
Email Thread Reassembly Using Similarity Matching
Jen-Yuan Yeh

Dept. of Computer Science
National Chiao Tung University

Hsinchu 30010, TAIWAN
jyyeh@cis.nctu.edu.tw

Aaron Harnly
Dept. of Computer Science

Columbia University
New York 10027, USA

aaron@cs.columbia.edu

ABSTRACT
Email thread reassembly is the task of linking messages by parent-
child relationships. In this paper, we present two approaches to
address this problem. One exploits previously undocumented
header information from the Microsoft Exchange Protocol. The
other uses string similarity metrics and a heuristic algorithm to
reassemble threads in the absence of header information. The pros
and cons of both methods are discussed. The similarity matching
method is evaluated using the Enron email corpus and found to
perform well.

1. INTRODUCTION
One key difference between emails and other types of documents
is the existence of threading, i.e. hierarchical, referential
relationships among emails. Recently, email thread structure has
been profitably employed in several applications, including email
search [3], email summarization [9], email classification [1], and
visualization [5]. However, the lack of reliable, widely applicable
methods for thread reassembly has limited the use of thread
structure.

Email thread reassembly is the task of relating messages by
parent-child relationships, grouping messages together based on
which messages are replies to which others. In many cases, this
task can be achieved based on specific data within email headers.
However, no standard protocol for thread structure headers is
universally observed, making thread reassembly

In this paper, we present two approaches to threading email
messages. The first employs a specific header – “Thread-Index,”
which is defined in the Microsoft Exchange Protocol, while the
second links two messages by mainly measuring the content
similarity between them. It takes account of several heuristics as
well, such as subject, time, and sender/recipient relationships
among emails. Furthermore, since some messages in a thread may
not exist in the corpus (e.g., if deleted), we also discuss how to
recover missing messages. Here, a missing message, as defined in
[2], is an email that does not itself present in the archive but has
been quoted in subsequent emails kept in a user’s folder.

The contributions of this work are twofold. First, this paper offers
a method of thread reassembly in the absence of header
information. Second, we evaluated the method in a case study
with the Enron corpus. In the following, Section 2 introduces
previous related work. In Sections 3-4, we describe the proposed
methods which aim to address the email thread reassembly task.
Preliminary results and discussions are given in Section 5 and
Section 6.

2. RELATED WORK
The RFC 2822 [10] defines two header fields, In-Reply-To and
References, which are useful for reconstructing email threads.
When creating a reply to a message, the In-Reply-To will contain
the Message-ID of its parent message and the References will
contain the parent’s References followed by the parent’s Message-
ID. In theory, the In-Reply-To could be used to associate the
message to which the new message is a reply and the References
could be employed to identify a thread of conversation. For
example, Netscape Mail and News 2.0 and 3.0 used them to
generate a view of email threads [12]. However, these header
fields are optional for email clients, and hence not always
available within email headers. Thus, in many cases, we cannot
rely on these fields for email thread reconstruction.

Recently, some work on threads has been done by heuristics. For
example, [11] and [13] identified threads by linking messages
with identical nontrivial subject lines (after removal of any
sequence of “re:”, “fw:”, and “fwd:” prefixes). [6] groups
messages into a thread if they contain the same words in their
subjects and are among the same users (addresses). [7], instead,
regarded email threading as a retrieval problem. They showed that
a significant threading effectiveness can be achieved by applying
text matching methods to the textual portions of messages. In their
work, they studied five retrieval strategies to indicate whether one
message is a response to another. Their results exhibited that the
most effective strategy is to use the quotation of a message as a
query and to match it against the unquoted part of a target
message. Basically, our heuristic approach follows their work. But
the differences are: 1) we do more preprocessing on the messages;
for example, to extract nested (i.e., multiple level) quotations, etc.;
2) we take into account more heuristics, such as subject,
timestamp and sender/recipient relationships between two
messages; and 3) we introduce a time window constraint to reduce
the search scope in the corpus.

With regard to missing message recovery, [2] investigated how to
regenerate missing messages by using embedded quotations found
in messages further down the thread hierarchy. They modeled all
quoted texts in a precedence graph, and missing emails are
regenerated as bulletized documents. Briefly, the main idea is to
find the relative ordering of the quoted texts. Different from their
work which models missing messages in a graph; we recover
missing messages by simply comparing quotations of its child
messages. Moreover, when a missing message has multiple
children, it is ambiguous whether the children are siblings –
children of a single missing message – or children of distinct
missing messages. [2] made an assumption that there is only a
single missing message. In our work, we adopted a different
assumption that there are in fact two or more distinct missing
messages at the same depth in the thread tree because it is the
commonest cases in our corpus.

