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9 Abstract

10 Motivation. Natural language processing (NLP) techniques are used to extract information automatically from computer-

11 readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a

12 necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein–protein in-

13 teractions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for ‘‘gene/protein-full name mark

14 up’’), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a

15 part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g.,

16 LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do

17 not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation.

18 Results. GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts.

19 Availability: A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at

20 http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 718-796-2985; fax: 212-939-

21 7028.

22 � 2003 Published by Elsevier Science (USA).
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24 1. Introduction

25 The current MEDLINE database includes over 12

26 million computer-readable records in the biomedical
27 domain and is expanding rapidly; it is a rich resource for

28 biological knowledge including protein–protein interac-

29 tions [1], gene regulation events [2], sub-cellular locations

30 of proteins [3], and pathway discovery [4]. One way to

31 automatically extract information stored in MEDLINE

32 is to apply an information extraction system such as a

33natural language processing (NLP) parser [5]. Identify-

34ing gene/protein terms in MEDLINE abstracts is a nec-

35essary step towards an information extraction system.

36Genes and proteins are usually represented by sym-
37bols and names in literature. The names usually are the

38long forms of their symbols and describe the functions

39of the genes or proteins. We hypothesize that authors

40define gene/protein symbols in their articles when the

41meanings are new in literature and the definitions can be

42captured by a computer program. We also hypothesize

43that if not all of the gene/protein symbols appearing in

44an abstract are defined, the definition may appear in
45other abstracts. Therefore literature redundancy (e.g.,

46the same genes or proteins are represented by different

47authors in different articles) makes it plausible that we

48may obtain automatically a relatively exhaustive gene/

49protein symbol and full name table from all of MED-

50LINE. In this study, we empirically tested all of the

51above hypotheses.
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52 This study presents an algorithm and its implemen-
53 tation for automatic identification of gene and protein

54 terms (i.e., symbols or full names) in MEDLINE ab-

55 stracts. As a part of the algorithm, we also present a

56 method for automatically generating a knowledge

57 source of paired gene/protein symbols (e.g., LARD) and

58 full names (e.g., lymphocyte associated receptor of death)

59 from MEDLINE. Our results show that a large number

60 of the pairs in our knowledge source do not appear in
61 LocusLink, a public database of gene/protein symbols

62 and corresponding full names [6,7].

63 A key step in our marking up methodology is to pair

64 gene/protein symbols to their names, so that we can use

65 biological function keywords (e.g., kinase) to differen-

66 tiate the symbols from other technical terms. For ex-

67 ample, by mapping abbreviation PKA to full name

68 protein kinase A, not to full form path of the kinematic

69 axis, we are able to identify PKA is a protein term since

70 keywords protein and kinase appear in the full form of

71 PKA.

72 We previously have developed a method that auto-

73 matically maps biomedical abbreviations to full forms.

74 In this study, we incorporated biological domain

75 knowledge into the method of mapping abbreviations to

76 full forms to enhance the mapping between gene/protein
77 symbols and full names. The biological domain knowl-

78 edge was obtained from manually reviewing published

79 guidelines of the nomenclature of genes and proteins.

80 We then developed a method to differentiate paired

81 gene/protein symbols and full names from other bio-

82 medical abbreviations and full forms.

83 To mark up gene/protein terms in MEDLINE ab-

84 stracts, we first mark up gene/protein symbols and full
85 names when the full names are defined. We then look up

86 a knowledge source to mark up the remaining gene/

87 protein terms. We generate the knowledge source by

88 extracting all pairs of gene/protein symbols and full

89 names from over eleven million MEDLINE records

90 (year 1966–2001).

91 2. Background

92 A number of rule-based, linguistic, statistical, ma-

93 chine-learning, and hybrid approaches have been de-

94 veloped to mark up gene/protein terms automatically in

95 biological text. For example, Fukuda et al. (1998) ap-

96 plied morphological cues to identify protein terms (e.g.,

97 if a word contains uppercase letter(s) and special char-
98 acter(s), the word is a protein term). Gaizauskas et al.

