
A Convex Alternative to IBM Model 2
Andrei Simion

Columbia University
IEOR Department

New York, NY, 10027
aas2148@columbia.edu

Michael Collins
Columbia University

Computer Science
New York, NY, 10027

mc3354@columbia.edu

Clifford Stein
Columbia University

IEOR Department
New York, NY, 10027

cs2035@columbia.edu

Abstract

The IBM translation models have been hugely
influential in statistical machine translation;
they are the basis of the alignment models
used in modern translation systems. Exclud-
ing IBM Model 1, the IBM translation mod-
els, and practically all variants proposed in the
literature, have relied on the optimization of
likelihood functions or similar functions that
are non-convex, and hence have multiple lo-
cal optima. In this paper we introduce a con-
vex relaxation of IBM Model 2, and describe
an optimization algorithm for the relaxation
based on a subgradient method combined
with exponentiated-gradient updates. Our ap-
proach gives the same level of alignment ac-
curacy as IBM Model 2.

1 Introduction

The IBM translation models (Brown et al., 1993)
have been tremendously important in statistical ma-
chine translation (SMT). The IBM models were the
first generation of SMT systems; in recent work,
they play a central role in deriving alignments used
within many modern SMT approaches, for exam-
ple phrase-based translation models (Koehn, 2008)
and syntax-based translation systems (e.g., (Chi-
ang, 2005; Marcu et al., 2006)). Since the origi-
nal IBM paper, there has been a large amount of re-
search exploring the original IBM models and mod-
ern variants (e.g., (Moore, 2004; Liang et al., 2006;
Toutanova and Galley, 2011; Riley and Gildea,
2012; Vogel et al., 1996)).

Excluding IBM Model 1, the IBM translation
models, and practically all variants proposed in the
literature, have relied on the optimization of like-
lihood functions or similar functions that are non-
convex. Unfortunately, non-convex objective func-
tions have multiple local optima, and finding a
global optimum of a non-convex function is typi-
cally a computationally intractible problem. Typi-

cally, an EM algorithm is used, which often runs in
a reasonable amount of time, but with no guarantees
of finding a global optima (or for that matter, even a
near-optimal solution).

In this paper we make the following contributions:

• We introduce a convex relaxation of IBM
Model 2. At a very high level, the relaxation
is derived by replacing the product t(fj |ei) ⇥
d(i|j) with a relaxation that is commonly used
in the linear programming literature (e.g., see
(Bertsimas, 1997; Bertsimas and Tsitsiklis,
1997; Martins et al., 2010)). (Here t(f |e) are
the translation parameters of the model, and
d(i|j) are the distortion parameters; the prod-
uct is non-linear, effectively introducing non-
convexity into the problem.)

• We describe an optimization algorithm for
the relaxed objective, based on a combina-
tion of stochastic subgradient methods with the
exponentiated-gradient (EG) algorithm (Kivi-
nen and Warmuth, 1997; Beck and Teboulle,
2003).

• We describe experiments with the method on
standard alignment datasets, showing that the
EG algorithm converges in only a few passes
over the data, and that our method achieves ac-
curacies that are very similar to those of IBM
Model 2.

Framing the unsupervised learning of alignment
models as a convex optimization problem, with
guaranteed convergence to a global optimum, has
several clear advantages. First, the method is eas-
ier to analyze, as the objective function is being
truly maximized. Second, there is no need for ini-
tialization heuristics with the approach, given that
the method will always converge to a global op-
timum. Finally, we expect that our convexity-
based approach may facilitate the further develop-
ment of more convex models. There has been a rich



interplay between convex and non-convex meth-
ods in machine learning: as one example consider
the literature on classification problems, with early
work on the perceptron (linear/convex), then work
on neural networks with back-propagation (non-
linear/non-convex), then the introduction of support
vector machines (non-linear/convex), and finally re-
cent work on deep belief networks (non-linear/non-
convex). In view of these developments, the lack
of convex methods in translation alignment models
has been noticeable, and we hope that our work will
open up new directions and lead to further progress
in this area.

Notation. Throughout this paper, for any integer
N , we use [N ] to denote {1 . . . N} and [N ]0 to de-
note {0 . . . N}.

