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Abstract: Much of knowledge modeling in the molecular biology domain involves interactions between proteins, 
genes, various forms of RNA, small molecules, etc. Interactions between these substances are typically extracted 
and codified manually, increasing the cost and time for modeling and substantially limiting the coverage. In this 
paper, we describe an automatic system for learning from text interaction verbs; these verbs can then form the 
core of automatically retrieved patterns that model classes of biological interactions. We investigate text features 
relating verbs with genes and proteins, and apply statistical tests and a logistic regression statistical model to 
determine whether a given verb belongs to the class of interaction verbs. Our system, AVAD, achieves over 87% 
precision and 82% recall when tested on an 11 million word corpus of journal articles. 
 

 

INTRODUCTION 
Almost every day, new biological substances such 
as genes, proteins, and other molecules are 
discovered, and interactions between them are 
studied. The results are reported in numerous 
publications of papers. Even a biologist who works 
in this fast-developing field cannot keep track of all 
these newly identified interactions without the help 
of an effective knowledge extraction computer 
system. Researchers have developed systems to 
extract automatically interaction relationships 
among proteins, genes, and other biological 
molecules. These systems apply patterns that are 
manually pre-constructed, in terms of pre-defined 
interaction verbs and/or pre-specified protein and 
gene names (Blaschke et al., 1999; Proux et al., 
2000), or even are fully instantiated in a knowledge 
database or by a semantic grammar (Park et al., 
2001; Yakushiji et al., 2001).  
 Thus, current approaches perform automatic 
interaction extraction based on patterns that are 
already known. Their power is greatly limited by 
the small set of pre-defined interaction verbs used 
in the patterns. For instance, Blaschke and 
colleagues (Blaschke et al., 1999) used a set of 14 
pre-specified verbs that denoted actions related to 
protein interactions; Proux and colleagues (Proux et 
al., 2000) limited interaction verbs by presenting 
them explicitly in “request scenarios”. 
 One way to ease this limitation is to enlarge the 
size of the interaction verb set automatically. 
Discovering interaction verbs automatically would 
allow substantial improvements in the performance 
and power of current systems. It would also balance 
current manually built verb lists, which tend to 
contain the most common interaction verbs, with 
other rarer members of this class (e.g., co-localize 

and synergize, both of which were automatically 
discovered by the system presented in this paper). 
 Finding the interaction verbs is also an 
important step in the automatic discovery of 
relationship patterns from large biological text 
corpora. Interaction verbs naturally link their 
subject and object, which are the participants in the 
interaction. Sekimizu and colleagues (Sekimizu, et 
al., 1998) built a system to find the subjects and 
objects for the frequently seen verbs in the genome 
domain, as the basis for a genome-related thesaurus. 
The verbs they used, however, were still pre-
defined. To discover interaction patterns 
automatically, we can start from a set of 
automatically discovered interaction verbs and use 
text mining techniques to extract the initial patterns 
and corresponding tuples of genes or proteins that 
participate in the relationships indicated by the 
interaction verbs. We can then generalize the 
evidence obtained for individual proteins and genes 
by using clustering techniques on the proteins and 
genes in these tuples to recover automatically 
subclasses that have a similar functional behavior. 
As a result, we can propose appropriately restricted 
versions of the patterns for inclusion in a database 
of relations between finely grained subclasses of 
biological substances.  
 In this paper, we present AVAD, a system that 
uses a novel automatic method to discover 
interaction verbs that code for gene and protein 
interactions in molecular biology articles. We treat 
the discovery of such verbs as a two-category 
classification problem:  among all verbs appearing 
in the text, automatically determine those that code 
for biological interactions and those that serve a 
normal discourse purpose (e.g., say, report, be). 
The features that AVAD uses include the frequency 
of a verb before gene or protein names (for 
convenience, we denote “gene or protein name” as 



  

GPN), the frequency of that verb after GPNs, and 
the frequencies of the verb in different domains 
(biological, medical, and financial). First, we apply 
statistical tests to the features. Then we use either a 
rule-based combination or a fitted linear model to 
decide whether the verb is an interaction verb.  
 In Section 2, we outline the structure of AVAD 
and describe the methods we use for preprocessing 
text and recognizing verbs, GPNs, and associations 
between them. In Section 3, we discuss the 
statistical methods used over the word pair counts 
obtained earlier. Section 4 presents our analysis of 
the results generated from a large collection of 
biological journal articles by different versions of 
AVAD.  

