
April 25, 2007

FG 2007:
The 12th conference on Formal

Grammar
Dublin, Ireland
August 4-5, 2007

Organizing Committee: Laura Kallmeyer
Paola Monachesi Gerald Penn

Giorgio Satta

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION



April 25, 2007



April 25, 2007

1

Relating dominance formalisms
ALEXANDER KOLLER AND OWEN RAMBOW

Abstract
We establish for the first time a formal relationship between dominance graphs, used

for modeling semantics, and grammar formalisms with underspecified dominance links,
used for modeling syntax. We present a translation of normal dominance graphs into
Unordered Vector Grammars with Dominance Links (UVG-DL) and prove that the con-
figurations of the dominance graph correspond to the derivation trees of the grammar.
Moreover, the standard algorithms for both formalisms compute isomorphic charts.

1.1 Introduction

One of the most useful relations that is being used in describing sets of trees
in a compact way is the dominance relation, i.e. the relation between a node in
a directed graph or tree and all the nodes that are reachable from it. This rela-
tion has been at the foundation of at least two very different lines of research
on formal grammars. The first line of research is the use in underspecifica-
tion formalisms for scope ambiguities in computational semantics (Bos, 1996,
Egg et al., 2001, Althaus et al., 2003, Koller et al., 2003, Bodirsky et al., 2004,
Flickinger et al., 2005, Koller and Thater, 2005); these approaches use dom-
inance to model the outscopes relation between quantifiers. The second line
of research is the development of generative grammar formalisms in which
the use of grammar production rules can be constrained by dominance re-
lations and of dominance-based tree description formalisms (Vijay-Shanker,
1992, Rambow, 1994, Becker and Rambow, 1995, Rambow and Satta, 1996,
Rambow et al., 2001, Rogers, 2003, Gerdes and Kahane, 2006); this work is
typically motivated from the syntax of free word-order languages.

In this paper, we establish a formal relationship between these two lines
of research for the first time. We present a translation of normal dominance

1

FG-2007.
Organizing Committee:, Laura Kallmeyer, Paola Monachesi, Gerald Penn, Giorgio Satta.
Copyright c© 2007, CSLI Publications.



April 25, 2007

2 / ALEXANDER KOLLER AND OWEN RAMBOW

graphs into vector grammars with dominance links (UVG-DL) and prove
that the configurations of the dominance graph and the derivation trees of
the grammar correspond to each other. In addition, we also prove that the
charts that are computed by the standard solver for dominance graphs and
the standard parser for UVG-DL are isomorphic for those dominance graphs
for which the comparison is meaningful. This means that normal dominance
graphs can be seen as a fragment of UVG-DL with particularly benign com-
putational properties.

Our results are theoretically interesting because they bridge a gap between
two previously disconnected families of formalisms. Applications include
the first ever algorithm for computing configurations of dominance graphs
directly and an NP-completeness proof for the word problem of UVG-DL
where the grammar is part of the input. Furthermore, our results point the
way towards future extensions of dominance graphs, and open up new in-
sights into the division of labor in the syntax-semantics interface.

The paper is structured as follows. We will first introduce the two for-
malisms – dominance graphs in Section 1.2 and UVG-DL in Section 1.3.
We will then show how to translate dominance graphs into UVG-DL in Sec-
tion 1.4. Finally, we will define the charts computed by the standard solvers
of both formalisms and show that they are isomorphic in Section 1.5.

1.2 Dominance graphs

We start by defining dominance graphs and their configurations.

1.2.1 Definition

Definition 1 A dominance graph is a directed graph (V, E � D) with two
kinds of edges, tree edges E and dominance edges D, such that the graph
(V, E) defines a collection of node disjoint trees. We call the trees in (V, E)
the fragments of the graph.

A node v is called a root if v does not have incoming tree edges. It is called
a leaf if it does not have outgoing tree edges.

