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Abstract
We present our recent work on query-focused summarization,
focusing on our efforts in building and applying models of
rhetorical-semantic relations (RSRs) such as contrast and causal-
ity. We overview ongoing work in extracting and evaluating RSR
models. We describe our system for query-focused summariza-
tion, focusing on an enhanced, feature-based framework. We
present results of experiments to measure the impact of both RSR
and other features on selection and ordering of summary con-
tent. We conclude with an overview of results from the official
DUC06 evaluation.

1 Introduction

In DUC06, our participation served to propel two different yet
complimentary avenues of research. First, we used the opportu-
nity to add a novel, semantically-motivated aspect to our work
by integrating models of rhetorical-semantic phenomena such as
causality and contrast. Second, given data available from previ-
ous DUCs, we retrained our system to take best advantage of all
features, properly weighting both both new rhetorical-semantic
features, as well as existing features. In this paper, we will fo-
cus on both aspects of our work, with particular emphasis on
our novel use of rhetorical semantic relations and experimental
results.

Before delving into more detail, we touch on our motivation
for exploring rhetorical/semantic notions in the DUC context,
using the following example, adapted from a biographically-
focused document set about Sonia Gandhi in the DUC04 data.
Consider the following two sentences, which were taken from
separate original documents and placed together in a summary
as follows:

The BJP had shrugged off the influence of the 51-year-
old Sonia Gandhi when she stepped into politics early
this year, dismissing her as a foreigner. Sonia Gandhi
is now an Indian citizen.

Clearly, these sentences, placed together, are well-chosen.
And in large part their felicitousness stems from the implicit con-
trast being made between (early, now) and (foreigner, citizen).

We believe that the ability to actively create such combina-
tions using rhetorical-semantic models is attractive for at least
two complementary reasons. First, content selection can be
improved by using these models to that certain information is
closely linked to the topic being summarized, when it might oth-
erwise appear marginal based on purely lexical criteria. Second,
content ordering can be improved by using these new criteria to
arrange summary content so as to form multi-sentence spans of
strongly coherent text.

In the remainder of this paper, we describe our progress in
this new direction, explain how we have integrated this idea into
our existing system and present experimental results of our on-
going experiments and evaluations as well as the official DUC06
results.

2 Related Work
Work on rhetorical and discourse theory has a long tradition in
computational linguistics (see Moore et al.[22] for a comprehen-
sive overview). Areas of research include informational and se-
mantic relationships[10, 14, 18]; processing models in discourse,
including attentional and intentional structure [8]; as well as
work that takes models of both information structure and pro-
cessing into account for modeling [23, 1] or generating [19, 21]
text.

In rhetorical structure theory (RST)[14], the precise number
and taxonomy of relations have been a point of contention [11,
23], but its basic tenets have formed the basis for approaches
that aim to model the informative content of text, such as text
summarization [16] and essay-grading [6].

Marcu and Echihabi [17] describe a system which recognizes
RST-derived relationships between text spans using a model
extracted automatically from large corpora using cue phrases.
Their method first extracts from a corpus all instances of cue
phrase patterns associated with a given relation, e.g. the pattern
“A. However, B.”, which is associated with a Contrast relation
(where A is a full sentence and B is the remainder of a sentence
after However). Then, for any pair of text spans X,Y, whose re-
lationship is unknown, its “Contrast-ness” can be estimated ac-
cording to how closely it matches the aggregate properties of
A,B pairs seen in this and other Contrast-associated patterns over
a large corpus.



This work can in turn be seen as a variant of earlier data-driven
approaches like Latent Semantic Analysis (LSA)[7]. However, a
crucual difference is that LSA does not distinguish a semantics
of word relationship; it can offer the information that two words
are “related,” but the manner of that relation is unspecified.

Several recent systems in question answering and summa-
rization attempt to apply LSA and other kinds of semantic re-
sources such as WordNet[20, 9, 12] and Marcu’s experiments
with RST-informed summarization[16] shows the importance of
using rhetorical links identified via cue-phrase patterns in form-
ing extracts. However, to our knowledge, there have not been
other systems in these areas which attempt to apply the type
of automatically-derived rhetorical models built by Marcu and
Echihabi [17].

