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ABSTRACT
Motivation: Genes and proteins are often associated with
multiple names. More names are added as new functional
or structural information is discovered. Because authors
can use any one of the known names for a gene or protein,
information retrieval and extraction would benefit from
identifying the gene and protein terms that are synonyms
of the same substance.
Results: We have explored four complementary ap-
proaches for extracting gene and protein synonyms from
text, namely the unsupervised, partially supervised, and
supervised machine-learning techniques, and the manual
knowledge-based approach. We report results of a large
scale evaluation of these alternatives over an archive of
biological journal articles. Our evaluation shows that our
extraction techniques could be a valuable supplement to
resources such as SWISSPROT, as our systems were
able to capture gene and protein synonyms not listed in
the SWISSPROT database.
Data Availability: The extracted gene and protein syn-
onyms are available at http://synonyms.cs.columbia.edu/
Contact: {hongyu,eugene}@cs.columbia.edu

INTRODUCTION
Genes and proteins often have multiple names; as biolog-
ical research progresses, additional names may be given
for the same substance, or different names may be found
to represent the same substance. For example, the protein
lymphocyte associated receptor of death has several syn-
onyms including LARD, Apo3, DR3, TRAMP, wsl, and
TnfRSF12. Authors often use different names to refer to
the same gene or protein across articles or sub-domains.
Identifying these name variations would benefit informa-
tion retrieval and information extraction systems. Recog-
nizing the alternate names for the same substance would
help biologists to find and use relevant literature.

Many biological databases such as GenBank† and
SWISSPROT‡ include synonyms; however, these
databases may not be always up to date. We found that
even biology experts disagree with some of the synonyms

† http://www.psc.edu/general/software/packages/genbank/genbank.html
‡ http://www.ebi.ac.uk/swissprot/

that were listed in the SWISSPROT database. Further-
more, to our knowledge, gene and protein synonyms
and thesauri are mainly constructed by laborious manual
curating and review. Therefore, it is desirable to automate
this process due to the increasing number of discovered
genes and proteins.

The problem of extracting gene and protein synonyms
from text requires first to identify gene or protein names
in the text, and then to determine whether these names are
synonymous. In this work we focus on the second part
of the problem, namely, on extracting pairs of gene or
protein names that are considered to be synonyms of each
other. We rely on existing state-of-the-art taggers for gene
and protein name entity identification. Having identified
the gene or protein entities in text, we can apply different
methods for extracting the synonymous ones.

In this study we adapt and explore four novel comple-
mentary approaches for extracting synonymous gene and
protein names from biological literature. We present an in-
depth study of state-of-the-art techniques over a large col-
lection of recent journal articles. We develop a scalable
methodology for evaluating the quality of extracted syn-
onyms. Our experimental results show that our techniques
result in extracting novel gene and protein synonyms that
were not present in the SWISSPROT database§. Our ex-
traction techniques could be used to improve search and
analysis of biological literature, and to aid human curators
of biology resources.

BACKGROUND AND RELATED WORK
Extracting gene and protein synonyms from biological lit-
erature is an important problem with significant practical
benefits. Synonymous gene and protein names represent
the same biological substances. This might be recognized
if the substances in question exhibit identical biological
functions or the same gene or amino acid sequences¶.

Recent computational linguistics research on synonym
detection has mainly focused on detecting semantically
related words rather than exact synonyms, by measuring

§ All extracted gene and protein synonyms are available on the web at
http://snowball.cs.columbia.edu/.
¶ We found that some biologists espouse a more broad definition of
synonyms (e.g., homology).

c© Oxford University Press 2000 1



the similarity of surrounding contexts. For example, these
approaches may identify “beer” and “wine” as related
words because both have similar surrounding words
such as “drink”, “people”, “bottle” and “make” (e.g.,
(Dagan et al., 1995; Li and Abe, 1998; Lin, 1998)).
A different approach exploited WORDNET(Fellbaum,
1999), a large lexical database for English words, to
evaluate semantic similarity of any two concepts based on
their distance to other concepts that subsume them in the
taxonomy (Resnik, 1995).

In the biomedical domain, most approaches for syn-
onym identification appear to be restricted to the actual
content of the strings in question, and ignore the surround-
ing context. One such approach used a semi-automatic
method to identify multi-word synonyms in UMLS (the
Unified Medical Language System, a large biomedical
taxonomy (Humphreys and Lindberg, 1993)), by link-
ing terms as candidate synonyms if they shared any
words (Hole and Srinivasan, 2000). For example, the term
“cerebrospinal fluid” leads to “cerebrospinal fluid protein
assay.” The candidate synonym terms then were evaluated
by human curators. A different approach employed a
trigram matching algorithm to identify similar multi-word
phrases. In this study, the phrases are treated as documents
made up of character trigrams. The “documents” are then
represented in the vector space model, and similarity
is computed as the cosine of the angle between the
corresponding vectors (Wilbur and Kim, 2001). Several
other systems (e.g., (Liu and Friedman, 2003; Pakhomov,
2002; Park and Byrd, 2001; Schwartz and Hearst, 2003;
Yoshida et al., 2000; Yu et al., 2002)) applied rule-based,
statistical or machine-learning approaches for mapping
abbreviations to their full forms. To our knowledge, few
studies have attempted to automatically identify syn-
onymous relations among gene or protein abbreviations.
In contrast, our techniques can identify synonyms of
abbreviations as well as full names.