A labelled dominance graph over a ranked signature Σ is a triple G =
(V, E � D, L) such that (V, E � D) is a dominance graph and L : V � Σ is
a partial labelling function. If L(v) is defined, then the number of tree edges
out of v must be equal to the arity of L(v). If L does not assign a label to
some node v, then v must be a leaf, and it must not be a root. In this case, v
is also called a hole.

A dominance graph is called normal iff no node is both a root and a hole,
and all dominance edges go from holes to roots.

Normal dominance graphs are a standard formalism for scope underspeci-
fication in computational semantics (Egg et al., 2001, Flickinger et al., 2005).



RELATING DOMINANCE FORMALISMS / 3

April 25, 2007

somex

comp(x)

of(x,y) see(y,z)

mostzeveryy

spl(z)

1 2 3

4

somex
mostz

everyy
5

comp(x)

spl(z)

see(y,z)of(x,y)

FIGURE 1 An example dominance graph, with one of its five configurations.

By way of example, consider the dominance graph in Fig. 1, which is an un-
derspecified semantic representation for the sentence “Every researcher of a
company saw most samples.” It consists of five fragments, and it is normal.
In this paper, we will only consider normal dominance graphs.

We use some standard concepts from graph theory below, such as weakly
connected (there is an undirected path between any two nodes of a subgraph)
and weakly connected component (a maximal connected subgraph). When-
ever we say “subgraph” below, we mean a subgraph such that either all nodes
or no nodes of each fragment belong to the subgraph.

1.2.2 Configurations

A dominance graph can be taken as a representation of a finite set of trees,
called configurations, as follows:

Definition 2 A solution of a labelled dominance graph G = (V, E � D, L)
is a pair (t, α) of a labelled tree t = (V ′, E′, L′) and a node assignment
function α : V → V ′ such that for all u, v ∈ V , L(u) = L′(α(u)) and
E′ = {(α(u), α(v)) | (u, v) ∈ E} and if (u, v) ∈ D, then there is a path
from α(u) to α(v) in t.

A solution (t, α) of G is called a configuration of G iff every node of t is
the α-image of a non-hole in G.

Intuitively, a solution is a tree into which the dominance graph can be
embedded while preserving labels and tree edges and realizing dominance
edges as reachability. Configurations are arrangements of dominance graphs
into trees in which all holes have been “plugged” by exactly one root.

The example graph in Fig. 1 has five configurations, one of which is shown
on the right-hand side of the figure.

1.3 Unordered Vector Grammars with Dominance Links

UVG-DL (Rambow, 1994) is a member of a family of extensions of context-
free grammars in which the use of the production rules in a derivation is reg-
ulated by dominance relations. UVG-DL achieves this regulation by directly
extending the CFG formalism; however, there are closely related formalisms
(Vijay-Shanker, 1992, Rambow et al., 2001, Rogers, 2003) which describe
sets of trees as the models of a logical formula using primitives including



April 25, 2007

4 / ALEXANDER KOLLER AND OWEN RAMBOW

NP

VP

VP
nom

VPNP
nom

VP
acc
NP

VP

NP
dat

VP

gibt

NP

VP

VP NP

VP

VP

VP

gibt
dat acc

{ }
FIGURE 2 An example vector from a UVG-DL, with one of its derivation trees;

internal structure of NPs omitted.

dominance. In this paper, we use the UVG-DL perspective rather than the tree
description perspective, since it is easier to present formally and the parsing
algorithm is more directly understandable.

Definition 3 An Unordered Vector Grammar with Dominance Links (UVG-
DL) is a 4-tuple (VN, VT, V, S), where VN and VT are sets of nonterminals
and terminals, respectively, S is the start symbol, and V is a set of vectors
(i.e., ordered multisets) of context-free productions equipped with dominance
links. For a given vector v ∈ V , the dominance links form a binary relation
domv over the set of occurrences of non-terminals in the productions of v
such that if domv(A, B), then the symbol instance A occurs on the right-
hand side of some production in v, and B is the left-hand symbol instance of
some production in v.