2 Related Work
(Brown et al., 1993) introduced IBM Models 1
through 5, and optimization methods for these mod-
els based on the EM algorithm. While the models
were originally introduced for full translation, they
are now mainly used to derive alignments which are
then used by phrase-based and other modern SMT
systems. Since the original IBM models were in-
troduced, many variants have been introduced in the
literature. (Vogel et al., 1996) introduced a model,
sometimes referred to as IBM 2.5, which uses a pa-
rameterization that is similar to a hidden Markov
model, and which allows the value of each alignment
variable to be conditioned on a previous alignment
variable. (Liang et al., 2006) describe a method that
explicitly incorporates agreement preferences dur-
ing training. (Och and Ney, 2003) give a systematic
comparison of several alignment models in the liter-
ature. (Moore, 2004) gives a detailed study of IBM
Model 1, showing various steps that can be used to
improve its performance. (Ganchev et al., 2010)
describes a method based on posterior regulariza-
tion that incorporates additional constraints within
the EM algorithm for estimation of IBM models.
All of these approaches are unsupervised, in that
they do not require labeled alignment data; however
several authors have considered supervised models
(e.g., see (Lacoste-Julien et al., 2006; Taskar et al.,
2005; Haghighi et al., 2009)). The focus of the cur-
rent paper is on unsupervised learning; the unsuper-
vised variants described above all make use of non-

convex objective functions during training, with the
usual problems with multiple local maxima.

3 The IBM Model 1 and Model 2
Optimization Problems

In this section we give a brief review of IBM Models
1 and 2, and the optimization problems arising from
these models. The standard approach for optimiza-
tion within these models is the EM algorithm.

Throughout this section, and the remainder of the
paper, we assume that our set of training examples
is (e(k), f (k)

) for k = 1 . . . n, where e

(k) is the k’th
English sentence and f

(k) is the k’th French sen-
tence. Following standard convention, we assume
the task is to translate from French (the “source”
language) into English (the “target” language). We
use E to denote the English vocabulary (set of pos-
sible English words), and F to denote the French
vocabulary. The k’th English sentence is a sequence
of words e

(k)
1 . . . e

(k)
lk

where lk is the length of the

k’th English sentence, and each e

(k)
i 2 E; similarly

the k’th French sentence is a sequence f

(k)
1 . . . f

(k)
mk

where each f

(k)
j 2 F . We define e(k)0 for k = 1 . . . n

to be a special NULL word (note that E contains the
NULL word). Finally, we define L = max

n
k=1 lk

and M = max

n
k=1mk.

For each English word e 2 E, we will assume
that D(e) is a dictionary specifying the set of possi-
ble French words that can be translations of e. The
set D(e) is a subset of F . In practice, D(e) can be
derived in various ways; in our experiments we sim-
ply define D(e) to include all French words f such
that e and f are seen in a translation pair.

Given these definitions, the IBM model 2 opti-
mization problem is given in Figure 1. The parame-
ters in this problem are t(f |e) and d(i|j). The t(f |e)
parameters are translation parameters specifying the
probability of English word e being translated as
French word f . The distortion parameters d(i|j)
specify the probability of the j’th French word in a
sentence being aligned to the i’th English word. We
use a variant of IBM Model 2 where the distortion
variables are shared across all sentence lengths (sim-
ilar variants have been used in (Liang et al., 2006)
and (Koehn, 2008)). The objective function is then



Input: Define E, F , L, M , (e(k), f (k)
, lk,mk) for

k = 1 . . . n, D(e) for e 2 E as in Section 3.

Parameters:
• A parameter t(f |e) for each e 2 E, f 2 D(e).
• A parameter d(i|j) for each i 2 [L]0, j 2 [M ].

Constraints:

8e 2 E, f 2 D(e), t(f |e) � 0 (1)

8e 2 E,

X

f2D(e)

t(f |e) = 1 (2)

8i 2 [L]0, j 2 [M ], d(i|j) � 0 (3)

8j 2 [M ],

X

i2[L]0

d(i|j) = 1 (4)

Objective: Maximize

1

n

n
X

k=1

mk
X

j=1

log

lk
X

i=0

t(f

(k)
j |e(k)i )d(i|j) (5)

with respect to the t(f |e) and d(i|j) parameters.

Figure 1: The IBM Model 2 Optimization Problem.

the log-likelihood of the training data (see Eq. 5):

1

n

n
X

k=1

mk
X

j=1

log p(f

(k)
j |e(k)) ,

where

p(f

(k)
j |e(k)) =

lk
X

i=0

t(f

(k)
j |e(k)i )d(i|j) .

Crucially, while the constraints in the IBM Model
2 optimization problem are linear, the objective
function in Eq. 5 is non-convex. Therefore, opti-
mization methods for IBM Model 2, in particular
the EM algorithm, are typically only guaranteed to
reach a local maximum of the objective function.

For completeness, Figure 2 shows the optimiza-
tion problem for IBM Model 1. In IBM Model 1
the distortion parameters d(i|j) are all fixed to be
the uniform distribution (i.e., 1/(L + 1)). The ob-
jective function for IBM Model 1 is actually convex,
so the EM algorithm will converge to a global max-
imum. However IBM Model 1 is much weaker than
model 2, and typically gives far worse performance.

Input: Define E, F , L, M , (e(k), f (k)
, lk,mk) for

k = 1 . . . n, D(e) for e 2 E as in Section 3.