We approach the synonym extraction problem by
applying information extraction and text classification
techniques, where the desired structured information are
the synonym pairs that are “hidden” in the biological
literature. As we describe next, machine learning tech-
niques have been successfully used to adapt text analysis
systems to new domains. The following studies provided
the foundation for our current work.

Information Extraction and Machine Learning
One of the major challenges in information extraction is
the large amount of manual labor involved in constructing
and tuning the extraction system. Many biological infor-
mation extraction systems (e.g., (Friedman et al., 2001;
Rindflesch et al., 2000; Thomas et al., 2000; Yu et al.,
2002)) build upon domain knowledge and domain-specific
rules. To reduce manual effort, one approach is to build a

powerful and intuitive graphical user interface for train-
ing the system, so that domain experts can quickly adopt
the system for each new task (Yangarber and Grishman,
1998). This approach still needs substantial manual labor
to port the system to new domains.

Machine-learning methods are becoming increasingly
popular in text analysis. These methods significantly
reduce required manual labor by automatically acquiring
rules from labeled and unlabeled data. For example,
supervised machine learning techniques such as Support
Vector Machines (SVMs) were found to be highly effec-
tive for text classification (Joachims, 1998). In previous
work, other supervised learning techniques have been
applied to information extraction from unstructured and
semi-structured text (e.g., (Califf and Mooney, 1998;
Kushmerick et al., 1997; Muslea et al., 1998; Soderland,
1999)). While supervised machine learning approaches
usually need less manual labor than knowledge-based
approaches, they still require significant manual effort
because of their dependency on a manually labeled
training corpus. Several approaches attempt to reduce
manual effort in annotating the training corpus. For
example, instead of tagging entire documents, one ap-
proach required only marking the documents as either
relevant or irrelevant for the extraction task (Riloff, 1996).
This approach requires less manual labor, but the effort
involved is still substantial.

For this reason, the general partially-supervised
approaches have become an attractive alternative. A
partially-supervised system typically starts with a rela-
tively small number of manually labeled examples and
proceeds to acquire new training examples automatically.
Some of the early applications of partially-supervised
learning using bootstrapping include identifying word hy-
ponyms and hypernyms in natural language text (Hearst,
1992), and word sense disambiguation (Yarowsky, 1995).

More recently, the co-training framework was proposed
for combining unlabeled and labeled examples to boost
performance of a learning algorithm (e.g., for web page
classification (Blum and Mitchell, 1998)). A related
approach was subsequently used for classifying named
entities (e.g., company names) in text (Collins and Singer,
1999). A different approach for named entity classification
used multi-stage bootstrapping (Riloff and Jones, 1999).
Another variation of the bootstrapping technique was
applied for disambiguating gene, protein, and RNA terms
in biological literature (Hatzivassiloglou et al., 2001).

Bootstrapping has also been used for extracting struc-
tured relations from text. The partially supervised DIPRE
method was proposed for automatically acquiring patterns
and relations from the pages on the web (Brin, 1998).
More recently, the Snowball information extraction
system (Agichtein and Gravano, 2000) extended the basic
DIPRE method by incorporating automatic pattern and
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tuple evaluation for extracting relations from large text
collections. A similar bootstrapping-based technique
was independently developed for traditional information
extraction (Yangarber et al., 2000).

In this study, we explore four complementary ap-
proaches to extracting gene and protein synonyms from
text. In the next section we describe our implementations
of the unsupervised, partially-supervised, supervised,
and the hand-constructed systems that we developed for
extracting gene and protein synonyms from biological
literature.

EXTRACTING SYNONYMOUS GENE AND
PROTEIN TERMS
We now present our approaches for extracting synony-
mous genes and proteins from biological literature. To
extract these synonyms we first need to identify, or tag,
the genes and proteins as they appear in the text. This task
is accomplished by pre-processing the corpus. Having
identified the gene and protein entities, we can apply
complementary approaches for determining which of the
entities are synonyms of each other. First, we outline an
unsupervised approach. Next, we describe our adaptation
of Snowball, a partially-supervised information extraction
system. We then present a supervised machine learning
method based on a state-of-the-art automatic text classifi-
cation tool. Next, we describe the extraction system that
was manually constructed by a biology expert. Finally,
we present a new combined system, where the output of
the manually constructed system is augmented with the
output of the machine learning-based systems.

