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ABSTRACT
Monolingual alignment is frequently required for natural language tasks that involve similar
or comparable sentences. We present a new model for monolingual alignment in which the
score of an alignment decomposes over both the set of aligned phrases as well as a set of
aligned dependency arcs. Optimal alignments under this scoring function are decoded using
integer linear programming while model parameters are learned using standard structured
prediction approaches. We evaluate our joint aligner on the Edinburgh paraphrase corpus and
show significant gains over a Meteor baseline and a state-of-the-art phrase-based aligner.

TITLE AND ABSTRACT IN FRENCH

Un modèle de phrases et de dépendances pour l’alignement
des paraphrases

L’alignement monolingue s’impose fréquemment dans les tâches de langue naturelle qui
comprennent des phrases similaires. Nous présentons un nouveau modèle pour l’alignement
monolingue dans lequel le score d’un alignement tient compte de l’ensemble de phrases alignées
et d’un ensemble d’arcs de dépendance alignés. Cette fonction de score donne des alignements
en utilisant l’optimisation linéaire, et nous effectuons l’apprentissage des paramètres du modèle
avec des méthodes standardes de prédiction structurée. Nous évaluons notre système mixte par
rapport au corpus de paraphrases d’Edinburgh et nous démonstron un avantage significatif par
rapport á Meteor et á un système de pointe fondé sur l’alignement des phrases.
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1 Introduction

Textual alignment involves the identification of links between words or phrases which are
effectively semantically equivalent in their respective input sentences. Monolingual alignment
in particular is often needed in natural language problems which involve pairs or groups of
related sentences such as textual entailment recognition, multidocument summarization, text-
to-text generation and the evaluation of machine translation systems. For example, paraphrase
recognition systems can use alignments between input sentences to identify mentions of
repeated concepts and determine the degree to which the input sentences overlap.

Recent work on monolingual alignment problems (MacCartney et al., 2008; Thadani and
McKeown, 2011) has focused on phrase-based techniques in which the alignment between a
pair of sentences is represented through a set of aligned phrase pairs; this has demonstrated
advantages over token-based aligners such as Chambers et al. (2007) as well as standard
aligners used in machine translation (Och and Ney, 2003; Liang et al., 2006). This paper
presents an improved model for monolingual phrase-based alignment that elegantly accounts
for syntactic relationships between tokens by additionally considering an arc-based alignment
representation comprising a set of aligned pairs of dependency arcs consistent with the phrase-
based representation. Under this formulation, the score of any alignment is simply defined
to factor over all aligned phrase pairs and arc pairs in the alignment. However, recovering
a full sentence alignment that optimizes this joint scoring function is non-trivial due to both
the interdependence among individual phrase alignments as well as the interaction between
phrase-based and arc-based alignments to ensure consistency between the two representations.

In this paper, we describe a technique to recover joint phrasal and arc-based alignments by
using integer linear programming (ILP). Given a feature-based scoring function, standard
structured prediction techniques can be leveraged to learn parameters that weight features
over phrasal and arc-based alignments. We evaluate this joint aligner on a human-annotated
paraphrase corpus (Cohn et al., 2008) and show significant gains over phrase-based alignments
generated by the Meteor metric for machine translation (Denkowski and Lavie, 2011) as well as
a state-of-the-art discriminatively-trained phrase-based aligner (Thadani and McKeown, 2011).

2 Related Work

Text alignment is a crucial component of machine translation (MT) systems (Vogel et al., 1996;
Och and Ney, 2003; Liang et al., 2006; DeNero and Klein, 2008); however, the general goal
of multilingual aligners is the production of wide-coverage phrase tables for translation. In
contrast, monolingual alignment is often consumed directly in applications like paraphrasing
and textual entailment recognition; this task therefore involves substantially different challenges
and tradeoffs.1 Nevertheless, modern MT evaluation metrics have recently been found to be
remarkably effective for tasks requiring monolingual alignments (Bouamor et al., 2011; Madnani
et al., 2012; Heilman and Madnani, 2012)—even used off-the-shelf with their default parameter
settings—and for this reason we use Meteor as a baseline in this paper.