3 Rhetorical-Semantic Relations

3.1 Description

Our concept of Rhetorical-Semantic Relations derives most di-
rectly from the work in rhetorical structure discussed in the pre-
vious psection. As noted there, while much of this work dif-
fers on issues of relation taxonomy, there are also basic recur-
ring themes; for instance, that information relationships can in-
clude both an intentional and informational dimension, and that
certain relationships such as causality and contrast, are of recur-
ring importance even if their precise descriptions vary [11, 23].
We choose to model three distinct relations, Cause, Contrast and
Adjacent. We describe the intuition behind these relations in this
section, and provide a procedural definition in the next.

First, we should note that we are indebted to the work of
Marcu and Echihabi [17] (M&E) both in our intuitive concep-
tion of these relations, as well as our implentation of a model for
them. M&E make the persuasive case that many of the apparent
many of the differences in RST taxonomies can be abstracted
away by using a coarser-grained model. For instance, we fol-
low their lead in choosing to model a single Cause relation, thus
avoiding problematic distinctions between, e.g., “volitional” vs
“non-volitional” causality made in Mann and Thompson’s RST
taxonomy [14]; similarly we follow M&E in modeling a Contrast
relation which subsumes “antithesis,” “concession,” and “con-
trast,” among others.

While we see our Cause and Contrast as drawing on abstrac-
tions of these informational-semantic relations of RST, our Ad-
jacent relation is conceived with a less specific semantics. In-
stead, it is meant as a sort of catch-all for relations which per-
tain over information presented in literally adjacent sentences
(and as such can in some instances subsume more semantically
specific relations, including Cause and Contrast). The idea of
Adjacent as a relation can perhaps be viewed as a shallow ver-
sion of Grosz and Sidner’s [8] “satisfaction-precedes” intentional
constraint, and follows on Martin’s observation that “... simply
putting clauses next to each other suggests some logical connec-
tion between them, whether or not [it] is made explicit ...”[18,
p.165]. As compared to the more semantically specific, informa-
tional relations Cause and Contrast, the Adjacent relation serves

as a complimentary mechanism to model the intentional tenden-
cies implicit in ordering, without selecting for specific informa-
tional semantics.

Lastly, we note an important departure in our work from pre-
vious models of rhetorical and discourse structure, as well as the
more recent work of Marcu and Echihabi [17]. Namely, we con-
sider these RSR models as having potential value beyond analy-
sis of the information structure within a single, human-authored
document. We attempt instead to actively “create” RSR-like rela-
tionships within summary responses by including sentence pair-
ings which resemble our acquired models. The “Sonia Gandhi”
example from the Introduction section demonstrates the type of
result we hope to achieve with this process.

In summary, we take the inspiration from earlier work about
the kinds of relations which are important within documents, yet
we aim to consider possibilities for understanding and using the
models in a broader context. For this reason, we depart from the
“Structure” terminology and instead coin the term Rhetorical-
Semantic Relations.

3.2 Definition
We have so far described the basic intuition of these relations;
here we define them procedurally. To this end, we rely on a set
of patterns similar to the “However, ...” pattern used by Marcu
and Echihabi [17] mentioned above. These patterns are based on
cue words such as however and therefore, which we have refined
from published lists (Marcu’s thesis [15] is an especially good
resource). In all, we assemble approximately forty such patterns
for each of the Contrast and Cause relations.

In this sense, the definition of these relations is quite simple:
namely, any text span pair which matches one of our cue phrase
patterns is an instance of the associated relation. However, the
primary objection to such a definition is that cue phrase patterns
can sometimes match against spans which do not, in fact, express
the associated rhetorical semantic function. For instance, for the
Contrast pattern, “Although A , B .”, the alignment of A and B will
be incorrect if the comma in the pattern matches the first comma
in “Although he studied, studied and studied, he still failed.”

Here, we view the issue as a lack of precision in the pattern,
and expect that by improving pattern precision (in this case, syn-
tactic analysis or the presence of the additional cue word “still”
might be used) we can derive instances which result in better
models.