If G is a UVG-DL, L(G) consists of all words w ∈ V ∗
T which have a

standard context-free derivation � of the form

S
p1=⇒ w1

p2=⇒ w2 . . . wr−1
pr=⇒ wr = w,

such that � meets the following two conditions:

1. {p1, . . . , pr} (as a multiset) is the multiset union of some vectors;

2. the dominance relations of V , when interpreted as the standard domi-
nance relation defined on trees, hold in the derivation tree of �.

The second condition can be formulated as follows: if v in V contributes
instances of productions p1 and p2 (and perhaps others), and the k-th daughter
in the right-hand side of p1 is related by a dominance link to the left-hand
nonterminal of p2, then in the context-free derivation tree associated with �
(the unique node associated with) the k-th daughter node of p 1 dominates (the
unique node associated with) p2.

We now give a simple syntactic example. In German, as in several other
head-final languages, the arguments of the verb can appear in any order be-
fore the verb (we give an embedded context and omit the complementizer for
expository simplicity):



RELATING DOMINANCE FORMALISMS / 5

April 25, 2007

A A

A

A

ε

A

ε

A

A
A A{ }

FIGURE 3 The UVG-DL grammar for the example graph.

den Hasen der Hans dem Zauberer gibt
the rabbit (acc) the Hans (nom) the magician (dat) gives

‘Hans gives the magician the rabbit.’

All six possible orders of the three arguments of the ditransitive verb result
in grammatical sentences. These can all be derived with the unique UVG-DL
vector shown in Fig. 2 on the left, and the derivation tree for our example is
shown on the right.

1.4 Dominance graphs as vector grammars
We will now show how to translate dominance graphs into UVG-DL gram-
mars, in such a way that configurations and derivation trees correspond. This
connects the two formalisms; we will use the formal connection to translate
algorithms and complexity results from one formalism to another. The trans-
lation is defined as follows.

Definition 4 Let G be a normal dominance graph. Then we define the UVG-
DL grammar for G as T (G) = ({A}, ∅, {V }, A), where V is a vector such
that:

. For each fragment F in G with k holes, V contains a production rule
A → Ak in V , where Ak denotes a sequence of k occurrences of the non-
terminal symbol A; in particular, A0 is ε. We write pF for the production
rule encoding the fragment F .. For each dominance edge (u, v) in G, where u is the i-th hole of the frag-
ment F1 and v is the root of the fragment F2, V contains a dominance link
between the i-th occurrence of A on the right-hand side of p F1 and the
occurrence of A on the left-hand side of pF2 .

It is obvious that for any dominance graph G, the language accepted by
T (G) can only be the empty language or the language {ε}. We will see below
that the language is non-empty iff the graph is configurable. Furthermore, if
ε is in the language, the different derivation trees of ε according to T (G) will
correspond exactly to the different configurations of G.

Fig. 3 shows the result of translating the dominance graph in Fig. 1 into
a grammar. This grammar contains a single vector with five production rules



April 25, 2007

6 / ALEXANDER KOLLER AND OWEN RAMBOW

(two of which are A → A) and four dominance links. There is an obvious
visual similarity between the dominance graph and the grammar: Fragments
correspond to production rules, and dominance links correspond to domi-
nance edges. Indeed, this similarity extends to the sets of described trees, in
the following way.

Proposition 1 Let G be a normal dominance graph. Then there is a one-to-
one correspondence between the configurations of G and the derivation trees
of ε with respect to T (G).

Proof. The proof follows straightforwardly from the construction of T (G),
which establishes a one-to-one correspondence between fragments of G and
rules of T (G), with isomorphic dominance constraints. We omit the details
for lack of space. ��

Proposition 1 bridges two formalisms whose precise relationship was un-
known up to this point. It also characterizes configurability of dominance
graphs as emptiness of UVG-DL grammars. This has two immediate conse-
quences. One is to establish a new lower bound for the parsing complexity of
UVG-DL.

Corollary 2 The parsing problem of UVG-DL where the grammar is part
of the input and the emptiness problem of UVG-DL grammars are both NP-
complete.