Monolingual token-based alignment has been used for many natural language processing
applications such as paraphrase generation (Barzilay and Lee, 2003; Quirk et al., 2004). Depen-
dency arc-based alignment has seen similar widespread use in applications such as sentence
fusion (Barzilay and McKeown, 2005; Marsi and Krahmer, 2005), redundancy removal (Thadani
and McKeown, 2008) and textual entailment recognition (Dagan et al., 2005). Furthermore,

1 See MacCartney et al. (2008) for an enumeration of these challenges in the context of entailment recognition.
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joint aligners that simultaneously account for the similarity of tokens and dependency arcs
have also been explored (Chambers et al., 2007; Chang et al., 2010). Monolingual phrase-
based alignment was first tackled by the MANLI system of MacCartney et al. (2008) and was
subsequently expanded upon by Thadani and McKeown (2011) to incorporate exact inference.

ILP has seen widespread use in natural language problems involving formulations which cannot
be decoded efficiently with dynamic programming but can be expressed as relatively compact
linear programs. DeNero and Klein (2008) and Thadani and McKeown (2011) proposed
ILP approaches to finding phrase-based alignments in a multilingual and monolingual context
respectively. Chang et al. (2010) describe a joint token-based and arc-based alignment technique
using ILP to ensure consistency between the two alignment representations. Our proposed joint
phrasal and arc-based aligner generalizes over both these alignment techniques.

3 Corpus

As our dataset, we use a modified version of the human-aligned corpus of paraphrases described
by Cohn et al. (2008), which we call the Edinburgh corpus. We derive this dataset from the
original corpus first by standardizing the treatment of quotes (both single and double) and by
truecasing the text (Lita et al., 2003). Following MacCartney et al. (2006), we collapse named
entities using the Stanford named entity recognizer2 trained on the pre-built models distributed
with it (Finkel et al., 2005). For example, the corpus contains a sentence with the named entity
Bank of Holland, which we collapse to the single token Bank_of_Holland. In future work, we
plan to leave the original corpus uncollapsed and annotate named entities by token index.

Our training/testing splits are as follows. We use all of the nonoverlapping portions of the
Edinburgh corpus (those only aligned by a single human annotator) as training data. We then
randomly sample training instances from the overlapping portions of the corpus: 45 instances
from the ‘trial’ portion drawn from the ‘mtc’ subcorpus, 19 from the ‘news’ portion, and 10 from
the ‘novels’ portion. The testing data includes all of the instances in the overlapping portions of
the corpus that are not selected as training data, plus the five remaining ‘trial’ instances. The
resulting splits yield 70% for training and 30% for testing, with identical ratios from the three
subcorpora (‘mtc’, ‘news’, and ‘novels’) in both training and testing. The training set has 715
paraphrase pairs with a total of 29,827 tokens and an average of 20.9 tokens per sentence,
while the test set has 305 paraphrase pairs with 14,391 tokens and 23.6 tokens/sentence on
average. Finally, rather than using the merged alignments from the Edinburgh corpus for the
overlapping portions, we randomly select one of the two annotators to use as the reference
alignment in an unbiased way, with each annotator chosen exactly half of the time.3

4 Corpus Analysis and Example

Figure 1 shows an example paraphrase pair from the training portion of the corpus. At the
top are the Meteor alignments as visualized by the Meteor X-ray tool using shaded boxes,
along with the gold standard alignments using filled circles for SURE alignments and open
circles for POSSIBLE alignments. Below the alignment grid, the recall errors (SURE only) in the
Meteor alignments that are supported by Stanford parser dependencies are shown in bold.
These recall errors are supported in the sense that the missed aligned tokens participate in
dependencies with other aligned tokens. For example, Meteor fails to align scout with monitor.
This token-level alignment is supported by two aligned dependencies, namely the alignment of

2http://nlp.stanford.edu/software/CRF-NER.shtml
3The modified corpus is available at http://www.ling.ohio-state.edu/~mwhite/data/coling12/.
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Figure 1: At top, example Meteor alignments (shaded boxes, gray for exact matches and yellow
for stem/synonym/paraphrase matches) along with gold SURE and POSSIBLE alignments (circles,
filled for SURE and open for POSSIBLE); at bottom, Meteor recall errors (SURE only, in bold) that
are supported by aligned Stanford parser dependencies (solid lines).

