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Abstract
Coreference annotation is annotation of language corpora to indicate which expressions have been used to co-specify the same discourse
entity. When annotations of the same data are collected from two or more coders, the reliability of the data may need to be quantified.
Two obstacles have stood in the way of applying reliability metrics: incommensurate units across annotations, and lack of a convenient
representation of the coding values. Given N coders and M coding units, reliability is computed from an N-by-M matrix that records
the value assigned to unit Mj by coder Nk. The solution I present accommodates a wide range of coding choices for the annotator,
while preserving the same units across codings. As a consequence, it permits a straightforward application of reliability measurement. In
addition, in coreference annotation, disagreements can be complete or partial so I incorporate a distance metric to scale disagreements.
This method has also been applied to a quite distinct coding task, namely semantic annotation of summaries.

1. Introduction
Coreference annotation is annotation of language cor-

pora to indicate which expressions have been used to co-
specify the same discourse entity. No matter how precise
a language user might be, language interpretation is sub-
jective. A given expression can be referentially ambigu-
ous or vague. When annotations of the same data are col-
lected from two or more coders, the reliability of the data
should be quantified, particularly when creating a (set of)
gold standard(s). Two obstacles have stood in the way of
applying a reliability metric to coreference annotation.

1. Annotators can disagree about which expressions are
referential

2. Different coders can relate a distinct set of expressions
to a distinct number of entities

Given N coders and M coding units, reliability is computed
from an N-by-M matrix that records the value assigned to
unit Mj by coder Nk. Item 1 can be an obstacle to having
the same units across annotations; in addition, sometimes
annotators are allowed to choose which units to code. Item
2 can be an obstacle to comparing coding values across an-
notations. In fact, determining how to represent the value
assigned to each unit in coreference annotation is a problem
that has not been addressed before. The method I present
permits a straightforward application of reliability tests. In
addition, it is compatible with a reliability measure like
Krippendorff’s α (Krippendorff, 1980) that accommodates
distance metrics, depending on the type of scale coding val-
ues fall within (e.g., nominal vs. ordinal, discrete vs. con-
tinuous). I propose a provisional distance metric.

2. Problem
Coreference annotation plays a role in the preparation

of training corpora for applications from information ex-
traction systems (Kibble and van Deemter, 2000) to dia-
logue (Poesio, 1993). Regardless of the language (e.g.,
German (Kunz and Hansen-Schirra, 2003)), the modality
(e.g., spoken versus written), or the genre (e.g., newswire

text versus narrative), different forms can refer to the same
entity. (Whether to annotate zero references is a distinct
question that should be addressed by the coreference an-
notation guidelines or tools.) For the sake of simplicity,
the examples in this paper involve explicit noun phrases,
whether proper names, descriptive NPS, or pronouns.

Figure 1 illustrates a newswire text annotated by three
coders. Following the principles outlined in (Passonneau,
1994), I assume that all tokens to be annotated have been
identified in advance by the investigator, either through a
separate manual annotation process or automatically. I also
assume the task of each annotator is to indicate for each
token whether it refers to an existing discourse entity, in
which case it should be coindexed with all the expressions
that have already been indexed for this entity; or introduces
a new discourse entity, in which case it receives a new in-
dex; or does not refer, in which case it receives no index.

All three cases are illustrated in Table 1, which shows
how three annotators—RA.1, RA.2, RA.3—indexed the se-
lected NPs for coreference. Two NPs receive the same in-
dex if they corefer, thus all three coders assign the same in-
dex to token A (Gov. Price Daniel) and token D (Daniel).
Note that RA.1 and RA.3 assign a total of 4 indices whereas
RA.2 assigns 5, and in addition assigns the NIL value to
token J. Figure 2 represents the equivalence classes con-

Committee approval of [Gov. Price Daniel](A)’s
[abandoned property act](B) seemed certain Thurs-
day despite the protests of [Texas bankers](C).
[Daniel](D) personally led the fight for [the mea-
sure](E). Under committee rules, [it](F) went auto-
matically to a subcommittee for one week. But ques-
tions with which [committee members](G) taunted
[bankers](H) appearing as [witnesses](I) left little
doubt that [they](J) will recommend passage of
[it](K).

• The NPs of interest have been bracketed

• Each bracketed NP token receives a unique index.