Pre-processing: Gene and Protein Tagging
Identifying gene or protein names in biological literature
has been a rich area of research. As part of our system
development we compared three alternative gene taggers:
the tagger described in (Fukuda et al., 1998), the tagger
described in (Proux et al., 1998), and Abgene (Tanabe
and Wilbur, 2002). We emphasize that the purpose of our
study was not to systematically evaluate gene taggers, but
to identify the one that is best suited for our synonym
identification task. We examined all three taggers over our
training corpus and found that Abgene performed best for
our extraction task. Therefore, we use Abgene as the tagger
of choice for all of the subsequent experiments.

We also observed that gene or protein synonyms usually
occur within the same sentence. Therefore, we segment
the corpus into sentences using the publicly available
SentenceSplitter system‖. After sentence segmentation,
only the pairs of genes that appear within the same
sentence will be considered as potential synonyms by any

‖ Available from http://l2r.cs.uiuc.edu/∼cogcomp/index research.html.

of the following extraction techniques. Additionally, we
observed that the authors tend to specify gene and protein
synonyms in the first few pages of the article. Therefore,
our systems examined only the first 4Kb of text of each
article for potential synonyms.

Contextual Similarity: An Unsupervised Approach
We adopted the synonym detection method –to which we
will refer as Similarity– for identifying synonyms based
on contextual similarity(Dagan et al., 1995). We chose
Similarity over the others (e.g., (Li and Abe, 1998),(Lin,
1998)) because Similarity has been shown to be both
robust and general (Dagan et al., 1995).

The contextual similarity approach finds sets of words
that appear in similar contexts. The main observation is
that synonyms of a word t can be detected by finding
words that appear in the same contexts as t. If the contexts
of t1 and t2 are similar, then t1 and t2 are considered
synonyms. More formally, we define the context of a term
t as all words that occur within a d word window from t
(e.g., d = 5)∗∗. In order to separate chance co-occurrence
from the words that tend to appear together, the method
uses mutual information to weight each word w in the
context of t. The mutual information I(t, w) is defined
as log2(

P (t,w)

P (t)·P (w)
), and calculated as:

I(t, w) = log2(
N

d
·

freq(t, w)

freq(t) · freq(w)
)

where N is the size of the corpus in words, and d is the
size of the window. Note that I(t, w) 6= I(w, t) because
freq(t, w) (i.e., the number of times w appears to the
right of t) is not symmetric. Using mutual information,
we can now define the similarity Sim between two terms
t1 and t2, based on their respective contexts as:

�
w∈lexicon

min(I(w, t1), I(w, t2)) + min(I(t1, w), I(t2, w))
�

w∈lexicon
max(I(w, t1), I(w, t2)) + max(I(t1, w), I(t2, w))

where w ranges over the complete lexicon of all of the
words that appear in the respective contexts of t1 and t2.
The value of the similarity Sim(t1, t2) indicates whether t1
and t2 are synonyms.

It is not feasible to compute Sim(t1, t2) for all choices
of t1 and t2, since this would require O(|lexicon|3) running
time. We implemented the heuristic search algorithm to
compute a close approximation of the set of most similar
terms for a given term t1 (Dagan et al., 1995). Figure 1
reports some of the synonym sets extracted by Similarity
from a biological journal archive.

The original Similarity method (Dagan et al., 1995) was
designed to find contextual synonyms for all words in the
corpus. In contrast, we are only interested in computing

∗∗ We distinguish the left context of t (i.e., words that appear within d

words before t), and the right contexts of t because of asymmetry of English
grammar. For clarity of the presentation, we omit this distinction.

3



Term t1 List of the top ranked synonyms t2 together with Sim(t1 , t2)

multigene superfamily (0.94) subfamily (0.92) subclass (0.89)
definite unambiguous (0.94) unequivocal (0.92) rigorous(0.88)
question intriguing (0.98) possibility (0.94) issue (0.90)

Fig. 1. Some similar term sets extracted by the Similarity system
from a biological journal archive.

synonyms of gene and protein terms. Therefore, the
Similarity system uses a modification of the search
algorithm to only search for contextual similarity between
terms g1 and g2 if both g1 and g2 were tagged by the
Abgene tagger as genes. The confidence Conf(s) of a
candidate synonym pair s(g1, g2) is simply the value of
similarity Sim(g1, g2). We consider only the top k most
similar terms for each term g1 (we set k = 5).

While the unsupervised approach is attractive because
it does not require manual training, many of the extracted
gene and protein pairs are likely to be false positives.
Therefore, we would like to incorporate some domain
knowledge without requiring significant manual effort.
With this goal in mind, we adapted a partially super-
vised information extraction system for our synonym
identification problem.