3.3 Extraction and Modeling
The framework we choose for extracting and modeling our RSRs
very much adopts the approach of Marcu and Echihabi [17]
(henceforth, M&E). For brevity, we refer the reader to their work
for details of their framework, and describe here only the ways
in which we have extended or diverged from their work.

As in the M&E model, we mine a large corpus for our rela-
tions of interest, using cue phrase patterns to find relation in-
stances. We find Contrast and Cause instances as in M&E, as
well as deriving instances of a NoRelSame relation, which con-
sists simply of sentence pairs taken from the same document



which are separated by at least four intervening sentences. (The
purpose of NoRelSame is to provide a baseline of topically re-
lated spans across which more specific relations like Cause are
assumed not to pertain.) In addition to these relations, we add
the Adjacent relation described above, which is simply extracted
by randomly choosing adjacent sentences from a document. The
corpus we mine is the English Gigaword Corpus1, of nearly 5
million newswire documents. We extract approximately two mil-
lion instances matches for Cause, six million of Contrast, and we
choose to extract four million instances each for Adjacent and
NoRelSame.

As in M&E, we extract from these instances a single fea-
ture, namely word-pair frequencies of the individual lexical pairs
found across two related text spans. That is, if we find, “He stud-
ied, therefore he passed.”, we consider it to be positive evidence
of a Cause relation between all word pairs across the spans “he
studied” and “he passed,” i.e. ( he , studied), (he, passed), (stud-
ied, he), (studied, passed ). These frequencies are tallied over
the entire corpus, and used as maximum likelihood estimates in
a Bayesian classifier.

After building the model, we first verified that, as expected, it
achieved comparable classification accuracy to the Marcu model
on which it was based in the task of classifying unknown text-
span pairs as to the actual relation type which was used to ex-
tract that pair (e.g., Cause versus Contrast). At that point we
examined several possible methods to improve this accuracy. Re-
call that our overall goal is to use the constructed models in the
applied task of summarization; nonetheless, we believe that in-
creased classifiaction accuracy is our best heuristic for the qual-
ity of these models. For instance, as mentioned in our procedural
definition of RSRs, an improvement to the cue phrase extraction
patterns would be expected to filter through to the RSR models,
and in turn make, e.g. the Cause versus Contrast classification
performance improve. This improvement would be due to the
relevant model representing more accurately the tendencies of,
e.g. Contrast relationships (in the case of our example, the fact
that “studied” and “failed” are in contrast), and having a more ac-
curate model would in turn improve the possibility contribution
to our applied task of summarization.

We have thus far implemented several experiments to attempt
to improve classification performance. These experiments in-
cluded:

• Examination of smoothing parameters and methods

• Comparison of tradeoffs in training set, vocabulary and sto-
plist sizes

• Investigation of the impact of using automated topical seg-
mentation to reduce one source of noise in relation extrac-
tion; namely, improving pattern precision by preventing (or,
in the case of NoRelSame, requiring) matches which cross
a topic boundary.

While we do not present detailed results here for the purposes
of brevity, we have found that classifaction accuracy can be im-
proved using the results of each type of experiment, and that in

1available from LDC at http://www.ldc.upenn.edu

several cases the effect is significant. Accordingly, the RSR mod-
els used in the following section use models which have been ex-
tracted and parameterized to produce the best classification ac-
curacy.

4 System Implementation and Integra-
tion of RSRs

4.1 Overview

DefScriber [5] is a system which creates dynamic, multi-
sentence answers to definitional, biographical and open-form
questions using a hybrid of goal- and data-driven methods. We
used DefScriber successfully in DUC04 [4] to create biographi-
cal summaries, and adapted it in DUC05 [3] to create summaries
which responded to broad-topic questions. Our cited previous
papers describe the basic concepts of our hybrid method and Def-
Scriber’s system components; we focus here on two updates to
the system: (1) an improved framework for using all features
via a retraining against DUC data and implementation of a post-
content-selection reordering step (2) the incorporation of RSRs
into this framework to improve answer content and coherency.

In order to make these two extensions of the system, we de-
cided to refactor our system’s sentence selection and ordering
algorithms to consider all of the features described in Table1 in
a common framework. This combined feature set includes fea-
tures which had proven successful in previous system versions,
as well as a new feature derived from our RSR models. Using
this new framework and feature set, we were able to carry out
several experiments to train and test our system using previous
DUC data sets.