99 (2000) identified protein terms through suffixes such as –

100 ase. Proux et al. (1998) identified non-English words as

101 gene terms. Linguistic approaches have mainly applied

102 part-of-speech tagging [8] or shallow parsing [9] to

103 identify noun phrases, from which gene/protein terms

104 were obtained. Hybrid approaches have combined lin-

105guistic with rule-based approaches for multi-word gene/
106protein term recognition. For example [8], applied Brill�s
107tagger [10] in combination with rules such as ‘‘connect

108non-adjacent annotations if every word between them is

109either noun, adjective, or a numeral’’ to identify multi-

110word protein terms such as ras guanine nucleotide ex-

111change factor SOS. Tanabe and Wilbur [11] retrained

112Brill�s tagger on the biomedical domain for gene/protein

113name-identification. Statistical approaches have clus-
114tered abstracts for keyword identification [12]. Machine-

115learning approaches have applied na€ııve Bayes [9], Hid-

116den Markov Models [13], and decision trees [14], to

117classify gene/protein terms. Other approaches include

118lookup in knowledge sources such as GenBank and

119SWISSPROT [15].

120Our method of marking up gene/protein names is a

121mixture of pattern-recognition and knowledge-based
122approaches. We first map gene/protein symbols to full

123names when the full names are defined. Those gene/

124protein terms are then marked up. The rest of gene/

125protein terms are identified from the gene/protein sym-

126bol and full name knowledge source which we extracted

127automatically from MEDLINE.

1282.1. Systems that automatically map gene and protein

129symbols to full names

130A number of systems have been developed for auto-

131matic mapping between abbreviations and full names

132[16–23]. Those systems applied a variety of approaches

133including linguistic, rule, and statistical methods and

134reported precisions from 70–97%. Most of those systems

135tend to be domain independent and therefore may not
136perform ideally in a restricted domain such as biology.

137For example, most of pattern-recognition approaches

138[18,19] do not capture ryk (for receptor tyrosine kinase

139related gene) since y represents tyrosine and y is not the

140first letter of tyrosine. In addition, most of the systems

141do not differentiate gene/protein symbols from other

142abbreviations and full names.

143A system that was developed specifically for mapping
144protein symbols to full names is PNAD-CSS (for ‘‘pro-

145tein full name abbreviation dictionary construction

146support system’’) [24]. PNAD-CSS used morphological

147features to recognize proper nouns as protein terms in

148biological abstracts [8]. Knowing a phrase may contain a

149protein symbol and full name, PNAD-CSS recognized

150parentheses and determined whether the parenthetical

151phrase was an abbreviation of the outer phrase. To map
152a protein symbol to its name, PNAD-CSS broke up

153words of the preceding phrase, and determined whether

154the parenthetical abbreviation candidate maps to the

155initial letters of the broken-up phrase. For example,

156consider the phrase ‘‘megestrol acetate (megace).’’

157PNAD-CSS parsed ‘‘megestrol acetate’’ as ‘‘meges trol ac

158etate,’’ which is then matched to ‘‘megace.’’ For example,
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159 ‘‘meg,’’ ‘‘ac,’’ and ‘‘e’’ in ‘‘megace’’ match the initial
160 letter(s) of ‘‘meges,’’ ‘‘ac,’’ and ‘‘etate,’’ respectively.

161 We find that PNAD-CSS has some limitations: it

162 applies morphological cues for protein term recognition

163 and the morphological cues may falsely identify as

164 protein symbols other substances (e.g., LSD-25 for ly-

165 sergic acid diethylamide), cell types (e.g., BHK-21 for

166 baby-hamster kidney-cell line), procedures (e.g., PCR for

167 polymerase chain reaction) as well as clinical syndromes
168 and diseases (e.g., CHF for congestive heart failure). This

169 is because many abbreviations that are not gene/protein

170 symbols consist of upper-case letters and numbers. The

171 PNAD-CSS� pattern-matching rules also did not contain

172 special rules for protein names (for example, y repre-

173 sents tyrosine).

174 Previously, we have developed a system, AbbRE (for

175 ‘‘abbreviation and full name recognition and extrac-
176 tion,’’ see [25]), that pairs biomedical abbreviations with

177 full names. AbbRE first selected parenthetical expres-

178 sions and the phrases preceding the parenthesis as can-

179 didate abbreviations and full names. It then applied a set

180 of the pattern-matching rules to map abbreviations to

181 full names. The rules were obtained from the common

182 conventions authors use to create abbreviations. The

183 following rules were included: (1) the first letter of an

184 abbreviation matches the first letter of a meaningful word

185 of the full name; (2) the abbreviation matches the first

186 letter of each word in the full name; (3) the abbreviation

187 letter matches consecutive letters of a word in the full

188 name and (4) the abbreviation letter matches a middle

189 letter of a word in the full name if the first letter of the

190 word matches the abbreviation. AbbRE had 70% recall

191 and 95% precision in identifying paired abbreviations
192 and full names in biomedical articles.

