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ABSTRACT
Text documents often contain valuable structured data that
is hidden in regular English sentences. This data is best ex-
ploited if available as a relational table that we could use for
answering precise queries or for running data mining tasks.
We explore a technique for extracting such tables from doc-
ument collections that requires only a handful of training ex-
amples from users. These examples are used to generate
extraction patterns, that in turn result in new tuples being
extracted from the document collection. We build on this
idea and present ourSnowballsystem.Snowballintroduces
novel strategies for generating patterns and extracting tuples
from plain-text documents. At each iteration of the extrac-
tion process,Snowballevaluates the quality of these patterns
and tuples without human intervention, and keeps only the
most reliable ones for the next iteration. In this paper we
also develop a scalable evaluation methodology and metrics
for our task, and present a thorough experimental evaluation
of Snowballand comparable techniques over a collection of
more than 300,000 newspaper documents.

1 INTRODUCTION
Text documents often hide valuablestructured data. For
example, a collection of newspaper articles might contain
information on thelocation of the headquarters of a num-
ber of organizations. If we need to find the location of the
headquarters of, say, Microsoft, we could try and use tradi-
tional information-retrieval techniques for finding documents
that contain the answer to our query [13]. Alternatively, we
could answer such a query more precisely if we somehow
had available atablelisting all the organization-locationpairs
that are mentioned in our document collection. Atuple<o,̀ >
in such table would indicate that the headquarters of orga-
nization o are in location`, and that this information was
present in a document in our collection. Tuple<Microsoft,
Redmond> in our table would then provide the answer to our

query. The web contains millions of pages whose text hides
data that would be best exploited in structured form. In this
paper we develop theSnowballsystem for extracting struc-
tured data from plain-text documents withminimal human
participation. Our techniques build on the idea of DIPRE
introduced by Brin [3].

DIPRE: Dual Iterative Pattern Expansion DIPRE was pro-
posed as an approach for extracting a structuredrelation (or
table) from a collection of HTML documents. The method
works best in an environment like the World-Wide Web, where
the tabletuplesto be extracted will tend to appear in uniform
contexts repeatedly in the collection documents (i.e., in the
available HTML pages). DIPRE exploits this redundancy
and inherent structure in the collection to extract the target
relation with minimal training from a user.

As in the rest of the paper, we focus the presentation on the
organization-location scenario defined above. In this context
DIPRE’s goal is to extract a table with all the organization-
location tuples that appear in a given document collection.
Initially, we provide DIPRE with a handful of instances of
valid organization-location pairs. For example, we may indi-
cate that<Microsoft, Redmond> is a valid pair, meaning that
Microsoft is an organization whose headquarters are located
in Redmond. Similarly, we provide DIPRE with a few other
examples, as Table 1 shows. In addition, the user provides a
general regular expression that the entities must match. This
is all the training that DIPRE requires from the user.

Organization Location of Headquarters
MICROSOFT REDMOND
EXXON IRVING
IBM ARMONK
BOEING SEATTLE
INTEL SANTA CLARA

Table 1: User-provided example tuples for DIPRE.

After this initial training phase, DIPRE looks for instances
of the example organizations and locations in the text doc-
uments. Then, DIPRE examines the text that surrounds the
initial tuples. For example, DIPRE inspects the context sur-
rounding Microsoft and Redmond in “computer servers at
Microsoft’s headquarters inRedmond” to construct a pat-



tern “<STRING1>’s headquarters in<STRING2>.” Other
possible patterns are listed in Figure 1.

A DIPRE pattern consists of a five tuple<order, urlprefix,
left, middle, right> and is generated by grouping together oc-
currences of seed tuples that have equal strings separating the
entities (middle) and then setting theleft andright strings to
the longest common substrings of the context on the left and
on the right of the entities, respectively. Theorder reflects
the order in which the entities appear, andurlprefix is set to
the longest common substring of the source URL’s where the
seed tuples were discovered. After generating a number of
patterns from the initial seed tuples, DIPRE scans the avail-
able documents in search of segments of text that match the
patterns. As a result of this process, DIPRE generates new
tuples and uses them as the new “seed.” DIPRE starts the
process all over again by searching for these new tuples in
the documents to identify new promising patterns.

<STRING1>’s headquarters in <STRING2>
<STRING2>-based <STRING1>
<STRING1>, <STRING2>

Figure 1: Initial DIPRE patterns. <STRING1> and
<STRING2> are regular expressions that would
match an organization and a location, respectively.