Snowball: A Partially-Supervised Approach
The Snowball system (Agichtein and Gravano, 2000) uses
a bootstrapping approach for extracting structured rela-
tions from unstructured (natural language) text. Snowball
was designed to operate over large text collections and
to require minimal human input. As shown in Figure 2,
Snowball starts with a small set of user-provided seed tu-
ples for the relation of interest, and automatically gener-
ates and evaluates patterns for extracting new tuples. In
our study, the relation to be extracted is Synonym (Gene1,
Gene2).

Generate Extraction Patterns

Seed Tuples

Generate New Seed Tuples Tag Entities

Augment Table

Find Occurrences of Seed Tuples

Fig. 2. The architecture of Snowball, a partially-supervised informa-
tion extraction system.

As initial input, Snowball only requires a set of user-
provided seed (i.e., example) tuples in the target relation
(i.e., a set of known gene or protein synonym pairs). For
this problem, we extended Snowball to also make use of
negative examples (i.e., co-occurring genes and protein

expressions known not to be synonyms of each other).
Snowball then proceeds to find occurrences of the positive
seed tuples in the collection. These occurrences are
converted into extraction patterns, which are subsequently
used to extract new tuples from the documents, and the
process iterates by augmenting the seed tuples with the
newly extracted tuples.

A crucial step in the extraction process is the generation
of patterns to find new tuples in the documents. Given a
set of seed tuples (e.g., < g1, g2 >), and having found
the text segments where g1 and g2 occur close to each
other, Snowball analyzes the text that “connects” g1 and
g2 to generate patterns. Snowball’s patterns incorporate
entity tags (i.e., the GENE tags assigned by the tagger
during the preprocessing). For example, a pattern would
be generated from a context “<GENE> also known as
<GENE>”. Snowball represents the left, middle, and
right “contexts” associated with an extraction pattern as
vectors of weighted terms (where terms can be arbitrary
strings of non-space characters). During extraction, to
match text portions with patterns, Snowball also associates
an equivalent set of term vectors with each document
portion that contains two entities with the correct tags (i.e.,
a pair of GENEs).

After generating patterns, Snowball scans the collection
to discover new tuples by matching text segments with
the most similar pattern (if any). Each candidate tuple
will then have a number of patterns that helped generate
it, each with an associated degree of match. Snowball
uses this information, together with information about
the selectivity of the patterns, to decide what candidate
tuples to actually add to the table that it is constructing.
Intuitively, we can expect that newly extracted synonyms
for “known” genes should match the known synonyms for
these genes. Otherwise, if the newly extracted synonym
is “unknown” (i.e., a potential false positive), the pattern
is considered to be less “selective” and its confidence
is decreased. For example, if Snowball extracted a new
synonym pair s =< ga, gb >, we check if there exists
a set of high confidence previously extracted synonyms
for ga, e.g., < ga, g1 >, < ga, g2 >. If gb is equal
to either g1 or g2, s is considered a positive match for
the pattern, and an “unknown” match otherwise. Note
that this confidence computation “trusts” tuples generated
on earlier iterations more than newly extracted tuples.
Additionally, if the pattern P matches a known negative
example tuple, the confidence of P is further decreased.
More formally, Snowball defines Conf(P), the confidence
of a pattern P as:

{log
2
(Ppositive )

Ppositive

(Ppositive + Punknown · wunk + Pnegative · wneg

}

where Ppositive is the number of positive matches for
P , Punknown is the number of “unknown” matches, and
Pnegative is the number of negative matches, adjusted
respectively by the wunk and wneg weight parameters
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(set during system tuning). The confidence scores are
normalized so that they are between 0 and 1.

Snowball calculates the confidence of the extracted tu-
ples as a function of the confidence values and the num-
ber of the patterns that generated the tuples. Intuitively,
Conf(s), the confidence of an extracted tuple s, will be
high if s is generated by several highly selective patterns.
More formally, the confidence of s is defined as:

Conf(s) = 1 −

|P |�

i=0

(1 − (Conf(Pi) · Match(Ci, Pi)))

where P = {Pi} is the set of extraction patterns that
generated s, and Ci is the context associated with an
occurrence of s that matched Pi with degree of match
Match(Ci ,Pi). After determining the confidence of the
candidate tuples, Snowball discards all tuples with low
confidence. These tuples could add noise into the pattern
generation process, which would in turn introduce more
invalid tuples, degrading the performance of the system.
The set of tuples to use as the seed in the next Snowball
iteration is then Seed = {s|Conf (s) > τt}, where
τt = 0.6 is a threshold tuned during system development.

The original Snowball system was designed to oper-
ate with few user-provided example tuples. When many
labeled examples are available, supervised methods have
performed well. Next, we present our adaptation of a su-
pervised text classification system for synonym extraction.