193 Though AbbRE�s pattern-matching rules did not

194 contain special rules for protein names, AbbRE is robust

195 and extensible. In this study (i.e., GPmarkup), we man-

196 ually examined the published guidelines of the nomen-

197 clature of genes and proteins and added toAbbRE special

198 rules to enhance its mapping gene/protein symbols to full

199 names. In addition, we added in rules for differentiating
200 gene/protein terms from other biomedical terms.

2013. Methods and results

202Our method section consists of six sub-sections: (1)

203Mapping gene/protein symbols to full names as well as

204abbreviations to full names. (2) Generating a knowledge

205source of paired abbreviations and full names from

206MEDLINE abstracts. (3) Filtering out other abbrevia-

207tion-full name pairs to produce a knowledge source of

208paired gene/protein symbols and full names. (4) Mark-
209ing up gene/protein terms in MEDLINE abstracts. (5)

210Evaluating GPmarkup. (6) Measuring the percentage of

211defined gene/protein symbols in MEDLINE abstracts.

2123.1. Mapping gene/protein symbols to full names

213To understand how gene/protein abbreviation-full

214name pairs are created in the first place, we examined a
215number of published guidelines for the nomenclature of

216genes and proteins. We found those guidelines are al-

217most always species-specific (that is applicable only to

218genes and proteins from, say, yeast, and not rat). Spe-

219cies-specific may be caused by the fact that the com-

220mittees for the nomenclature are formed by experts

221specializing on a particular model organism. Table 1

222lists guidelines that were useful for mapping abbrevia-
223tions to full forms.

224Analysis of the published guidelines allowed us to

225identify some special abbreviations that are used for

226gene/protein nomenclature (see Table 2) and to develop

227the pattern-matching rules that map gene/protein sym-

228bols to names.

2293.1.1. Special abbreviations

230see Table 2.

2313.1.2. Pattern-matching rules

232GPmarkup applies a set of pattern-matching rules to
233map gene/protein symbols to full names when the full

234names are defined within the documents. The pattern-

235matching rules adapted AbbRE�s (as described in Sec-

236tion 2.1) with the following modifications and exten-

237sions:

Table 1

Guidelines that are useful for applying computational approaches to map a gene or a protein symbol to its full name

1. A gene symbol should stand for a description of a phenotype, a gene product or a gene function [26].

2. A gene symbol shall be short (between three to six characters) [26–32].

3. A gene symbol is an abbreviation of its full name [28].

4. If the symbol of a gene contains a character or property for which there is a recognized abbreviation, the abbreviation should be used; for

example, the single-letter abbreviation for amino acids used in aminoacyl residues or approved biochemical Abbreviations such as GLC for

glucose, GSH for glutathione [31] and Bp for binding protein [32].

5. The initial character should always be a letter [29–33].

6. All Greek symbols should be changed to letters in the Latin alphabet [31].

7. Amino acids have their special symbols [34].

8. The protein symbol is the same as the gene symbol [33].

9. The creator of a gene full name shall follow the guidelines and get consultation from curator of the guideline before journal publication [26].

10. Gene full names should be included in the abstracts of any relevant papers [26].
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238 Rule 1: Any number and special character is ignored

239 for mapping gene/protein symbols to full names.

240 We added in a rule to map letters only. We ignored

241 numbers and special characters (e.g., ‘‘+’’) due to the

242 following two reasons:
243 (1) Many numbers and special characters in a gene or a

244 protein symbol do not appear in their full names.
245 For example, CYP2C19 for cytochrome P450, sub-

246 family IIC (mephenytoin 4-hydroxylase), where

247 ‘‘19’’ is not represented and ‘‘2’’ is represented by

248 ‘‘II.’’

249 (2) Many numbers in gene or protein symbols order dif-

250 ferently in their full names (e.g., ALOX12 for ara-

251 chidonate 12-lipoxygenase, where ‘‘12’’ in the

252 symbol ‘‘ALOX12’’ is after ‘‘LOX’’ that represents
253 lipoxygenase, but before ‘‘lipoxygenase’’ in the full

254 name ‘‘arachidonate 12-lipoxygenase’’).

255 Rule 2: Special abbreviation substitutions

256 We substitute some nouns with their special abbre-

257 viations when we apply the pattern-matching rules. For

258 example, instead of mapping DYRK1A to dual-specific-

259 ity tyrosine phosphorylation regulated kinase 1A, we at-

260 tempt to map DYRK1A to dual-specificity Y
261 phosphorylation regulated kinase 1A, where tyrosine has

262 been replaced by Y. After the mapping, we recover the

263 original terms.