CEAS 2006 – Third Conference on Email and Anti-Spam, July 27-28,
2006, Mountain View, California USA

3. APPROACH 1: USING MICROSOFT’S
EXCHANGE HEADER – “Thread-Index”
One particular header field, called “Thread-Index,” is defined in
the Microsoft Exchange Protocol [8]. This field is computed from
message references and can be used for associating multiple
messages to an email thread. An email client, such as Microsoft
Outlook, can take advantage of this information to identify
messages in a conversation thread. However, to our best
knowledge, there is no public information about how it is encoded
and how to decode it.

Fortunately, according to our observations, some clues can be
exploited to obtain the depth of a message in the thread tree and to
identify the message which a particular message replied to. The
observations are:

 The initial message of an email thread has a 32-byte index
which ends with two successive equal signs.

 A child message has an index which starts with the same
index with its parent but an additional string of 4 or 8 bytes
are appended and ends with 0 or 1 equal signs.

For example, given an initial message e with an index
AcGXl3h6/aqR2J+SSd+tice/4fZrqw== and a message e’ with
AcGXl3h6/aqR2J+SSd+tice/4fZrqwAACuRA, e’ is the message
which replies to e.

To be more specific, Table 1 shows that E1 with a 32-byte index is
the initial message, E2 with a (32+4)-byte index replies to E1, E3
with a (32+4+8)-byte replies to E2, E4 with a (32+4+8+8)-byte
replies to E3. A pattern of 4-8-8 for the appending bytes repeats in
the following successive messages. In this manner one can obtain
the depth of a message in the email thread. Also, a message’s
parent can be found by looking for the same prefix with a correct
length of index.

Table 1. An illustration of the index length relations which
indicates the parent-child relationships

Email Depth Index Length
E1 0 L1 = 32
E2 1 L2 = L1 + 4
E3 2 L3 = L2 + 8
E4 3 L4 = L3 + 8
… … … the 4-8-8 pattern repeats

4. APPROACH 2: USING SIMILARITY
MATCHING AND HEURISTICS
4.1 Preprocessing
Before applying the proposed similarity matching algorithm, there
are five preprocessing steps:

1) Duplicate message grouping

In a large email corpus, it is common that identical messages exist
in at least two people’s mail-folders; for example, A’s Sent folder
and B’s Inbox folder. Duplicate messages are grouped by looking
for the same datetime, subject, message body, and
From/To/Cc/Bcc headers. Here, datetime denotes the
sent/received timestamp. Due to the vagaries of modern
networking, two identical messages (e.g., the sent message and its
corresponding received message) do not always have the same
timestamps. To reflect this, two messages exchanged within a

time interval of D days are allowed to be grouped together. In our
implementation, D was set to one. (This is the most common case
in our corpus. However, in some cases, the gap could be more
than one day.)

2) Datetime normalization

This step converts the timestamp of each message into a
corresponding timestamp in the same time zone. This makes it
easy to sort messages by time and to get the time difference of
two messages.

3) Subject normalization

This step removes common prefixes and suffixes, such as ‘RE:,’
‘FW:,’ ‘FWD:,’ etc. from the email subject line.

4) Sender/ recipient identification and normalization

This step uses a variety of heuristics to identify email addresses
that are likely to be owned by the same individual. Pairs of email
addresses are identified as belonging to the same individual if the
pair meets any of the following criteria:

 In the same email, one address is in the RFC 2822 ‘From’
header, and the other in the Microsoft-specific ‘Exchange-
From’ header.

 Both addresses are in ‘From’ headers in different emails in
a mailbox folder that appears to be a ‘Sent Mail’ folder
(e.g., has the word ‘sent’ in its name).

 The addresses are labeled with the same name, e.g., “Bob
Jones”, in emails that otherwise have identical senders and
recipients. This acknowledges that two different people
may have the same name, but assumes that two such people
are unlikely to have exactly overlapping sets of
correspondents.