Text Classification: A Supervised Approach
We can use supervised machine learning to build a text
classifier to identify synonymous genes and proteins. We
start with the same user-provided positive and negative
example gene and protein pairs as were used as the initial
examples for Snowball. We then automatically create the
training set of example contexts where these gene and
protein pairs occur. These contexts are assigned either a
positive weight of 1.0 or a negative weight of wneg (tuned
as part of system development).

We can now train the classifier to distinguish between
the “positive” text contexts (i.e., those that contain an
example synonym pair), and the “negative” text contexts.
Thus, a classifier would be able to distinguish previously
unseen text contexts that contain synonym pairs (e.g., “A,
also known as B”), from the contexts that do not express
the synonymy relation (e.g., “A regulates B”).

We chose a state-of-the-art text classification tool
SVMLight (Joachims, 1998)†† which has been shown to
be effective for text classification. The resulting system,
to which we refer as SVM, uses as features the same
terms and term weights used by Snowball for training
and prediction. We used the rbf, or the radial basis

†† Available at: http://www-ai.cs.uni-dortmund.de/SOFTWARE/
SVM LIGHT/svm light v3.02.eng.html

kernel function option of the SVMLight package, which
performed best in our preliminary experiments over the
development corpus.

After the classifier is trained, SVM examines every
text context C surrounding pairs of identified gene and
protein terms in the collection. If the classifier determines
C to be an instance of the “positive” (i.e., synonym)
class, the corresponding pair of genes or proteins s is
assigned the initial confidence score Conf 0(s), equal to
the score that the classifier assigned to C . The confidence
scores are normalized so that the final confidence of the
candidate synonym pair s, Conf (s), is between 0 and 1.
Note that SVM does not combine evidence from multiple
occurrences of the same gene or protein pair: When s
occurs in multiple contexts, Conf (s) is assigned based
on the single “most promising” text context of s.

GPE: The Hand-Crafted Extraction System
As a final –and the most labor-intensive– extraction
approach, we used a previously constructed hand-crafted
system called GPE (Yu et al., 2002) which was built
specifically for extracting synonymous gene and protein
expressions. The construction of GPE begins with a set of
known synonymous gene or protein names. The domain
expert examines the contexts where these example gene
or protein pairs occur, and manually generates patterns
to describe these occurrences. For example, the expert
decided that the strings “known as” and “also called”
would work well as extraction patterns. Using these
manually constructed patterns, GPE scans the collection
for new synonyms. For example, GPE identified the
synonymous set Apo3, LARD, DR3, wsl from the sentence
“...Apo3 (also known as LARD, DR3, and wsl)...”. Since
GPE does not use gene or protein taggers, many pairs of
strings that are not genes or proteins can be extracted.
To avoid such false positives, GPE uses heuristics and
knowledge-based filters. After filtering, each extracted
synonym pair s is assigned a confidence Conf (s) = 1.

The Combined System
While GPE requires labor-intensive tuning by a biology
expert, it can extract a small high quality set of syn-
onyms (Yu et al., 2002). In contrast, both Snowball and
SVM induce extraction patterns automatically, allowing
them to capture synonyms that may be missed by GPE.
On the other hand, Snowball and SVM are also likely
to extract more false positives, resulting in the lower
“quality” of the extracted synonyms. We can exploit the
advantages of both the knowledge-based and machine
learning-based techniques in a combined system. We now
present our Combined system that integrates the output
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of Snowball, SVM, and GPE‡‡.
We can combine outputs of the individual extraction

systems in different ways (e.g., (Dietterich, 2000)). In
our implementation of Combined, we assume that each
system is an independent predictor, and that the confidence
score assigned by each system to the extracted pair
corresponds to the probability that the extracted synonym
pair is correct. We can then estimate the probability that
the extracted synonym pair s =< p1, p2 > is correct as (1
− the probability that all systems extracted s incorrectly):

Conf (s) = 1 −
�

E∈Systems

(1 −ConfE (s))

where Conf E(s) is the confidence score assigned to s
by the individual extraction system E. This combination
function quantifies the intuition that agreement of multi-
ple extraction systems on a candidate synonym pair s in-
dicates that s is a true synonym.

EXPERIMENTAL SETUP AND EVALUATION
METHODOLOGY
We evaluated Similarity, Snowball, SVM, GPE, and
Combined over a collection of 52,000 recent jour-
nal articles from Science, Nature, Cell, EMBO, Cell
Biology, PNAS, and the Journal of Biochemistry.
The journal archives are maintained by the GeneWays
Project (Friedman et al., 2001) at Columbia University.
The collection was separated into two disjoint sets of
articles: the development collection, containing 20,000
articles, and the test collection, containing 32,000 articles.

