
Inducing Constraint-based Grammars from a Small Semantic Treebank

Smaranda Muresan
Department of Computer Science

Columbia University
New York, NY

smara@cs.columbia.edu

Tudor Muresan
Department of Computer Science
Technical Univ. of Cluj-Napoca

Cluj-Napoca, Romania
tmuresan@cs.utcluj.ro

Judith L. Klavans
Department of Computer Science

Columbia University
New York, NY

klavans@cs.columbia.edu

Abstract

We present a relational learning framework for grammar
induction that is able to learn meaning as well as syn-
tax. We introduce a type of constraint-based grammar,
lexicalized well-founded grammar (lwfg), and we prove
that it can always be learned from a small set of seman-
tically annotated examples, given a set of assumptions.
The semantic representation chosen allows us to learn
the constraints together with the grammar rules, as well
as an ontology-based semantic interpretation. We per-
formed a set of experiments showing that several frag-
ments of natural language can be covered by alwfg, and
that it is possible to choose the representative examples
heuristically, based on linguistic knowledge.

Introduction
In this paper we introduce a theoretic type of grammar,
called lexicalized well-founded grammar, which facilitates
the learning of both meaning and syntax, starting with sim-
ple rules in a bottom-up fashion. This approach to learn-
ing follows the argument that language acquisition is an in-
cremental process, in which simpler rules are acquired be-
fore complex ones (Pinker 1989). Moreover, using semantic
information during acquisition can facilitate learning only
from positive data for some classes of grammars (Oateset
al. 2003). Grammar induction is achieved using a relational
learning framework based on a set ofrepresentative exam-
ples (Muresan, Muresan, & Potolea 2002). There are two
key features of this set: 1) the examples are ordered, allow-
ing the bottom-up learning of the grammar; and 2) the size
of the set is small, which is essential because large semanti-
cally annotated treebanks are hard to build.

Learning meaning as well as syntax from a small number
of training examples is useful for rapid text-to-knowledge
acquisition, replacing the process of rewriting grammars by
hand for each specific domain. This is especially suited
for domains that are not well-covered by existing syntac-
tic and semantic parsers, such as the medical domain. The
framework is currently applied to building a terminological
knowledge base in that domain. Another application for this
framework is a tool for linguists, who will be able to build
and test their own models of language learning.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In order to model the lexicalized well-founded grammar,
we propose a constraint-based grammar formalism which
augments a context free grammar with: 1) a semantic repre-
sentation, calledsemantic molecule, and 2) two constraints:
one for semantic composition and one for ontological vali-
dation. This constraint-based grammar allows an interleaved
treatment of syntax and semantics. Thesemantic molecule
encodes both the semantic representation of a natural lan-
guage expression (given as a flat representation) and the in-
formation necessary for semantic composition (given as a
one level feature structure). This reduced representation,
while expressive enough to model syntactic/semantic as-
pects of natural language, is simple enough to be effectively
used in our relational learning framework. Given this, our
grammar formalism allows both the grammar and the com-
positionality constraints to be learned. Another feature of
our formalism is that ontological constraints are applied at
the rule level, so that the semantic interpretation is limited
not by the grammar, as in general linguistic frameworks,
but by the complexity of the domain ontology. Thus, we
have an ontology-based semantic interpretation of natural
language expressions, which refrains from full logical anal-
ysis of meaning. Our framework is suitable for domain spe-
cific texts that have a domain ontology as semantic model.
This is applicable for domains with large ontologies (e.g. the
medical domain). The ontology will guide the grammar ac-
quisition. This follows the argument that, during language
acquisition, in order for syntax to be acquired properly, se-
mantic distinctions and conceptual information should be
known (Pinker 1989).

The paper is organized as follows. First, we introduce
the theoretical concepts oflexicalized well-founded gram-
marandrepresentative examples, as well as the assumptions
we consider for the grammar induction problem. Second, we
present the constraint-based grammar formalism that mod-
els the lexicalized well-founded grammar, describing these-
mantic moleculeand the constraint rules. Next we describe
our grammar induction algorithm together with a theorem
stating that given the assumptions mentioned above, the in-
duction of a lexicalized well-founded grammar, from a small
unambiguous set of representative examples, can always be
done. We conclude with a set of experiments and results of
our grammar induction framework.

A1⇒ Adj
N1⇒ Noun
N1⇒ A1 N1
N2⇒ Det N1
N2⇒ N2 Rc1
V 1⇒ Tv
Rc1⇒ Rpro V 1 N2
Rc1⇒ . . .

PG Level Nonterminal sets RG

1 {Adj, Noun, Tv, Det, Rpro}
A1⇒ Adj A1 � Adj
N1⇒ Noun 2 {A1, N1, V 1} N1 � Noun
V 1⇒ Tv V 1 � Tv
N1⇒ A1 N1 N1 � A1, N1 � N1
N2⇒ Det N1 3 {N2} N2 � Det, N2 � N1
Rc1⇒ Rpro V 1 N2 4 {Rc1} Rc1 � Rpro,Rc1 � V 1, Rc1 � N2
N2⇒ N2Rc1 N2 � N2

(a) (b)

Figure 1: (a) Grammar,G; (b) Iterative steps for the WellFoundedGrammar(G) algorithm

Theoretical Concepts
A context-free grammar is a 4-tupleG = 〈N, Σ, PG, S〉
whereN is an alphabet of nonterminal symbols,Σ is an
alphabet of terminal symbols withN ∩ Σ = ∅, PG is a
set of production rules, where every production is a pair
(A, β) with A ∈ N and β ∈ {N ∪ Σ}∗ (also denoted
A ⇒ β), andS ∈ N is the start nonterminal symbol.
Let’s consider the ground derivation ruleβ ⇒∗ w with
w ∈ Σ∗ such that: A⇒w