To get the clearest picture of the specific contribution of RSRs,
we decided to carry out this training in two phases. In the first
phase, we did not include the RSR-derived feature, and focused
on estimating optimal parameters for the other features only.
Then, in the second phase, we set the non-RSR feature param-
eters to their optimal learned values, and explored various ways
to use the additional information offered by our RSR models.

Before presenting the details and results of the experiments,
we outline the algorithm used for sentence selection by Def-
Scriber. It is an iterative algorithm which, at each iteration,
greedily chooses a “next” sentence for the summary by maxi-
mizing a weighted sum of feature values. DefScriber’s answer
summaries are created by repeatedly choosing a “next” sentence
until a length criterion has been met (or no input sentences re-
main).2

Note several important points in DefScriber’s operation which
precede this algorithm:

• The set S of “Non-Specific Definitional” (NSD) sentences,
i.e. sentences which have any broad relevance to the topic
being described/defined, have been identified and separated

2In practice, the algorithm is run within a beam search framework, where the
most promising n summaries are kept after each iteration in order to counter-
act the possibility of local maxima which can result from greedy choices in the
presence of several order-dependent features such as LexicalCohesion.



Centroid Relevance to overall topic. IDF-weighted cosine distance between s and S.
Coverage Coverage of sub-topics. One if c has least (or tied for least) representatives already in P as compared with other clusters in C;

zero otherwise.
LexicalCohesion Lexical cohesion
with previous sentence.

IDF-weighted word-stem vector cosine distance between s and p.

Query Overlap with query terms. Word-stem vector cosine distance between s and q. Term weighting uses IDF but penalizes terms
which have already been covered in P .

DocumentCohesion Original docu-
ment cohesion.

Score is non-zero iff s and p are from the same input document, and p preceeded s in original ordering;
score is inversely proportional to number of sentences between p and s. If p immediately preceeded s

and was joined by a discourse cue-phrase, an additional bonus is given.
RSR RSR-derived score. Calculated by comparing by “classifying” whether s and p appear to be related by our models for

Cause, Contrast and Adjacent RSR relations. Calculation parameters are discussed in Subsection 4.3.

Table 1: Features used in DefScriber’s sentence selection algorithm. Features are evaluated for a candidate sentence s to be added
to an under-construction summary P with last sentence p; s is a member of a cluster c in a set of clusters C which parition the full
set of relevant input sentences S.

out from the (possibly) larger set of all input document sen-
tences.

• The sentences in S have been clustered into a set of clusters
C, in an effort to segment the sub-topics of the topic being
described in the answer/summary.

• Any “Genus-Species” (GS) sentences which provide a
category-differentiator (or “is-a”) statement for the topic be-
ing described, are identified from among S using lexical-
syntactic patterns.

• The first sentence in the summary is chosen as the highest-
ranked (by Centroid feature) GS sentence, or simply
highest-ranked setnence in S if no GS sentences were
found. This sentences is passed into the algorithm as the
initial, single-sentence summary P .

• The set of features F used in sentence selection generally
includes all features in Table 1, but the RSR feature was
excluded when running DefScriber for the first phase of ex-
periments described in Section 4.2.

Following these initial steps, DefScriber repeatedly selects the
next sentence for the summary following the algorithm below.

4.2 Experiments with Non-RSR Features
4.2.1 Sentence Selection

In this first set of experiments, the goal was to estimate the pa-
rameters for all features other than RSR to be used in sentence
selection. While these features had been included in earlier sys-
tem versions, we decided a retraining was important for several
reasons: (a) The feature calculations had in some cases been re-
fined (b) We had not trained specifically on DUC data in the past
(c) We wanted to determine the best values before examining the
RSR features, so that any improvement achieved via these fea-
tures would be in addition to an already-optimized score.