Proof. This follows immediately from Prop. 1 and the fact that configurability
of normal dominance graphs is NP-complete (Althaus et al., 2003). ��

So far, the complexity of the parsing problem of UVG-DL was known to
be polynomial in the size of the string, but the fastest known parsing algorithm
was exponential in the grammar size. Cor. 2 shows that we can’t expect to be
more efficient in the grammar size.

The second consequence is that the UVG-DL parser can be used as a direct
configuration algorithm for dominance graphs.

Corollary 3 The configurations of a normal dominance graphs G can be
computed by parsing ε with the UVG-DL grammar T (G).

1.5 Charts of hypernormally connected graphs
Corollary 3 is more important than it seems at first glance. There is a vari-
ety of efficient solvers for dominance graphs in the literature (Althaus et al.,
2003, Bodirsky et al., 2004, Koller and Thater, 2005), but all these solvers
determine whether a dominance graph has a solution and not whether it has
a configuration. In general, it is possible for a dominance graph to have solu-
tions but no configurations. Corollary 3 makes the UVG-DL parser the first
known algorithm for computing the configurations of a dominance graph.



RELATING DOMINANCE FORMALISMS / 7

April 25, 2007

hypernormally
connected

not
hypernormally

connected

solving

configuring

UVG-DL parser

dominance graph
solver

However, it is also known that every
solvable graph that is hypernormally
connected and leaf-labelled also has
a configuration (Koller et al., 2003).
A graph is called hypernormally con-
nected iff every pair of nodes is con-
nected by a hypernormal path; a hy-
pernormal path is an undirected path
that doesn’t use any two dominance
edges with the same source node. A
graph is leaf-labelled iff every hole has
an outgoing dominance edge. For such

dominance graphs, solving and configuring coincide, and so we now have two
independent algorithms for solving the same problem: the UVG-DL parser
and the standard dominance graph solver.

This means we can make an even stronger claim than in the previous sec-
tion: Not only do the configurations of G correspond to the derivation trees
of T (G) – these trees are even computed in the same way by the standard
algorithms for the respective formalisms. More precisely, there is a bijective
correspondence between the items in the charts computed by each of the two
algorithms. We will now define the two algorithms; then we will characterize
the items in each chart and prove the correspondence.

1.5.1 Charts of UVG-DL grammars

We follow Shieber et al. (1995) in taking a chart to be a set of items that
are derived from a set of axioms by applying inference rules. A chart parsing
algorithm computes a chart from a sentence by saturating the axioms with the
inference rules, and claims that the sentence is in the language if it can derive
a goal item. If the goal item can be derived, the parser can then extract all
derivations of the sentence by recursively pursuing all the different ways that
an item in the chart can be constructed from smaller items, starting with the
goal item.

In the case of UVG-DL grammars, the parser is a basic bottom-up parser
for CFG, but augmented to keep track of open dominance links (Becker and
Rambow, 1995, Rambow et al., 2001), i.e. of dominance links for which we
have recognized the target node, but not yet the origin node. This parser uses
items (A, i, j, I) in which A is a nonterminal symbol, i and j are the start and
end position in the input string, and I is a multiset of open dominance links.
(There may be multiple open instances of the same link from different vector
instances.)

Grammars that encode dominance graphs as defined above use only a sin-
gle nonterminal symbol, can only describe input strings of length 0, and have



April 25, 2007

8 / ALEXANDER KOLLER AND OWEN RAMBOW

only a single vector. This means that in the special case considered here, it
is sufficient to represent each item as a set of dominance edges. The axioms
are induced by the terminal productions, i.e. by the fragments with no holes;
that is, we have an axiom in(r) for each node r that is the root of a frag-
ment without holes. (We write in(u) for the set of dominance edges into, and
out(u) for the set of dominance edges out of a node u.) Note that we know
that we will use exactly one instance of our single vector in the parse, so that
we also know exactly how many of each axiom to use (despite the fact that
they represent epsilon-productions).

