 Keyword Search Evaluation Plan(OpenKWS
2014).http://www.nist.gov/itl/iad/mig/upload/KWS14-evalplan-
v11.pdf.

[15] Soltau, Hagen, George Saon, and Brian Kingsbury. “The IBM
Attila speech recognition toolkit.” Spoken Language Technology
Workshop (SLT), 2010 IEEE. IEEE, 2010.

[16] Fiscus, Jonathan G., et al. ”Results of the 2006 spoken term de-
tection evaluation.” Proc. SIGIR. Vol. 7. 2007.

[17] Bing Zhang, Richard M. Schwartz, Stavros Tsakalidis, Long
Nguyen, Spyros Matsoukas: White Listing and Score Normal-
ization for Keyword Spotting of Noisy Speech. INTERSPEECH
2012.

[18] Chen, Stanley F. ”Performance prediction for exponential lan-
guage models.” Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics. Association for
Computational Linguistics, 2009.

[19] Rosenberg, Andrew. ”AutoBI-a tool for automatic toBI annota-
tion.” INTERSPEECH. 2010.

[20] Hall, Mark, et al. ”The WEKA data mining software: an update.”
ACM SIGKDD explorations newsletter 11.1 (2009): 10-18.

[21] Hang Li: Learning to Rank for Information Retrieval and Natu-
ral Language Processing. Synthesis Lectures on Human Language
Technologies, Morgan and Claypool Publishers 2011.

[22] Ranklib. http://sourceforge.net/projects/lemur/files/lemur/RankLib-
2.3/.

2773

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Victor Soto
	Also by Julia Hirschberg
	Also by Andrew Rosenberg