264 In reality, not all the authors use the special abbre-

265 viations (listed in Table 2) for their nomenclature. An

266 example is PTK2B for protein tyrosine kinase 2 b, where
267 tyrosine is represented by its common abbreviation T

268 instead of Y. Therefore, our algorithm considers both
269 types of mapping (with and without substitution of a

270 special noun with a shorthand) and selects the best

271 matching version.

272 For example, we attempt to map PTK2B to both

273 protein tyrosine kinase 2 b and protein Y kinase 2 b; we
274 map DYRK1A to both dual-specificity tyrosine phos-

275 phorylation regulated kinase 1A and dual-specificity Y
276 phosphorylation regulated kinase 1A.

277 When a full name has more than one word that has

278 many abbreviations, we include all of the combinations

279 for substitution. For example, in case of NK AIF for

280 sodium–potassiumATPase inhibitory factor, we attempted

281 to map NKAIF to sodium–potassium ATPase inhibitory

282 factor, Na–potassium ATPase inhibitory factor, sodium–K
283 ATPase inhibitory factor, and Na–K ATPase inhibitory

284factor. We found that Na–K ATPase inhibitory factorwas
285mapped and we recovered the original full name.

2863.1.3. Parenthetic pattern

287Prior to pattern-matching rules, GPmarkup selects

288candidate abbreviations and full names. For this task,

289GPmarkup recognizes special patterns such as ‘‘<ab-

290breviation>(<full name>)’’ or ‘‘<full name>(<abbrevi-

291ation>)’’. Recall AbbRE also recognized these patterns.
292However, AbbRE can not recognize gene/protein terms

293that incorporate nested parentheses. For example, Ab-

294bRE fails to map acyl-coenzyme A (acyl-CoA) dehydro-

295genases to ACD from the following string extracted

296from [35] the expression of various acyl-coenzyme A

297(acyl-CoA) dehydrogenases (ACD) since it parses into

298the following two components:

299the expression of various acyl-coenzyme A (acyl-CoA) and dehy-

300drogenases (ACD)

301To correct for this shortcoming, we introduced into

302the newer algorithm (GPmarkup) an additional rule to

303recognize gene/protein full names that incorporate pa-

304rentheses. It then parses the above string into the fol-
305lowing two components:

306the expression of various acyl-coenzyme A (acyl-CoA) and the ex-

307pression of various acyl-coenzyme A (acyl-CoA) dehydrogenases

308(ACD)

309where the phrases preceding and within the parentheses

310in each component incorporate candidate abbreviations

311and full names, to which GPmarkup further applies its

312pattern-matching rules to map abbreviations to full

313names.

3143.2. Generating a knowledge source of paired abbrevia-

315tions/full names from MEDLINE abstracts

316We applied GPmarkup to 11 million MEDLINE re-

317cords (1966–2001), which contain the same number of

318titles and over six million abstracts (note that not all

319MEDLINE records contain abstracts). We obtained a

320knowledge source that consisted of 574,327 unique pairs

321of abbreviations and full names. The most frequently
322defined abbreviations were PCR (polymerase chain re-

323action, which appeared in 7988 abstracts) and NO (nitric

324oxide, which appeared in 7855 abstracts).

Table 2

Special abbreviations that are used in gene/protein nomenclature

Type

Amino acids We use all one letter codes where these differ from the first letter of the amino acid. For example, tyrosine—Y (SYK for

spleen tyrosine kinase)

Two chemical

symbols used

Sodium–Na, potassium–K (NKAIF for sodium–potassium ATPase inhibitory factor)

Three other

symbols used

Inhibitor—N or NH, box—X (CDKN1A for cyclin-dependent kinase inhibitor 1A (p21, Cip1), CDX1 for caudal type homeo

box transcription factor 1)
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325 3.3. Filtering out other abbreviation-full name pairs to

326 produce a knowledge source of paired gene/protein

327 symbols and full names

328 The algorithm outlined above also identifies a large

329 number of general abbreviations that are not gene/pro-

330 tein symbols and full names. We therefore developed a

331 rule-based approach to partition our knowledge source

332 of abbreviation-full name pairs into gene/protein sym-
333 bol-full name pairs and other abbreviation-full name

334 pairs.