Figure 1: A newsire text for coreference annotation



ID TOKEN RA.1 RA.2 RA.3
A Gov. Price Daniel 1 1 1
B abandoned property act 2 2 2
C Texas bankers 3 3 3
D Daniel 1 1 1
E the measure 2 2 2
F it 2 2 2
G committee members 4 4 4
H bankers 3 5 3
J witnesses 4 NIL 3
K they 4 4 3
L it 2 2 2

Table 1: Coreference annotation for a newswire text

stituted by the tokens that corefer. Each class represents a
single entity or index, and links the expressions that refer
to that entity, as well as the predications the expressions
occur in. Thus each class represents what the annotator
takes to have been asserted about the presumed discourse
entity. If annotators disagree on the member of an equiva-
lence class, this may reflect a different interpretation of the
discourse. From Table 1, it might seem that the referential
indices could be used as variable values, assuming they can
be normalized to a single set of symbols. RA.1 and RA.3
both use 4 distinct indices, making it possible to use these
coding values for each coding. However, a closer look sug-
gests that this would be a mistake.

A clear cut case of identical codings can be seen for
tokens A and D: all three coders assign A and D to the
same equivalence class. In the equivalence class represen-
tation we can see more clearly how RA.1 and RA.3 dis-
agree, despite their use of the same number of referential
indices. Only two of their equivalence classes are identi-
cal. In RA.1’s coding, tokens C and H corefer, and do not
corefer with any other tokens. In RA.3’s coding, tokens C,
H, J and K are assigned to the same equivalence class. If
we let 3 be the index for C in RA.1, what would it mean
for 3 to be the index for C in RA.2, given that coder RA.2
thinks there are two references to this entity compared with
one for RA.1? The two coders may have very different con-
ceptions of this entity. At the bottom of Figure 2 is the set
of equivalence classes created by the union of all the cod-
ings. I propose to use these classes as the values assigned to
each token in order to directly represent when two annota-
tors have assigned the same referential value to a linguistic
expression. This proposal thus results in ten values, instead
of the four or six in the individual codings.

The proposed representation also makes it easier to
compare disagreements. Where two codings disagree, the
penalty assigned to the disagreement will depend on how
different the equivalence classes are after removing the unit

RA.1 (N=4) {A, D} {B, E, F, L} {C, H} {G, J, K}
RA.2 (N=6) {A, D} {B, E, F, L} {C} {G, K} {H} {J}
RA.3 (N=4) {A, D} {B, E, F, L} {C, H, J, K} {G}

10 Coding Values: {A, D} {B, E, F, L} {C, H, J, K} {C,
H} {C} {G, J, K} {G, K} {G} {H} {J}

Figure 2: Equivalence Classes from Three Annotations

ID RA.1 RA.2 RA.3
A 1 1 1 1: {A, D}
B 2 2 2 2: {B, E, F, L}
C 4 5 3 3: {C, H, J, K}
D 1 1 1 4: {C, H}
E 2 2 2 5: {C}
F 2 2 2 6: {G, J, K}
G 6 7 8 7: {G, K}
H 4 9 3 8: {G}
J 6 10 3 9: {H}

K 6 7 3 10: {J}
L 2 2 2

Table 2: Canonical form for coreference annotation

being coded. Here, RA.1 and RA.2 assign different values
to token C: {C, H} versus {C, H, J, K}: {H} is a subset
of {H, J, K}. Intuitively, this difference in values should
be penalized less than if the resulting difference sets were
related by intersection rather than a subset relation, which
in turn should be penalized less than if they were disjoint.

3. Proposed Solution
3.1. Representation of the Coded Data

Although I propose to use the equivalence classes that
tokens are assigned to as the coding values, this representa-
tion can become unwieldy for large datasets. In this section,
I introduce a level of indirection to make the representation
more compact. I assign a unique index to each equivalence
class, analogous to the primary key in a relational database.
Table 2 shows the same data in this new representation that
uses indices to point to the equivalence classes.

In Table 2, the row labels are the units (NP tokens) being
coded; the column labels are the annotators; the cell con-
tents indicate the value that a specific annotator assigned to
a specific unit. In contrast to Table 1, this representation
shows much more clearly the distribution of agreements
and disagreements. The rows where each cell has the same
value correspond to the tokens where all coders assigned
the same values: the rows for tokens A, B, D, E, F, and L.
Similarly, patterns of disagreement are directly discernible.
Because no row that does not show perfect agreement has
less than 3 symbols, we see easily that there are no cases
where two coders agree and the third disagrees. Further, a
symbol that occurs in only one column, e.g., 3, indicates
an equivalence class assigned by only one of the annota-
tors (e.g., RA.3: {C, H, J, K}). What is missing from this
representation is how to quantify the difference in values
in a way that accords with the informal observation made
above about the case where one coding subsumed the other.
If we treat the cell values in Table 2 as nominal variables,
meaning the difference between 2 and 7 is the same as the
difference between 7 and 8, then the inter-annotator reli-
ability for the data in Table 2, using Krippendorff’s α, is
.45.1 The distance metric for nominal data is binary: all
values are either alike (delta=1) or not (delta=0). This is