1232



send
xcomp−−−→ scout with send

xcomp−−−→ monitor and scout
aux−→ to with monitor

aux−→ to. Here, the other
tokens in the dependencies are identical, and thus the dependencies provide strong evidence
for the token-level alignment. Interestingly, the final three recall errors involve interrelated
dependencies, suggesting the need for joint inference.

Using this notion of dependency arc alignments supporting token-level alignments, we counted
how frequently the token alignments were supported by dependency alignments, and found that
64% of the SURE alignments and 65% of the SURE+POSSIBLE alignments in the training corpus
were supported in this way. We also tabulated how often the dependencies were aligned, and
found that 54% of the dependency arcs were aligned based on the SURE token alignments, and
62% were aligned based on the SURE+POSSIBLE alignments, thus indicating the greater potential
of dependencies to aid alignment when including the POSSIBLEs. The alignment percentages
varied considerably by type: of the non-rare dependency types, 74% of the aux dependencies
were aligned (including the POSSIBLEs), while only 38% of the rcmod dependencies were aligned,
with most core dependency types such as xcomp and dobj in the 64-70% range.4

5 Joint alignment framework

Consider a pair of text segments 〈T1, T2〉 where each Ts represents a set of ns tokens. We denote
Ts ¬ {t s

i : 1≤ i ≤ ns} where each t s
i represents a token in the ith position of segment s. We also

use the notation t s
i... j ¬ {tk : tk ∈ Ts, i ≤ k ≤ j} to indicate the subsequence of contiguous tokens

from positions i to j (inclusive) in Ts. Each Ts is also associated with a dependency graph Ds
which is treated as a set of labeled arcs, i.e., Ds ¬ {ds

i j : t s
j is a dependent of t s

i ∈ Ts ∪ {ROOT}}.

5.1 Alignment representations

Our proposed alignment formulation has its roots in the phrase-based representation proposed
in MacCartney et al. (2008) and Thadani and McKeown (2011). An alignment E between T1
and T2 is represented by a set of edits {e1, e2, . . .} which indicate the modifications that would
be needed to convert T1 to T2. We consider two types of edits:

1. Phrase edits capture the changes that would need to be made to subsequences of tokens
to transform T1 to T2 and vice versa. These are of two types: the first represents the
alignment of equivalent phrases in T1 and T2 while the other denotes deletion or non-
alignment of phrases from either Ts. A valid phrase-based alignment configuration,
denoted by Ephr must have every token participating in exactly one edit.

2. Arc edits similarly capture the alignments or deletions of edges in a dependency graph.
For a dependency alignment configuration Earc to be meaningful, the edits in it must
be kept consistent with the phrase-based alignment configuration Ephr. Specifically, two
edges that have both their source and target tokens aligned (i.e., participating in the same
alignment edit) must also participate in an alignment edit.

We assume that the score for an alignment E factors over the phrase and arc edits present in E.
Using e∗ to represent alignment edits and e− to represent deletion edits, this can be written as:

score(E) =
∑

e∗phr∈E

αphr(e
∗
phr) +
∑

e−phr∈E

δphr(e
−
phr) +
∑

e∗arc∈E

αarc(e
∗
arc) +
∑

e−arc∈E

δarc(e
−
arc) (1)

4 Note that dependencies can fail to be aligned for a variety of reasons, including parse errors, head-dependent
inversions (not taken into account in this paper) and more large-scale structural divergences.
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where scoring functions αphr : 〈t1
i... j , t2

k...l〉 → R indicate the score of aligning a pair of token
sequences, and δphr : t s

i... j → R indicate the score of deleting any token sequence of segment s
from the alignment. αarc : 〈d1

i j , d2
kl〉 → R and δarc : ds

i j → R are defined analogously for scoring
alignments and deletions of arc edits respectively.