Parameters:
• A parameter t(f |e) for each e 2 E, f 2 D(e).

Constraints:

8e 2 E, f 2 D(e), t(f |e) � 0 (6)

8e 2 E,

X

f2D(e)

t(f |e) = 1 (7)

Objective: Maximize

1

n

n
X

k=1

mk
X

j=1

log

lk
X

i=0

t(f

(k)
j |e(k)i )

(L+ 1)

(8)

with respect to the t(f |e) parameters.

Figure 2: The IBM Model 1 Optimization Problem.

A common heuristic is to initialize the t(f |e) param-
eters in EM optimization of IBM Model 2 using the
output from IBM Model 1. The intuition behind this
heuristic is that the IBM Model 1 values for t(f |e)
will be a reasonable starting point, and the EM al-
gorithm will climb to a “good” local optimum. We
are not aware of any guarantees for this initialization
heuristic, however.

4 A Convex Relaxation of IBM Model 2

We now introduce a convex optimization problem,
the I2CR (IBM 2 Convex Relaxation) problem.
As its name suggests, this optimization problem is
closely related to IBM Model 2, but is convex. Be-
cause of this it will be relatively easy to derive an op-
timization algorithm that is guaranteed to converge
to a global optimum. Our experiments show that
the relaxation gives very similar performance to the
original IBM 2 optimization problem, as described
in the previous section.

We first describe an optimization problem,
I2CR-1, that illustrates the basic idea behind the
convex relaxation. We then describe a refined re-
laxation, I2CR-2, that introduces a couple of modi-
fications, and which performs well in experiments.



Input: Define E, F , L, M , (e(k), f (k)
, lk,mk) for

k = 1 . . . n, D(e) for e 2 E as in Section 3.

Parameters:
• A parameter t(f |e) for each e 2 E, f 2 D(e).
• A parameter d(i|j) for each i 2 [L]0, j 2 [M ].
• A parameter q(i, j, k) for each k 2 [n], i 2 [lk]0,
j 2 [mk].

Constraints:

8e 2 E, f 2 D(e), t(f |e) � 0 (9)

8e 2 E,

X

f2D(e)

t(f |e) = 1 (10)

8i 2 [L]0, j 2 [M ], d(i|j) � 0 (11)

8j 2 [M ],

X

i2[L]0

d(i|j) = 1 (12)

8i, j, k, q(i, j, k) � 0 (13)
8i, j, k, q(i, j, k)  d(i|j) (14)

8i, j, k, q(i, j, k)  t(f

(k)
j |e(k)i ) (15)

Objective: Maximize

1

n

n
X

k=1

mk
X

j=1

log

lk
X

i=0

q(i, j, k) (16)

with respect to the q(i, j, k), t(f |e) and d(i|j) pa-
rameters.

Figure 3: The I2CR-1 (IBM 2 Convex Relaxation) Prob-
lem, version 1.

4.1 The I2CR-1 Problem

The I2CR-1 problem is shown in Figure 3. A first
key idea is to introduce a new variable q(i, j, k) for
each k 2 [n], i 2 [lk]0, j 2 [mk]: that is, a new
variable for each triple (i, j, k) specifying a sen-
tence pair, and a specific English and French posi-
tion in that sentence. Each q variable must satisfy
the constraints in Eqs. 13-15, repeated here for con-
venience:

8i, j, k, q(i, j, k) � 0 ,

8i, j, k, q(i, j, k)  d(i|j) ,
8i, j, k, q(i, j, k)  t(f

(k)
j |e(k)i ) .

The objective function is

1

n

n
X

k=1

mk
X

j=1

log

lk
X

i=0

q(i, j, k)

which is similar to the objective function in Figure 1,
but where t(f (k)

j |e(k)i )⇥d(i|j) has been replaced by
q(i, j, k). The intuition behind the new problem is as
follows. If, instead of the constraints in Eqs. 13-15,
we had the constraint

q(i, j, k) = t(f

(k)
j |e(k)i )⇥ d(i|j) , (17)

then the I2CR-1 problem would clearly be identi-
cal to the IBM Model 2 optimization problem. We
have used a standard relaxation of the non-linear
constraint x = y ⇥ z where x, y, z are all variables
in the range [0, 1], namely

x  y ,

x  z ,

x � y + z � 1 .

These inequalites are a relaxation in the sense that
any (x, y, z) triple that satisfies x = y ⇥ z also sat-
isfies these constraints. Applying this relaxation to
Eq. 17 gives

q(i, j, k)  t(f

(k)
j |e(k)i ) ,

q(i, j, k)  d(i|j) ,
q(i, j, k) � t(f

(k)
j |e(k)i ) + d(i|j)� 1 . (18)

The final thing to note is that the constraint in
Eq. 18 can be omitted in the I2CR-1 problem. This
is because the task is to maximize the objective
with respect to the q variables and the objective
is strictly increasing as the q values increase—thus
lower bounds on their values are redundant in the
I2CR-1 problem.