A⇒∗w , β=B1...Bn Bi⇒∗wi, i=1,...,n
β⇒∗w1...wn

,

and A⇒β β⇒∗w
A⇒∗w . We haveA ⇒ β ⇒∗ w. The lan-

guage generated by the grammarG is L(G) = {w ∈
Σ∗ : S ⇒∗ w} and the set of substrings generated byG
is Ls(G) = {w ∈ Σ∗ : A ∈ N, A ⇒∗ w}. The set of sub-
strings generated by the ruleA ⇒ β is Ls(A ⇒ β) = {w ∈
Σ∗ : (A ⇒ β) ∈ PG, A ⇒ β ⇒∗ w}. We consider that
the set of nonterminalsN is a well-founded set based on the
partial ordering relation� among the nonterminals. Thus
∀A ∈ N and∀t ∈ Σ, we haveS � A � t, where we used
the same notation for the reflexive, transitive closure of�.

Definition 1. A rule (A ⇒ β) ∈ PG is called anordered
rule, if ∀(B ∈ N) ⊆ β : A � B.

Definition 2. A Context Free Grammar,G, is called awell-
founded grammar (wfg)if:

1. The set of nonterminal symbols is well founded.
2. Every nonterminal symbol is a left-hand side in at least

one ordered non-recursive rule.
3. The empty stringε cannot be derived from any nontermi-

nal symbol.

In a well-founded grammar, there are three types of rules
in which a nonterminal can appear: ordered non-recursive
rules, ordered recursive rules or non-ordered rules. The or-
dered non-recursive rules ensure a termination condition for
the ground derivation, essential to the inductive process.

Proposition 1. Every context-free grammar can be effi-
ciently tested to see whether it is a well-founded grammar,
by Algorithm 1. This algorithm assigns a levell to every
nonterminalA, A ∈ Nl, and returns the setRG of partial
ordering relation among the nonterminals. The efficiency of
the algorithm is O(|PG|2 ∗ |β|).
Lemma 1. A context-free grammarG = 〈N, Σ, PG, S〉 is a
well-founded grammarG = 〈N, Σ, PG, S, RG〉 iff RG 6= ∅
is returned by Algorithm 1.

Algorithm 1: Well FoundedGrammar(G)
RG ← ∅, N0 ← Σ, P ← PG, V ← ∅, l← 0
while P 6= ∅ andNl 6= ∅ do

V ← V ∪Nl, l← l + 1, Nl ← ∅
foreach (A⇒ β) ∈ P andβ ⊆ V do

P ← P − {A⇒ β}
if A 6∈ V then

Nl ← Nl ∪ {A}
foreach (B ∈ N) ⊆ β do

RG ← RG ∪ {A � B}
else

foreach (B ∈ N) ⊆ β and¬(A � B or B �
A) do

if A ∈ Ni andB ∈ Nj andi ≥ j then
RG ← RG ∪ {A � B}

else
RG ← RG ∪ {B � A}

if P = ∅ andε 6∈ Σ then returnRG elsereturn∅

Example. Figure 1 gives an example of a partial gram-
mar for noun phrases with relative clauses and the itera-
tive steps of Algorithm 1. As can be seen, in this grammar,
A1 → Adj, N1 → Noun, N2 → Det N1 are examples
of ordered non-recursive rules;N1 → A1 N1 is an exam-
ple of an ordered recursive rule, whileN2 → N2 Rc1 is
a non-ordered rule, sinceRc1 is a bigger nonterminal than
N2, i.e. Rc1 � N2 (see Figure 1(b)). We useRc to de-
note relative clauses. The last rule means that there can be
other alternatives for relative clauses (e.g. reduced relative
clauses).

A well-founded grammar,G, induces a partial ordering
relation on any generated sublanguageE ⊆ L(G). For
each stringe ∈ E (S ⇒∗ e) and for each substringei of
e, we choose (if it exists) the smallest nonterminalAi, so
thatAi ⇒∗ ei. In other terms, ifS is the root of the syntac-
tic tree for stringe, Ai is the root of the subtree ofei. LetCi

be the biggest nonterminal of the subtree rooted atAi (for
ordered non-recursive rules:Ci ≺ Ai, for ordered recursive
rules: Ci = Ai, andCi � Ai otherwise). The equivalence
class of substringei is (Ai) for an ordered non-recursive
rule, (Ai

r) for an ordered recursive rule, and (Ci, Ai) for
a non-ordered rule, respectively. A lexicographic ordering

N2

N2

solved

Tv

N2

Det N1

quizthe

V1

Rc1

Noun

the

Det

Adj

A1

smart

N1

Noun

student

N1

Rpro

who

ER Eq. class Min-Rule∈ Pe0

smart (A1) A1 ⇒ Adj
student (N1) N1 ⇒ Noun
solved (V1) V1 ⇒ Tv
smart student (N1

r) N1 ⇒ A1 N1

the quiz (N2) N2 ⇒ Det N1

who solved the quiz (Rc1) Rc1 ⇒ Rpro V1 N2

the student who solved the quiz(Rc1, N2) N2 ⇒ N2 Rc1

(a) (b)

Figure 2: (a) Parse tree ; (b) Results of Algorithm 3

is assumed. Thus the equivalence classes introduce a partial
ordering relation among the substrings of the sublanguage
E: ei � ej iff (Ci, Ai)�lex(Cj , Aj).