Related Work Brin’s DIPRE method and ourSnowballsys-
tem that we introduce in this paper both address issues that
have long been the subject of information extraction research.
Our task, though, is different in that we do not attempt to ex-
tractall the relevant information from each document, which
has been the goal of traditional information extraction sys-
tems [10]. One of the major challenges in information ex-
traction is the necessary amount of manual labor involved in
training the system for each new task. This challenge has
been addressed in different ways. One approach is to build
a powerful and intuitive graphical user interface for training
the system, so that domain experts can quickly adopt the sys-
tem for each new task [14]. Nevertheless, these systems still
require substantial expert manual labor to port the system to
each new domain. In contrast,Snowballand DIPRE require
only a handful of example tuples for each new scenario.

Another approach is to train the system over a largeman-
ually taggedcorpus, where the system can apply machine
learning techniques to generate extraction patterns [8]. The
difficulty with this approach is the need for a large tagged
corpus, which again involves a significant amount of man-
ual labor to create. To combat this problem, some methods
have been proposed to use an untagged corpus for training.
[11] describes generating extraction patterns automatically
by using a training corpus of documents that were manually
marked as either relevant or irrelevant for the topic. This
approach requires less manual labor than to tag the docu-
ments, but nevertheless the effort involved is substantial. [6]
describes machine learning techniques for creating a knowl-

edge base from the web, consisting of classes of entities and
relations, by exploiting the content of the documents, as well
as the link structure of the web. This method requires train-
ing over a large set of web pages, with relevant document
segments manually labeled, as well as a large training set of
page-to-page relations.

Finally, a number of systems use unlabeled examples for
training. This direction of research is closest to our work.
Specifically, the approach we are following falls into the broad
category of bootstrapping techniques. Bootstrapping has been
an attractive alternative in automatic text processing. [15]
demonstrates a bootstrapping technique for disambiguating
senses of ambiguous nouns. [5] uses bootstrapping to clas-
sify named entities in text exploiting two orthogonal fea-
tures, i.e., the spelling of the entity itself (e.g., having a suf-
fix “Corp.”), and the context in which the entity occurs. [12]
also presents a bootstrapping technique to extract patterns to
recognize and classify named entities in text. [16] describes
an extension of DIPRE to mining the Web for acronyms and
their expansions. [2] presents a methodology and theoretical
framework for combining unlabeled examples with labeled
examples to boost performance of a learning algorithm for
classifying web pages. While the underlying principle of us-
ing the systems’ output to generate the training input for the
next iteration is the same for all of these approaches, the tasks
are different enough to require specialized methodologies.

Our Contributions As we have discussed, [3] describes a
method for extracting relations from the web using bootstrap-
ping. OurSnowballsystem, which we present in this paper,
builds on this work. Our main contributions include:

• Techniques for generating patterns and extracting tu-
ples: We develop a new strategy for defining and represent-
ing patterns that is at the same time flexible, so that we cap-
ture most of the tuples that are hidden in the text in our collec-
tion, and selective, so that we do not generate invalid tuples
(Sections 2.1 and 2.2).
• Strategies for evaluating patterns and tuples:Since the
amount of training thatSnowballrequires is minimal, it is
crucial that the patterns and tuples that are generated during
the extraction process be evaluated. This way,Snowballwill
be able to eliminate unreliable tuples and patterns from fur-
ther consideration. We develop strategies for estimating the
reliability of the extracted patterns and tuples (Section 2.3).
• Evaluation methodology and metrics: Evaluating sys-
tems likeSnowballand DIPRE is challenging: these sys-
tems are designed to work over large document collections,
so manually inspecting all documents to build the “perfect”
table that should be extracted is just not feasible. We intro-
duce a scalable evaluation methodology and associated met-
rics (Section 3), which we use in Sections 4 and 5 for large-
scale experiments over collections of training and test doc-
uments. These collections have a total of over 300,000 real
documents.



2 THE SNOWBALLSYSTEM
In this section we present theSnowballsystem (Figure 2),
which develops key components of the basic DIPRE method.
More specifically,Snowballpresents a novel technique to
generate patterns and extract tuples from text documents (Sec-
tions 2.1 and 2.2). Also,Snowballintroduces a strategy for
evaluating the quality of the patterns and the tuples that are
generated in each iteration of the extraction process (Sec-
tion 2.3). Only those tuples and patterns that are regarded
as being “sufficiently reliable” will be kept bySnowballfor
the following iterations of the system (Section 2.3). These
new strategies for generation and filtering of patterns and tu-
ples improve the quality of the extracted tables significantly,
as the experimental evaluation in Section 5 will show.

Generate Extraction Patterns

Seed Tuples

Generate New Seed Tuples Tag Entities

Augment Table

Find Occurrences of Seed Tuples

Figure 2: The main components of Snowball.

2.1 Generating Patterns
A crucial step in the table extraction process is the generation
of patterns to find new tuples in the documents. Ideally, we
would like patterns both to beselective, so that they do not
generate incorrect tuples, and to have highcoverage, so that
they identify many new tuples. In this section, we introduce
a novel way of generating such patterns from a set of seed
tuples and a document collection.