1. EXTRACTING 
INFORMATION FROM 
TEXT 

The basic premise of our approach for 
determining if a verb is an interaction verb 
is to extract from the text the subjects and 
objects in its various occurrences over a 
large biological corpus. We reason that for 
an interaction verb these are likely to be 
entities from the biological domain (most 
commonly, genes and proteins), while for 
discourse verbs the subjects and objects are 
often not biological substances (e.g., 
authors report and believe, a study or 
another paper is cited, etc.). 

AVAD includes a collection of modules 
that preprocess HTML input to produce 
annotated XML files with information 
about word and sentence breaks and part of 
speech labels. Further analysis of the text 
(for example, to detect co-occurring verbs 
and GPNs) is performed on the annotated 
text. We assume that the input to our 
system comes in HTML form, as most 
journal articles available already are 
already in this format. Additional 
preprocessing modules can be activated to 
handle ASCII text or PDF files. 

In the preprocessing phase we start with 
the HTML::TreeBuilder perl module from 
CPAN (http://www.cpan.org) to parse the 
HTML files. Then, we discard the HTML 
tags that are used for graphic display 
purposes but carry no useful information 

for text analysis. We output the contents of 
the HTML files as raw text, and transform 
that to XML files via a pipeline containing 
five additional phases: 
1. GPN tagger. We need to detect names 
of proteins and genes, since we base our 
verb statistics on the verb’s associations 
with these words and phrases. We use a 
small dictionary of 2,783 GPNs, which 
provides us with a manually built, high-
quality, but relatively small set of GPNs. 
Since we use these GPNs as seed points for 
the detection of interaction verbs, high 
precision in the labeling of GPNs is more 
important than high recall—if desirable, 
another source of GPNs such as GenBank 
(Benson et al. 1999) can be used. We 
maximally match phrases from the text 
against the dictionary, and perform this 
step first because of some gene names that 
contain punctuation marks (e.g., “Inositol 
(1,4,5) P3 receptor 1”), which would 
otherwise confuse our sentence boundary 
detector and tokenizer. 
2. Sentence boundary detector. We use MX- 
TERMINATOR (Reynar and Ratnaparkhi, 1997; 
http://www.cis.upenn.edu/~adwait/statnlp.html) to 
detect sentence boundaries. 
3. Tokenizer. We use a tokenizer for 
arbitrary raw text, a sed script developed 
for the Penn Treebank 
(http://www.cis.upenn.edu/~treebank/token
izer.sed)  
4. Part-of-speech (POS) tagger. The 
statistical POS tagger (Brill 1995) assigns a 
part of speech label to each word in the 
text. We use this information to detect 
verbs as explained later.  
5. XML generator. The XML generator 
transforms the output of the part-of-speech 
tagger to XML. We use only four tags: (1) 
PAPER, which is the root tag for each file; 
(2) S, for “Sentence”; (3) W, for “Word,” 
which has a POS attribute; and (4) GPN, 
for “gene or protein name”. A very simple 
example XML file is shown in Figure 1: 

    
 
 

������� 
������

������	�
����	�
��
�������������������������
������������������	
���
�������
������������������������

�	�
����	�
���
����������������������
�������

���������



  

 
 
 
 
 
 

Figure 1: An XML File for an artificially simple 
article. The article has only one sentence, “A is 
activated by B.” A and B are GPNs; PAPER is the 
root tag; S stands for “sentence”; and W stands for 
“word”, which has a POS (part-of-speech) attribute.  

