
A Lightweight Intelligent Virtual Cinematography System for
Machinima Production

David K. Elson1, Mark O. Riedl2

1Columbia University, Computer Science Department,
New York City, New York, USA

2University of Southern California, Institute for Creative Technologies,
13274 Fiji Way, Marina Del Rey, California, USA

delson@cs.columbia.edu; riedl@ict.usc.edu

Abstract
Machinima is a low-cost alternative to full production
filmmaking. However, creating quality cinematic
visualizations with existing machinima techniques still
requires a high degree of talent and effort. We introduce a
lightweight artificial intelligence system, Cambot, that can
be used to assist in machinima production. Cambot takes a
script as input and produces a cinematic visualization.
Unlike other virtual cinematography systems, Cambot
favors an offline algorithm coupled with an extensible
library of specific modular and reusable facets of cinematic
knowledge. One of the advantages of this approach to
virtual cinematography is a tight coordination between the
positions and movements of the camera and the actors.

Introduction
Narrative is a powerful modality for communication,
especially when realized in a visual medium. Creating a
film, however, is a costly and time-consuming endeavor
that requires trained writers, producers, directors, actors,
editors, and others. Recently, hobbyists have turned to off-
the-shelf software for mitigating many of these costs. A
portmanteau of machine and cinema, machinima refers to
the innovation of leveraging video game technology to
greatly ease the creation of computer animation. Rather
than building complex graphical worlds, machinima artists
carefully manipulate the behavior of 3D games. By
choreographing their characters as avatars, they can
“perform” for a player whose perspective represents the
camera, record what the camera player sees, and edit the
clips into a narrative film (often adding dubbed dialogue).
 Some game manufacturers have embraced machinima
by adding authoring tools in recent versions. For example,
machinima creators can sometimes replace the art assets of
a game with character models, sets, and animations more
suitable to their narrative settings. Additionally, some
games provide special modes for scripting camera angles.
 Despite tools to support machinima production, it is still

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complicated and costly to design and produce cinematic
narratives. Authors must, through the constraints of
software, manually position cameras and subjects. For
example, the LEADERS project (Gordon et al., 2004) used
computer-controlled avatars in a virtual environment and
cinematic camera shots to create an interactive leadership
development application centered around a fictitious
military overseas food distribution operation. LEADERS
alternated between non-interactive “cut scenes” and
decision points where the user could affect the direction of
the story. The use of machinima simplified the creation of
the cut scenes by avoiding high-cost film production.
However, choreographing and encoding the cinematic
camera shots still required over $800 in labor costs per
minute of machinima video (Gordon, personal
communication).
 There are two central challenges to machinima creation.
First, a script must be created that describes dialogue,
movements and gestures for computer-controlled avatars to
perform in a video game environment. Second, the script
actions must be visualized as an aesthetically coherent
visual narrative, rendered as a 2D projection of activity
occurring within a 3D graphical environment.
 In this paper we focus on the problem of automatically
selecting camera angles to capture the action of an a priori
unknown script as aesthetically appropriate cinema. There
are a number of challenges therein, including visual
composition, occlusion avoidance and coordination
between virtual camera and computer-controlled avatars.
We describe a virtual cinematography system, Cambot,
which acts as a virtual director.

Background

The Model Process: Real Filmmaking
In order to computationally craft aesthetically acceptable
movies, we closely modeled our approach after that of
actual filmmaking; in particular, the simultaneous solving
of several types of interconnected constraints. In this
section, we describe the pertinent aspects of the real-world
process.

 Filmmaking begins with a script. Figure 1 shows a
script in a format similar to that used in the film industry.
The script describes the beginning of a scene, in which a
segment of action and dialogue takes place in a continuous
span of time and in a single location. A beat (McKee,
1997) is the smallest divisible segment of a scene, typically
encompassing one line of dialogue or a moment of action.
 The core of any scene consists of actions and dialogue
acts that advance the narrative. The other elements of the
script specify how the scene should look and sound:
• Location. The scene heading (“EXT. KABUL CITY

STREET – NIGHT” in Figure 1), restricts the locations
in which the director may shoot the scene.

• Blocking. The blocking of a scene refers to the
positions of the actors relative to key points on the set
and to one another. In Figure 1, Smith is standing still
and observing the street as Jones walks toward him.

• Viewpoint. A script may restrict the camera angle (i.e.,
the shot) used to visualize a particular beat. In Figure 1,
the script specifies that the camera should at one point
focus on what Smith is looking at. In the absence of
such constraints, the director is free to use whichever
shots he or she sees fit.