Algorithm 2, given below, returns the topologically sorted
setEs of substringsei based on the partial ordering relation
and the substring length|ei|: em ≥ ... ≥ ei ≥ ... ≥ e0. The
algorithm is polynomial in|E| and |e|. Find Min Rule
and Max Nonterminal are efficiently performed by a
bottom-up active chart parser (Kay 1973). This parser also
computes the set of rules,Pe0 , from which the substringe0

can be ground derived (see Algorithm 3).

Algorithm 2: SubstringEquivalenceClasses(E, G)
foreach j do

Eq Class(j)← ∅
foreach e ∈ E do

foreach ei ⊆ e do
Find Min RuleAi ⇒ β ⇒∗ ei

if (Ai ⇒ β) 6= ∅ then
Max Nonterminal(Ai ⇒ β, Ci)
if Ai � Ci andCi 6� Ai then j ← (Ai)
else ifAi � Ci then j ← (Ai

r)
elsej ← (Ci, Ai)

Eq Class(j)← Eq Class(j) ∪ {ei}
TopologicalSort(EqClass(j), Es)
returnEs

Definition 3. We callrepresentative example set, the setER

obtained through Algorithm 3.

Algorithm 3: Find RepresentativeExample(E, G)
Es ← SubstringEquivalenceClasses(E, G)
ER ← ∅ , PGr ← ∅
repeat

e0 ← Extract Min(Es)
Pe0 ← {(A⇒ β) ∈ PG : e0 ∈ Ls(A⇒ β)}
PGr ← PGr ∪ Pe0

Es ← Es − Ls(Gr)
ER ← ER ∪ {e0}

until Es = ∅
return (ER, PGr)

Theorem 1 (Representative Examples Theorem).Given a
well-founded grammarG, a subsetE of L(G), and a topo-

logically sorted setEs (generated using Algorithm 2), Al-
gorithm 3 generates in polynomial time the representative
example set,ER, together with the associated grammarGr,
such thatE ⊆ L(Gr) ⊆ L(G) and|ER| ≤ |PGr |.
Proof. Given the grammarG, ∀e ∈ E, we haveS ⇒∗ e.
Algorithm 2 assures that for every substringei of e, which
has a syntactic subtree rooted inAi belonging to the syntac-
tic tree ofe rooted inS, we haveei ∈ Es. But Algorithm
3 assures that every time a substringei is removed from
the setEs, the associated rulesAi ⇒ β are added to the
grammar setPGr . ThusGr contains all the rules used to
obtain the syntactic tree rooted inS. In other words we have
S ⇒∗ e in grammarGr, for eachS ⇒∗ e in grammarG.
ThusE ⊆ L(Gr) ⊆ L(G). It is straightforward that the al-
gorithm is polynomial in|E| and|e|, and|ER| ≤ |PGr |.

The above theorem states that if a well-founded grammar
G covers a set of representative examplesER, the grammar
covers the sublanguageE, and the size ofER is small.

Example. Figure 2(b) shows the results of Algorithm 3
given the sublanguage of the noun phrase “the smart stu-
dent who solved the quiz” and the grammar in Figure 1(a),
while Figure 2(a) shows the corresponding parse tree.

Both in formal and linguistic theories of grammars, lex-
icalization is an important factor. Lexicalized grammars
are finitely ambiguous and thus decidable (Joshi & Sch-
abes 1997). In our framework, we considerlexicalized well-
founded grammars, where the stringw is paired with a
semantic representation, calledsemantic moleculeand de-
notedw′. The semantic molecule encodes both the semantic
representation of the string, given as a flat representation,
and the information connected to the semantic head, neces-
sary for composition.

Definition 4. Let G be a well-founded grammar. We call
G a lexicalized well-founded grammarif all substringsw,
derived from a nonterminalA have the same category of
their semantic moleculesw′. That is, there exists a map-
ping from the nonterminal setN to the category setC,
c : N → C, such that(w1, w1′), (w2, w2′) ∈ Ls(A) →
h1.cat = h2.cat = c(A) (see the next section for the defini-
tion of semantic molecule).

For these grammars, the ground deriva-
tion rule becomes β ⇒∗ (w, w′), such that:

A⇒(w,w′)
A⇒∗(w,w′) , β=B1...Bn Bi⇒∗(wi,wi′), i=1,...,n

β⇒∗(w1...wn,w1′◦···◦wn′) , and
A⇒β β⇒∗(w,w′)

A⇒∗(w,w′) , where w = w1 . . . wn is the con-
catenation of strings, andw′ = w1′ ◦ · · · ◦ wn′ is the
composition of semantic molecules. The semantic molecule
composition requires the enhancement of grammar rules
with compositional semantic constraints.

Grammar Induction Problem. GivenE ⊆ L(G) of an un-
known lexicalized well-founded grammarG, together with
its set of representative examplesER, ER ⊆ Es, learn a
grammarGr such thatE ⊆ L(Gr) ∩ L(G).

Considering the following three assumptions, we prove
that the induction can always be done (see Theorem 2).

Assumption 1. We assume that the grammarG is not re-
dundant, i.e. it does not contain equivalent nonterminals
or rules: Ai 6= Aj iff Ls(Ai) 6= Ls(Aj), and
A ⇒ βi 6= A ⇒ βj iff Ls(A ⇒ βi) 6= Ls(A ⇒ βj)
respectively.