It is easily verified that the constraints in the
I2CR-1 problem are linear, and that the objective
function is convex. In Section 5 of this paper we
describe an optimization method for the problem.

Note that because the objective function is being
maximized, and the objective increases monotoni-
cally as the q values increase, at the global optimum1

1More precisely, at any global optimum: the objective func-
tion may not be strictly convex, in which case there will be mul-
tiple global optima.



Input: Same as in I2CR-1 (Figure 4).
Parameters: Same as in I2CR-1 (Figure 4).

Constraints: Same as in I2CR-1 (Figure 4).
Objective: Maximize

1

2n

n
X

k=1

mk
X

j=1

log

0
lk
X

i=0

q(i, j, k)

+

1

2n

n
X

k=1

mk
X

j=1

log

0
lk
X

i=0

t(f

(k)
j |e(k)i )

(L+ 1)

with respect to the q(i, j, k), t(f |e) and d(i|j) pa-
rameters.

Figure 4: The I2CR-2 (IBM 2 Convex Relaxation) Prob-
lem, version 2. The problem is identical to the I2CR-1
problem, but it also includes a term in the objective func-
tion that is identical to the IBM Model 1 objective. We
define log

0
(z) = log(z + �) where � is a small positive

constant.

we have

q(i, j, k) = min{t(f (k)
j |e(k)i ), d(i|j)} ,

where min{x, y} returns the minimum of the two
values x and y. Thus, we could actually eliminate
the q variables and write an optimization problem
that is identical to the IBM Model 2 optimization
problem, but with the objective function

1

n

n
X

k=1

mk
X

j=1

log

lk
X

i=0

min{t(f (k)
j |e(k)i ), d(i|j)} .

It will turn out that both views of the I2CR-1
problem—with and without the q variables—are
helpful, so we have included both in this paper.

4.2 The I2CR-2 Problem
Figure 4 shows the refined optimization problem,
which we call I2CR-2. The problem incorporates
two modifications. First, we modify the objective
function to be

1

2n

n
X

k=1

mk
X

j=1

log

0
lk
X

i=0

q(i, j, k)

+

1

2n

n
X

k=1

mk
X

j=1

log

0
lk
X

i=0

t(f

(k)
j |e(k)i )

(L+ 1)

.

Thus the objective function includes a second term
that is identical to the objective function for IBM
Model 1 (see Figure 2). In preliminary experiments
with the I2CR-1 optimization problem, we found
that the I2CR-1 objective was not sufficiently depen-
dent on the t parameters: intuitively, if the d param-
eters achieve the min on many training examples,
the values for the t variables become unimportant.
The addition of the IBM Model 1 objective fixed this
problem by introducing a term that depends on the t

values alone.
Second, we replace log by log

0, where log

0
(z) =

log(z + �), and � is a small positive constant (in
our experiments we used � = 0.001). Under this
definition the derivatives of log0 are upper-bounded
by 1/�, in contrast to log, where the derivatives
can diverge to infinity. The optimization methods
we use are gradient-based methods (or more pre-
cisely, subgradient-based methods), and we have
found them to be considerably more stable when the
values for gradients do not diverge to infinity.

The modified objective remains convex.

5 A Stochastic Exponentiated-Gradient
Algorithm for Optimization

We now describe an algorithm for optimizing the
I2CR-2 problem in Figure 4. The algorithm is
closely related to stochastic gradient ascent, but with
two modifications:

• First, because the t(f |e) and d(i|j) parame-
ters have simplex constraints (see Figure 1),
we use exponentiated gradient (EG) updates.
EG algorithms are gradient-based methods that
maintain simplex constraints; see for exam-
ple: (Kivinen and Warmuth, 1997; Beck and
Teboulle, 2003; Collins et al., 2008).

• Second, the objective function in the I2CR-
2 problem is convex, but is not differentiable
(the gradient may not exist at all points). For
this reason we use subgradients in the place of
gradients. In spite of the non-differentiability
of the objective function, subgradient meth-
ods still have strong convergence guarantees
when combined with EG updates (e.g., the con-
vergence proofs in (Beck and Teboulle, 2003)



go through with minor modifications; see also
(Bertsekas, 1999)).

To derive the updates, recall that we are maximiz-
ing the following objective function:

h(t, d)

=

1

2|T |
X

k2T

mk
X

j=1

log

0
lk
X

i=0

min

n

t(f

(k)
j |e(k)i ), d(i|j)

o

+

1

2|T |
X

k2T

mk
X

j=1

log

0
lk
X

i=0

t(f

(k)
j |e(k)i )

(L+ 1)

. (19)

Here we use T to denote the set {1 . . . n}; we will
see shortly why this notation is convenient. We use
t and d to refer to the full set of t and d parameters
respectively; h(t, d) is the function to be maximized.
Recall that log0(z) = log(z + �) where � is a small
positive parameter.