 
Once all files in a corpus of biological 

texts have been annotated and transformed 
to XML as described above, our system 
detects verb groups and subsequently finds 
GPNs that are close to these verb groups, 
either before or after the verb. AVAD 
collects the “before” and “after” counts for 
each verb in the corpus. Similar counts can 
also be obtained from corpora in other 
domains, to compare with the frequencies 
of verbs in the biology domain. 
Using the part of speech labels, we have built finite 
state machines (FSMs) to detect combinations of 
verbs and auxiliaries that comprise a single verb 
group. We automatically detect the head (main 
verb) in a verb group, and associate it with any 
GPNs to the left and right of the verb group. 
Detected verbs are normalized to a canonical form, 
using the SCOL stemmer available from  
http://www.sfs.nphil.uni-tuebingen.de/~abney, so 
that statistics for all morphological variants of the 
same verb will be collected together. Figure 2 
shows the finite state machine used to detect verb 
groups starting from an observed GPN. The 
detection algorithm uses a parameter that controls 
how close the GPN and the verb group must be to 

consider their association a valid one. We have 
experimented with values in the range of 0 to 4 
Figure 2: The Finite State Machine for finding the 
head verb after a GPN. When the FSM stops at one 
of its end states, it returns the last-met verb as the 
head verb. 

intervening tokens, observing little 
difference in the final results of AVAD. 
Note that our algorithms for detecting an 
association between verbs and GPNs 
simulate locally a dependency parser to 
find the head verb for a GPN subject 
(after) or a GPN object (before). We have 
found that these finite-state methods offer 
reasonable accuracy for this specialized 
task, thus avoiding the intensive 
computation that a full parser would 
require. 

2. CLASSIFYING VERBS 
After association counts have been 
collected for all verbs in the corpus, we 
have a big table in which each verb has a 
row with “GPN before” and “GPN after” 
frequencies, as well as the total frequency 
of the verb. Next, an appropriate statistical 
test is needed to rank the verbs in 
descending order of their likelihood of 
being an interaction verb. We have applied 
Pearson’s χ2 (chi-square) test and its 
variant commonly known as the 
proportions test. Under the latter, we 
assume: 
 



  

(1) The ratio of the “before” (or “after”) frequency 
to the total frequency of an interaction verb is 
higher than the corresponding ratio for a common 
(non-interaction) verb. 

 
To apply the test, we need to estimate the ratio 

for a common verb. We estimate the “before”, 
“after”, and total frequency of a common verb by 
summing all the frequencies of the verbs in the 
table, except those of the verb in question. We can 
use this estimation method because we assume that 
the interaction verbs form a small subset of all the 
verbs, and that the sum of the frequencies actually 
reflects the true distribution of the frequencies for a 
common verb. For each verb, we apply the 
proportions test twice, for the before and after 
counts. The test hypotheses are given below 

 positioncommonpositionverbposition rrH ,,,0 : =   

positioncommonpositionverbposition rrH ,,,1 : >          

(2) 

where r means ratio and position is either “before” 
or “after”. Using a contingency table with four 
cells corresponding to the before/after and total 
frequencies of the verb in question and all other 
verbs, we can calculate the χ2 statistic for both the 
original χ2 test and the proportions test.  

We combine the results of the “before” and 
“after” tests in two ways: either by requiring that 
both H1,before and H1,after are true (conjunction) or 
that either of them is true (disjunction). We would 
normally expect conjunction to perform better, as 
an interaction verb normally has biological 
substances as both subject and object. However, 
due to the limited GPN dictionary and possible 
verb-GPN link detection errors, we tested the 
disjunction rule as an alternative. 

In addition to the two tests involving the before 
or after frequencies of each verb, we also consider 
the difference between the rate of occurrence of a 
verb between a corpus of biological articles and 
other collections of text in other domains. We 
measure differences in these rates of occurrence 
with the log-likelihood test (Rayson and Garside, 
2000), calculating that value for each verb and 
each other domain that we examine. We use the 
log-likelihood values together with our previously 
computed results of the before/after tests as 
features in a logistic regression model that 
constitutes another way to combine information 
from the different indicators and predict whether a 
verb belongs to the interaction verb class. 