Snowballis initially given a handful of example tuples. For
every such organization-location tuple< o, ` >, Snowball
finds segments of text in the document collection whereo
and` occur close to each other, just as DIPRE does, and ana-
lyzes the text that “connects”o and` to generate patterns. A
key improvement ofSnowballfrom the basic DIPRE method
is thatSnowball’s patterns include named-entity tags. An ex-
ample of such a pattern is<LOCATION>-based<ORGA-
NIZATION>. This pattern will not match any pair of strings
connected by “-based.” Instead,<LOCATION> will only
match a string identified by a tagger as an entity of typeLO-
CATION. Similarly,<ORGANIZATION> will only match a
string identified by a tagger as an entity of typeORGANI-
ZATION. Figure 3 shows additional patterns thatSnowball
might generate, with named-entity tags.

<ORGANIZATION>’s headquarters in <LOCATION>

<LOCATION>-based <ORGANIZATION>

<ORGANIZATION>, <LOCATION>

Figure 3: Patterns that exploit named-entity tags.

A key step in generating and later matching patterns like the
one above is finding where<ORGANIZATION> and<LO-
CATION> entities occur in the text. For this,Snowballuses
a state-of-the-art named-entity tagger, The MITRE Corpora-
tion’s Alembic Workbench [7]. In addition toORGANIZA-
TION andLOCATIONentities, Alembic can identifyPER-
SONentities, and can be trained to recognize other kinds of
entities. (See Section 6 for further discussion.) Once the en-
tities in the text documents are tagged,Snowballcan ignore
unwanted entities (e.g.,PERSONs), focus on occurrences of
LOCATIONandORGANIZATIONentities, and analyze the
context that surrounds each pair of such entities to check if
they are connected by the right words and hence match our
patterns.

Snowballrepresents the context around theORGANIZATION
andLOCATIONentities in the patterns in a flexible way that
produces patterns that are selective, yet have high coverage.
As a result, minor variations such as an extra comma or a
determiner will not stop us from matching contexts that are
otherwise close to our patterns. More specifically,Snowball
represents the left, middle, and right “contexts” associated
with a pattern just like the vector-space model of informa-
tion retrieval represents documents and queries [13]. Thus,
theleft, middle, andright contexts are three vectors associat-
ing weights (i.e., numbers between 0 and 1) with terms (i.e.,
arbitrary strings of non-space characters). These weights in-
dicate the importance of each term in the corresponding con-
text.

Definition 1 ASnowball patternis a 5-tuple<left, tag1, mid-
dle, tag2, right>, wheretag1andtag2are named-entity tags,
and left, middle, and right are vectors associating weights
with terms.

An example of aSnowballpattern is a 5-tuple<{<the, 0.2>},
LOCATION,{<-, 0.5>, <based, 0.5>}, ORGANIZATION,
{}>. This pattern will match strings like “the Irving- based
Exxon Corporation,” where the word “the” (left context) pre-
cedes a location (Irving), which is in turn followed by the
strings “-” and “based” (middle context) and an organiza-
tion. Slight variations of the given string will also match the
pattern to a smaller extent. (We introduce a notion of “degree
of match” later in this section.)

To match text portions with our 5-tuple representation of pat-
terns, Snowballalso associates an equivalent 5-tuple with
each document portion that contains two named entities with
the correct tag (i.e.,LOCATIONandORGANIZATIONin our
scenario). After identifying two such entities in a stringS,
Snowballcreates three weight vectorslS , rS , andmS from
S by analyzing the left, right, and middle contexts around
the named entities, respectively. Each vector has a non-zero
weight for each term that appears in the respective context
where thelS andrS are each limited to thew-term window
to the left and to the right of the entity pair. The weight of



a term in each vector is a function of the frequency of the
term in the corresponding context. These vectors are scaled
so their norm is one. Finally, they are multiplied by a scal-
ing factor to indicate each vector’s relative importance. From
our experiments with English-language documents, we have
found the middle context to be the most indicative of the re-
lationship between the elements of the tuple. Hence we will
typically assign the terms in the middle vector higher weights
than the left and right vectors. After extracting the 5-tuple
representation of stringS, Snowballmatches it against the 5-
tuple pattern by taking the inner product of the corresponding
left, middle, and right vectors.

Definition 2 The degree of matchMatch(tP , tS) between
two 5-tuplestP =< lP , t1, mP , t2, rP > (with tagst1 and
t2) andtS =< lS , t′1, mS , t′2, rS > (with tagst′1 andt′2) is
defined as:

Match(tP , tS) ={
lP · lS +mP ·mS + rP · rS if the tags match
0 otherwise

In order to generate a pattern,Snowballgroups occurrences
of known tuples in documents, if the contexts surrounding
the tuples are “similar enough.” More precisely,Snowball
generates a 5-tuple for each string where a seed tuple oc-
curs, and then clusters these 5-tuples using a simple single-
pass clustering algorithm [9], using theMatch function de-
fined above to compute the similarity between the vectors
and some minimum similarity thresholdτsim. The left vec-
tors in the 5-tuples of clusters are represented by acentroid
l̄s. Similarly, we collapse themiddleandright vectors into
m̄s andr̄s, respectively. These three centroids, together with
the original tags (which are the same for all the 5-tuples in
the cluster), form aSnowballpattern< l̄s, t1, m̄s, t2, r̄s >.