Given a concave function f(x) where x 2 Rd, a
subgradient of f(x) at x is any vector g(x) 2 Rd

such that for any y 2 Rd,

f(y)  f(x) + g(x) · (y � x) ,

where u·v is the inner product between vectors u and
v. Subgradients are similar to gradients for differ-
entiable concave functions, in that gradients satisfy
the above property. Subgradients can be used in the
place of gradients in many optimization algorithms
(see for example (Bertsekas, 1999)).

The subgradients for the objective function in
Eq. 19 take a simple form. First, define

R(j, k) = �+

lk
X

i=0

t(f

(k)
j |e(k)i ) ,

Q(j, k) = �+

lk
X

i=0

min{t(f (k)
j |e(k)i ), d(i|j)} ,

and

I(i, j, k) =

(

1 if t(f (k)
j |e(k)i )  d(i|j)

0 otherwise .

Then the subgradients2 are

rt(f |e) = 1

2|T |
X

i,j,k:

f
(k)
j =f

e(k)
i =e

✓

1

R(j, k)

+

I(i, j, k)

Q(j, k)

◆

2We set rt(f |e) and rd(i|j) as the subgradients for the
objective function in Eq. 19 with respect to t(f |e) and d(i|j)
respectively.

and

rd(i|j) = 1

2|T |
X

k:ilk,jmk

1� I(i, j, k)

Q(j, k)

.

Exponentiated-gradient updates then take the fol-
lowing form:

t(f |e) t(f |e)⇥ exp{� ⇥rt(f |e)}
P

f t(f |e)⇥ exp{� ⇥rt(f |e)} (20)

and

d(i|j) d(i|j)⇥ exp{� ⇥rd(i|j)}
P

i d(i|j)⇥ exp{� ⇥rd(i|j)} , (21)

where � > 0 is a constant step size in the algorithm.
Note that the EG updates make use of subgradients,
but maintain the simplex constraints on the t and d

variables.
The method just described is a batch gradient

method, where the entire training set T = {1 . . . n}
is used to derive the subgradients before the updates
in Eqs. 20 and 21 are made. Many results in ma-
chine learning and NLP have shown that stochastic
gradient methods, where a subset of the training ex-
amples is used before each gradient-based update,
can converge much more quickly than batch gradi-
ent methods. In our notation, this simply involves
replacing T by some subset T 0 of the training exam-
ples in the above definitions, where |T 0| is typically
much smaller than |T |.

Figure 5 shows our final algorithm, a stochastic
version of the exponentiated-gradient method. The
method takes S passes over the data. For each pass,
it randomly partitions the training set into mini-
batches T1 . . . TK of size B, where B is an integer
specifying the size of each mini-batch (in our exper-
iments we used B = 125 or B = 250). The al-
gorithm then performs EG updates using each mini-
batch T1 . . . TK in turn. As can be seen in Table 3,
our experiments show that the algorithm makes very
significant progress in the first pass over the data,
and takes very few iterations to converge to a good
solution even though we initialized with uniform pa-
rameter values.

6 Experiments

In this section we describe experiments using the
I2CR-2 optimization problem combined with the



1: Input: Define E, F , L, M , (e(k), f (k)
, lk,mk)

for k = 1 . . . n, D(e) for e 2 E as in Section 3.
An integer B specifying the batch size. An inte-
ger S specifying the number of passes over the
data. A step size � > 0. A parameter � > 0

used in the definition of log0 .
2: Parameters:

• A parameter t(f |e) for each e 2 E, f 2 D(e).
• A parameter d(i|j) for each i 2 [L]0, j 2 [M ].

3: Definitions:

R(j, k) = �+

lk
X

i=0

t(f

(k)
j |e(k)i )

Q(j, k) = �+

lk
X

i=0

min{t(f (k)
j |e(k)i ), d(i|j)}

4: Initialization:
• 8e 2 E, f 2 D(e), t(f |e) = 1/|D(e)|
• 8j 2 [M ], i 2 [L]0, d(i|j) = 1/(L+ 1)

5: Algorithm:
6: for all s = 1 to S do
7: Randomly partition [n] into subsets T1 . . . TK of

size B where K = n/B.
8: for all b = 1 to K do
9: 8e 2 E, f 2 D(e), ↵(e, f) = 0

10: 8j 2 [M ], i 2 [L]0, �(i, j) = 0

11: for all k 2 Tb do
12: for all j = 1 to mk do
13: for all i = 0 to lk do
14: ↵(e

(k)
i , f

(k)
j ) += 1/(2R(j, k))

15: if t(f (k)
j |e(k)i )  d(i|j) then

16: ↵(e

(k)
i , f

(k)
j ) += 1/(2Q(j, k))

17: else
18: �(i, j) += 1/(2Q(j, k))

19: 8e, f, t(f |e) = t(f |e) exp (� ⇥ ↵(e, f)/B)

20: 8i, j, d(i|j) = d(i|j) exp (� ⇥ �(i, j)/B)

21: Renormalize t and d parameters to satisfy
P

f t(f |e) = 1 and
P

i d(i|j) = 1.
22: Output: t and d parameters.