System Tuning
The Similarity, Snowball, and the SVM systems were
tuned over the unlabeled development collection articles.
The tuning consisted of changing the parameter values
(e.g., the size of the context window d) in a systematic
manner to find a combination that appeared to perform
best on the development collection. The final parameter
values used for the subsequent experiments over the test
collection are listed in Figure 3.

User-Provided Examples
Note that our machine-learning based systems do not
require manually labeled articles. Instead, approximately
650 known gene and protein synonym pairs, previously
compiled from a variety of sources, were used as positive
examples for the Snowball and SVM systems. Some
of these did not occur in the collections, and thus did
not contribute to the system training. Additionally, a
set of negative examples were compiled by a biology
expert by examining the contexts of some commonly

‡‡ As we will discuss, Similarity did not perform well, and therefore was
not included in the Combined system.

Parameter Value Description

window d 5 Size of the text context (in words) to consider
|seed | 650 Number of user-provided example pairs

(for Snowball and SVM)
|seedneg | 28 Number of negative user-provided example pairs

(for Snowball and SVM)
MaxIterations 2 Number of iterations (for Snowball)
wneg 2 Relative weight of negative pattern matches

(for Snowball and SVM)
wunk 0.1 Relative weight of unknown pattern matches

(for Snowball)

Fig. 3. Final values of the Similarity, Snowball, and SVM system
parameters.

co-occurring, but not synonymous, genes and proteins in
the development collection.

One of the goals of our evaluation is to determine
whether the extraction approaches that we compare
generalize to new document collections. Therefore, the
only information that we retained from the tuning of
the Similarity, Snowball, and SVM systems were the
values of the system parameters (Figure 3). During the
“test” stage of our experiments, both Snowball and SVM
systems were re-trained from scratch over the unlabeled
articles in the test collection, by starting with the same
initial example gene and protein pairs described above.

Evaluation Metrics
Our evaluation focuses on the quality of the extracted
set of synonym pairs Se: (1) how comprehensive is Se,
and (2) how “clean” the pairs in Se are. To compare the
alternative extraction systems, we adapt the recall and
precision metrics from information extraction.

Recall: The fraction of all of the synonymous gene
and protein pairs that appear in the collection, Sall, and
were captured in the extracted set Se, is defined as:

Recall =
|Se ∩ Sall|

|Sall|

Precision: The fraction of the real synonym pairs in Se is
defined as:

Precision =
|Se ∩ Sall|

|Se|

Note that all of the compared extraction systems assign
a confidence score between 0 and 1 to each extracted syn-
onym pair. It would be useful to know the precision of
the systems at various confidence levels. Therefore, we
calculate precision at c, where c is the threshold for the
minimum confidence score assigned by the extraction sys-
tem. The precision at c is then defined as the precision of
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the subset of the extracted synonyms with the confidence
score ≥ c. We define recall at c equivalently.

Evaluation Methodology
For small text collections, we could inspect all documents
manually and compile the sets of all of the synonymous
genes in the collection by hand. Unfortunately, this
evaluation approach does not scale, and becomes infeasi-
ble for the kind of large document collections for which
automatic extraction systems would be particularly useful.
The problem with exhaustive evaluation is two-fold: (1)
the extraction systems tend to generate many thousands of
synonyms from the collection (which makes it impossible
to examine all of them to compute precision), and (2)
since modern collections typically contains thousands of
documents, it is not feasible to examine all of them to
compute recall.

Estimating Precision: To estimate precision at c, for
each system’s output Se we randomly select 20 candidate
synonym pairs from Se with confidence scores (0.0-0.1,
0.1-0.2, ..., 0.9-1.0)§§. As a result, each system’s output is
represented by a sample of approximately 200 synonym
pairs. Each sample (together with the supporting text
context for each extracted pair) is given to two biology
experts to judge the correctness of each extracted pair
in the sample. Having computed the precision of the
extracted pairs for each range of scores, we estimate
precision at c as the average of the evaluated precision
scores for each confidence range, weighted by the num-
ber of extracted tuples within each confidence score range.

Estimating Recall: To compute the exact recall of a
set of extracted synonym pairs Se, we would need
to manually process the entire document collection to
compile all synonyms in the collection. Clearly, this is
not feasible. Therefore, we use a set of known correct
synonym pairs that appear in the collection, which we
call the GoldStandard. To create this GoldStandard, we
use SWISSPROT. From this well structured database,
we generate a table of synonymous gene and protein
pairs by parsing the “DE” and “GN” sections of protein
profiles. Unfortunately, we cannot use this table as is, since
some of the pairs may not occur at all in our collection.
We found that synonym expressions tend to appear
within the same sentence. Therefore, the GoldStandard
consists of synonymous genes and proteins (as specified
by SWISSPROT) that co-occur in at least one sentence in
the collection, and were recognized by the Abgene tagger.
We found a total of 989 such pairs.

Unfortunately, we found that we did not agree with

§§If there are fewer than 20 extracted synonyms with the required confidence
score, we select all of the ones that match.