335 Our rule-based approach combines morphological

336 cues, functional keywords, and position-functional

337 keywords to filter out non-gene/protein terms. The ap-

338 proach is described as follows:

339 If an abbreviation contains a number, the abbrevia-

340 tion and full name is a gene/protein symbol-full name
341 pair only if the full name contains one or more of the

342 following keywords (denoted as set K1): protein(s),

343 gene(s), peptide(s), molecule(s), enzyme(s), ligand(s),

344 compound(s), receptor(s), channel(s), transcriptor(s),

345 regulator(s), inhibitor(s), antibody, antibodies, globu-

346 lin(s), factor(s), motif, domain(s), compound(s), seg-

347 ment(s), subunit(s), locus, loci, cassette(s), chain,

348 complex(es), homeobox(es), box(es), member(s), dele-
349 tion, axon, family, families, chromosome(s), sequence,

350 a, b, c, interleukin and any words except for disease

351 that ends in –ase.

352 If an abbreviation does not contain a number, the ab-

353 breviation and full name is gene/protein symbol-full

354 name pair only if the last word of the full name is a

355 keyword in set K1.

356 We obtained functional keywords by manually ex-
357 amining all of the entries in LocusLink. Note that some

358 keywords (e.g., ‘‘gene’’) in set K1 can appear as both the

359 last word or the middle word of a gene/protein term

360 (e.g., Btg4 for B-cell translocation gene 4 and AFG3L1

361 for AFG3 (ATPase family gene 3, yeast)-like 1). On the

362 other hand, some keywords (e.g., ‘‘chromosome’’) do

363 not appear as the last word of, but only within a gene/

364 protein term (e.g., C10ORF2 for chromosome 10 open

365 reading frame 2).

366 We applied the rules to abbreviations and full names

367 and generated a knowledge source of 86,767 unique

368 pairs of gene/protein symbols and full names. The most

369 frequently defined gene/protein symbols included egf

370 (for epidermal growth factor, appears in 2023 ab-

371 stracts), il (for interleukin, appears in 2183 abstracts),

372 and ldl (for low density lipoprotein, appears in 2673
373 abstracts).

374 3.4. Marking up gene/protein terms in MEDLINE

375 abstracts

376 We further developed and implemented an algorithm

377 to mark up gene/protein terms in MEDLINE abstracts.

378GPmarkup first maps abbreviations to full names and
379then performs the markup for any abbreviation with an

380identified full name (details in Sections 3.2 and 3.3). For

381the remaining terms in abstracts, we looked up the

382knowledge sources of paired abbreviations and full

383names and paired gene/protein symbols and names. As

384an effort to achieve a higher precision, we only looked

385up multi-word gene/protein terms, since a single word

386term could be ambiguous (for example, aap denotes
387antiarrhythmic peptide or automatic action potential, the

388former is a protein name, and the latter is not).

389When a string can be mapped to several terms stored

390in our knowledge sources, GPmarkup favors longer

391term mapping and markup. It does not mark up a term

392which is used as a modifier of entity other than genes

393and proteins. For example, GPmarkup does not markup

394the protein term amyloid b protein in a string of cerebral
395amyloid b protein angiopathy, because the protein name

396is used as a modifier for the disease term angiopath.

397GPmarkup applies direct matching (i.e., the string in

398text exactly appears in our knowledge sources) except

399that GPmarkup includes a word that immediately fol-

400lows a gene or a protein symbol or full name if the word

401either consists of a number or is a functional keyword

402including ‘‘gene,’’ ‘‘protein,’’ ‘‘homologue,’’ and ‘‘re-
403ceptor.’’ For example, knowing a b and il12 p40 as gene

404or protein symbols, GPmarkup also identifies a b40 and

405il12 p40 homologue.

4063.5. GPmarkup evaluation

407We performed evaluation in the following three

408steps: (1) mapping abbreviations to full names, (2) fil-
409tering out other terms to produce a knowledge source

410of paired gene/protein symbols and names, and (3)

411marking up gene/protein terms in MEDLINE ab-

412stracts. We therefore evaluate GPmarkup phase by

413phase. We also compared the knowledge source of

414paired gene/protein symbols and full names with the

415ones in LocusLink. We evaluated by recall (i.e., num-

416ber of correct answers identified by our system divided
417the total number of correct answers) and precision (i.e.,

418number of correct answers divided by the total number

419of answers specified by our system). We estimated

420confidence intervals for these measures based on the

421binomial distribution.

4223.5.1. Mapping abbreviations to full names

423We randomly (by time of publication) selected 30
424MEDLINE abstracts and asked three biomedical ex-

425perts (all with PhD or MD) to map abbreviations to full

426names when the full names are defined within the ab-

427stracts. The gold standard was determined by a majority

428vote of experts. GPmarkup correctly mapped 56 ab-

429breviations and full names out of a total of 59 pairs that

430were determined by experts. GPmarkup wrongly iden-
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431 tified one pair that was not an abbreviation and full
432 name. GPmarkup�s recall and precision in identifying

433 and extracting abbreviations and full names were, with

434 95% confidence intervals, 0.95 (0.86–0.99) and 0.98

435 (0.91–1.00), respectively.