Assumption 2. We assume that the subset E is unambigu-
ous1. In this case, in Algorithm 3, we havePe0 = {A0 ⇒
β} ∪ chr(A0), where A0 ⇒ β is a minimal rule and
chr(A0) = {Ak ⇒ Ak−1, . . . , A1 ⇒ A0}, is a chain of
rules ended inA0 from which the stringe0 can be ground
derived (Ak � Ak−1 � · · · � A0). We call chs(A0) =
{A0, . . . , Ak} the chain set. From Assumption 1 we have
Ls(A0) ⊂ Ls(A1) ⊂ · · · ⊂ Ls(Ak).

Lemma 2. Let G be an unambiguous, nonredundant lex-
icalized well-founded grammar,G, and A0 ⇒ β a mini-
mal rule resulted from Algorithm 3. Ifβ′ is formed from
β by substituting a nonterminalBj with a nonterminalB′j
of the same chain,Bj , B′j ∈ chs(j), andB′j � Bj then
Ls(A0 ⇒ β′) ⊇ Ls(A0 ⇒ β).

Assumption 3. We assume that the subset E is rich enough,
so that the ground derivation ofEs covers all grammar rules.
Thus for each equivalence class(Ci, Ai), classes(Ai) and
(Ai

r) are also generated. Since(Ai) � (Ai
r) � (Ci, Ai),

for each nonterminalA the learning algorithm will first learn
the ordered non-recursive rules, then the ordered recursive
rules and last the non-ordered rules, unless the rules belong
to the chain of ruleschr(A) (see Assumption 2 and the proof
of Theorem 2). In the absence of this assumption, the learn-
ing machinery might need theory revision steps.

Constraint-Based Grammar
The grammar is based on the Definite Clause Grammar
(DCG) formalism (Pereira & Warren 1980). In our model
we augment the nonterminals with a semantic representa-
tion, calledsemantic molecule, allowing an interleaved treat-
ment of syntax and semantics, and we add two constraints
to the grammar rule: one for semantic compositionality and
one for ontological validation.

1Unambiguity is provided by the lwfg constraints (even if syn-
tactically the sublanguage might be ambiguous). For learning, the
given annotated examples are disambiguated.

Semantic Molecule
The semantic representation we adopt in this work
bares some similarities with Minimal Recursion Semantics
(Copestake, Lascarides, & Flickinger 2001). We denote by
w′ = h ./ b the semantic molecule of a stringw, whereh is
the head acting as a valence for molecule composition, and
b is the body acting as a flat semantic representation of the
stringw.

The valence,h, of the molecule includes all the neces-
sary information for molecule linking (i.e., semantic com-
position) in the form of a one level feature structure (i.e.,
feature values are atomic). In Figure 3 we present the se-
mantic molecules for one adjective and one noun. The heads
of these two molecules are given as attribute-value matrices
(AVMs). Let Ah be the set of attributes used in the head,
h, of the semantic moleculew′ = h ./ b. An element of
h has the formh.a = val, wherea ∈ Ah andval is either
a constant or a logical variable. The set of logical variables
of the head,h, is denoted byvar(h). For example, Figure
(3a) shows the semantic molecule for the adjective “smart”
whose head,h, has three attributes:cat, which is the syntac-
tic category,head, which is the index of the head, andmod
which is the index of the modified noun.

The body,b, of the molecule is a Canonical Logical Form
(CLF) using as semantic primitives a set of atomic pred-
icates (APs) based on the traditional concept of attribute-
value pair:

〈CLF〉 −→ 〈AP〉(1)

| 〈CLF〉 〈lop〉 〈CLF〉
〈AP〉 −→ 〈concept〉 . 〈attr〉= 〈concept〉

The lop is the general logical operator, whileconceptcor-
respond to a frame in an ontology andattr is a slot of
the frame, encoding either a property or a relation. This
frame-based representation is motivated by our ontology-
based semantic interpretation approach, which has recently
been considered, due especially to the growing interest for
the Semantic Web (Jensen & Nilsson 2003). For example,
Figure (3a) shows the body of the semantic molecule for the
adjective “smart”. It has two predicates:X1.isa = smart,
encoding the lexical sign andX2.Has prop = X1, mean-
ing that the adjectiveX1 is a value of a slot in a frame corre-
sponding to the noun denoted byX2. The variableHas prop
will be instantiated after the interpretation on the ontology.

For the composition of several semantic molecules, if◦ is
the semantic composition operator, we have:
(2) w′ = h ./ b = (w1 . . . wn)′ = w1′ ◦ · · · ◦ wn′

= (h1 ./ b1) ◦ · · · ◦ (hn ./ bn)
= h1 ◦ · · · ◦ hn ./ b1, . . . , bn

Thus the composition affects only the molecule head,
while the body parts are connected through the conjunctive
connector. We denote byΦcomp(h, h1, ..., hn) the composi-
tional semantic constraints, which are added at the grammar
rule level. They are encoded as a system of equations (Eq
(4)) given below.