 Though the director has to satisfy many overlapping
constraints, there is a generous “search space” from which
he or she can craft the best visualization of the script.
There may, for example, be many streets in the world (or a
studio lot) that resemble those in Kabul closely enough to
satisfy the location restriction. There are also several ways
the director can block the actors. It is important to note
that these decisions affect one another. Ideally, the
director keeps all the constraints in mind while choosing
from among any of the options.
 For example, Figure 2 shows a set during the filming of
a shot; in this case, the movements of the camera and the
character are closely coordinated so that the former leads
the latter down the street. In order to achieve this shot, it
was necessary for the director to select a location with
sufficient space for the actor and camera to move, and to

build special tracks. The production crew pulls the camera
away from the boy at the same speed at which he walks.
For this to succeed, the actor must walk a particular path
parallel to the tracks at a consistent pace.
 The director cannot finish shooting the scene until he or
she has obtained “coverage” of at least one shot for each
beat. Gathering more than one shot for a beat generates
more flexibility in the editing room; while the director can
then choose from among more variations of the complete
scene, this approach takes a great deal more time and
expense on set.

Virtual Cinematography
Virtual cinematography refers to the cinematic projection
of scenes occurring in a 3D graphical environment onto a
flat screen, with a virtual camera serving the role of a
physical one. There are several inherent differences
between virtual and real cinematography. One is that a
virtual camera may be instantly teleported from place to
place, creating the same “cutting” effect that can only be
achieved through editing in conventional cinematography.
Thus a virtual camera may essentially shoot and edit
simultaneously. Moreover, a virtual camera has the
freedom to move anywhere, at any speed, which is often
difficult or impossible for a physical camera.
 Regardless of differences, in both real and virtual
cinematography, the movements of both camera and actors
must be closely coordinated in order to achieve satisfying
results. In a virtual equivalent of the situation in Figure 2,
the tracks would not be needed, but the movement of the
avatar and camera would still need to be synchronized in
order for the shot to succeed as intended.
 The simultaneous shooting and editing and the ability to
place the camera at discretion make virtual
cinematography well suited for interactive systems where
it is not possible to predict the movement of a user’s avatar
or autonomous agents. However, this versatility comes at
the expense of aesthetics, as tight control over both avatar
and camera is not always possible.
 Related work in virtual cinematography is as follows.
Drucker (1994) planned paths for a virtual camera through

EXT. KABUL CITY STREET - NIGHT

SERGEANT SMITH, 29 y.o. male, is standing in a
street, gun at his side. CAPTAIN JONES, 34 y.o
male, approaches him.

JONES
What’s your condition, Sergeant Smith?

SMITH

Captain Jones, sir, road Beta One is secure.

We see a few Afghan civilians chatting before them.

 SMITH (cont’d)
The city’s pretty cold tonight.

JONES

Perez tells me you have a message from a local?

Figure 1. A sample fragment of a script, showing location
constraints, blocking constraints, and dialogue actions.

Figure 2. The capturing of a cinematic shot requires
coordination between actor and camera placement.

visually complex environments such as virtual reality
museums. He et al. (1996) use a finite state machine
(FSM) of common cinematic patterns called idioms to
capture commonly occurring patterns of user behaviors in a
3D graphical chat environment. Christianson et al. (1996)
describe how a hierarchical language of idioms can be used
to plan cinematic shots. Tomlinson et al. (2000) approach
virtual camera control by creating a reactive, autonomous
camera “creature” driven by motivations and emotions.
Halper and Olivier (2000) use a genetic algorithm to
satisfy viewpoint constraints such as occlusion avoidance
and relative position of objects in the viewport. Bares and
Lester (1999) describe a real-time constraint-based
approach to dynamically select the best camera perspective
in a dynamic and unpredictable world. Jhala and Young
(2004) use hierarchies of camera idioms from which a
planner selects sequences of shots to use to cover a script.
 The constraint satisfaction, FSM, and reactive
approaches are suited for unpredictable camera control
scenarios such as interactive systems because shot
optimality can degrade gracefully to avoid occlusions.
However, if real time interactive performance is not a
requirement, a more deliberative process can globally
optimize camera placements.

Cambot
Cambot is a thin, stand-alone application that closely
models the real filmmaking process to function as a virtual
director for offline machinima production. Given a script,
it blocks characters, identifies possible shot compositions,
and edits the available shots into a final reel. A reel
contains time-indexed dialogue and gesture commands
contained in the script and adds positioning commands for
virtual avatars and camera. These commands are rendered
by a separate visualization engine.