436 3.5.2. Filtering out other terms

437 We then evaluated our rule-based approach for par-

438 titioning the knowledge source of abbreviation-full name
439 pairs into gene/protein symbol-full name pairs and other

440 abbreviation-full name pairs. We randomly selected 1000

441 pairs of gene/protein symbols and full names and 1000

442 pairs of other abbreviations and full names partitioned

443 by GPmarkup and evaluated recall and precision of the

444 partitioning. We asked experts (see 3.5.1) for help in

445 defining a gold standard. Table 3 lists the results of the

446 evaluation. Note that GPmarkup included some in-
447 complete-matches of abbreviations and full names (e.g.,

448 {il-6, interleukin}). Since the ratio of gene/protein sym-

449 bol-names to other abbreviation-full name pairs was

450 1:5.6 (86,767/[574,327–86,767]); the numbers were de-

451 scribed in Sections 3.2 and 3.3), GPmarkup had an ac-

452 curacy of 0.95� 0.02, with 95% confidence. The figure

453 0.95 comes from the ratio ð982þ 949 � 5:6Þ=ð1000þ
454 1000 � 5:6Þ which is based on the numbers in Table 3
455 and their relative frequencies as just computed.

456 3.5.3. Marking up gene/protein terms in MEDLINE

457 abstracts

458 We then evaluated GPmarkup in marking up gene/

459 protein terms in MEDLINE abstracts. We randomly (by

460 time of publication) selected 50 MEDLINE abstracts,

461 which consists of a total of 539 sentences (including the
462 title). Some selected abstracts did not cover biological

463 domain and therefore did not have gene/protein terms at

464all. Therefore, we did not select only biological abstracts
465for evaluation because we judge a false markup is as bad

466as a missing markup. We therefore judged that a ran-

467dom selection of abstracts best reflects our system�s re-
468call and precision.

469Table 4 lists the evaluation results of the 50 abstracts.

470GPmarkup applies XML format for term mark up. For

471example, the tag ‘‘phr’’(for ‘‘phrase’’) has attributes in-

472cluding ‘‘sem’’ (for ‘‘semantic category’’) that has value
473‘‘gp’’ (for ‘‘gene and protein terms’’) and ‘‘t’’ (for ‘‘tar-

474get’’) that represents gene/protein full names. We count

475any appearance of gene/protein terms. For example, if

476protein ‘‘amyloid b protein’’ appears three times in the

477abstract, we count three instead of one for this case. We

478posted a sample set of marked up abstracts at http://

479www.cpmc.columbia.edu/homepages/yuh9001/GPmark-

480up/).
481From Table 4, if we count a partial-matching as a

482match, the recall and the precision of GPmarkup were,

483with 95% confidence, 0.73� 0.05 ð222þ 15Þ=ð222þ
48415þ 88Þ and 0.93� 0.03 ð222þ 15Þ=ð222þ 15þ 17Þ,
485respectively. We found all partial matches represent valid

486proteins. However, if we do not include a partial-match-

487ing as a match, the recall and precision of GPmarkup

488were, with 95% confidence, 0.68� 0.05 222=ð222þ 15þ
48988Þ and 0.87� 0.04 ð222=ð222þ 15þ 17Þ, respectively.

4903.5.4. Comparing gene/protein symbols and full names

491extracted from MEDLINE with LocusLink

492We downloaded the knowledge source of paired gene/

493protein symbols and full names from LocusLink [36].

494LocusLink is maintained by the National Center for

495Biotechnology Information. It presents information on
496official nomenclature of genes and lists a total of 115,890

497manually annotated paired gene symbols and full

Table 3

Evaluation results of GPmarkup in filtering the knowledge source of paired abbreviations and full names to produce a knowledge source of paired

gene/protein symbols and full names

Evaluation cases Expert judgments

Number of gene/protein

symbol-full name pairs

Number of other

abbreviation-full name pairs

Number of non abbreviation-full

name pairs

1000 pairs of gene/protein symbols and

full names as identified by GPmarkup

982 9 (e.g, srg for spent restau-

rant grease)

9 (e.g., gene for genes)

1000 pairs of other abbreviations and

full names as identified by GPmarkup

1 (i.e., A-Igg for

Anti-human Igg)