5) Reply and quotation extraction

We manually defined in total three types of splitters to separate
reply and quotations for each message1. Splitter-related header
information is also extracted and then used to recover headers for
missing messages (discussed in Section 4.3). Table 22 lists all
splitters that we used, where <person> can be any person
name/email address, <datetime> can be any date/date+time, [-|_]+
denotes a repeat pattern of the character ‘_’/’-‘. Each type of
splitter can be followed by an arbitrary subset of email headers
(i.e., splitter-related header information). Among these splitters,
some are Enron corpus-specific and some are defined for general
purposes. We believe these splitters can cover almost all general
uses. In the Enron corpus, the most common splitters are Types
1.15, 1.5, 2.1, and 3.2.

Below gives an example of Type 1.15 indicating that Line 1 is the
splitter, which denotes the start of a quotation, and Lines 2-5 are
splitter-related information.

Line 1 -----Original Message-----
Line 2 From: James Wills <jwills3@swbell.net>@ENRON
Line 3 Sent: Wednesday, November 14, 2001 1:38 PM
Line 4 To: pallen70@hotmail.com; pallen@enron.com
Line 5 Subject: Re: new PO available

1 In a small experiment, 98% of 1,000 randomly selected emails

were correctly separated into reply and multiple-level quotations.

Currently we handle only two general cases for reply and
quotations extraction. One is the case that the reply part is put
before the quotations and the other is that the quotations come
before the reply. More complicated cases, such as a reply
interleaved with quoted material, are not taken into account. This
phenomenon appeared to be quite rare in the Enron corpus;
however, for handling general Internet email it would be a
worthwhile addition[2]. Signatures were simply regarded as part
of the reply or quotation, and not identified or filtered as part of
the thread reconstruction algorithm; indeed, signatures were often
valuable spans of text for distinguishing one person's reply from
another's.

Table 2. Splitters defined to separate reply and quotations

Type 1
1 [-]+ Auto forwarded by <anything> [-]+
2 [-]+ Begin forwarded message [-]+
3 [-]+ cc:Mail Forwarded [-]+
4 [_]+ Forward Header [_]+
5 [-]+ Forwarded by <person> on <datetime> [-]+
6 [-]+ Forwarded Letter [-]+
7 [-]+ Forwarded Message: [-]+
8 [-]+ Forwarded Message Follows [-]+
9 [-]+ Forwarded on <datetime> [-]+
10 [-]+ Forwarded with Changes [-]+
11 [-]+ Inline attachment follows [-]+
12 [-]+ Mensaje original [-]+
13 Note: Forwarded Message Attached
14 [-]+ Original Appointment [-]+
15 [-]+ Original Message [-]+
16 [-]+ Original Text [-]+
17 [-]+ Reply Separator [-]+
18 [_]+ Reply Separator [_]+
19 [-]+ Start of forwarded message [-]+
Type 2
1 <person> <datetime>
2 “<person>” <datetime> >>>
3 “<person>” wrote:

Type 3
1 starts by >
2 starts by From: <person>
3 starts by other mail headers, e.g., Received:

4.2 The Algorithm
In essence, this reassembly algorithm is based on the phenomenon
that a child message often quotes the text from its parent. The
algorithm, given below, is a single-pass threading method which
regards each message as an initial thread and then recursively find
all its successors to form a complete thread structure.

Similarity Matching Thread Reassembly Algorithm:

Input: a set of messages

Output: a set of email threads

1. Sort all messages in the chronological order.

2. Regard each message m as an initial thread T, and collect
all messages into M, a) which fall within a pre-defined
time window, and b) which have the same normalized
subject with m’s.

3. For each message mi, mi ∈ M, put it into T if
FindParent(mi, T) != NULL. Go to Step 2 until every mi
in M is examined.

FindParent(mi, T) is the procedure to determine a best parent in T
for mi. It finds a message mj which has the highest similarity with
mi and meanwhile keeps a sender/recipient relationship between
mj and mi. We use unigram overlap as the metric to measure
similarity between any two messages. The unigram overlap metric
is computed as the number of unique shared words between two
messages, divided by the total number of the union of unique
words in both two messages.

The assumptions of the procedure FindParent are:

 A child message can be either a reply or a forward to at
most one parent message in the existing thread.

 Missing messages, as introduced in Section 1, could exist
in an email thread.