The production rules of the grammar encode the operation of combining a
fragment with some subgraphs. This means that we have one inference rule
UF for each fragment F in the graph. It captures the fact that in our bottom-
up algorithm, the fragment allows us to “use up” the outgoing edges and we
gain the newly incoming edges. All other edges are passed on from below.

[UF ]
out(h1) � S1 . . . out(hn) � Sn

in(r) ∪ S1 ∪ . . . ∪ Sn

{
F is a fragment with root r
and holes h1, . . . , hn

The goal of parsing is to have used all fragments and have no open domi-
nance edges; so the goal item is simply the empty set, ∅.

1.5.2 Charts of dominance graphs

The standard chart solver for dominance graphs (Koller and Thater, 2005) is
usually defined in a way that looks very different, but we will now present
it (equivalently) within the same framework to make it easier to compare the
two formalisms. Given a (normal, hypernormally connected, leaf-labelled)
dominance graph G, the algorithm computes a chart whose items are weakly
connected subgraphs of G, using a top-down algorithm. It starts with a single
axiom, namely G itself. Then it saturates the chart by applying the following
inference rule:

[DF ]
G0

G1 . . . Gn




G0 is connected, F is a free fragment in
G0, and the weakly connected components
of G0 − {F} are G1, . . . , Gn

Here a fragment F in a dominance graph G is called free iff it has no incoming
dominance edges and all of its holes are in different biconnected components
of G (Bodirsky et al., 2004). It can be shown that every configuration of a
graph has a free fragment at the root, and if the graph has any configurations,
then there is a configuration whose root is this fragment.

Unlike a standard chart parser, the dominance graph solver does not use
a goal item to determine whether the graph is configurable or not. Instead, it
declares the entire graph to be unconfigurable if it ever encounters an item
which is a subgraph containing more than one fragment, and to which the
inference rule cannot be applied (i.e., it has no free fragment). This is possible



RELATING DOMINANCE FORMALISMS / 9

April 25, 2007

because if any application of a rule to a subgraph leads to a configuration,
then all do, i.e. the algorithm never computes unproductive items. In fact, the
following lemma can be shown based on this insight (we omit a detailed proof
for lack of space):

Lemma 4 A subgraph of G can be derived from the axiom G using the
inference rules top-down iff it can be derived bottom-up from the axioms
{F1}, . . . , {Fn}, where the Fi are the fragments without holes.

So if the chart computation phase finishes with success, we can enumerate
all configurations by pretending that the chart is the result of a bottom-up
parser starting with the axioms {F1}, . . . , {Fn} and deriving the goal item G.
In other words, the algorithm computes the chart top-down, but enumerates
configurations as if it were a bottom-up algorithm.

By way of example, consider the dominance graph in Fig. 1. The start
items for this graph are the subgraphs {4} and {5} (where “4” and “5” stand
for the fragments marked with these numbers in the picture and subgraphs are
identified by the fragments in them). The complete chart looks as follows:

{1, 2, 3, 4, 5} {2, 3, 4, 5} {1, 2, 4, 5} {1, 4}
{3, 5} {2, 4, 5} {4} {5}

For instance, we can justify the presence of the complete graph, {1, 2, 3, 4, 5},
in the chart because 2 is a free fragment in this graph, and if we remove it
from the graph, the graph is split into the connected components {1, 4} and
{3, 5}, and each of these subgraphs is in the chart. These items, in turn, can
be justified by recognizing that 1 is free in {1, 4} (and {4} is a start item),
and that 3 is free in {3, 5} (and {5} is a start item).

1.5.3 Cuts

At first glance, there is no obvious connection between the sets of dominance
edges computed by the UVG-DL parser and the subgraphs computed by the
dominance graph solver. However, these objects are in fact very closely re-
lated, because certain sets of dominance edges (cuts) can be used to specify
subgraphs (cut subgraphs) uniquely.

Let’s illustrate this by an example; consider the dominance graph in Fig. 1,
and write eik for the (only) dominance edge connecting the fragments i and
k. Then the set {e14, e24} identifies the subgraph {4}, because this is the
subgraph for which all targets of these dominance edges are inside the sub-
graph, and all sources are outside of it. Similarly, the set {e24} identifies the
subgraph {1, 4}, and so on. The entire graph is identified by the edge set ∅.