Input Parameters: Script and Set
There are two types of input that Cambot needs to realize a
scene. One is a set, a digital environment annotated with
labels that describe the types of locations that can be
evoked in each constituent space. For example, certain
areas might be labeled “indoors,” “outdoors,” “road,”
“desert,” or “office.” In this manner, the set acts as a
studio back-lot, which can be re-used from film to film.
 The other input is a symbolically encoded script that is
analogous to a real-life script, such as the example in
Figure 1. Structurally, the script is divided into a number
of scenes, each of which consists of at least one beat.
Scenes and beats contain the following types of
information:
• Character declarations. A scene must declare which

characters are present, and which of the available avatars
Cambot should invoke for each character.

• Actions. Actions include lines of dialogue the
characters must say and gestures such as nods of the
head. Each action is indexed as occurring a certain

number of seconds after the beginning of the scene to
provide a temporal framework.

 Given no other information, Cambot is able to realize a
scene from these elements alone. The restrictions that a
real script uses to guide the look of the scene, as discussed
above, are supported by Cambot in the form of optional
constraints. There are four dimensions of constraints that a
script may use to guide Cambot’s aesthetic treatment of a
scene:
• Location constraints. Analogous to the scene headings

of a real script, location constraints indicate to Cambot
how to select an area of the digital back-lot for shooting
the scene. For instance, a location constraint might
require a scene to appear to take place on a “street” with
the declared character of Smith blocked near a point
labeled as an “intersection.”

• Blocking constraints. Each beat may be annotated
with constraints on the movements and locations of
declared characters relative to one another. From the
example in Figure 1, Smith is required to be standing
still while Jones is required to move toward him.
Blocking constraints are persistent, so a blocking
specified in one beat applies to all subsequent beats
unless new blocking constraints are provided.

• View constraints. The script may recommend (or
require) that Cambot cover a certain beat with a certain
type of shot, e.g., a close-up of a particular character, a
shot that Cambot knows to be “intense,” or a shot in
which the camera moves.

• Scene constraints. With these, the script may guide
Cambot’s aesthetic choices in assembling complete
reels, e.g., to use as few cuts as possible, or to avoid the
jarring effect created when the camera crosses the “180
degree line” which runs between two characters on a set.

Cinematic Knowledge
Cambot uses each of the script’s constraints to select
among all the assets available for realizing the scene. The
constraints are matched against a hand-authored library of
bits of cinematic knowledge called “facets.” Facets fall
into the following types:
• Stages. A stage is an area of space that Cambot

assumes to be free from occlusions and obstructions. It
functions as the frame on which the other elements of a
scene (characters and cameras) are mounted. A stage
can be a rectangle, octagon, or other polygon.

• Blockings. A blocking is a geometric placement of
abstract characters relative to the center point of a stage.
A blocking must be invoked along with a stage that is
sufficiently large to contain each blocked character. A
blocking can contain character movements.

• Shots. Similarly, a shot is defined to be the position,
rotation and focal length of a virtual camera relative to
the center point of a stage. Like characters in a blocking,
a camera can move within a shot.

 Stages, blockings, and shots are used in conjunction with
one another, superimposed by aligning their respective
center points. Not all elements are compatible; that is,
there is a many-to-many, but incomplete mapping between
stages, blockings, and shots that can be combined (see
Figure 3).
 Cambot uses stages to “package” shots and blockings
together in a way that guarantees freedom from occlusions
and obstructions. As described in the following section,
stages are anchored onto the set according to their shape
and size in order to instantiate an abstract shot and
blocking at a certain location. A stage specifies a bounded
region inside of which the set must not contain
obstructions or occlusions. For instance, suppose the input
scene calls for three characters to be conversing close to
the intersection of the two streets, and that the set contains
the two intersecting streets. Figure 4 shows how Cambot
superimposes stage, blocking, and shot facets for this
scene. The stage, represented by the darker rectangle, has
been anchored to the set near the intersection of two streets
at a position and rotation such that none of its borders
intersect the outside edges of the streets. This ensures that
no occlusions, such as the corners of buildings, will
interfere with the ultimate visualization of the scene.
 As Cambot’s library of facets grows in size and richness
of annotation, so too does the range of available
constraints. Some annotations, such as whether a camera
is moving or static, are detected automatically; features
that are more aesthetic, such as the “intensity” of a shot,
rely on manually annotation.