Based on these assumptions and the observations of user
behaviors in email usage, five cases are examined sequentially in
the procedure. Once a case is satisfied, the procedure ends and
returns a best parent for mi or null if no parent can be found.

Case I: for all mj in T where exists a recipient rj,l of mj, rj,l is mi’s
sender and a recipient ri,k of mi, ri,k is mj’s sender

Find an mj with the highest similarity of mi’s latest quotation (if
there has multiple-level quotations) and mj’s reply:

 if the similarity between mi and mj is greater than a
predefined threshold α, return mj,

 otherwise, return an mj with the closest timestamp to mi.

Case II: for all mj not satisfying Case I in T where exists a
recipient rj,l of mj, rj,l is mi’s sender

Find an mj with the highest similarity of mi’s latest quotation (if
there has multiple-level quotations) and mj’s reply:

 if the similarity between mi and mj is greater than a
predefined threshold β, return mj,

 otherwise, continue to examine Case III.

Case III: for all mj not satisfying Cases I-II in T where mj’s sender
is mi’s sender

Find an mj with the highest similarity of mi’s latest quotation (if
there has multiple-level quotations) and mj’s reply:

 if the similarity between mi and mj is greater than a
predefined threshold β, return mj,

 otherwise, continue to examine Case IV.

Case IV: for all mj not satisfying Cases I-III in T

Find an mj with the highest similarity of either mi’s part of
quotations and mj’s reply or mi’s part of quotations and mj’s part

of quotations:

 if the similarity between mi and mj is greater than a
predefined threshold γ, return mj but also add one missing
message label between mi and mj,

 otherwise, continue to examine Case V.

Case V: No suitable parent in T for mi

Return NULL.

Figure 1 gives examples to explain what kind of parent-child
relation between mi and mj that each case covers. In the figure, Ri
denotes the reply part of mi, Qi,t means pieces of all quotations in
mi, and a link between mi and mj presents a parent-child relation.
In general, Case I has the strongest constraint with the
sender/recipient relationship – the sender of the parent message is
one of the recipients of the child message and the sender of the
child message is one of the recipients of the parent message. This
is the most common user behavior of email communications, that
is, direct replies. Since the constraint is kept in Case I, the
algorithm assumes that a message with the closest timestamp is
the parent while there is no suitable message with a high enough
similarity. Case II considers the situation that the sender of the
child message matches one of the recipients of the parent message;
for example, a forwarded message. Similarly, Case III covers the
case that a message was forwarded by the sender of the parent
message. Case IV takes care of cases when there is at least one
missing message between mi and mj.

4.3 Missing Message Recovery
Recall that in Case IV in the procedure FindParent, there will be
missing messages in the thread. Missing message recovery
attempts to identify and recover messages which are not present in
the email corpus, but whose content can be extracted from quoted
texts in extant messages.

A thread may have one or more sequential missing messages in a
path from an extant parent message to an extant descendent. For
each such sequence of n missing messages mi,…,mi+n, the
algorithm examines the sequence of extant parent message,
missing messages, and extant descendent (mi-1, mi, …, mi+n,
mi+n+1). If a sequence of quoted text fragments q in the descendent
message mi+n+1 can be found such that qn+1 is highly similar to the
nonquoted text of parent message mi-1, then the sequence of
quoted fragments is assumed to contain a portion of the text of
each of the missing messages. The longest such contiguous chain
of missing messages that our algorithm recovered in the Enron
corpus was of length six.

When a missing message has multiple children, it is ambiguous
whether the children are siblings – children of a single missing
message – or “cousins”, i.e., children of distinct missing messages.
When the quoted material in each child is identical, it is
reasonable to assume that both are replies to a single missing
message. When the quoted material in each child differs, however,
which conclusion is drawn depends on whether quotations are
assumed to be partial or complete. For example, consider a parent
message asking, “Will you be at the meeting?”, with a single
missing message, and two descendent messages, one stating, “See
you there!” with quoted text “Yes.”, and the other stating “Too
bad,” with quoted text “No.” Two inferences are possible. Under a
“partial quotation” assumption, there is a single missing message,

containing both the text “Yes” and the text “No”, which was
selectively quoted by different respondents. Or, under a “complete
quotation” assumption, there are in fact two distinct missing
messages at the same depth in the thread tree. [2] made the first
assumption in their work for partial ordering of partially quoted
missing messages. In our work with the Enron corpus, we have
found complete quotation to be the common case, and so use that
assumption. In general, sophisticated semantic analysis may be
required to reliably decide between these two possibilities.