5.2 Features and learning

The scoring function described above is parameterized by features over the different categories
of edits, i.e., score(E) =

∑
e∈E w · Φ(e) where Φ(e) is a feature vector for edit e and w is a

vector of parameter weights. The features defined over phrase edits are similar to MacCartney
et al. (2008); these encode the type of edit (alignment or deletion), the size of the phrases in
alignment edits, the similarity of the phrases determined by leveraging various lexical resources,
as well as contextual and positional features. Features for arc edits simply encode the type of
edit for an arc of a given class of dependency label, e.g., whether an alignment edit involves
two subj dependencies, or whether a deletion edit involves a det dependency.

Given a inference technique for alignments under the parameterized scoring function, feature
weights w can be learned using any appropriate structured prediction technique. We employ
the structured perceptron (Collins, 2002) in our experiments.

5.3 Inference via ILP

We now describe an integer linear program that recovers optimal solutions to the problem of
jointly recovering a phrasal and arc alignment given any parameter configuration w. Although
ILPs in general do not have guarantees on returning solutions efficiently, the programs for
alignment problems over text segments consisting of a few sentences are relatively small and
can be easily tackled with highly optimized general-purpose solvers.5

First, we define indicator variables for all potential phrase and arc edits in an alignment, as
well as indicators that denote which pairs of tokens are aligned.

• y s
i j∼kl ∈ {0, 1} represents an alignment between the token sequence t s

i... j from Ts and t s′
k...l

from Ts′ . We use s′ as shorthand for the segment index other than s, i.e., s′ = 3− s. Note
that y s

i j∼kl and y s′
kl∼i j are equivalent for a given i, j, k, l and refer to the same indicator.

• ȳ s
i j ∈ {0, 1} represents a non-alignment or deletion of the token sequence t s

i... j from either
segment Ts.

• zs
i j∼kl ∈ {0,1} represents an alignment between the dependency ds

i j ∈ Ds and ds′
kl ∈ Ds′ .

Note that zs
i j∼kl and zs′

kl∼i j are equivalent for a given i, j, k, l and refer to the same indicator.

• z̄s
i j ∈ {0, 1} represents a non-alignment or deletion of the dependency ds

i j ∈ Ds.

• Finally, x s
p∼q ∈ {0,1} indicates whether the token t s

p ∈ Ts participates in some phrase-

based alignment with t s′
q ∈ Ts′ .

x s
p∼q =

(
1, iff ∃i, j, k, l s.t. y s

i j∼kl = 1, i ≤ p ≤ j, k ≤ q ≤ l

0, otherwise
(2)

5We use Gurobi: http://www.gurobi.com
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Now, finding the optimal alignment between any sentence pair 〈T1, T2〉 is equivalent to solving
the following optimization problem over the edit indicator variables:

max
y,z

n1∑
i=1

min(n1,i+λ)∑
j=i

n2∑
k=1

min(n2,k+λ)∑
l=k

yi j∼kl αphr(〈t1
i... j , t2

k...l〉)

+
∑
i, j:

d1
i j∈D1

∑
k,l:

d2
kl∈D2

zi j∼kl αarc(〈d1
i j , d2

kl〉)

+
∑

s∈{1,2}




ns∑
i=1

min(ns ,i+λ)∑
j=i

ȳ s
i j δphr(t

s
i... j) +
∑

ds
i j∈Ds

z̄s
i j δarc(d

s
i j)


 (3)

where the parameter λ controls the maximum number of tokens permitted in a phrase for
alignment. The optimization problem requires some linear constraints in order to specify a
complete and consistent alignment. The following constraints are applied for all i = 1 . . . ns,
j = i . . . min(ns, i +λ), k = 1 . . . ns′ , and l = k . . . min(ns′ , k+λ) where s ∈ {1, 2}.