Figure 5: The stochastic exponentiated-gradient algo-
rithm for optimization of I2CR-2.

stochastic EG algorithm for parameter estimation.
We first describe the data sets we use, and then de-
scribe experiments with the method, comparing our
approach to results from IBM Model 2. We com-
pare the various algorithms in terms of their accu-

racy in recovering alignments, using metrics such as
F-measure and AER.

6.1 Data Sets

We use data from the bilingual word alignment
workshop held at HLT-NAACL 2003 (Michalcea
and Pederson, 2003). As a first dataset, we use the
Canadian Hansards bilingual corpus, with 247,878
English-French sentence pairs as training data, 37
sentences of development data, and 447 sentences
of test data (note that we use a randomly chosen
subset of the original training set of 1.1 million sen-
tences, similar to the setting used in (Moore, 2004)).
The development and test data have been manually
aligned at the word level, annotating alignments be-
tween source and target words in the corpus as ei-
ther “sure” (S) or “possible” (P ) alignments, as de-
scribed in (Och and Ney, 2003).

As a second data set, we used the Romanian-
English data from the HLT-NAACL 2003 workshop.
This consisted of a training set of 48,706 Romanian-
English sentence-pairs, a development set of 17 sen-
tence pairs, and a test set of 248 sentence pairs.

6.2 Methodology

For each of the models—IBM Model 1, IBM Model
2, and I2CR-2—we follow convention in applying
the following methodology: first, we estimate the
t and d parameters using models in both source-
target and target-source directions; second, we find
the most likely alignment for each development or
test data sentence in each direction; third, we take
the intersection of the two alignments as the final
output from the model.

For the EG algorithm we use a batch size B =

250 and step size � = 0.5 on the Hansards data, and
B = 125 and � = 0.5 for the Romanian-English
data.

We report the performance of the models in terms
of Precision, Recall, AER, and F-Measure as defined
by (Och and Ney, 2003). If A is the set of align-
ments produced by an algorithm, S is the set of sure
alignments as annotated in test data, and P is the
set of possible alignments, then these quantities are
defined as

Recall =
|A \ S|
|S| ,



Precision =

|A \ S|
|A| ,

AER = 1� |A \ S|+ |A \ P |
|A|+ |S| ,

F-Measure =

1

.5
Recall +

.5
Precision

.

Note that we report results in both AER and
F-measure; however there is evidence (Fraser and
Marcu, 2004) that F-measure is better correlated
with translation quality when the alignments are
used in a full system.

In training IBM Model 1 we follow (Moore,
2004) in running EM for 15 iterations. In training
IBM Model 2 we first train IBM Model 1 for 15
iterations to initialize the t parameters, then train
IBM Model 2 for a further 10 iterations. For the
EG algorithm, we use 10 iterations over the training
data for the Hansards data, and 15 iterations on the
Romanian-English data (on the latter dataset results
on the trial data showed that the method took slightly
longer to converge). We report F-measure and AER
results for each of the iterations under the IBM
Model 2 and I2CR-2 models. See Table 1 for the re-
sults on the Hansards data, and Table 2 for the results
on the English-Romanian dataset. It can be seen that
both I2CR-2 and IBM Model 2 converge to a fairly
stable result after 2-3 iterations. The two models
give very similar levels of performance, for example
after 10 iterations on the Hansard data IBM Model
2 gives 14.22 AER and 0.7516 F-Measure versus
14.60 AER and 0.7506 F-Measure for I2CR-2.

On the right, Table 3 shows the values of the ob-
jective function at each iteration when using the EG
algorithm to optimize the I2CR-2 objective. The
method makes a large amount of progress on the first
iteration and then continues to improve. Finally, we
note that the memory requirements for I2CR-2 and
IBM2 are about the same, but that the time for one
iteration of I2CR-2 on the Hansards data is approxi-
mately one hour, while the time for one iteration of
IBM2 was approximately 10 minutes.