(4a)

{
h.a = constant

h.a = hi.ai
where

1 ≤i ≤ n

a ∈ Ah, ai ∈ Ahi

(3a)
(smart/adj)′ = h1 ./ b1

=

 cat adj
head X1

mod X2

 ./ [X1.isa = smart,X2.Has prop = X1]

where h1.cat = adj, h1.head = X1, h1.mod = X2

Ah1 = {cat, head, mod},
var(h1) = {X1, X2},
var(b1) = {X1, X2, Has prop}

(3b) (student/n)′ = h2 ./ b2

=

[
cat n

head X3

]
./ [X3.isa = student]

where h2.cat = n, h2.head = X3

Ah2 = {cat, head}
var(h2) = {X3}, var(b2) = {X3}

(3c)
(smart student)′ = h ./ b = (smart)′ ◦ (student)′ = h1 ./ b1 ◦ h2 ./ b2 = h1 ◦ h2 ./ b1, b2 %(from (2))

=

[
cat n

head X2

]
./ [X1.isa = smart,X2.Has prop = X1, X2.isa = student] %((3a), (3b), Φcomp(h, h1, h2))

Φcomp(h, h1, h2) = {h.cat = h2.cat, h.head = h1.mod, h1.cat = adj, h1.mod = h2.head, h2.cat = n} %(from (4a), and (4b))

Figure 3: Examples of semantic molecules and their composition

(4b)

{
hi.ai = constant

hi.ai = hj.aj
where

1 ≤ i, j ≤ n, i 6= j

ai ∈ Ahi , aj ∈ Ahj

In Figure (3c), we give an example of semantic composi-
tion for the noun phrase “smart student”, obtained by com-
posing the semantic molecules of the adjective “smart” (3a)
and the noun “student” (3b). The compositional semantic
constraints,Φcomp(h, h1, h2), are given as well. As a conse-
quence of variable bindings due to compositional constraints
at the head level, some variables from the bodies of the se-
mantic molecules (i.e.var(b), var(bi)) become bound as
well, with var(h) ⊆ var(b) for each semantic molecule.

Grammar Rules
A grammar ruleA ⇒ B1, . . . , Bn ⇒∗ (w, w′) is encoded
as a constraint rule, as shown below, where the nontermi-
nals are augmented with an extra-argument, representing the
semantic molecule, and two constraints are added: one for
semantic composition,Φcomp, and one for ontological val-
idation, Φonto. In our extended DCG formalism both the
substringswi and the canonical logical forms,bi are repre-
sented as difference lists.

A(w, h ./ b) ⇒ B1(w1, h1 ./ b1), ..., Bn(wn, hn ./ bn) :
w = w1...wn, b = b1, ..., bn,
Φcomp(h, h1, ..., hn), Φonto(b)

The ontological constraints,Φonto present at the gram-
mar rule level, render only the ontology responsible for
the semantic interpretation, not the grammar.Φonto is
based on a meta-interpreter withfreeze (Saraswat 1989;
Muresan, Potolea, & Muresan 1998) and is applied only to
the body of the semantic molecule. The meta-interpreter as-
sures that the atomic predicates, APs, (see Eq (1)), of the
molecule body are not evaluated (i.e., they are postponed)
till at least one variable becomes instantiated. This tech-
nique will allow a nondeterministic efficient search in the

ontology. Moreover, the meta-interpreter search strategy is
independent of the actual representation of the ontology, and
therefore behaves as an interface to any ontology at the level
of atomic predicates. The ontology-based interpretation is
not done during the composition operation, but afterwards.
Thus, for example, the head of the noun phrase “smart stu-
dent” ((3c)) does not need to store the slotHas prop, which
allows us to use flat feature structures for representing the
head of the semantic molecule.

From the description of bothΦcomp andΦonto, it can be
seen that the metaphor ofsemantic moleculeis essential to
model and efficiently compute these two constraints asso-
ciated with the grammar rules. The head of the semantic
molecule is used during semantic composition, while the
body is evaluated on the ontology.

In association with this constraint-based grammar, a re-
versible robust parser is built, based on the bottom-up ac-
tive chart parsing method (Kay 1973). The parser is used
both during parsing/generation of natural language expres-
sions after the grammar and compositional constraints are
learned, and during grammar and constraints learning.

In the first case, the grammarGr and the compositional
semantic constraints,Φcomp, are known. For direct parsing,
the stringw is given. Its substrings,wi and thus their seman-
tic molecules,hi ./ bi result through robust parsing, while
the string semantic moleculeh ./ b results throughΦcomp.
In reverse parsing (generation) the semantics of the string
w is given, i.eb. By robust parsingbi, and thushi andwi

result, whileh is obtain byΦcomp at the same time withw.
In the second case (i.e., during learning), the stringw and

its semantic moleculeh ./ b are given. After robust parsing
the substringswi and thus their semantic moleculeshi ./
bi are obtained, whileΦcomp is learned based on them. If
syntactic information for agreement is present, more than
one positive example and also negative examples would be
needed, to control the generalization/specialization process,
for eachΦcomp learned .

Induction Algorithm
The learning algorithm for grammar induction is based on
our previous work (Muresan, Muresan, & Potolea 2002)
and belongs to the class of Inductive Logic Programming
(ILP) methods based on Inverse Entailment (Muggleton
1995). Unlike existing relational learning methods that use
randomly-selected examples and for which the class of ef-
ficiently learnable rules is limited (Cohen 1995), our algo-
rithm learns from an ordered set of representative examples,
allowing a polynomial efficiency for more complex rules.
The size of this set is small and thus our algorithm is able to
learn when no large annotated treebanks can be easily built.
In this cases, statistical methods, even if they are able to
learn from structured data (Gartner, Lloyd, & Flach 2002),
needed for semantics, are of reduced applicability due to the
large number of training examples required for learning.

ILP methods have the ability to use background knowl-
edge during learning. For our task, we use background
knowledge,K, that contains: 1) the previously learned
grammar, 2) the previously learned semantic compositional-
ity constraints, 3) the ontology, and 4) the lexicon that spec-
ifies for each word the specific syntactic knowledge, includ-
ing its preterminal (POS) as well as the semantic information
given as semantic molecule.