In these experiments, we had five distinct feature weights to
train (Centroid, Coverage, LexicalCohesion, Query and Docu-
mentCohesion). Even using a single, linear function of the fea-
tures as we do in the ChooseNextSentence() algorithm, testing

Algorithm 1 ChooseNextSentence(P, C, F, W )
INPUT:
P partial summary with > 0 sentences
C set of candidate sentence clusters
F set of features to evaluate for candidate sentences
W set of weight parameters defined over all f ∈ F

OUTPUT:
the best candidate sentence n to choose for extending P

B ← GetBestUnused(C, P ) {for each cluster in C, extract
its highest-ranked (by Centroid feature) sentence not in P}
for all b ∈ B do

Score[b]← 0
for all f ∈ F do

Score[b]← CalcFeatScore(f, b, P ) ∗W [f ]
end for

end for
return b ∈ B with maximum Score[b]

over five possible weights for each feature would involved 55

permutations. Since our system takes several minutes to summa-
rize a single DUC input set, an exhaustive search was not a fea-
sible approach. Thus, we decided to use a hill-climbing search
with randomized restarts in order to explore the search space,
using macro-averaged ROUGE scores (specifically the SU4 re-
call measure, one of the official measures used in DUC05) over
a training set of topics as our heuristic for evaluating the results
at each weighting.

We trained the system separately on DUC04 (task 5) and
DUC05 topics, using in each case a randomly selected 80 per-
cent of the data for training, and 20 percent for testing. Our
intuition for examining the data sets separately was that these
sets had somewhat different properties; DUC04 summaries used
biographically-focused topics and 100-word models, whereas
DUC05 summaries (like those of DUC06) are on broader top-
ics with 250-word models.

Table 2 shows results for the experiment broken down by train-
ing set and system parameter setting. We show in the table only



Setting Training Test
DUC05 best hill-climb 0.1351 0.1300
DUC05 median hill-climb 0.1325 0.1285
DUC05 baseline 0.1307 0.1267
DUC05 original 0.1285 0.1236
DUC05 peer best 0.1290 0.1337
DUC04 best hill-climb 0.1233 0.1268
DUC04 median hill-climb 0.1167 0.1165
DUC04 baseline 0.1152 0.1223
DUC04 original 0.1177 0.1209

Table 2: ROUGE SU-4 recall macro-averaged scores from ex-
periments in Section 4.2.

Setting Cent Covg LexC Query DocC

DUC05 best h-c 2 2 1 4 4
DUC05 median h-c 0 2 0 1 0
DUC05 baseline 1 1 1 1 1
DUC04 best h-c 2 3 0 1 0
DUC04 median h-c 2 4 0 3 3
DUC04 baseline 1 1 1 1 1

Table 3: Weightings found by hill-climbing (h-c) experiments
described in Section 4.2. Feature descriptions are given in Table
1.

selected points from the parameter search carried out by our hill-
climbing algorithm, namely the best and median settings visited.
We also show an evenly-weighted baseline, as well as the scores
for the official test run submitted in the given year’s DUC com-
petition for our system and the best-scoring peer.

• For DUC05, our best learned setting outperforms both the
baseline and our original system’s scores on the test set us-
ing ROUGE’s built-in 95 percent intervals, and confirmed
using the sign test (P < 0.05). Given that our system had
the fourth-highest ROUGE-SU4 Recall score among the 32
scored systems in DUC05, this significant imrpovement is
important. Versus the best peer from DUC05, we do slightly
better on the training set and slightly worse on the test, but
there is no significant difference in either case.

• For DUC04, our best learned setting outperforms our origi-
nal system and the baseline on the test set scores using both
ROUGE and sign test (P < 0.05). (Our original system
was the best-performing peer in DUC04.)

• Table 3 shows the learned weights for the hill-climbing set-
tings whose scores are shown in Table 2. While the hill-
climbing algorithm we used for learning the weights pur-
posely did not explore the entire feature space, we nonethe-
less find the differences in the “best” settings found for
DUC04 versus DUC05 to be of interest. For instance, the
Query feature appears more significant for the broad queries
of DUC05 than for DUC04, where it provides more specific
information about relevance.

Another difference is that Centroid and Coverage features
dominate the DUC04 best settings. We theorize this to be

due also to shorter summary length, since in shorter sum-
maries, the Lexical/DocumentCohesion features can cause
too much summary content to be devoted to a relatively nar-
row sub-topic. In a limited experiment with longer-length
summaries for DUC04 document sets, we indeed found that
these coherence-based features appeared to be more useful.