However, these subgraphs are only unique if we assume that they must
be weakly connected and downward closed, i.e. if some node belongs to the
subgraph, then all other nodes that it dominates must also be in the subgraph.
For instance, the set of dominance edges {e14, e24} could be taken to identify



April 25, 2007

10 / ALEXANDER KOLLER AND OWEN RAMBOW

the subgraph {3, 4} in the same way that it identifies {4}, because 3 has no
incoming dominance edges. However, {3, 4} is neither connected nor down-
ward closed, and in fact {4} is unique if we assume these additional proper-
ties. Conversely, not every set of dominance edges can be used to identify a
connected and downward closed subgraph; for example, {e 14, e25}.

As these examples show, there are certain classes of edge sets and sub-
graphs that correspond bijectively to each other. We call the former cuts and
the latter cut subgraphs, and prove their equivalence below.

Definition 5 A set D′ = {e1, . . . , en} of dominance edges in a dominance
graph G is called a cut iff for each 1 ≤ i, k ≤ n, (a) the source and target
node of ei are disconnected in G − E ′, and (b) there is an undirected path
from the target of ei to the target of ek in G − D′.

If G is a dominance graph, then a subgraph G ′ of G is called a cut sub-
graph iff it is weakly connected, downwards closed, and the set of dominance
edges into G′ is a cut.

Lemma 5 For each cut D′ in G, there is a unique cut subgraph G whose set
of incoming dominance edges is D ′.

Proof. Given a cut D′, we can obtain a cut subgraph by taking the weakly
connected component of G − D ′ that contains the target of any element of
D′. The subgraph is unique because if G1 and G2 are different subgraphs
for the same cut, then we can choose a node in G1 − G2 and another node
in G2 − G1 whose connecting undirected path uses a dominance edge that
points into one of G1 or G2 but not the other. ��

1.5.4 The structure of the charts

We can use this correspondence to prove that the charts computed by the two
algorithms are isomorphic.

Definition 6 Two charts C and C ′ are isomorphic iff there is a bijection f
between the items of C and the items of C ′ such that for all items i0, . . . , in in
C, (i0, . . . , in) is an instance of an inference rule for C iff (f(i0), . . . , f(in))
is an instance of an inference rule for C ′.

The structure of the proof is as follows. We prove that dominance graph
charts consist exactly of the cut subgraphs of the dominance graph (Prop. 7).
Then we prove that the UVG-DL charts consist exactly of the cuts of the
dominance graph (Prop. 9). Together with the above result that the cuts and
cut subgraphs correspond to each other bijectively (Lemma 5), this shows
that the charts have isomorphic item sets. In other words, the chart solver
for dominance graphs and the UVG-DL parser perform essentially the same
computations.



RELATING DOMINANCE FORMALISMS / 11

April 25, 2007

Below we present the main propositions and the key lemmas. Unfortu-
nately, we must omit the proofs for lack of space; if the paper is accepted, we
will make them available as a tech report.

Lemma 6 Let G be a normal dominance graph, and let G ′ be a connected,
downwards closed subgraph of G′. Let F be a free fragment in G′, and let
G1, . . . , Gn be the connected components of G ′ − F . Then G′ is a cut sub-
graph of G iff all the G1, . . . , Gn are.

Proposition 7 Let G be a configurable, hypernormally connected dominance
graph. Then the items of the chart for G are exactly the cut subgraphs of G.

Lemma 8 Let G be a hypernormally connected, configurable dominance
graph, and let S0, . . . , Sn be edge sets that are related by an inference rule
for UVG-DL charts. If all the S1, . . . , Sn are cuts, then S0 is a cut as well.

Proposition 9 Let G be a configurable, hypernormally connected dominance
graph. Then the items of the chart for T (G) are exactly the cuts of G.

Corollary 10 If G is a configurable, hypernormally connected dominance
graph, then the chart for G and the chart for T (G) are isomorphic.