7 Conclusions and Future Work

We have introduced the first convex model for un-
supervised learning of alignments in statistical ma-
chine translation with performance comparable to

Iteration IBM2 I2CR-2 IBM2 I2CR-2
AER AER F-Measure F-Measure

Test Set Statistics
1 0.1491 0.1556 0.7530 0.7369
2 0.1477 0.1489 0.7519 0.7456
3 0.1451 0.1476 0.7527 0.7467
4 0.1426 0.1488 0.7536 0.7449
5 0.1422 0.1495 0.7535 0.7472
6 0.1431 0.1476 0.7511 0.7478
7 0.1434 0.1506 0.7506 0.7456
8 0.1437 0.1495 0.7501 0.7470
9 0.1434 0.1494 0.7501 0.7468
10 0.1422 0.1460 0.7516 0.7506

Development Set Statistics
1 0.1871 0.1971 0.6823 .6676
2 0.1896 0.1760 0.6758 .6827
3 0.1964 0.1860 0.6648 .6739
4 0.1912 0.1835 0.6713 .6775
5 0.1884 0.1813 0.6740 .06773
6 0.1836 0.1851 0.6767 0.6811
7 0.1831 0.1806 0.6749 0.6765
8 0.1842 0.1843 0.6739 0.6775
9 0.1864 0.1928 0.6694 0.6640
10 0.1845 0.1829 0.6703 .6721

Table 1: Results on the Hansards data for IBM Model 2
and the I2CR-2 method.

Iteration IBM2 I2CR-2 IBM2 I2CR-2
AER AER F-Measure F-Measure

Test Set Statistics
1 0.4041 0.5354 0.5959 0.4646
2 0.4010 0.4764 0.5990 0.5256
3 0.4020 0.4543 0.5980 0.5457
4 0.4012 0.4384 0.5988 0.5617
5 0.4003 0.4277 0.5997 0.5723
6 0.3990 0.4266 0.6010 0.5834
7 0.4000 0.4162 0.6000 0.5838
8 0.4023 0.4114 0.5977 0.5886
9 0.4022 0.4081 0.5978 0.5919
10 0.4027 0.4043 0.5973 0.5957
11 0.4031 0.4040 0.5969 0.5960
12 0.4042 0.4027 0.5958 0.5973
13 0.4043 0.4021 0.5957 0.5979
14 0.4062 0.4007 0.5938 0.5993
15 0.4057 0.4014 0.5943 0.5986

Development Set Statistics
1 0.4074 0.5841 0.5926 0.4159
2 0.3911 0.4938 0.6089 0.5062
3 0.3888 0.4673 0.6112 0.5327
4 0.3904 0.4596 0.6096 0.5404
5 0.3881 0.4463 0.6119 0.5537
6 0.3904 0.4306 0.6096 0.5694
7 0.3936 0.4175 0.6094 0.5826
8 0.3897 0.4060 0.6103 0.5940
9 0.3961 0.4014 0.6039 0.5986
10 0.3970 0.4072 0.6030 0.5928
11 0.4018 0.3956 0.5982 0.6044
12 0.4035 0.3931 0.5965 0.6069
13 0.4035 0.3862 0.5965 0.6138
14 0.4014 0.3908 0.5986 0.6092
15 0.4063 0.3858 0.5937 0.6142

Table 2: Results on the English-Romanian data for IBM
Model 2 and the I2CR-2 method.



Iteration EF Objective FE Objective

0 -99.6053 -79.5566
1 -32.4528 -27.4925
2 -31.1641 -26.262
3 -30.6311 -25.7093
4 -30.3367 -25.3714
5 -30.1428 -25.1456
6 -30.0000 -24.992
7 -29.8736 -24.8605
8 -29.8093 -24.7551
9 -29.7326 -24.684

10 -29.6771 -24.6099

Table 3: Objective values for the EG algorithm opti-
mization of I2CR-2 at each iteration. “EF Objective”
corresponds to training a model with t(e|f) parameters,
“FE Objective” corresponds to the reverse direction, with
t(f |e) parameters. Iteration 0 corresponds to the objec-
tive value under the initial, uniform parameter values.

the commonly-used IBM Model 2. We believe
that introducing convexity without sacrificing per-
formance will open the door to further improve-
ments in this area. Future work will consider ways to
speed up our algorithm and extensions of the method
to more complex alignment models.

Acknowledgments

Michael Collins is partly supported by NSF grant
IIS-1161814. Cliff Stein is partly supported by NSF
grant CCF-0915681. The authors thank Sasha Rush
for his help with implementation questions. We
also thank the anonymous reviewers for many use-
ful comments; we hope to pursue the comments we
were not able to address in a followup paper.

References
Peter L. Bartlett, Ben Taskar, Michael Collins and David

Mcallester. 2004. Exponentiated Gradient Algorithms
for Large-Margin Structured Classification. In Pro-
ceedings of NIPS.

Amir Beck and Marc Teboulle. 2003. Mirror Descent and
Nonlinear Projected Subgradient Methods for Convex
Optimization. Operations Research Letters, 31:167-
175.