Cinematic Search
Cambot utilizes its knowledge base to realize an input
scene using the algorithm in Figure 5. The first step is to
find blockings in the library suitable for the scene. For
each beat, Cambot iterates through its blockings and
selects those that feature slots for characters resembling the
instantiated ones declared in the beat. For instance, there
might be two blockings with human adults conversing, one
with them facing side by side and one with them facing
each other. Cambot binds the script’s declared characters
to these slots according to the blocking constraints. In the
case where more than one binding is possible, Cambot
considers each. Given an appropriate blocking and binding
for each beat, Cambot assembles a sequence of blockings
for the entire scene, called a scene blocking, which ensures
consistent bindings across all beats. The knowledge base
contains information about which blockings can follow one
another to avoid consistency problems.
 Given a scene blocking as a sequence of blockings
mapped to beats, Cambot selects a stage. Each beat
blocking in the scene blocking is compatible with one or
more stages. Since blockings that can follow one another
are associated with compatible stages, there is at least one
stage that satisfies the entire scene. If there are several
matches, Cambot favors the one that provides the most
flexibility for satisfying the remaining scene constraints.
 Given a scene blocking and a stage, Cambot attempts to
anchor the stage onto the set. This location search
maximizes over the location constraints described earlier.
For example, if a character is to be shown in a doorway,
Cambot places and rotates the stage so that the character
falls as close as possible to a point on the set that has been
annotated as a doorway. Cambot invokes a brute-force
search here, considering all anchor points where the stage
fits on the set. To keep the geometric search space
relatively small, the search space is pruned by constraining
locations to certain parts of the set. For example, Cambot
will only consider anchoring a street scene on those areas
of the set annotated as being streets.
 Just as the blocking search considered all beats in a
scene, so too does the location search ensure that the
location serves all the beats of the scene. The other phases
of search, such as choosing a shot, are independent of
location selection. That is, Cambot completes its location
search prior to searching for shots and reels, rather than
conflating these dimensions.

Stages Blockings Shots

Figure 3. The relationships between facets of Cambot’s
cinematic knowledge base.

Street 1

Street 2

Figure 4. A stage – associated with a blocking and shot –
anchored in the set.

Figure 5. Cambot search algorithm.

Given: A specification for a scene, including participating
characters, location annotations, annotated character actions and
dialogue.
• For each possible sequence of blockings that satisfies the scene:

o For each stage that can be applied to the blocking sequence:
 Find best location on the set
 Compile all the shots eligible to cover each beat
 Select the shots to use for each beat to create a reel
 Take the reel with the highest overall score

 The next search phase considers each beat
independently. Cambot compiles a list of all the shots that
are compatible with the previously selected stage and
blocking. It evaluates the shots according to the given
view constraints. Cambot uses dynamic programming to
search for the sequence of shots (i.e., the reel) that best
covers the beats in a scene. This technique reduces an
exponential search space of shots – given n beats and m
shots available, there are mn possible scenes – to
polynomial time, O(mn). This assumes that the property of
optimal substructure holds for reel selection: that the
optimal solution to a large problem contains within it the
optimal solutions to the smaller sub-problems on which it
is built.
 The resulting reel contains the sequence of shots,
blockings, gestures and dialogue acts which can be sent to
a visualization engine for final rendering. Cambot then
repeats the reel-finding algorithm over each satisfactory
stage and scene blocking to ensure that it has maximized
over these variables. Once the overall best-scoring reel is
found, Cambot moves on to the next scene in the script.

 The phases of Cambot’s search algorithm are serialized
rather than nested whenever doing so does not compromise
its ability to find an optimal combination of elements. We
believe this strategy will allow Cambot to scale effectively.

Cinematic Execution
Once all scenes in a script have reels, Cambot instructs the
visualization engine to begin the rendering process via
network socket. Cambot instructs the visualizer to place
avatars and the camera at particular Cartesian coordinates,
to play avatar animations or have avatars speak dialogue,
and to move the avatars or the camera along particular
trajectories. It associates scheduling information with each
instruction to ensure proper synchronization between
characters and camera. The visualization engine responds
with confirmation when actions are completed. This
process continues until the reels for all scenes are rendered.
 Currently the visualization engine is Unreal
TournamentTM with art assets from the LEADERS project
(Gordon et al., 2004). We modified Unreal Tournament to

1

2

8

9

10

Run 1 Run 2 Beat

Figure 6. Cambot screenshots: two runs of the same scene using different heuristics.