2.2 Generating Tuples
After generating patterns (Section 2.1),Snowballscans the
collection to discover new tuples. The basic algorithm is out-
lined in Figure 4.

Snowballfirst identifies sentences that include an organiza-
tion and a location, as determined by the named-entity tag-
ger. For a given text segment, with an associated organiza-
tion o and locatioǹ , Snowballgenerates the 5-tuplet =<
lc, t1,mc, t2, rc >. A candidate tuple< o, ` > is generated
if there is a patterntp such thatMatch(t, tp) ≥ τsim, where
τsim is the clustering similarity threshold of Section 2.1.

Each candidate tuple will then have a number of patterns that
helped generate it, each with an associated degree of match.
Snowballuses this information, together with information
about the selectivity of the patterns, to decide what candidate
tuples to actually add to the table that it is constructing.

2.3 Evaluating Patterns and Tuples
Generating good patterns is challenging. For example, we
may generate a pattern<{}, ORGANIZATION,<“,”, 1 >, LO-

sub GenerateTuples(Patterns)
foreach text segment in corpus

(1) {< o, ` >,< ls, t1,ms, t2, rs >} =
= CreateOccurrence(text segment);

TC = < o, ` >;
SimBest = 0;
foreach p in Patterns

(2) sim = Match(< ls, t1,ms, t2, rs >, p);
if ( sim ≥ τsim)

(3) UpdatePatternSelectivity( p, TC );
if( sim ≥ SimBest)
SimBest = sim;
PBest = p;

if( SimBest ≥ τsim)
CandidateTuples [TC].Patterns [PBest] =

= SimBest;
return CandidateTuples;

Figure 4: Algorithm for extracting new tuples using
a set of patterns.

CATION,{}> from text occurrences like “Intel, Santa Clara,
announced...” This pattern will be matched by any string that
includes an organization followed by a comma, followed by
a location. Estimating theconfidenceof the patterns, so that
we do not trust patterns that tend to generate wrong tuples, is
one of the problems that we address in this section. We can
weigh theSnowballpatterns based on their selectivity, and
trust the tuples that they generate accordingly. Thus, a pat-
tern that is not selective will have a low weight. The tuples
generated by such a pattern will be discarded, unless they are
supported by selective patterns.

The case for tuples is analogous. “Bad” seed tuples may
generate extraneous patterns that in turn might result in even
more wrong tuples in the nextSnowballiteration. To prevent
this, we only keep tuples with highconfidence. The con-
fidence of the tuple is a function of the selectivity and the
number of the patterns that generated it. Intuitively, the con-
fidence of a tuple will be high if it is generated by several
highly selective patterns.

The pattern and tuple evaluation is the key part of our sys-
tem, and is responsible for most of the improvement over the
DIPRE scheme. As an initial filter, we eliminate all patterns
supportedby fewer thanτsup seed tuples. We then update
the confidenceof each pattern in Step (3) of the algorithm
in Figure 4, which checks each candidate tuplet = <o, `>
generated by the pattern in question. If there is a high confi-
dence tuplet’ = <o, `′> generated during an earlier iteration
of the system for the same organizationo as int, then this
function compares locations̀and `′. If the two locations
are the same, then the tuplet is considered apositivematch
for the pattern. Otherwise, the match isnegative. Intuitively,
the candidate tuple that a pattern generates for the “known”
organizations should match the locations of these organiza-
tions. Otherwise, the confidence in this pattern will be low.
Note that this confidence computation assumes that organi-



zation is a key for the relation that we are extracting (i.e.,
two different tuples in a valid instance of the relation cannot
agree on the organization attribute). Estimating the confi-
dence of theSnowballpatterns for relations without such a
single-attribute key is part of our future work (Section 6).

Definition 3 Theconfidenceof a patternP is:

Conf (P ) =
P.positive

(P.positive + P.negative)

whereP .positive is the number of positive matches forP and
P .negative is the number of negative matches.

As an example, consider the patternP = <{}, ORGANIZA-
TION,<“,”, 1 >, LOCATION,{}> referred to above. Assume
that this pattern only matches the three lines of text below:

“Exxon, Irving , said”
“ Intel , Santa Clara, cut prices”
“invest in Microsoft , New York-based analyst Jane Smith said”

The first two lines generate candidate tuples<Exxon, Irving>
and<Intel, Santa Clara>, which we already knew from pre-
vious iterations of the system. The third line generates tuple
<Microsoft, New York>. The location in this tuple conflicts
with the location in tuple<Microsoft, Redmond>, hence this
last line is considered a negative example. Then, patternP
has confidenceConf(P ) = 2

2+1 = 0.67.