• While the training and test scores vary, their relative order
is mostly constant, indicating that overfitting is not a critical
issue.

4.2.2 Sentence Reordering

After performing these experiments, we could see that the
learned parameters achieved a high level of performance accord-
ing to the ROUGE automated evaluation. However, after a man-
ual examination of some output summaries, we found that the
ordering of content within the summaries, an aspect not evalu-
ated by ROUGE, was not always optimal. We thus decided to
implement a post-sentence-selection step for cohesion improve-
ment in order to (a) achieve more cohesive summaries and better
scores in this year’s DUC and (b) make sure that, before running
our RSR-based experiments, summary cohesion would be in as
strong a state as summary content selection.

To this end, we implemented an algorithm that examines
the set of selected, ordered sentences produced by the iterative
calls to ChooseNextSentence(), and looks for opportunities to
reorder which will increase coherence. While the Document-
Coherence and LexicalCoherence features, when used during
ChooseNextSentence(), can enhance local coherence of succes-
sive sentence pairs, they are also being weighted with other
features which considers other aspects of content “goodness.”
In some sense, in the ChooseNextSentence() content selection
phase, the role of the Lexical/DocumentCoherence features is to
inform the system about what sentences are “close” to sentences
which are already good, on the intuition that this can itself be
a clue to content “goodness.” By contrast, when our reorder-
ing algorithm is called, content has already been selected, and
these features can be used used purely to determine if, within
the selected sentences, we can achieve a better order to increase
coherence.

The reordering algorithm takes as input the N sentences se-
lected by ChooseNextSentence() in the order of their selection
(which is equivalent to the final summary which was being pro-
duced by the system during our hill-climbing experiments, mod-
ulo possible truncation of the final sentence to conform to DUC
word-length limit). The algorithm then proceeds, for sentences 2
through N , to move a sentence “upward” in the summary order
iff:

• Overall coherence of the newly adjacent sentences is in-
creased, where coherence is measured by the DocumentCo-
herence and LexicalCoherence features. We experimented
briefly with weightings which are used for these features
here, and found DocumentCoherence should be considered
in preference to LexicalCoherence, which is intuitive given
that a human author can be assumed to have written coher-
ently, whereas lexical similarity is a weaker heuristic. (Note



Setting Kendall’s Tau
DUC05 best h-c, no reorder 0.069
DUC05 best h-c, reorder 0.079
DUC04 best h-c, no reorder 0.228
DUC04 best h-c, reorder 0.242

Table 4: Kendall Tau scores for non-reordered versus reordered
summaries.

that these features are considered separately in the reorder-
ing algorithm than in sentence selection, i.e. the weights
used in sentence slection have no effect here.)

• Ordering heuristics are maintained (for example, extremely
short sentences or sentences starting with a discourse con-
nective like “but” can only appear in the summary coupled
with the sentence they appeared with in their source docu-
ment).

In order to verify that this reordering algorithm was indeed im-
proving our output summary order, we carried out the following
experiment: For each training set, we prepared four augmented
versions of its input document set, containing an additional “doc-
ument” which is actually a model summary for that set. Then,
we implemented a constrained mode of DefScriber which would
be restricted to output only sentences from the model summary,
but without using any information about the original order of its
sentences. In this way, we were able to ensure that our system
would be tested not on content selection (which would trivially
be ideal), but rather on its ordering of these sentences from the
model. As the DocumentCoherence feature is disabled here, the
ordering is determined by Centroid ordering (recall that the en-
tire document set is input and only the ouput is constrained, so
that the Centroid will reflect sentences both from the model and
the other documents), Coverage, LexicalCohesion and Query
features.

Using this experimental setup, our goal was to compare the
outputs from the system with and without reordering. The eval-
uation metric we chose for this task was Kendall’s Tau measure.
In addition to having been used in other document-ordering eval-
uations [13, 2], a desirable property of this measure is its ease
of interpretation. Values range from -1 to 1, reflecting inverse
to perfect ordering, respectively. Interpretively, one can view a
score as proportional to the probability that a given pair of sen-
tences within a summary is ordered as in the original model; a
score of 0, for instance, reflects an even probability that any pair
will be in correct versus inverse order; 0.5 means that 75 per-
cent of the sentence pairs are correctly ordered with respect to
the model.