System Tagging Similarity Snowball SVM GPE

Time 7 hours 40 minutes 2 hours 1.5 hours 35 minutes

Fig. 5. Running times of Tagging, Similarity, Snowball, SVM,
GPE (test collection)

many of these synonym pairs. We consider synonymous
gene or protein names to be those that represent the
same genes or proteins. However, SWISSPROT appears
to consider a broader range of synonyms. For example,
SWISSPROT synonyms included different genes or
proteins that had a similar function, that belong to the
same family, that were different subunits, and those that
were functionally related (Figure 4). Note that we judged
the synonym pairs based solely on the information in our
corpus and did not perform any biological experiments.

To create the GoldStandard, we asked six biology
experts (all with PhDs in biology) to evaluate gene and
protein pairs listed as synonyms in SWISSPROT, and
judge whether they considered the pairs as synonyms.
Each expert evaluated between 100 to 989 pairs. Each
candidate synonym pair was judged by at least two
experts, and was included in the GoldStandard if at
least one of the experts agreed with the SWISSPROT
classification¶¶ . Experts disagreed with SWISSPROT on
318 pairs, and were unsure of additional 83. As a result,
we included a total of 588 confirmed synonym pairs in the
GoldStandard. The agreement was 0.61 among experts,
0.83 between experts and SWISSPROT, and 0.77 overall.
The resulting GoldStandard is used to estimate recall as
the fraction of the GoldStandard synonym pairs captured.

RESULTS
In this section we compare the performance of Similarity,
Snowball, SVM, GPE, and Combined on the recall and
precision metrics over the test collection described above.
The experiments were performed on a dual-CPU 1.2Ghz
Athlon machine with 2Gb of RAM. We report the running
times of each system in Figure 5. Note that the Tagging
and preprocessing (i.e., identifying the gene and protein
terms in the collection) were performed once for the
complete collection, and were not required again for the
subsequent experiments.

Figure 6(a) reports recall of all systems. Similarity
performs poorly, with recall less than 0.09 for all confi-
dence scores. In contrast, Snowball and SVM have the
highest recall for confidence scores below 0.4 (reaching
0.72 for Snowball and 0.38 for SVM), while GPE has

¶¶ The evaluated synonym pairs are available at http://synonyms.cs.
columbia.edu/SPROT/.
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Relationship Type SWISSPROT Synonyms Context

Family Related GRPE, MGEL “... requires the nucleotide release factors, grpe and mge1...”
Fragment PS2, ALG3 “...as ps-2 c-terminal 109-amino acid fragment ( alg3 ) is essential in the death process...”
Subunits P40, P38 “...baculoviruses encoding individual rf-c subunits p140, p40, p38, p37, and p36) yielded...”
Homologous GRIP-1, TIF2 “...shown that grip-1 , the murine homologous of tif2...”
Functionally Related CDC47, MCM2 “and cdc47 , cdc21 , and mis5 form another complex, which relatively weakly associates with mcm2.”

Fig. 4. Four types of apparent gene and protein relationships (with an example and literature context of each) that were designated by
SWISSPROT as synonyms: Family Related, Subunits, Homologous, and Functionally Related.

the best recall (0.14) of any individual system for the
higher confidence scores. Note that GPE always assigned
the Conf (s) = 1 to all extracted candidate pairs, and
is therefore represented by a single data point in each
plot. Combined has the highest recall of all systems for
all confidence scores. For example, at confidence score
c = 0.4, Combined recall is more than double that of any
individual system.

We report the precision of all systems for varying
confidence scores in Figure 6(b). Similarity has extremely
low precision (less than 0.01) and therefore is not shown.
Our experiments indicate that Similarity performed well
for more common terms (Figure 1), but performed poorly
on identifying gene and protein synonyms as it tends to
extract pairs of genes that are related, but not synonymous.
Both Snowball and SVM extract synonyms with over 0.9
precision at their highest confidence scores. GPE also
has the precision of 0.9. The confidence scores that both
Snowball and SVM assign to their extracted pairs are
correlated with the actual precision. For example, while
the precision at c = 0.8 of Snowball is 0.9, precision at
c = 0.1 is 0.1. Snowball has higher precision than SVM
for all confidence score values. Also note that while both
Snowball and SVM have sharp drops in precision between
the confidence scores of 0.4 and 0.7, the Combined
confidence score is more smooth, and appears to be a
better predictor of the precision.

Figure 6(c) reports the values of precision vs. recall for
all systems. Both Snowball and SVM clearly trade off
precision for high recall. Even though Snowball is able
to achieve the recall of almost 0.72, the corresponding
precision is 0.07. In contrast, GPE has at most 0.14 re-
call. As we conjectured, combining these complementary
approaches in Combined resulted in a significant gain:
While Combined has the highest precision of all systems,
it is also able to achieve the highest recall of 0.8.