Our definition of confidence of a pattern above is only one
among many possibilities. An alternative is to account for a
pattern’s coverage in addition to its selectivity. For this, we
adopt a metric originally proposed by Riloff [11] to evaluate
extraction patterns generated by the Autoslog-TS informa-
tion extraction system, and defineConf RlogF (P ) of pattern
P as follows.

Definition 4 TheRlogFconfidence of patternP is:

Conf RlogF (P ) = Conf (P ) · log2(P.positive)

Pattern confidences are defined to have values between 0 and
1. Therefore, we normalize theConf RlogF values by divid-
ing them by the largest confidence value of any pattern.

Having scored the patterns, we are now able to evaluate the
new candidate tuples. Recall that for each tuple we store the
set of patterns that produced it, together with the measure of
similarity between the context in which the tuple occurred,
and the matching pattern. Consider a candidate tupleT and
the set of patternsP = {Pi} that were used to generateT .
Let us assume for the moment that we know the probability
Prob(Pi) with which each patternPi generates valid tuples.
If these probabilities are independent of each other, then the
probability thatT is valid,Prob(T ), can be calculated as:

Prob(T ) = 1−
|P |∏
i=0

(1− Prob(Pi))

Our confidence metricConf (Pi) was designed to be a rough
estimate ofProb(Pi), the probability of patternPi generat-
ing a valid tuple. We also account for the cases whereT has
occurred in contexts that did not match our patterns perfectly.
Intuitively, the lower the degree of match between a pattern
and a context, the higher is the chance of producing an in-
valid tuple. For this, we scale eachConf (Pi) term by the
degree of match of the corresponding pattern and context:

Definition 5 Theconfidenceof a candidate tupleT is:

Conf(T ) = 1−
|P |∏
i=0

(1− (Conf(Pi) ·Match(Ci, Pi)))

whereP = {Pi} is the set of patterns that generatedT and
Ci is the context associated with an occurrence ofT that
matchedPi with degree of matchMatch(Ci ,Pi).

Note that when we described the calculation of the pattern
confidence, we ignored any confidence values from previous
iterations ofSnowball. To control the learning rate of the
system, we set the new confidence of the pattern as:

Conf (P ) = Conf new (P )·Wupdt+Conf old (P )·(1−Wupdt)

If parameterWupdt < 0.5 then the system in effect trusts
new examples less on each iteration, which will lead to more
conservative patterns and have a damping effect. For our ex-
periments we setWupdt = 0.5. We also adjust the confidence
of already-seen tuples in an analogous way.

After determining the confidence of the candidate tuples us-
ing the definition above,Snowballdiscards all tuples with
low confidence. These tuples could add noise into the pat-
tern generation process, which would in turn introduce more
invalid tuples, degrading the performance of the system. The
set of tuples to use as the seed in the nextSnowballitera-
tion is thenSeed = {T |Conf (T ) > τt}, whereτt is some
prespecified threshold.

For illustration purposes, Table 2 lists three representative
patterns thatSnowballextracted from the document collec-
tion that we describe in Section 4.1.

Conf middle right
1 <based, 0.53 > <, , 0.01 >

<in, 0.53 >

<’, 0.42 > <s, 0.42 >
0.69 < headquarters, 0.42 >

<in, 0.12 >

0.61 <(, 0.93 > <), 0.12 >

Table 2: Actual patterns discovered by Snowball.
(For each pattern the left vector is empty, tag1 =
ORGANIZATION, and tag2= LOCATION.)



3 EVALUATION METHODOLOGY AND METRICS
The goal ofSnowballis to extract as many valid tuples as
possible from the text collection and to combine them into
one table. As we have discussed, we do not attempt to cap-
ture everyinstanceof such tuples. Instead, we exploit the
fact that these tuples will tend to appear multiple times in the
types of collections that we consider. As long as we capture
one instance of such a tuple, we will consider our system to
be successful for that tuple. This is different from the goal
of traditional information extraction [1]. Traditional infor-
mation extraction systems aim at extracting all the relevant
information fromeach documentas completely as possible,
while our system extracts tuples from all of the documents in
the collection and combines them into one table. To evalu-
ate this task, we adapt the recall and precision metrics from
information retrieval to quantify how accurate and compre-
hensive ourcombined table of tuplesis. Our metric for eval-
uating the performance of an extraction system over a collec-
tion of documentsD is based on determiningIdeal, the set
of all the tuples that appear in the collectionD (Section 3.1).
After identifyingIdeal, we compare it against the tuples pro-
duced by the system,Extracted, using the adapted precision
and recall metrics (Section 3.2).