Dimitris Bertsimas and John N. Tsitsiklis. 1997. Intro-
duction to Linear Programming. Athena Scientific.

Dimitris Bertsimas. 2005. Optimization Over Integers.
Dynamic Ideas.

Dimitri P. Bertsekas. 1999. Nonlinear Optimization.
Athena Press.

Steven Boyd and Lieven Vandenberghe. 2004. Convex
Optimization. Cambridge University Press.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert. L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19:263-311.

David Chiang. 2005. A Hierarchical Phrase-Based Model
for Statistical Machine Translation. In Proceedings of
the ACL.

Michael Collins, Amir Globerson, Terry Koo, Xavier
Carreras and Peter L. Bartlett. 2008. Exponentiated
Gradient Algorithms for Conditional Random Fields
and Max-Margin Markov Networks. Journal Machine
Learning, 9(Aug): 1775-1822.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum Likelihood From Incomplete Data via the
EM Algorithm. Journal of the royal statistical society,
series B, 39(1):1-38.

Alexander Fraser and Daniel Marcu. 2007. Measur-
ing Word Alignment Quality for Statistical Ma-
chine Translation. Journal Computational Linguistics,
33(3): 293-303.

Kuzman Ganchev, Joao V. Graca, Jennifer Gillenwater,
Ben Taskar. 2010. Posterior Regularization for Struc-
tured Latent Variable Models. Journal of Machine
Learning, 11(July): 2001-2049.

Joao V. Graca, Kuzman Ganchev and Ben Taskar. 2007.
Expectation Maximization and Posterior Constraints.
In Proceedings of NIPS.

Aria Haghighi, John Blitzer, John DeNero and Dan Klein.
2009. Better Word Alignments with Supervised ITG
Models. In Proceedings of the ACL.

Darcey Riley and Daniel Gildea. 2012. Improving the
IBM Alignment Models Using Variational Bayes. In
Proceedings of the ACL.

Yuhong Guo and Dale Schuurmans. 2007. Convex Relax-
ations of Latent Variable Training. In NIPS.

Simon Lacoste-Julien, Ben Taskar, Dan Klein, and
Michael Jordan. 2008. Word Alignment via Quadratic
Assignment. In Proceedings of the HLT-NAACL.

Phillip Koehn. 2008. Statistical Machine Translation.
Cambridge University Press.

Kivinen, J., Warmuth, M. 1997. Exponentiated Gradient
Versus Gradient Descent for Linear Predictors. Infor-
mation and Computation, 132, 1-63.

Percy Liang, Ben Taskar and Dan Klein. 2006. Alignment
by Agreement. In Proceedings of NAACL.

Daniel Marcu, Wei Wang, Abdessamad Echihabi,
and Kevin Knight. 2006. SPMT: Statistical Ma-
chine Translation with Syntactified Target Language
Phrases. In Proceedings of the EMNLP.



Andre F. T. Martins, Noah A. Smith and Eric P. Xing.
2010. Turbo Parsers: Dependency Parsing by Ap-
proximate Variational Inference. In Proceedings of the
EMNLP.

Rada Michalcea and Ted Pederson. 2003. An Evalua-
tion Exercise in Word Alignment. HLT-NAACL 2003:
Workshop in building and using Parallel Texts: Data
Driven Machine Translation and Beyond.

Robert C. Moore. 2004. Improving IBM Word-
Alignment Model 1. In Proceedings of the ACL.

Stephan Vogel, Hermann Ney and Christoph Tillman.
1996. HMM-Based Word Alignment in Statistical
Translation. In Proceedings of COLING.

Franz Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational-Linguistics, 29(1): 19-52.

Libin Shen, Jinxi Xu and Ralph Weischedel. 2008. A
New String-to-Dependency Machine Translation Al-
gorithm with a Target Dependency Language Model.
In Proceedings of the ACL-HLT.

Ben Taskar, Simon Lacoste-Julien and Dan Klein. 2005.
A Discriminative Matching Approach to Word Align-
ment. In Proceedings of the EMNLP.

Kristina Toutanova and Michel Galley. 2011. Why Ini-
tialization Matters for IBM Model 1: Multiple Optima
and Non-Strict Convexity. In Proceedings of the ACL.

Kenji Yamada and Kevin Knight. 2001. A Syntax-Based
Statistical Translation Model. In Proceedings of the
ACL.

Kenji Yamada and Kevin Knight. 2002. A Decoder for
Syntax-Based Statistical Machine Translation. In Pro-
ceedings of the ACL.

Ashish Vaswani, Liang Huang and David Chiang. 2012.
Smaller Alignment Models for Better Translations:
Unsupervised Word Alignment with the L0-norm. In
Proceedings of the ACL.