To complement the reported recall figures, we also es-
timated the number of all real synonym pairs extracted
by each system for each confidence score c (Figure 6(d)).
These values were calculated by multiplying the number
of pairs extracted by the system with the score ≥ c by the
corresponding precision at c. Despite exhibiting lower pre-

cision values, Snowball and SVM extract a significantly
larger set of real synonyms than GPE. Similarly, Com-
bined extracts the largest estimated number of real syn-
onyms. For example, we estimate Combined to have ex-
tracted almost 10,000 correct synonyms at the confidence
score of 0.4, which is more than ten times the estimated
number of synonyms extracted by Snowball, SVM, or
GPE individually. In summary, Combined is the best per-
forming system on all metrics, and significantly improves
over the manually constructed GPE.

DISCUSSION
We evaluated the four different extraction approaches
over a large collection of biological journal articles. Our
extraction results are particularly valuable as we found that
many of the synonyms that we extracted do not appear
in SWISSPROT. Of the 148 extracted synonym pairs that
were manually judged as correct by the experts during
our evaluation, 62 (or 42%) were not listed as synonyms
in SWISSPROT. This leads us to predict that out of the
approximately 10,000 correct synonym pairs extracted by
Combined with confidence score ≥ 0.4 (Figure 6(d)), we
would find more than 4,000 novel synonym pairs.

Our results show that machine learning-based ap-
proaches were responsible for the significant improvement
of Combined over the manually constructed knowledge-
based system. Snowball and SVM are –by design–
more flexible, and therefore can detect cases on which
GPE failed. For example, Snowball extracted the pair
<EIF4G, P220> from the text fragment: “...eIF4G, also
known as eIF4 or p220, binds both eIF4A...”, which was
not captured by GPE. While both SVM and Snowball
contributed to the improved performance of Combined,
Snowball has an additional advantage of generating
intuitive human-readable patterns (Figure 7) that can be
potentially examined and filtered by a domain expert.

There are many ways to improve our system. For exam-
ple, we found that the small number of negative examples
significantly improved performance of Snowball. Further
experiments on varying the size and composition of the
initial example tuple sets may result in additional improve-
ments. We do not differentiate between gene and protein
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Fig. 6. Recall and precision of Similarity, Snowball, SVM, GPE, and Combined: Recall vs. confidence score (a), Precision vs. confidence
score (b), precision vs. recall (c), and the estimated number of correct synonym pairs extracted by each system vs. confidence score (d).

Conf Left Middle Right

0.75 - <( 0.55> <ALSO 0.53> <CALLED 0.53> -
0.54 - <ALSO 0.47> <KNOWN 0.47> <AS 0.47> -
0.47 - <( 0.54> <ALSO 0.54> <TERMED 0.54> -

Fig. 7. Some Snowball patterns automatically discovered from the
test, collection with the associated pattern confidence scores.

terms with the same name, and it may be beneficial to ap-
ply the approach of (Hatzivassiloglou et al., 2001) for dis-
ambiguation. We may also explore more ways to enhance
gene and protein name entity identification, which is likely
to further improve extraction quality.

Our approaches extract synonyms from a collection
of biological literature, and therefore the quality of
the extracted relation depends in part on the collection
consistency. We found some conflicting statements in our
collections. For example, the following two statements are
taken from two different articles in our test collection:
while the first text fragment suggests that the proteins PC1
and PC3 are different substances, another article indicates
that PC1 and PC3 are synonyms for the same substance:

“ ...the positive cofactors (pcs) pc1, pc2, pc3, and p15.”
“... hydra pc1 (also called pc3) ...”

Lacking additional information, it is difficult to make a
decision whether PC1 and PC3 are synonyms. We plan to
explore this problem further in our future work.

CONCLUSIONS AND FUTURE WORK
In this paper we have addressed an important problem
of extracting gene and protein synonyms from biological
literature. We have adapted and evaluated complementary
synonym extraction approaches that span the spec-

trum from an unsupervised approach to a hand-crafted
knowledge-based system. We performed a large-scale
evaluation of the competing approaches which show
that our extraction techniques can be used as a valuable
supplement to resources such as SWISSPROT.

As part of our analysis, we discovered some inconsistent
statements in the articles. In future work we may incorpo-
rate some of the proposed methods for resolving inconsis-
tencies (e.g., (Magnini et al., 2002), (Krauthammer et al.,
2002)). Additionally, we may incorporate work of (Hatzi-
vassiloglou et al., 2001) for disambiguation between genes
and proteins that share the same name.

We speculate that the machine learning-based ap-
proaches for synonym identification, particularly Snow-
ball, could be applied successfully for extracting other
biological relations such as relationships between genes
and proteins, small molecules, drugs, and diseases. We
plan to explore this further in the future.
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