3.1 Methodology for Creating the IdealSet
For small text collections, we could inspect all documents
manually and compile theIdeal table by hand. Unfortu-
nately, this evaluation approach does not scale, and becomes
infeasible for the kind of large collections over whichSnow-
ball is designed to operate. To address this problem, we start
by considering a large, publicly available directory of 13,000
organizations provided on the “Hoover’s Online” web site1.
From this well structured directory, we generate a table of
organization-location pairs. Unfortunately, we cannot use
this table as is, since some of the organizations in it might
not occur at all in our collection.

To determine the target set of tuplesIdeal from the Hoover’s-
compiled table above, we need to keep only the tuples that
have the organization mentioned together with their location
in a document. To find all such instances, we identify all the
variations of each organization name in the Hoover’s table as
they may appear in the collection, and then check if the head-
quarters of the test organization are mentioned nearby. We
used Whirl [4], a research tool developed at AT&T Research
Laboratories for integrating similar textual information, to
match each organization name, as it occurs in the collection,
to the organization in the Hoover’s table.

3.2 The IdealMetric
Now that we have created theIdeal table, we can use it to
evaluate the quality of theSnowballoutput, theExtractedta-
ble. If the initial directory of organizations from Hoover’s
contained all possible organizations, then we could just mea-
sure what fraction of the tuples inExtractedare inIdeal(pre-

1http://www.hoovers.com

cision) and what fraction of the tuples inIdeal are in Ex-
tracted (recall). Unfortunately, a large collection will con-
tain many more tuples that are contained in any single manu-
ally compiled directory. (In our estimate, our training collec-
tion contains more then 80,000 valid organization-location
tuples.) If we just calculated precision as above, all the valid
tuples extracted bySnowball, which are not contained in our
Ideal set, will unfairly lower the reported value of precision
for the system.

To address this problem we create a new table,Join, as the
join of tablesIdealandExtractedon a unique key (i.e., orga-
nization). For each tupleT =< o, ` > in the Ideal table, we
find a matching tupleT ′ =< o′, `′ > in theExtractedtable
(if any), such thato ' o′. (We describe how to deal with vari-
ations in the organization names in Section 3.3.) Using these
values, we now create a new tuple< o, `, `′ > and include it
in theJoin table.

Given the tableIdeal and theJoin table that we have just
created, we can define recall and precision more formally.
We defineRecallas:

Recall =
∑|Join|
i=0 [`i = `′i]
|Ideal| · 100% (1)

where [̀ i = `′i] is equal to 1 if the test valuèi matches
the extracted valuè′i, and 0 otherwise. Thus, the sum in the
numerator is the number ofcorrecttuples of theIdealset that
we extracted, which we divide by the size of theIdeal table
to obtain our recall. Similarly, we definePrecisionas:

Precision =
∑|Join|
i=0 [`i = `′i]
|Join| · 100% (2)

An alternative to using ourIdeal metric to estimate preci-
sion could be to sample the extracted table, and check each
value in the sample tuples by hand. (Similarly, we could es-
timate the recall of the system by sampling documents in the
collection, and checking how many of the tuples mentioned
in those documents the system discovers.) By sampling the
extracted table we can detect invalid tuples whose organiza-
tion is not mentioned in the Hoover’s directory that we used
to determineIdeal, for example. Similarly, we can detect
invalid tuples that result from named-entity tagging errors.
Hence, we also report precision estimates using sampling in
Section 5.

3.3 Matching Location and Organization Names
A problem with calculating theIdeal metric above is intro-
duced by the proliferation of variants of organization names.
We combine all variations into one, by using aself-joinof the
Extractedtable with itself. We use Whirl to match the orga-
nization names to each other, to create the tableExtracted’.
We pick an arbitrary variation of the organization name,os,
as the “standard,” and pick a location,`max, from the set of



matching organization-location tuples, with the highest con-
fidence value. We then insert the tuple< os, `max > into the
Extracted’table.

Similarly, we need to decide when the location extracted for
an organization is correct. For example, our system might
conclude that California is the location of the headquarters of
Intel. This answer is correct, although not as specific as could
be. Our scoring system will in fact consider a tuple<Intel,
California> as correct. Specifically, we consider tuple
< o, ` > to be valid if (a) organizationo is based in the U.S.
and` is the city or state whereo’s headquarters are based;
or (b) organizationo is based outside of the U.S. and` is the
city or country whereo’s headquarters are based.

4 EXPERIMENTAL SETTING
We describe the training and text collections that we used
for experiments in Section 4.1. We also enumerate the dif-
ferent extraction methods that we compare experimentally
(Section 4.2).