Algorithm 4 describes the constraint-based grammar in-
duction.

Algorithm 4: ConstraintGrammarInduction(ER, E, K);
whereMSCR=Most Specific Constraint Rule

begin
PGr ← ∅
repeat

ei ← ExtractMin(ER)
1 MSCR(ei)← RobustParse(Gr, ei, K)
2 Ai ⇒ β ← Generalize(MSCR(ei), E, K)

PGr ← PGr ∪ {Ai ⇒ β}
until ER = ∅
returnPGr

end

For each representative exampleei ∈ ER, a cover set al-
gorithm performs two steps: 1) the most specific constraint
rule generation,MSCR(ei), and 2) the generation of the
final hypothesis rule,Ai ⇒ β. The process continues itera-
tively until all the representative examples are covered.

The learning engine uses both annotated and unannotated
sets of examples at different stages. First, the cover set al-
gorithm is based only on the representative set,ER, that
is semantically annotated (pairs of strings and their seman-
tic molecules). During the generation of the final hypothe-
sis, weakly annotated (only chunked), and optionally unan-
notated examples are used for the performance criteria in
choosing the best rule. We denote these positive examples
asE+=Es. Also negative examples,E− are used, if needed,
given as weakly annotated data.

For the most specific rule generation (step 1), a reversible
bottom-up active chart parser is used to derive all triples
〈substring, semantic molecule, grammar nonterminal〉 from

the current positive example,ei, and the current grammar,
Gr, present in the background knowledge. This set of triples
will allow the generation of the most specific constraint rule
of the following form:

Ae(w, h ./ b) ⇒ B1(w1, h1 ./ b1), ..., Bn(wn, hn ./ bn) :
w = w1...wn, b = b1, ..., bn,
Φcompe(h, h1, ..., hn), Φonto(b)

where:

• Ae is a new nonterminal, having the syntactic category
specified in the semantic representation of the positive ex-
ample,ei (c(Ae) = h.cat).

• Bj are nonterminals that belong to the already existing
grammar given in the background knowledge,K, and that
are parsed by the robust parser.

• Φcompe(h, h1, ..., hn) is the semantic compositional con-
straint learned also in step 1.

• Φonto(b) is the constraint which validates the canonical
logical form on the ontology.

This most specific constraint rule,MSCR(ei), added to
the existing grammar covers the current representative ex-
ample.MSCR(ei) has the following properties:

p1 The semantic moleculehj ./ bj is generalized such that
for each maximum nonterminalB′j ∈ chs(j), no nega-
tive exampleE− is verified byMSCR′(ei).

p2 For eachhj ./ bj verifying p1, Bj is the minimum non-
terminal of the chain setchs(j), so thatMSCR(ei) cov-
ers the same number of positive examplesE+ as does
MSCR′(ei) atp1.

The most specific rule generalization (step 2) is an iter-
ative process. A set of candidate hypotheses is generated
based on:MSCR(ei), background knowledgeK, and a set
of heuristics. From this set, the best candidate hypothesis
is chosen as the final hypothesis,Ai ⇒ β, using the fol-
lowing performance criteria: it verifies the maximum num-
ber of positive examples,E+; it does not verify any of the
negative examples,E−; and for the same performance the
most specific hypothesis is chosen. For the latter, the follow-
ing priorities are considered: non-recursive rule (ordered or
nonordered) ; recursive rule; or a pair of one recursive and
one non-recursive rules. For the same priority, the rule with
minimum headAj is considered as the most specific. The
set of heuristics is:

h1 The new hypothesis is justMSCR(ei) : Ai ⇒
B1, . . . , Bn, where the new nonterminalAe = Ai and
∀Aj , c(Aj) = c(Ai) : j < i.

h2 The new hypothesis is generated fromMSCR(ei) by
substitutingAe with Aj : Aj ⇒ B1, . . . , Bn, ∀Aj , j <
i, c(Aj) = c(Ai).

h3 The new hypothesis is generated as a pair
Ai ⇒ Bj ; Ai ⇒ B1, . . . , Bj−1, Ai, Bj+1, . . . , Bn,
∀Bj , c(Bj) = c(Ae).

(smart, [cat=a, head=A, mod=N]./ [A.isa=smart, N.Pn=A])
(student, [cat=n, head=N]./ [N.isa=student])
(solved, [cat=v, head=V, agt=Ag, obj=Ob]./ [V.isa=solve, V.agt=Ag, V.obj=Ob])
(smart # student, [cat=n, head=N]./ [A.isa=smart, N.Pn=A, N.isa=student])
(the # quiz, [cat=n, head=N]./ [N.det=the, N.isa=quiz])
(who # solved # the quiz, [cat=rc, head=Ag]./ [Ag.isa=who, V.isa=solve, V.agt=Ag, V.obj=Ob, Ob.det=the, Ob.isa=quiz])
(the student # who solved the quiz, [cat=n,head=N]./ [N.det=the, N.isa=student,

N.isa=who, V.isa=solve, V.agt=N, V.obj=Ob, Ob.det=the, Ob.isa=quiz])