Figure 1. Illustrations of Case I-IV in FindParent(mi, T)

Finally, we also recover, when possible, the sender and recipients
of missing messages. The recipients of a missing message are
assumed to include the sender of the descendent message. The
sender of the missing message is assumed to be one of the
recipients of the parent message. If available, quoted header text
or reply separation text is used to make further inference about the
sender of the missing message. For example, if the descendent
message contains a quoted fragment introduced by the phrase “On
July 5, Joe Smith wrote:”, the name “Joe Smith” is matched

against the list of all names known to be used by the recipients of
the parent message, and the most similar name chosen.

5. EVALUATION
5.1 The Enron Corpus
Our corpus is the collection of email messages from the Enron
Corporation, which was made public by the Federal Energy
Regulatory Commission after their investigation of the company.
We downloaded all messages from the website. The raw corpus
has 1,361,403 messages belonging to 158 mailboxes owned by
149 people. We removed from each mailbox certain computer-
generated folders, such as “all_documents,” “discussion_threads,”
“contacts,” etc. Moreover, we also eliminated by heuristics
Exchange-specific files which do not appear to be email messages
(e.g., those lacking From or To header fields) and grouped
duplicate messages. Our cleaned corpus contains 269,257 unique
messages. In average, there are 1,704 messages for each mailbox.
The maximum is 16,727 and the minimum is 2. It is interesting to
note that the 10 largest mailboxes contain 93,187 messages, or
34.6% of the whole corpus. This indicates that a large number of
emails belong to a small group of users.

5.2 Evaluation Metric
The evaluation of email thread reassembly is not easy, since there
is no explicit gold standard thread structure information in the
Enron corpus. Moreover, it is not feasible to manually identify
email threads in a large corpus. Therefore, we conducted an
experiment by using threads created by Approach 1 (see Section 3)
as a gold standard. This test set consisted of 3,705 threads. The
objective is to know whether the similarity-matching algorithm
could discover as many parent-child relationships in the gold
standard as possible. The metric we reported in this paper is the
recall of parent-child relationships identified in the similarity
matching threads against those in the gold standard.

Figure 22 illustrates an example of how we calculate the recall
value. Two points should be clarified before computing the recall.
Firstly, duplicate messages in Approach 1 are grouped by Thread-
Index but in Approach 2 (see Section 4) it is done by heuristics.
Hence two messages with different subjects could be grouped as
identical by Approach 1 but considered distinct messages in
Approach 2. For example, messages {C, G} are grouped as
duplicates by the gold standard, but not by the similarity matching,
as shown in the figure. Secondly, even without missing message
recovery, messages not placed in threads by Approach 1 are often
found by Approach 2. This is because Thread-Index only exists in
the header of messages which are in someone’s Inbox. In
Approach 2, on the other hand, a message in the Sent folder
without Thread-Index could be found by similarity matching,
provided it has quotations from its parent. See message F in
Heuristics in Figure 22 for example.

Considering the above-mentioned factors, we define the recall as:

!

R =
of correct parent/child relationships in Approach 2 threads

of parent/child relationships in the gold standard

For instance, in the Gold Standard, there are 8 relationships,
including (A, C), (A, G), (B, C), (B, G), (A, D), (A, E), (B, D), (B,
E). The matched relationships in Heuristics are (A, C), (B, C), (A,
D), (A, E), (B, D), and (B, E). The recall is 0.75 (6/8 = 0.75).

Note that we do not report a precision value here because missing
messages in the gold standard are often found in the heuristic
threads. This introduces more parent-child relationships in the
heuristic threads and it will lead to an erroneously low precision.

Figure 2. Evaluation measurement example

5.3 Settings and Methods
Root messages in threads generated by Approach 1 were used as
roots in the evaluation of Approach 2. The time window in
Approach 2 was set to 14 days. Figure 33 gives the distribution of
time interval (from the initial message to the last message) of each
thread in the gold standard. The similarity thresholds α, β, γ in
Approach 2 were all set to 0.9.