949 50 (e.g., ph2 for phages)

Table 4

Evaluation results of GPmarkup

Type of category GPmarkup identified

Complete-matching (e.g., <phr sem¼ ‘‘gp’’ t¼ ‘‘signaling lymphocyte activation molecule’’>slam</phr> 222

Partial-matchinga (e.g., <phr sem¼ ‘‘gp’’>interleukin 1</phr> receptor ii) 15

Missing (e.g., 2b4) 88

False-matchingb (e.g., <phr sem¼ ‘‘gp’’>acupuncture points and channels</phr>) 17

a The correct full name is ‘‘interleukin 1 receptor ii’’.
b False-matching includes those non-gene and non-protein terms that are identified by GPmarkup.
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498 names, though we found that only 65,987 entries have
499 both gene/protein symbols and full names.

500 We randomly selected 100 entries that incorporate

501 both symbols and full names from the LocusLink and

502 manually identify their existence in our knowledge

503 source of paired gene/protein symbols and full names.

504 We also randomly selected 100 unique gene/protein

505 symbol and full name pairs from our knowledge source

506 and manually identified their existence in LocusLink.
507 We found that 62 out of 100 selected pairs in our

508 knowledge source did not appear in LocusLink. Exam-

509 ples included {ACY1-ACP, acyl-acyl carrier protein},

510 {GCDFP, gross cyst disease fluid protein}, {CCK-OP,

511 cholecystokinin octopeptide} and {l-PK, l pyruvate ki-

512 nase} though some of the missing pairs represent protein

513 products instead of direct genes. For example, {l-PK, l

514 pyruvate kinase} is a spliced product of its gene {PKLR,
515 pyruvate kinase},2 which appears in LocusLink and there

516 is no gene for {CCK-OP, cholecystokinin octopeptide}.3

517 Eight pairs partially matched to LocusLink. For exam-

518 ple, PPI, peptide prolyl cis trans isomerase appears in our

519 knowledge source. In LocusLink, we found {PPIa,

520 peptidylprolyl isomerase a (cyclophilin a)}.’’

521 On the other hand, we found that only 40 LocusLink

522 entries could be found in our knowledge source (16 of
523 them have variations). We judged that four of those 60

524 failed entries are not gene/protein symbols and full

525 names (e.g., {shs, sutherland-haan x-linked mental re-

526 tardation syndrome}). To find whether the remaining 56

527 entries exist in MEDLINE, we searched 12 million

528 MEDLINE records (1966–2002). We applied direct

529 matching (case insensitive) and manually analyzed ab-

530 stracts that contained either the symbol or the full name
531 of those 56 failed entries. We failed to find the existence

532 of 50 of them in MEDLINE, either symbols or full

533 names. Examples include {2700088m22rik, riken cdna

534 2700088m22 gene} and {atp5bl1, atp synthase, h+

535 transporting, mitochondrial f1 complex, b polypeptide-

536 like 1}. Of the rest of six entries, we could find symbols

537 in MEDLINE, but failed to find full names. Examples

538 include {aspa, aspartoacylase (aminoacylase 2, canavan
539 disease)} and {assp6, argininosuccinate synthetase

540 pseudogene 6}, for the former we found the full name

541 with variations, for the latter we found that the full

542 name did not exist in the MEDLINE record where the

543 symbol appeared.

544 3.6. The percentage of undefined gene/protein symbols and

545 full names

546 If all the gene/protein symbols and full names were

547 defined in MEDLINE abstracts, then GPmarkup would

548also serve the purpose for disambiguation by assigning
549full names to symbols. However, not all the gene/protein

550symbols are defined in the abstracts.

551We measured the percentage of defined gene/protein

552symbols in MEDLINE abstracts. We randomly selected

553100 abstracts (according to the time of publication) from

554a total of 782,560 MEDLINE abstracts (1966–2001)

555that were retrieved by the keyword ‘‘protein.’’ Those

556abstracts contain 1069 sentences (including titles). We
557measured the percentage of undefined gene/protein

558symbols. We counted unique appearance of gene/protein

559symbols within abstracts. Based on the authors� judg-
560ment, the numbers of defined and undefined gene/pro-

561tein symbols were 92 and 27, respectively. The

562percentage of defined gene/protein symbols and full

563names was, with 95% confidence, 0.77� 0.08.