4.1 Training and Test Collections
Our experiments use large collections of real newspapers from
the North American News Text Corpus, available from LDC2.
This corpus includes articles from the Los Angeles Times,
The Wall Street Journal, and The New York Times for 1994
to 1997. We split the corpus into two collections: training
and test. Thetraining collection consists of 178,000 doc-
uments, all from 1996. Thetestcollection is composed of
142,000 documents, from 1995 and 1997.

BothSnowballand DIPRE rely on tuples appearing multiple
times in the document collection at hand. To analyze how
“redundant” the training and test collections are, we report
in Table 3 the number of tuples in theIdeal set for each fre-
quency level. For example, 5455 organizations in theIdeal
set are mentioned in the training collection, and 3787 of them
are mentioned in the same line of text with their location at
least once. So, if we wanted to evaluate how our system
performs on extracting tuples that occur at least once in the
training collection, theIdeal set that we will create for this
evaluation will contain 3787 tuples.

Organization-Location Pairs
Occurrences: Training Collection Test Collection

0 5455 4642
1 3787 3411
2 2774 2184
5 1321 909
10 593 389

Table 3: Occurrence statistics of the test tuples in
the experiment collections.

The first row of Table 3, corresponding to zero occurrences,
deserves further explanation. If we wanted to evaluate the

2http://www.ldc.upenn.edu

performance of our system onall the organizations that were
mentioned in the corpus, even if the appropriate location never
occurred near its organization name anywhere in the collec-
tion, we would include all these organizations in ourIdeal
set. So, if the system attempts to “guess” the value of the
location for such an organization, any value that the system
extracts will automatically be considered wrong in our eval-
uation.

4.2 Evaluating Alternative Techniques
We comparedSnowballwith two other techniques, theBase-
line method and our implementation of the DIPRE method.
These two methods require minimal or no training input from
the user, and hence are comparable withSnowballin this re-
spect. In contrast, state-of-the-art information extraction sys-
tems require substantial manual labor to train the system, or
to create a hand-tagged training corpus.

The first method,Baseline, is based purely on the frequency
of co-occurrence of the organization and the location. Specif-
ically, Baselinereports the location that co-occurs in the same
line with each organization most often as the headquarters for
this organization.

The second method is DIPRE. We did not have access to
its original implementation, so we had to re-implement it
and adapt it to our collections. The original DIPRE imple-
mentation usesurlprefix to restrict pattern generation and ap-
plication. Since all of our documents came from just three
sources, DIPRE was not able to exploit this feature. The sec-
ond, more important modification had to do with the fact that
DIPRE was designed to extract tuples from HTML-marked
data. Without HTML tags, DIPRE could not find occur-
rences of the seed tuples in plain text that were surrounded
by exactly the same non-empty contexts. To solve this prob-
lem, we used the named-entity tagger to pre-tag the input to
DIPRE. This way, all the organizations and locations were
consistently surrounded by named-entity tags. DIPRE could
then generate patterns that take advantage of these tags. The
results we report arenot for the original DIPRE implementa-
tion, but rather for our adaptation for tagged documents.

4.3 Snowball
We explored the best parameter values forSnowballby run-
ning the system on the training corpus. Parameters we exper-
imented with include:

• Use of Punctuation: We experimented with discarding
punctuation and other non-alphanumeric characters from the
contexts surrounding the entities. Our hypothesis was that
punctuation may just add noise and carry little content to help
extract tuples. We report results forSnowballandSnowball-
Plain, whereSnowballuses punctuation, andSnowball-Plain
discards it.
• Choice of Pattern Scoring Strategies:We tried variations
on the basic framework for weighing patterns, as described
in Section 2, with or without using theRlogFmetric of [11].



Parameter Value Description
τsim 0.6 minimum degree of match (Section 2.1)
τt 0.8 minimum tuple confidence (Section 2.3)
τsup 2 minimum pattern support (Section 2.1)
Imax 3 number of iterations ofSnowball
Wmiddle 0.6 weight for themiddlecontext (Section 2.1)
Wleft 0.2 weight for theleft context (Section 2.1)
Wright 0.2 weight for theright context (Section 2.1)

Table 4: Parameter values used for evaluating
Snowballon the test collection.

• Choice of Pattern Similarity Threshold (τsim): This pa-
rameter controls how flexible the patterns are, both during the
pattern generation stage (i.e., how similar the occurrences of
the example tuples have to be in order to be grouped into one
cluster), as well as during the tuple extraction stage, where
τsim controls the minimum similarity between the context
surrounding the potential tuple and a pattern, determining
whether a tuple will be generated.
• Choice of Tuple Confidence Threshold (τt): This thresh-
old determines the minimum confidence a tuple must have to
be included in the seed set to start the next iteration.