3. RESULTS AND 
EVALUATION 

For the experiments reported in this paper, we used 

1,381 HTML articles extracted from the European 
Molecular Biology Organization (EMBO) Journal 
Online (http://www.emboj.org/) to form our corpus 
of biological articles. This corpus contains 
10,931,907 words. For the purpose of comparing 
verb frequencies with those in other domains, we 
used two additional corpora: a collection of one 
year of articles from the Wall Street Journal, 
including general news articles but focusing 
primarily on financial news (22,503,667 words), 
and a set of 29,784 articles from 20 cardiology 
journals (88,944,123 words). 

4.1 Experiment I 
In this experiment, without looking at context, 
experts with M.S. or Ph.D. degrees in biology and 
related disciplines such as mathematical genetics 
labeled 647 (48% of the total) verbs as positive 
(interaction verbs) out of 1,346 verbs in the EMBO 
corpus. Only verbs occurring more than 15 times in 
the corpus were supplied to the experts. Using the 
“after” test, the “before” test, and the conjunction 
and disjunction of the “after” and “before” tests at 
the significance level of 5%, we give the precision, 
recall, and F-measure of the χ2 test and the 
proportions test in Table 1 and Table 2 respectively. 
Precision is the percentage of correctly classified 
interaction verbs among those that the system 
reports as interaction verbs; recall is the percentage 
of correctly classified interaction verbs among all 
verbs labeled as interaction verbs by the experts. 
The F-measure (vanRijsbergen 1979) combines the 
usually competing measures of precision and recall 
in a single number with equal weights. 

  
Table 1: The Results of the χ2 Test. 

 Precision Recall F 
Before 51.4% 32.9% 40.1% 
After 54.3% 36.8% 43.9% 

Conjunction 53.9% 21.5% 30.7% 
Disjunction 52.5% 48.2% 50.3% 

 
Table 2: The Results of the Proportions Test. 

 Precision Recall F 
Before 64.4% 23.2% 34.1% 
After 70.5% 28.4% 40.5% 

Conjunction 78.2% 13.3% 22.7% 
Disjunction 64.6% 38.3% 48.1% 

 
Generally, the precision of the proportions test 

is higher than that of the χ2 test but the recall is 
lower. Also, as expected, the conjunction rule 
between the before and after tests leads to higher 
precision (and lower recall) than either test alone, 
while the opposite is true for the disjunction rule. 

We subsequently fit a log-linear  (logistic 
regression) model on the features of a verb, 
including the total frequency, the before and after 



  

frequency, the proportions and χ2 test statistics, the 
ranks in the two sorted lists, and the log-likelihood 
tests between the biology and other domains. We 
randomly select 2/3 of the verbs as the training set 
to fit the model on, and then use the fitted model on 
the test set, the remaining 1/3 verbs. We repeat the 
procedure for 10 times with different random splits 
and compute the averages. We analyzed models of 
various orders of feature interaction; Table 3 
shows the results for an order 2 model on all 
features. The combined model offers the best 
performance, outperforming any single test or 
feature or the conjunction or disjunction rules 
alone. 

 
Table 3: Average Results of the Log-Linear Model 
with Interaction Term Order 2 on All the Features. 

 Precision Recall F 
Training 71.7% 68.9% 70.3% 

Test 61.1% 58.0% 59.5% 
 
4.2 Experiment II 

Our best results from Experiment I (Table 3) 
indicate around 60% precision and recall on 
unseen data. We analyzed the cases where the 
system disagreed with the labels assigned by the 
experts, and followed this analysis with discussions 
with them. We found, to our surprise, that the 
experts would often revise their decisions when 
presented with examples where verbs were used as 
interaction verbs (or the opposite). Thus, we 
designed a second experiment, aiming to create 
another gold standard where the experts would be 
more confident in their labels. 