Table 4 shows the results of this experiment with post-
selection reordering. We compare mean Tau scores of our best-
performing weighting (as learned in the previous experiment)
with and without the reordering component, and observe that in
both cases, the mean score increases. Carrying out a one-way
ANOVA, we find that the effect of the reordering is significant
at P < 0.05 on the DUC04 data, but not the DUC05. Here, we
show results for the test set only.

4.3 Experiments with RSR Features
4.3.1 RSR Feature Overview

After running the above learning experiments to improve and
optimize DefScriber, we were curious to see if features derived
from our Rhetorical-Semantic Relation models for Cause, Con-
trast and/or Coherence could further improve either the content
or coherence of our summaries.

In particular, we decided to implement the classifier alluded to
in Section 3 as a feature. The concept here is that, when assess-
ing sentence “goodness,” either for content or coherence, we had
already seen lexical similarity to be a useful feature; here, our
goal was to experiment with the usefulness of a feature which
measures whether a candidate sentence s relates to an already-
chosen sentence p in a way that resembles, e.g., our Cause, Con-
trast or Adjacent models. In brief, this classifier allows us to
estimate this by providing probability estimates for whether sen-
tences appear to be related, e.g., by Cause (P (p, s|Cause)) or
more closely resemble a baseline model (“NoRelSame”) of sen-
tences which are from the same document but bear no particular
discourse relation (P (p, s|NoRelSame)). We then use the dif-
ference in these estimated probabilities to compute a normalized
value from zero to one which expresses how Cause, Contrast or
Adjacent-like a given sentence pair is.

In order to experiment with these features, we considered sev-
eral ways to compute the RSR feature from Table 1. In particular,
we experimented with a hill-climbing methodology similar to the
previous section, but one in which the weights for the other fea-
tures were set at their best-learned values, while the parameters
being optimized were all with regard to the usage of the RSR-
feature, namely:

RSR weight Parameter used to weight overall RSR feature as
calculated according to the remaining parameters when
combining with five non-RSR parameters (in sentence se-
lection) or two cohesion parameters (in sentence reorder-
ing)

Cause, Contrast, Adjacent weights Three separate parameters
which multiply the base zero-to-one value calculated by
comparing (P (p, s|Rk) and P (p, s|NoRelSame) where
Rk is one of the three RSR relations. We use separate pa-
rameters to enable learning how to interpret the probabili-
ties of each model independently.

Combine mode Parameter which determines how to combine
the three individual Cause, Contrast and Adjacent scores;
can take on two settings, to either take the mean or maxi-
mum of scores; meant to learn relative importance of a sin-
gle RSR model being very strongly matched, versus several
RSR models all having a medium-strength match.

4.3.2 Experiments and Results

As in the non-RSR experiments, we ran an initial set of hill-
climbing experiments focused on maximizing ROUGE scores.
These results are summarized in Table5. It appears that adding
the RSR features results in a small but positive increase on



Setting Training Test
DUC05, non-RSR 0.1351 0.1300
DUC05, best RSR h-c 0.1362 0.1326
DUC04, non-RSR 0.1233 0.1268
DUC04, best RSR h-c 0.1282 0.1273

Table 5: ROUGE SU-4 recall macro-averaged scores be-
fore/after integrating RSR features with best ROUGE-focused
hill-climbing (h-c) weight.

Setting Train Test
DUC05 non-RSR 0.081 0.079
DUC05 best RSR h-c 0.084 0.087
DUC04 non-RSR 0.240 0.242
DUC04 best RSR h-c 0.267 0.259

Table 6: Mean Kendall’s Tau scores with/without RSR-derived
feature. Weighting of RSR-derived feature here uses learned set-
tings from order-focused hill climbing.

ROUGE scores. However, in neither the DUC04 or DUC05 case
does the improved score on the test set achieve a statistically
significant improvement over the non-RSR results (in terms of
intrinsic ROUGE confidence measures or the sign test). How-
ever, given that our scores were already nearly tied with (and not
significantly below) the best peer from DUC05, and significantly
better than the best peer from DUC04, we are pleased by the in-
cremental improvement.