(a) Representative Examples

A1(h ./ b)⇒ Adj(h1 ./ b1) : Phi comp(1,h,h1), Phionto(b)
N1(h./ b)⇒ Noun(h1./ b1) : Phi comp(2,h,h1), Phionto(b)
V1(h ./ b)⇒ Tv(h1./ b1) : Phi comp(3,h,h1), Phionto(b)
N1(h./ b)⇒ Adj(h1 ./ b1), N1(h2./ b2) : Phi comp(4,h,h1,h2), Phionto(b)
N2(h./ b)⇒ Det(h1./ b1), N1(h2./ b2) : Phi comp(5,h,h1,h2), Phionto(b)
Rc1(h./ b)⇒ Rpro(h1./ b1), Tv(h2./ b2), N2(h3./ b3) : Phi comp(6,h,h1,h2,h3), Phionto(b)
N2(h./ b)⇒ N2(h1./ b1), Rc1(h2./ b2) : Phi comp(7,h,h1,h2), Phionto(b)

(b) Learned Grammar

Figure 4: Learning Example for noun phrases with determiners, adjectival modifiers and relative clauses

The final hypothesis,Ai ⇒ β and the semantic constraint
are added to the background knowledge,K, and the cover
set algorithm continues iteratively until all the representa-
tive examples are considered. The overgeneralization can be
controlled byE−, but further probabilistic refinement can
reduce the need of negative examples.

The algorithm is linear on the length of the learned hy-
pothesis and has the complexity O(|ER| ∗ |β| ∗ |E| ∗ |e|3).

Theorem 2 (The lwfg Induction Theorem). Given a lexi-
calized well-founded grammar,G, an unambiguous sublan-
guageE ⊆ L(G), and a semantic annotated setER ⊆
Es of representative examples, together with the associ-
ated grammarGr, computed with Algorithm 3, the Con-
straint GrammarInduction algorithm generates a lwfg,G′r
such thatE ⊆ L(G′r) ∩ L(Gr).

Proof. We prove by induction thatLs(G′r) ⊇ Ls(Gr),
given thatE− ∩ Ls(Gr) = ∅ and the Assumptions 1,
2, and 3 hold true. We assume that the above property
holds for the firsti representative examples,e0, . . . ei, that
is Ls(G′i) ⊇ Ls(Gi), whereG′i is the learned partial
grammar, andGi is the partial grammar associated with
ei by Algorithm 3. The next representative exampleei+1

has associated inGr, the Min-ruleAi+1 ⇒ B1, . . . , Bn

and the chainchr(Ai+1). This chain contains rules with
heads greater thanAi+1 that are still not learned, while the
rules with the headBj are already learned. If this rule
is a non-recursive one, or it is not a first recursive rule
for the nonterminalAi+1, the robust parser can compute
MSCR(ei) : Ae ⇒ B′1, . . . , B′n, with B′j � Bj and
c(Ae) = c(Ai+1) satisfying propertiesp1 andp2. If Min-
rule is non-recursive,MSCR can be generalized by heuris-
ticsh1 orh2, while if it is recursive,MSCR can be general-
ized by the heuristich2. If the above Min-rule is the first rule
for the nonterminalAi+1 and it is recursive then: Ai+1 ⇒
B1, . . . , Bj−1, Ai+1, Bj+1, . . . , Bn and Gr contains also
the ruleAi+1 ⇒ Bj . In this case the robust parser computes
MSCR(ei) : Ae ⇒ B′1, . . . , B′j−1, Bj , B′j+1, . . . , B′n,

which can be generalized by the heuristicsh3, so that the
rule Ai+1 ⇒ Bj , belonging to the chainchr(Bj) is also
learned. From the performance criteria and Lemma 2 it
can be proved that the property of two monotonically grow-
ing grammars is preserved in the stepi + 1: Ls(G′i+1) ⊇
Ls(Gi+1), and thusLs(G′r) ⊇ Ls(Gr) holds by induction.
But Ls(Gr) ⊇ Es and thusEs ⊆ Ls(G′r) ∩ Ls(Gr) and
the theorem is proved as consequence.

Proposition 2. If Assumptions 1, 2 and 3 hold and:

(ER, PGr)← Find Representative Examples(E,G)

PG′r ← Constraint Grammar Induction(ER, E,K)

(E′′R, PG′′r)← Find Representative Examples(E,G′r)
we have: E′′R ≡ ER and thusLs(G′r) = Ls(G′′r).

This means that under the given assumptions, the learned
grammar preserves the representative examples,ER. This
property is useful when the acquired grammar is unknown,
and the representative examples were chosen heuristically,
based on linguistic knowledge. So we can verify if the sub-
languageE is rich enough and if the setER was well chosen.

Experiments
We conducted a set of experiments to validate different as-
pects of the induction of ourlexicalized well-founded gram-
mar, as applied to a small fragment of natural language.

In a first experiment, we considered the syntactic gram-
mar, G, given in Figure 1(a). As a result of Algorithm 3,
the representative examplesER and the grammarGr were
automatically generated (see Figure 2). We then manually
annotated these examples with their semantic molecules as
shown in Figure 4(a). In addition with this set, we used a
rich enough set of examplesE+ (see Assumption 3) that
was only weakly annotated. This set contains more com-
plex examples which are used for the generalization process.
The learned constraint-based grammar is presented in Fig-
ure 4(b). As can be seen, this grammar is equivalent to the
initial grammar. But, for the ruleN1 the nonterminalAdj

appears instead ofA1. This is becauseA1 is a redundant
nonterminal (see Assumption 1), that isLs(A1) = Ls(Adj).
This is also the case for ruleRc1, where nonterminalTv ap-
pears instead ofV 1. The compositional semantic constraints
(Phi comp predicates) were learned as well. For example,
Phi comp(4, h, h1, h2) corresponds toΦ comp(h, h1, h2)
shown in Figure 3. The first argument of the predicate rep-
resents its index. At each iteration step, the learned con-
straint is stored in the background knowledge, given it is
distinct from the already stored constraints. This experiment
was important since it shows the perspective of learning a
syntactico-semantic grammar when we have an appropriate
syntactic grammar,G, available.