5.4 Results
The recall results are given in Table 33 where # of Threads is how
many threads are in the gold standard, Recall the recall as defined
above, and MPT Recall (Mean Per-Thread Recall) the average of
recalls computed for each thread. There are another three
evaluations shown in the table. In order to assess the impact of the
14-day time window constraint in Approach 2, T reports the recall
values computed after removing all messages in the gold standard
with a time interval with the root of more than 14 days. To assess
the impact of the restriction of the findParent procedure of
Approach 2 to messages with identical subjects, S reports the
recall values computed after removing messages with different
normalized subjects from their root. Finally, T+S considers both
conditions.

Several interesting results were found. First, in all evaluations,
Recall is lower than MPT Recall. This is because most threads
have a small size, which gives a high MPT Recall. Second, after
removing messages from the gold standard that have a time
interval of more than 14 days, approximately 100 threads have no
parent-child relationships; this implies that the 14-day time
window is suitable for general cases. Third, the marked
improvement in recall under condition S indicates that participants
frequently change the subject of a reply message. This suggests
that devising a computationally tractable method by which the
findParent(mi, T) procedure could consider a larger set of
messages than those with identical subjects would improve results.
Overall, we got good results for T+S, which are 0.8739 and
0.8949 for Recall and MPT Recall respectively.

Table 3. Recall and Mean Per-Thread Recall

Type Original Time
(T)

Subject
(S)

T+S

of Threads 3,705 3,608 3,122 3,045
Recall 0.5976 0.6421 0.8428 0.8739
MPT Recall 0.7184 0.7407 0.8706 0.8949

A, B

C, G

D, E

A, B

C

D, E

F

Gold Standard Similarity Matching

Missing

communication time period

0

2

4

6

8

10

12

14

16

18

20

1 4 7
10 13 16 19 22 25 28 31 34 40 44 48 60 72

10
9

days

#
 o

f
th

re
a
d
s
 (

h
u
n
d
re

d
s
)

Figure 3. The distribution of communication time period of

threads generated by Approach 1

6. DISCUSSION
In this section we first report the statistics of identified threads by
Approach 2 in our corpus and then discuss
advantages/disadvantages of both proposed approaches.

It should be noted that these algorithms are aimed only at
reconstructing the original parent-child relations of messages,
caused by users replying to or forwarding existing messages. This
is valuable, but the recovered structure does not necessarily reflect
the structure of topic relations. For example, especially in
Approach 1, we often observed messages that replied to a much
earlier message, but introduced a completely new topic. It may be
that users refer to the earlier message as a record of the
correspondent's email address. More rarely, a single thread begins
on one topic, then includes an "aside" that takes the conversation
in a new direction. If one's goal is topic segmentation rather than
thread reconstruction, one possible avenue is the extension of
Approach 2 to take into consideration the semantic similarity
between the unquoted part of a message and its quotation.

6.1 Thread Statistics
Using the similarity-matching algorithm on the Enron corpus, we
obtained 32,910 email threads, which consist of 95,259 unique
messages. The mean thread size is 3.14, with a mean depth of 1.71.
The median thread size is 2. The total number of threads with 2 to
5 messages is 30,940; only 1,970 have more than five. Hence, the
corpus contains a large number of small threads. The distribution
of thread size is given in Table 44.

Interestingly, and unexpectedly, the number of children of a
message was only very weakly correlated with the number of
recipients of the message (r = 0.0395, p << 0.001). That is,
messages sent to more people just barely elicit more replies; this
phenomenon merits further study.

Prior to missing message recovery, the similarity-matching
algorithm yielded 8,077 thread nodes without a corresponding
message, out of a total of 103,183 nodes (7.3%). The missing
message recovery procedure was able to recover message content
for more than half of those nodes (4,850), reducing the missing-
message rate to 3.1%.

Of the recovered nodes, 359 (7.4%) were found to contain more
than one distinct recovered message, generating a total of 430
additional sibling nodes. By contrast, 7,222 of the 52,792 non-root
nodes whose message was extant had siblings (13.9%). This

discrepancy suggests that a substantial fraction of missing
messages have siblings whose existence the algorithm was not
able to infer.

Table 4. Distribution of email threads (without missing
message recovery) on the thread size

Thread Size 2 3 4 5 6
of Threads 19,941 6,753 2,868 1,378 770

≈ 7 8 9 10 (10-20) 20+
≈ 406 241 170 121 221 41

6.2 Approach 1 vs. Approach 2
The advantages of Approach 1, the header-based method, are that
the algorithm is simple to implement, and that it essentially never
makes a "false positive" inference of a parent-child relationship.
But it has several disadvantages. First, the Thread-Index header is
not always available; a review of 52,878 personal emails of one of
the authors found the header present in only 6.4% of messages.