In a second set of experiments, we examine the effect of the
RSR features on sentence ordering, using essentially the same
model-constrained experimental setup described in the previous
section. In addition to the effect on ordering which can result
from the use of the RSR feature during original sentence selec-
tion, we also added the RSR feature to the LexicalCohesion and
DocumentCohesion features considered in the reordering step.

As distinct from those features, the weightings used in sen-
tence selection do carry over to the way the RSR feature is com-
puted during reordering. This means that unlike in the order-
ing experiments in the previous section, which simply compare
a single setting of the reordering (“on” versus “off”), in this
case we conducted another hill-climbing experiment which at-
tempted to maximimize the Kendall’s Tau score. The reason for
this was that in the previous experiment, we were comfortable
manually estimating the weights used in reordering because of
our clear understanding of the scores for LexicalCoherence and
DocumentCoherence. However, in this case, the RSR probabil-
ities returned by the different models for Cause, Contrast and
Adjacent are not as well understood, and moreover they can be
weighted and combined differently to compute the RSR feature.
Thus, in this experiment, we perform a hill climbing which ad-
justs the RSR feature parameters with the goal of improving the
Kendall’s Tau score.

The results of this ordering-focused hill-climbing experiment
are shown in Table 6; for brevity we only show the results at
the best learned setting. Interestingly, the results are not only
higher overall for DUC04, btut there is also a larger overall im-
provement on the test set when using the RSRs. We theorize

that, at least in part, this may be due to the fact that biographi-
cal summaries, which describe a single entity and tend to follow
a clearer more-to-less importance ordering, are closer to Def-
Scriber’s original purpose of creating descriptive definitions. In
both DUC04 and DUC05 results, the effect does not rise to sta-
tistical significance; however, using a one-way ANOVA, the im-
provement for the DUC04 test set is significant at P < 0.08 for
DUC04 data, so it approaches significance.

5 DUC 2006 Result Overview
As some of the experiments mentioned in the previous sec-
tion were not yet complete at the time we produced our official
DUC06 run, our system had not yet been fully optimized and re-
fined. Nonetheless, the system as run for the test data included
both of the main improvements mentioned in the previous sec-
tion, including the reordering algorithm and best learned weights
for the non-RSR features. In addition, we used an early imple-
mentation of the RSR feature, but since the RSR-specific experi-
ments were not complete at that time our use of the RSR feature
parameters was not entirely optimal.

As we focused our main effort on the above-mentioned exper-
iments, which were predicated on the data sets for DUC04 and
DUC05 available at that time, we have not yet performed an ex-
tensive analysis of this year’s results. However, our preliminary
examination shows our system performing above the median in
all of the evaluated scoring categories, including manual and au-
tomatic measures. In particular, among 35 automatic peers eval-
uated, our scores were in the top 10 for ROUGE recall, mean
linguistic quality, mean responsiveness.

Based on this initial analysis, we feel that our system remains
a robust and competitive one in this task. While our new re-
search did not vault us to the top of the rankings, we observe that
many other participants appear to have been hard at work as well;
for instance, our ROUGE scores this year would have been sig-
nificantly “winners” last year. Thus, we are especially looking
forward to hearing about the innovations from other participants.

6 Conclusion
For this year’s DUC, we chose to follow an experimental course
of research, with the hope of exploring an interesting new direc-
tion while at the same time improving our applied system. We
are pleased because we were able to make significant accom-
plishments in both of these avenues.

In our work to integrate Rhetorical-Semantic Relation models,
we took advantage of DUC to leverage our research on increas-
ing the accuracy of such models. At the same time, we made
a significant overhaul of our core DefScriber system to use a
trainable, feature-based framework and sentence reordering al-
gorithm. Using these enhancements, we achieved significant im-
provements in both content and ordering experiments using the
features from our existing system. Then, in a second set of ex-
periments, we added in the RSR-derived features and found ad-
ditional improvements in both content and ordering scores. Fi-
nally, we are encouraged to see that this enhanced version of our



system continues to be strongly competitive among its peers, ac-
cording to our preliminary analysis of this year’s official results.
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