A second set of experiments was done to test the gram-
mar induction framework when the grammar is not avail-
able. We started with a fragment of natural language that
partially covers complex noun phrases (adjectival premodi-
fiers, prepositional phrases, relative clauses), coordination,
simple clauses with active/passive form of verbs, and simple
wh-questions. Based on linguistic knowledge, we manually
annotated fifty representative examples. In addition a set of
less than three hundred weakly annotated examples and a
set of less than ten negative examples were used. The set of
weakly annotated examples can be partially obtained from
existing syntactic treebanks, or by using the output of ex-
isting syntactic parsers on examples of interest with appro-
priate manual correction. We used a reduced grounded lexi-
con derived from Extended WordNet (Harabagiu, Miller, &
Moldovan 1999), since as discussed in (Wintner 1999) the
lexicon does not influence the grammar semantics. The syn-
tactic categories covered are: adv, adj, det, pro, n, v, prep,
coord, rc, and cl (for simple sentences and wh-questions).
The size of the learned grammar is comparable with the size
of the representative example set. For this learned grammar
Proposition 2 was validated, meaning that the representa-
tive examples were appropriately chosen. Since only a small
fragment of language was used, a coverage test is not appli-
cable at this point. However, the framework shows potential
for building a grammar with a small annotation effort (the
size of the representative example set is small, while the
weakly annotated examples can be semi-automatically de-
rived). The learned grammar was applied to a sample text,
for which the semantic representation was obtain, in a small
question-answering experiment. The type of questions were
“who did what to whom?”.

Conclusion and Future Work
In this paper we focused on the theoretical aspects of learn-
ing a constraint-based grammar from a small set of exam-
ples. We have introduced the concepts oflexicalized well-
founded grammar (lwfg)G, semantic molecule, and rep-
resentative examplesER of the sublanguageE ⊆ L(G),
and we proved the theorem of inducing such grammars from
representative examples, which constitute a small semantic
treebank (Theorem 2). Thus, if a fragment of natural lan-
guage,E, can be covered by a lwfgG, and the semantically
annotated representative examples can be provided based on
linguistic knowledge, then an equivalent lwfgGr covering
E can be induced. The grammar learning framework is cur-

rently applied to building a terminological knowledge base
in the medical domain and we plan to develop the frame-
work to allow bootstrapping of both the grammar and the
ontology. Another future direction will include adding prob-
abilities to the grammar rules, after the learning process.

References
Cohen, W. 1995. Pac-learning Recursive Logic Programs:
Negative Results. Journal of Artificial Intelligence Re-
search2:541–573.
Copestake, A.; Lascarides, A.; and Flickinger, D. 2001.
An Algebra for Semantic Construction in Constraint-based
Grammars. InProceedings of the Association for Compu-
tational Linguistics, ACL-2001.
Gartner, T.; Lloyd, J.; and Flach, P. 2002. Kernels for
Structured Data. InProceedings of the 12th International
Conference on Inductive Logic Programming, ILP2002.
Harabagiu, S.; Miller, G.; and Moldovan, D. 1999. Word-
net2 - A Morphologically and Semantically Enhanced Re-
source. InProceedings of the ACL-SIGLEX Workshop:
Standardizing Lexical Resources.
Jensen, P. A., and Nilsson, J. F. 2003. Ontology-based Se-
mantics of Prepositions. InProceedings of ACL-SIGSEM
Workshop: The Linguistic Dimensions of Prepositions and
their Use in Computational Linguistics Formalisms and
Applications.
Joshi, A., and Schabes, Y. 1997. Tree-Adjoining Gram-
mars. In Rozenberg, G., and Salomaa, A., eds.,Handbook
of Formal Languages, volume 3. Springer, Berlin,New
York. chapter 2, 69–124.
Kay, M. 1973. The MIND System. In Rustin, R., ed.,Nat-
ural Language Processing. Algorithmics Press, New York.
155–188.
Muggleton, S. 1995. Inverse Entailment and Progol.New
Generation Computing, Special Issue on Inductive Logic
Programming13(3-4):245–286.
Muresan, S.; Muresan, T.; and Potolea, R. 2002. Data Flow
Coherence Constraints for Pruning the Search Space in ILP
Tools. International Journal of Artificial Intelligence Tools
11(2).
Muresan, T.; Potolea, R.; and Muresan, S. 1998. Amalga-
mating CCP with Prolog.Scientific Journal of Politechnics
University, Timisoara43(4).
Oates, T.; Armstrong, T.; Harris, J.; and Nejman, M. 2003.
Leveraging Lexical Semantics to Infer Context-Free Gram-
mars. InProceedings of Workshop at ECML/PKDD 2003:
Learning Context-Free Grammars.
Pereira, F. C., and Warren, D. 1980. Definite Clause
Grammars for Language Analysis.Artificial Intelligence
13:231–278.
Pinker, S. 1989.Learnability and Cognition: The Acquisi-
tion of Argument Structure. MIT Press.
Saraswat, V. 1989.Concurrent Constraint Programming
Languages. Ph.D. Dissertation, Dept. of Computer Sci-
ence, Carnegie Mellon University.
Wintner, S. 1999. Compositional Semantics for Linguistic
Formalisms. InProceedings of the Association for Compu-
tational Linguistics, ACL’99.