1
α is equivalent to Cohen’s κ (Cohen, 1960), which is the ra-

tio of: the observed agreements less the agreements expected by
chance; to, 1 less the agreements expected by chance.



not the best way to compute reliability for coreference an-
notation because it fails to capture the intuition that some
equivalence classes are more alike than others.

3.2. Krippendorff’s α

I briefly present the formula for Krippendorff’s α,
mainly to illustrate where the distance metric figures in.
Where pDO

is the probability of observed disagreements,
and pDE

is the probability of expected disagreements:

α = 1 −
pDO

pDE

= 1 −
rm − 1

m − 1

∑
i

∑
b

∑
c>b nbi

nci
δbc

∑
b

∑
c nbncδbc

Given a table of the form in Table 2 with m coders and
r coding units, the agreement coefficient is given by sum-
ming disagreements within and across columns. For every
pair of values b and c, δbc is the distance between the val-
ues; nbi

is the number of times the value b occurred in row
i. In nominal scales, δ = 0 when b = c; otherwise δ = 1.
A full discussion is in Krippendorff (Krippendorff, 1980).

3.3. Distance Metrics for Sets
Now I will illustrate three cases of disagreement using

examples where a pair of coders assigned distinct referen-
tial values to the same NP tokens. In the first example, the
values are fairly similar: one is a subset of the other. Coder
RA.1 assigned to unit C a value represented in Table 2 as
4 whereas RA.3’s coding is represented as 3. These corre-
spond respectively to the sets {C, H, J, K} and {C, H}. In
my coding scheme, every token is necessarily a member of
the set that is its referential value, so to pose the question
of how different two values are, I first remove the current
token from the values assigned by the annotators; note that
if this step is not taken, all values across annotators for the
same unit will necessarily overlap. Here, in the case of the
RA.1 and RA.3 codings of C, the set differences yield {H,
J, K} and {H}. These two sets thus represent each anno-
tator’s decision about the co-specifying expressions for C:
RA.3’s coding of C subsumes RA.1’s.

In the second example, we find a different set relation.
Coder RA.1 assigned J a value encoded as 6, and RA.3 as-
signed 3. Removing J from the equivalence classes that are
the actual values yields {G, K} and {C, H, K}. Neither
set subsumes the other, but the set intersection is non-null:
{K}. In this case, the referential values of the two annota-
tions overlap, so they are not in as much disagreement as in
the case of disjoint difference sets. This third case is shown
for token K: RA.2 and RA.3 assigned the values 7 and 3,
whose difference sets are {G} and {C, H, J}.

Intuitively, identity, subsumption, intersection and dis-
junction are ordered from most agreement to least agree-
ment. To capture this intuition, I assign the δ values 0 for
identity, .33 for subsumption, .67 for intersection, and 1 for
disjunction. Applying this distance metric to the data in
Table 2 yields a much higher α of .74.

Let us reconsider the distribution we see in Table 2 with
respect to the two different values for α we get. If we look
only at the columns with perfect agreement, we see quickly
that 6 out of 11 columns exhibit this pattern, or roughly half
the table. On a metric that treats all disagreements equally,

Narr VRec VPrec α EQ κ

1 .96 .96 .49 .85
2 .90 .93 .64 .65
4 .94 .98 .74 .89
5 .95 .99 .64 .89
6 .94 .97 .63 .83
8 .91 .96 .54 .84
9 .88 .96 .46 .75

11 .92 .95 .47 .79
12 .90 .92 .52 .74
15 .93 .93 .51 .80
16 .97 .98 .51 .93
17 .95 .96 .64 .86
18 .93 .96 .61 .84
19 .96 .93 .67 .85

Table 3: Comparing Metrics

than about half the data involves disagreement, which cor-
responds to the case where we treat the values as nominal
data, and we get α = .45, or close to half. However, if
we treat the non-identical values within a column for a to-
ken as more or less different, depending on whether we find
subsumption, intersection or disjunction relations, then we
can capture the intuition that some disagreements should be
weighted more heavily than others.