1. Exactly one phrase edit must be active per token, ensuring a consistent segmentation for
the phrase-based solution. Similarly, only one arc edit can be active per dependency.
∑
i, j:

i≤p≤ j

∑
k,l

y s
i j∼kl + ȳ s

i j = 1 ∀p ∈ 1 . . . ns (4)

∑
k,l

zs
i j∼kl + z̄s

i j = 1 ∀i, j, k, l s.t. ds
i j ∈ Ds, ds′

kl ∈ Ds′ (5)

2. An activated token pair indicator must participate in exactly one phrase alignment.
∑
i, j:

i≤p≤ j

∑
k,l:

k≤q≤l

y s
i j∼kl = x s

p∼q ∀p ∈ 1 . . . ns, q ∈ 1 . . . ns′ (6)

3. In order to ensure that the phrase-based solution is consistent with the arc-based solution,
arc alignments must activate corresponding token-pair alignment indicators.

zs
i j∼kl ≤ x s

i∼k ∀i, j, k, l ∈ 1, . . . ns (7)

zs
i j∼kl ≤ x s

j∼l ∀i, j, k, l ∈ 1, . . . ns (8)

4. If the governor and dependent of a dependency arc in one sentence are aligned to those
of an arc in the other sentence, the corresponding arc alignment must be active.

x s
i∼k + x s

j∼l ≤ zs
i j∼kl + 1 ∀i, j, k, l s.t. ds

i j ∈ Ds, ds′
kl ∈ Ds′ (9)

6 Experiments

We trained models with and without the dependency features using 20 epochs of averaged
perceptron learning. Separate models were trained on the training corpus with just the SURE

alignments and with the SURE+POSSIBLE alignments.6 We used the unconstrained approach of
Thadani and McKeown (2011) as a phrase-based baseline; this is an extension of MacCartney

6Note that all alignments are considered equally when evaluating on the SURE+POSSIBLE alignments.
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Alignments System Prec% Rec% F1% Exact%

Meteor 81.82 71.90 75.49 11.22
Tokens/SURE Phrase-based 74.83 83.25 77.85 12.21

Phrase+Arc 76.57 83.79 79.20 12.21
Meteor 85.40 64.76 72.32 10.56

Tokens/SURE+POSSIBLE Phrase-based 70.84 82.54 75.37 13.53
Phrase+Arc 73.03 84.60 77.57 14.85

Meteor 84.64 58.03 65.60 17.49
Deps/SURE Phrase-based 76.07 78.42 75.10 23.10

Phrase+Arc 73.56 84.27 76.30 20.79
Meteor 91.19 51.80 62.57 12.87

Deps/SURE+POSSIBLE Phrase-based 80.09 80.74 78.79 22.11
Phrase+Arc 77.04 88.76 80.92 22.44

Table 1: Test set macro-averaged results on token alignments and projected dependency
alignments over Stanford parses. F1 increases are statistically significant in each case (see text).

et al. (2008) which outperforms a number of other alignment techniques (Och and Ney, 2003;
Liang et al., 2006; Chambers et al., 2007). As an additional baseline, we ran Meteor on the
test corpus using its precision-focused max accuracy setting, which we found to yield higher
F-measure on the training corpus than the max coverage option. Table 1 shows the results.

It is evident that the feature-based aligners have much higher recall than Meteor, with some
unsurprising loss in precision due to the conservative max accuracy matching. Compellingly, the
joint model increases both precision and recall on aligned tokens over the phrasal model, with
greater increases using the SURE+POSSIBLE alignments as expected. Jointly aligning arcs also
helps considerably in recovering the dependency alignments projected onto Stanford parses
from the gold standard phrase alignments. Wilcoxon signed-rank tests on F1 indicate that all
increases are statistically significant, with p < 0.001 in all cases except one, namely the increase
on the SURE syntactic dependencies of the joint model over the phrasal model, where p < 0.05.

Conclusion

We have presented a monolingual alignment strategy that jointly produces phrasal and syntactic
dependency alignments using a discriminative structured prediction framework and an exact
inference technique using ILP. Our alignment technique shows significant gains over recent
phrase-based aligners and alignments obtained via the well-known Meteor metric. In future
work, we intend to apply joint alignment approaches to additional corpora and develop more
powerful similarity features over phrases and arcs.
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