Figure 4. External exchange example

Second, the approach suffers "false negatives" in a common case:
when a child message is from a person whose email address is not
in the same domain as that of the sender of the parent message
(i.e., external exchange), the Thread-Index is encoded in a
different way. In Figure 45, assume A, C, D are messages sent by
“Jeff Pearson” <tuckiejeff@hotmail.com>, and B is the message
replied to A by “Jonathan McKay” <jmckay@enron.com>. Since
Jeff Pearson's messages were sent from hotmail.com, the Thread-
Indexes for C and D were encoded in a different way. And this
causes Approach 1 to fail to link the messages. Unfortunately, as
far as we can discern, there is no way to decode that kind of
Thread-Index. As a consequence, if there are any external
exchange messages in a thread, the thread will be split into several
small threads.

Approach 2, the similarity-matching method, has as its main
advantages its general applicability, even when there is no
Exchange header, and its capability to recover missing messages.
Approach 2 does have several shortcomings, however. First, it has
some potential for false positives when linking children to a very
short parent message. However, judicious use of the time and
sender-recipient heuristics makes this problem rare. Second, like
Approach 1, suffers false negatives when the required data is
missing; in this case, if a child message does not include quoted
material from the parent. Indeed, this is why the measured recall
under condition T+S was still only 0.87, rather than 1.0.

The effectiveness of Approach 2 was also reduced by the
constraints introduced to improve its computational tractability.
The time window constraint helps reduce the searching scope of
candidate emails, but some messages do reply to their parents
after a long time period. Second, the constraint that candidate
parent messages have the same normalized subject, which vastly

Thread-Index
A: AcEpvGkhOGBnNJWuEdWxFgBQi+MJ2Q==

B: N/A (withou header because in the Sent folder)

C: AcErWenblTYNZZdMEdWxFgBQi+MJ2Q==

D: AcEqgwbv2o4HJpZzEdWxFgBQi+MJ2Q==

A.msg

B.msg

C.msg D.msg

14 days

: reply-to relation

narrows the search scope, has a significant impact on its accuracy.
Consider the thread in Figure 56, which was reconstructed by
Approach 1; all messages in this example have different
normalized subject lines. In this case, Approach 2 will return five
different threads, each with only one root message. According to
our observations, this situation reflects an interesting usage of
email communications – sometimes users follow the email thread
but change the subject line to stray from the main topic of the
original thread. Hence, if topic rather than reply-forward
relationships are a focus, this disadvantage might instead become
an asset.

Figure 5. An example thread within which messages have
different normalized subjects

Finally, as mentioned before, under the same condition that no
missing-message-recovery is applied, missing messages in threads
by Approach 1 are often found in threads by Approach 2. For
example, in Figure 67, messages 381316 and 383148 do not have
Thread-Index because they are in someone’s Sent folder. In the
thread generated by Approach 1, according to the Thread-Index
value, we can only know there is a missing message between
messages 379294 and 382972. It is obvious that Approach 2 is
better than Approach 1 since Approach 2 is on the basis of the
content similarity between two messages it also links messages in
the absence of header information.

Figure 6. An example to explain the superiority of Approach 2
against Approach 1 when missing messages exist

6.3 Small Manual Evaluation
The chief obstacle we encountered in evaluation is that there is no
good gold standard for evaluation because there is no explicit
thread structure information in the Enron corpus, and it is hard to
manually identify email threads in a large corpus. In order to have
a clearer image of our proposed threading methods, we conducted
a small manual evaluation. We randomly selected 20 initial
messages and collected all messages with the same normalized
subjects as candidates to construct thread trees manually. (Only 20
messages were selected for evaluation because it cost time to
generate threads manually from a large corpus.) Then all 20 root
messages were used to generate threads by applying both
proposed approaches. As a result, we obtained a mean average
recall of 0.7475 for Approach 1 and 0.9338 for Approach 2. This
result suggests that Approach 2 can indeed be highly effective,
with the caveat that this manual evaluation did not account for the
possibility of changed subjects in child messages.