1.6 Discussion and conclusion
In this paper, we have related two strands of research on formalisms using
dominance links. We have shown that normal dominance graphs, which were
primarily motivated by computational semantics, can be translated into UVG-
DL grammars, a grammar formalism for free word order languages. We have
shown that the configurations of a dominance graph correspond to the UVG-
DL derivation trees allowed by its translation. Moreover, we have shown that
if the graph is hypernormally connected, then the standard solver for dom-
inance graphs and the standard parser for UVG-DL perform essentially the
same computation, in the sense that the charts they compute are isomorphic.

Next to the obvious benefit that our results relate previously unconnected
formalisms, they also allow us to port algorithms and theory from each for-
malism to the other. We have presented a simple NP-completeness proof for
the UVG-DL word problem where the grammar is part of the input, and the
UVG-DL parser can now be used as the first known algorithm for computing
configurations of arbitrary dominance graphs. We hope that this connection
will bear more fruits of this kind in the future, e.g. by providing a straightfor-
ward way to extend dominance graphs with more powerful constraints.

More fundamentally, the work presented here opens up new perspectives
for research on the nature of the syntax-semantics interface. The dominance
graph tradition takes the view that scope ambiguities are purely semantic and
can be computed separately from syntax, whereas the UVG-DL and tree de-
scription traditions focus on syntactic analysis. The equivalence results pre-



April 25, 2007

12 / ALEXANDER KOLLER AND OWEN RAMBOW

sented here may permit us a more flexible choice for the division of labor
between syntax and semantics and lead to a broad spectrum of possible ways
of arranging syntactic and semantic processing (joint, synchronous, sequen-
tial, etc.).

References
Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel. 2003. An

efficient graph algorithm for dominance constraints. J. Algorithms 48:194–219.

Becker, T. and O. Rambow. 1995. Parsing non-immediate dominance relations. In
Proceedings of the Fourth International Workshop on Parsing Technologies.

Bodirsky, M., D. Duchier, J. Niehren, and S. Miele. 2004. An efficient algorithm
for weakly normal dominance constraints. In ACM-SIAM Symposium on Discrete
Algorithms. The ACM Press.

Bos, J. 1996. Predicate logic unplugged. In Amsterdam Colloquium, pages 133–143.

Egg, M., A. Koller, and J. Niehren. 2001. The Constraint Language for Lambda Struc-
tures. Logic, Language, and Information 10.

Flickinger, D., A. Koller, and S. Thater. 2005. A new well-formedness criterion for
semantics debugging. In Proc. 12th International Conference on HPSG. Lisbon.

Gerdes, K. and S. Kahane. 2006. A polynomial parsing algorithm for the topological
model: Synchronizing constituent and dependency grammars, illustrated by german
word order phenomena. In Proc. 21st COLING/44th ACL. Sydney.

Koller, A., J. Niehren, and S. Thater. 2003. Bridging the gap between underspecifica-
tion formalisms: Hole semantics as dominance constraints. In Proc. 10th EACL.

Koller, A. and S. Thater. 2005. The evolution of dominance constraint solvers. In
Proceedings of the ACL-05 Workshop on Software. Ann Arbor.

Rambow, Owen. 1994. Formal and Computational Aspects of Natural Language Syn-
tax. Ph.D. thesis, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia.

Rambow, O. and G. Satta. 1996. Synchronous models of language. In Proc. 34th ACL.

Rambow, Owen, K. Vijay-Shanker, and David Weir. 2001. D-Tree Substitution Gram-
mars. Computational Linguistics 27(1).

Rogers, James. 2003. Syntactic structures as multi-dimensional trees. Research on
Language and Computation 1(3–4):265–305.

Shieber, S., Y. Schabes, and F. Pereira. 1995. Principles and implementation of de-
ductive parsing. Journal of Logic Programming 24(1 & 2):3–36.

Vijay-Shanker, K. 1992. Using descriptions of trees in a Tree Adjoining Grammar.
Computational Linguistics 18(4):481–518.