5644. Discussion

565Many public databases such as GenBank have gene/

566protein synonym knowledge sources. However, the da-

567tabases are largely maintained manually and therefore

568are not always up to date. GPmarkup can generate

569automatically a knowledge source of paired gene/protein
570symbols and full names from MEDLINE abstracts. The

571automated fashion may reduce manual efforts. In addi-

572tion, GPmarkup may capture the most up-to-date gene/

573protein symbols and full names if the full names are

574defined in abstracts and follow the guidelines of no-

575menclature of genes and proteins.

576We also found that a majority of gene/protein sym-

577bols and full names extracted in our knowledge source
578did not appear in LocusLink. Recall LocusLink consists

579of a large number of mainly manually annotated paired

580gene/protein symbols and full names. In addition, we

581found a majority of pairs in LocusLink did not appear

582in our knowledge source either; most of those pairs did

583not even appear in MEDLINE by keyword search. The

584results suggest that there is a gap between LocusLink

585knowledge source and the actual text. This difference
586may make it difficult to apply LocusLink directly for

587looking up terms in MEDLINE. On the other hand,

588since our knowledge source of paired gene/protein

589symbols and names were directly extracted from

590MEDLINE, they may be more useful as a knowledge-

591based markup.

592One limitation of GPmarkup is that not all the gene/

593protein symbols and full names are defined in the ab-
594stracts and therefore GPmarkup may not capture some

595gene/protein symbols and full names. However, two

596other factors alleviate this problem: authors are en-

597couraged to define gene/protein full names in the ab-

598stracts of any relevant papers [26], and the literature is

599redundant. Therefore, applying GPmarkup to all of

600MEDLINE abstracts is likely to capture a majority of

2 GenBank Accession No. U47654.
3 For details see http://arbl.cvmbs.colostate.edu/hbooks/pathphys/

endocrine/gi/cck.html).
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601 gene/protein symbols and full names that appear in the
602 text.

603 GPmarkup may also miss gene/protein symbols and

604 full names when authors do not follow the guidelines for

605 naming genes and proteins. To capture these gene/pro-

606 tein symbols and full names, we may integrate into

607 GPmarkup statistical approaches such as Hisamitsu and

608 Niwa�s approach [18,20] of selecting phrases associated

609 with parentheses that were statistically significant. In
610 addition, GPmarkup may also miss abbreviations and

611 full names that are introduced through syntactic pat-

612 terns (e.g., appositions). In the near future we plan to

613 utilize the approaches of [37] that enumerated syntactic

614 patterns for abbreviation detection.

615 Other limitations include the ambiguity in usage of

616 gene/protein terms. For example, we do not differentiate

617 a gene term from a protein one. We do not differentiate
618 a general gene/protein term (e.g., growth factors) from a

619 specific one (e.g., protein kinase A). We also do not

620 identify to which organism, tissue, cell type, and sub-

621 location a gene/protein term refers. We propose to in-

622 tegrate the approach of [38] for disambiguating gene/

623 protein terms. We also hope to develop statistical NLP

624 approaches for further disambiguation.

625 Our study shows that many gene/protein symbols
626 (77%) are defined within the abstracts, GPmarkup can

627 map a majority of gene/protein symbols to full names.

628 GPmarkup does not mark up undefined gene/protein

629 symbols if the symbols have several full names in the

630 knowledge source of abbreviation-full name pairs. For

631 example, aap denotes antiarrhythmic peptide, alkyl ac-

632 ceptor protein, alzheimer amyloid precursor protein, am-

633 inoantipyrine, and automatic action potential in our
634 knowledge source and GPmarkup thus does not mark

635 up ‘‘aap’’ as a gene/protein term when it is not defined in

636 the abstract. We therefore sacrifice GPmarkup�s recall

637 for high precision. In the future, we will integrate a

638 disambiguation method that assigns the full names from

639 our knowledge source to the ambiguous symbols. Once

640 a symbol is assigned to its full name, we can apply our

641 rule-based approach (see Section 3.3) determining whe-
642 ther the symbol is a gene/protein term.

643 Note that we recognized a gene/protein term if the

644 term actually represents a gene/protein in the abstract.

645 We described earlier that we did not mark up ‘‘cerebral

646 amyloid b protein angiopathy’’ as a protein name even

647 though ‘‘cerebral amyloid b protein’’ by itself is a protein

648 name. Other researchers may do differently [11].

649 5. Conclusion

650 This study shows that GPmarkup is efficient (73%

651 recall and 93% precision) in marking up gene/protein

652 terms in MEDLINE abstracts. Our results may provide

653 a useful supplement to manually curated resources such

654as LocusLink (GenBank). A method to more accurately
655identify the full names of undefined abbreviations would

656increase the recall of GPmarkup and enhance its use-

657fulness.
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