We randomly selected 150 verbs, and supplied 
to experts 10 example sentences where each 
occurred. By viewing the verbs in context, the 
experts were more certain of their status as 
interaction or non-interaction verbs. Using a strict 
criterion that interaction verbs act as such in 
almost all the supplied example sentences, only 17 
of the 150 verbs were labeled as interaction verbs. 

We then repeated the calculations of the 
statistical tests and the training and testing of the 
log-linear models. We show in Table 4 results from 
the proportions test (which performed better than 
the χ2 test) at different levels of confidence. The 
log-linear model performed slightly worse than the 
proportions test on this data, possibly because of 
the small number of labeled samples. 

 
Table 4: Performance of AVAD Using the 
Proportions Test and 
Conjunction/Disjunction Rules at Different 
Significance Levels. 

 Precision Recall F 
Conjunction 100% 58.8% 74.1% 

Conjunction 100% 58.8% 74.1% 
α =1% Disjunction 45.5% 88.2% 60% Conjunction 86.7% 76.5% 81.3% α =5% 

Disjunction 39.5% 88.2% 54.5% 
Conjunction 87.5% 82.4% 84.9% α =10% 
Disjunction 37.2% 94.1% 53.3% 

4. CONCLUSION 
We have described AVAD, a system that 
automatically discovers interaction verbs 
between genes and proteins. The system 
achieves respectable precision (61.1%) and 
recall (58.0%) when it categorizes 
interaction verbs marked by experts out of 
context. But when the evaluation is 
focused on the cases where the experts can 
safely label the verbs by checking their 
contexts, performance rises to 87.5% 
precision and 82.4% recall. 
 The system is in addition able to 
recover interaction verbs that are relatively 
infrequent or specialized, and are thus 
unlikely to be captured during manual 
knowledge engineering. For example, 
AVAD automatically classified co-localize 
and synergize as interaction verbs, both of 
which do not appear in the detailed 
knowledge model for interaction verbs 
constructed for the GeneWays system 
(Rzhetsky et al. 2000). In fact, AVAD 
grew out of our desire to increase 
GeneWays’ coverage for interaction 
verbs.1 

Our approach may be used by current 
interaction extraction systems as an 
extension or refinement by automatically 
enlarging the size of the interaction verb 
sets they use. It is also an important step in 
our automatic discovery of interaction 
patterns from large biological corpora.  We 
plan to extend its coverage to interactions 
among other biological substances in 
addition to genes and proteins, such as 
tRNA, mRNA, and other molecules, by 
including the names of these substances in 
the dictionary. Extending our current 
coverage of verb forms to deverbal 

                                                 
1 The authors are part of the interdisciplinary team 
that is building GeneWays at Columbia University. 



  

nominal forms (e.g., activation) is another 
goal of future work. 
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For more complex tasks, where state variables 
must be maintained throughout a sequence of 
screens, we have developed a simple 
procedural language. This language can control 
the sequencing of HTML documents, execute 
validation rules, save and restore arbitrary data 
elements, access the environment variables, 
and trigger actions in the… 

For example, for the process of discharging 
patients treated for acute myocardial 
infarctions, the Cardiology Service uses this 
technique (Figure 1): several HTML forms are 
used to capture information about key aspects 
of the hospitalization, risk factors, future 
appointments, discharge medications, and 
various recommendations for the patient. 
Physicians planning the discharge can be asked 
to justify why certain medications (such as 
aspirin or a beta-blocker) were not prescribed. 
As a result, structured data useful for quality 
assurance is captured. Incentives for resident-
physician end-users include the automated 
generation of prescriptions, discharge 
instructions for nurses, a customized letter for 
the patient, and a discharge note which 
becomes immediately available, at a time 
before the complete discharge summary can be 
dictated. 

ANOTHER CHAPTER NAME 

Some decision-support tools require a high 
level of interactivity, which cannot be provided 
by the…  

CONCLUSION 

The maintenance of a clinical decision-support 
system’s knowledge base can be effectively 
distributed to its various stakeholders.  A 
formal mechanism… 
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