Shot 1

Shot 2

Shot 8

Shot 9

Shot 10

Shot 1

Shot 2:
Truck
Right

Shot 4:
Push in

… …

accept temporally parameterized character and camera
positions, a technique based on that of Young and Riedl
(2003) in which specialized blocks of control code called
“action classes” are triggered through a socket connection.
 Figure 6 shows the output of Cambot on a scene
involving an American Soldier and an Afghan civilian
visiting a U.S. Army base. The script specifies that the
Soldier should approach the Afghan and then engage him
in conversation. It also requires that the final beat of the
scene, containing particularly intense dialogue, be shot in
close-up. The script was processed twice by Cambot using
distinct heuristics modeling different directorial styles in
order to demonstrate aesthetic flexibility.
 In the first run, Cambot uses a heuristic emulating a
directorial style that prefers to cut as frequently as possible,
keep shots as static as possible, view characters’ faces
when they speak, avoid repeating the same shot twice, and
minimize compositional variation. Hence the solution to
the scene cuts along every beat boundary and spans many
of the shots in Cambot’s library available for this blocking.
 The second run, by contrast, uses a heuristic that aims to
cover the scene with as few shots as possible while still
increasing intensity, avoiding repetition, and viewing
characters who are speaking. First, Cambot covers the beat
where the Soldier approaches the Afghan with a shot in
which the virtual camera leads the Soldier down the road –
similar to the situation in Figure 2 – until the Afghan
emerges from the left edge of the frame. Cambot then
covers the bulk of the conversation with a lengthy single
shot that moves laterally, parallel to the axis between the
two characters, from a dramatically low angle.

Conclusions
We describe Cambot as an intelligent virtual
cinematography system that closely parallels the real
filmmaking process. We refer to it as lightweight because
it relies on a library of modular, human-authored facets of
cinematic knowledge to search for an aesthetic cinematic
realization of a parameterized script, independent of a
graphical visualization. The current state of our
implementation includes a library of approximately 50
shots, two stages and half a dozen blockings. This amount
of detail enables us to create reasonable-looking movies
from short scripts containing several scenes.
 By modeling Cambot on the real filmmaking process,
we enable it to control a range of creative decisions similar
to that available to a human director. Cambot is
responsible for choosing a location on a virtual back-lot on
which to shoot, blocking the virtual actors, placing the
camera, and editing the scene together. As a result,
Cambot (a) provides the close control and coordination
over virtual actors and camera necessary to reproduce (and
extend, where possible) many aesthetic cinematic effects,
and (b) eliminates the possibility of occlusions and sub-
optimal camera placement. The trade-off is that Cambot is
not a real-time camera planning system; its offline search
algorithm requires complete scenes as input.

 We believe that as a computational model of a real-
world movie director, Cambot can be an effective tool for
creating machinima. Its cinematic expertise makes it
valuable for assisting human-authored machinima or
industry pre-visualization. If coupled with a narrative
generation system, Cambot can also be part of a larger
system capable of automatically generating cinematic
narrative.

Acknowledgements
The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred. Special thanks to Andrew Gordon.

References
Bares, W.H. and Lester, J.C. 1999. Intelligent Multi-Shot
Visualization Interfaces for Dynamic 3D Worlds. In Proc.
of the 1999 Int. Conf. on Intelligent User Interfaces.
Christianson, D., Anderson, S., He, L., Salesin, D., Weld,
D., and Cohen, M. 1996. Declarative Camera Control for
Automatic Cinematography. In Proc. of 13th National
Conf. of the AAAI.
Drucker, S.M. and Zeltzer, D. 1994. Intelligent Camera
Control in a Virtual Environment. In Proc. of Graphics
Interface ’94.
Gordon, A.S., van Lent, M., van Velsen, M., Carpenter, P.,
and Jhala, A. 2004. Branching Storylines in Virtual Reality
Environments for Leadership Development. In Proc. of the
16th Innovative Application of Artificial Intelligence Conf.
Halper, N. and Olivier, P. 2000. CAMPLAN: A Camera
Planning Agent. In Proc. of the AAAI Spring Symposium
on Smart Graphics.
He, L., Cohen, M.F., and Salesin, D. 1996. The Virtual
Cinematographer: A Paradigm for Automatic Real-Time
Camera Control and Directing. In Proc. of the 23rd Int.
Conf. on Computer Graphics and Interactive Techniques.
Jhala, A.H. and Young, R.M. 2005. A Discourse Planning
Approach for Cinematic Camera Control for Narratives in
Virtual Environments. In Proc. of the 20th National Conf.
of the American Association for Artificial Intelligence.
McKee, R. 1997. Story: Substance, Structure, Style, and
the Principles of Screenwriting. HarperCollins, New York.
Tomlinson, B., Blumberg, B., and Delphine, N. 2000.
Expressive Autonomous Cinematography for Interactive
Virtual Environments. In Proc. of the 4th International
Conf. on Autonomous Agents.
Young, R.M. and Riedl, M.O. 2003. Towards an
Architecture for Intelligent Control of Narrative in
Interactive Virtual Worlds. In Proc. of IUI 2003.