7. Conclusion
This paper introduces two methods to email thread reassembly.
One exploits a previously undocumented header from the
Microsoft Exchange Protocol, and the other links messages by
measuring similarity between the quoted material of a child
message and the unquoted part of a parent message. It takes
account of several heuristics as well, such as subject, time, and
sender/recipient relationships among emails. Furthermore, we also
discuss how to identify and recover missing messages which are
not present in the email corpus, but whose content can be
extracted from quoted texts in extant messages.

Both approaches were evaluated using the Enron email corpus.
Approach 1 is simple to implement, and it performs reasonably
well in most cases. However, it fails to handle external exchanges,
when a child message is from a person whose email address is not
in the same domain as that of the sender of the parent. This
probably restricts its use to corpora such as the Enron corpus,
wherein most messages of interest are sent within a single
organization. Approach 2 has broader applicability, but fails when
the child message does not quote the parent, and as tested does not
handle threads with varying subject lines. A combined approach,
employing Approach 1, Approach 2 (with modifications to better
handle changed subjects), and an RFC header-based approach as
appropriate, is an obvious possibility that may prove useful.

Finally, both Approach 1 and Approach 2 aim to reconstruct
parent-child relationships formed by reply or forwarding, which
might not shed adequate light on the topic structure of a
conversation. The similarity-matching approach may be extended
to address this problem by employing not just the simple unigram
overlap similarity measure, but any of several more sophisticated
lexical cohesion measures employed in topic segmentation of
multi-party speech [3].

8. Acknowledgements
This work was supported by the National Science Council’s
GSSAP Program (grant number: 094-2917-I-009-004) and the
National Science Foundation’s KDD program, a joint program
with the National Security Agency. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those
of the authors only. We also thank Dr. Owen Rambow, Dr. Kathy
McKeown, the Columbia NLP Group (Columbia University) and
the Database Lab (National Chiao Tung University) for their
valuable comments.

9. REFERENCES
[1] Carvalho, V. R., and Cohen, W. W. On the Collective

Classification of Email “Speech Acts”. In Proceedings of the
SIGIR-2005 (Salvador, Brazil. 2005).

[2] Carenini, G., Ng, R., Zhou, X., and Zwart, E. Discovery and
Regeneration of Hidden Emails. In Proceedings of the SAC
2005. (Santa Fe, New Mexico. 2005).

[3] Craswell, N., de Vries , A. P. , and Soboroff, I.. Overview of
the TREC-2005 Enterprise Track. In Proceedings of the
TREC 2005 (Gaithersburg, MD. 2005).

[4] Galley, M., McKeown, K., Fosler-Lu, E., and Jing, H.
Discourse segmentation of multi-party conversation. In
Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics (ACL '03) (Sapporo, Japan,

Correct Approach 1 Approach 2

2003). Association for Computational Linguistics,
Morristown, NJ, 2003.

[5] Kerr, B. THREAD ARCS: An Email Thread Visualization.
In Proceedings of the 2003 IEEE Symposium on Information
Visualization (Seattle, WA. 2003).

[6] Klimt, B. and Yang, Y. Introducing the Enron Corpus. In
Proceedings of the CEAS 2004 (Mountain View, CA. 2004).

[7] Lewis, D. D. and Knowles, K. A. Threading Electronic Mail:
A Preliminary Study. Information Processing and
Management, 33 (2): 209-217. 1997.

[8] Microsoft MSDN.. Available at
http://msdn.microsoft.com/default.aspx. 2005

[9] Rambow, O., Shrestha, L., Chen, J., and Lauridsen, C.
Summarizing Email Threads. In Proceedings of the
HLT/NAACL 2004 (Boston, MA. 2004).

[10] The Internet Society. RFC 2822 – Internet Message Format.
Available at http://www.faqs.org/rfcs/rfc2822.html. 2001

[11] Wu, Y., and Oard, D. W. Indexing Emails and Email Threads
for Retrieval. In Proceedings of the SIGIR 2005,(Salvador,
Brazil. 2005).

[12] Zawinski, J. Message Threading. Available at
http://www.jwz.org/doc/threading.htm. 2002.

[13] Zhu, W., Song, M. and Allen, R. B. TREC 2005 Enterprise
Track Results from Drexel. In Proceedings of the TREC
2005 (Gaithersburg, MD. 2005).