4. Comparison with Other Coreference
Scoring Schemes

Because of the obstacles to applying a reliability metric
to coreference data, other investigators who have looked at
how to compare coreference annotations have used recall
and precision, notably (Vilain et al., 1995). As proposed
here, they use equivalence classes to represent a corefer-
ence encoding, but their approach is otherwise entirely dif-
ferent. They compute recall and precision directly over
equivalence classes. From a gold standard equivalence set
S and a response set R, they create a partition P . Recall
of a member of S (e.g., {C, H, J, K}) is its cardinality less
the cardinality of its partition by the response set (e.g., {{C,
H}, {J, K}), divided by one less than its cardinality (e.g.,
4−2

4−1
). Recall of the entire equivalence set is a sum of the

recall values for each member. Precision is computed by
switching the gold standard and response.

To compare the two metrics, I used coreference data
from a set of spoken monologues. As described in (Passon-
neau and Litman, 1997), we created a gold-standard coref-
erence coding of a set of transcribed monologues known
as the Pear stories (Chafe, 1980). In general, the method
in (Vilain et al., 1995) cannot be used unless a gold stan-
dard already exists, because recall and precision are not
symmetric. Unlike recall and precision, α takes into ac-
count the likelihood that two annotators will agree, given
the rate at which values occur in the data; as pointed out in
(Carletta, 1996) regarding percent agreement, it thus fac-
tors out chance agreement. I also report κ values computed
over equivalence classes as in (Passonneau, 1997).

Table 3 shows the results for the new annotator on
fourteen Pear narratives; it should be noted that our gold



standard enforces strict semantic distinctions regarding set
membership, and that there are varying sets of boys and
pears which introduce referential ambiguity for expres-
sions such as the boys and the pears. Given the sensitivity
of α to the distance metric used, there is no absolute α value
for high agreement, but Krippendorff (Krippendorff, 1980)
cites a variety of work indicating that values below .67 are
inconclusive, as in this data. Impressionistically, the dif-
ferences in α correlate with differences in coherence across
narratives; thus narrative 9, with the lowest α in the table,
and the second lowest κ, has many incomplete utterances
as shown in 19.2 (each line is an intonational phrase with a
”.” for a final fall, ”?” for a rise, else ”,”); in 19.3 the phrase
another girl introduces the only female character:

19.1 And he’s driving along the road,
19.2 {clears throat} and he comes up [pause] uh [pause] oh.
19.3 There’s another girl,
. . . . . .

It also has awkward constructions, as in the following three
intonational phrases meaning the hat belonging to the boy
who had the pears; it is the hat that is in the road:

27.1 The boy who had the pears’,
23.2 hat,
27.3 [pause] is way back on the road,

While precision for narrative 9 (.88) was lower than for
other narratives, recall was rather high (.96); it is not clear
how to interpret this. The overall distribution for recall and
precision exhibits little differentiation, with values ranging
from .88 to .97 for recall and .92 to .99 for precision.

The distance metric I use here is the result of a combina-
tion of a principled difference between partial versus com-
plete overlap in values, and experimentation. For example,
I applied several distance metrics proposed by readers of
earlier drafts of this paper that took into account the rel-
ative sizes of two equivalence classes being compared, but
the resulting κ values were surprisingly low. My hypothesis
is that what matters is not the relative frequency an entity is
referred to, hence the relative size of its equivalence class,
but what has been asserted about it. To arrive at a distance
metric that captures what is subjectively distinct about the
equivalence classes, it might be necessary to compare the
semantic properties associated with each equivalence class,
that is, the descriptive nouns, adjectives and predications
that specify the respective discourse entities.

5. Conclusion
In sum, disadvantages to recall and precision metrics

as applied directly to the type of equivalence class repre-
sentation illustrated in Figure 2 are several: they cannot be
applied unless a gold standard already exists; they cannot
apply to multiple coders; the rate at which different refer-
ential values occur is not represented; and finally, they do
not allow for distance metrics. The annotation method pro-
posed here addresses all these problems.

The proposal presented here applies to any coding
where annotators create sets from the units being coded,
and are free to create any number of sets. Although I know

of few coding tasks that fit this criterion, and I originally be-
gan this work for coreference annotation, I was motivated to
take it a step further for a recent semantic annotation task.
In (Passonneau and Nenkova, 2003), we faced an identi-
cal problem in a semantic annotation method for annotating
content units in summaries. To evaluate the interannotator
reliability of our Summary Content Units (SCUs), I applied
a slight variant of the approach presented here.
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