5 EXPERIMENTAL RESULTS
In this section, we experimentally compare the performance
of Snowballand the alternative techniques that we discussed
in Section 4.2. Our experiments use the training and test col-
lections of Section 4.1. We ran experiments on the training
collection to determine the optimal pattern scoring strategy,
optimal values forτsim , τt, τsup, and the optimal weight dis-
tributionWleft ,Wmiddle , andWright for the left, middle, and
right context vectors of each pattern.

As we discussed, the only input to theSnowballsystem dur-
ing the evaluation on the test collection were the five seed
tuples of Table 1. All the extraction patterns were learned
from scratch by running theSnowballsystem using the op-
erational parameters listed in Table 4, which worked best on
the training collection. The normalizedRlogF metric was
used to score patterns for generating the set of seed tuples for
the next iteration. The results are reported in Figure 5. The
plot shows the performance of the systems as we attempt to
extract test tuples that are mentioned more times in the cor-
pus. As we can see,Snowballperforms increasingly well
as the number of times that the test tuples are required to
be mentioned in the collection is increased. While DIPRE
has better precision thanSnowballat the 0-occurrence level
(72% vs. 67% forSnowball), Snowballhas at all occurrence
levels significantly higher recall than DIPRE andBaseline
do. We also observe that punctuation matters. The recall of
Snowball-Plainis significantly lower than that ofSnowball.

Figure 6 shows thatSnowball’s results are stable over subse-
quent iterations of the algorithm. In contrast, DIPRE quickly
diverges, since it has no way to prevent unreliable tuples from
being seed for its next iteration. We report data for only two

iterations forSnowball-Plainbecause it converged after the
second iteration (i.e., it did not produce any new seed tuples).

As discussed in Section 3.2, we complete our evaluation of
the precision of the extraction systems by manually examin-
ing a sample of their output. For this, we randomly selected
100 tuples from each of the extracted tables, and checked
whether each of these tuples was a valid organization-location
pair or not. We separate the errors into three categories: er-
rors due to mistagging a location and assigning it to a valid
organization (“Location” error), errors due to including a non-
existing organization (“Organization” error), and errors due
to deducing an incorrect relationship between a valid orga-
nization and location (“Relationship” error). These differ-
ent types of errors are significant because they highlight dif-
ferent “culprits”: the “Location” and “Organization” errors
could be prevented if we had a perfect named-entity tagger,
whereas the “Relationship” errors are wholly the extraction
system’s fault (Table 5).

The last column in Table 5 (PIdeal) is precision, calculated
by ignoring the “Organization” errors and computing the frac-
tion of valid organizations for which a correct location was
found. These values correspond to the values of precision we
would have calculated if ourIdeal table included all the valid
organizations in the random samples. These figures, how-
ever, do not capture invalid tuples generated due to improper
tagging of a string as an organization. From our manual in-
spection of a random sample of 100 tuples from each ex-
tracted table, we observed that DIPRE’s sample contained 74
correct tuples and 26 incorrect ones.Snowball’s sample con-
tained 52 correct tuples and 48 incorrect tuples, whileBase-
line has a majority of incorrect tuples (25 vs. 75). As we can
see from the breakup of the errors in the table, virtually all
of Snowball’s errors are tagging related (i.e., “Location” or
“Organization” errors). If we prune theSnowball’s final out-
put to only include those tuplest with Conf (t) ≥ 0.8 = τt,
then most of these spurious tuples disappear. In effect, from
a random sample of 100 tuples from this pruned table, 93 tu-
ples are valid and only 7 are invalid. Furthermore, none of
the invalid tuples are due to “Relationship” errors (third row
of Table 5).

So far, the results that we have reported forSnowballare
based on a table that contains all the “candidate” tuples gen-
erated duringSnowball’s last iteration. As we saw in Table 5,
the precision ofSnowball’s answer varies dramatically if we
prune this table using the tuple confidence thresholdτt. Of
course, this last-step pruning is likely to result in lower recall
values. In Figure 7 we explore the tradeoff between precision
and recall for different values of this last-step pruning thresh-
old. A user who is interested in high-precision tables might
want to use high values for this threshold, while a user who is
interested in high-recall tables might want to use lower val-
ues of the threshold. For example, by settingτt = 0.4 and
filtering theExtractedtable accordingly, we estimate the ab-
solute precision ofSnowball’s output to be 76% and recall



(a) (b)
Figure 5: Recall (a) and precision (b) of Baseline, DIPRE, Snowballand Snowball-Plain(test collection).

(a) (b)
Figure 6: Recall (a) and precision (b) of Baseline, DIPRE, Snowball, and Snowball-Plainas a function of the number
of iterations ( Ideal tuples with occurrence ≥ 2; test collection).

Type of Error
Correct Incorrect Location Organization Relationship PIdeal

DIPRE 74 26 3 18 5 90%
Snowball(all tuples) 52 48 6 41 1 88%
Snowball(τt = 0.8) 93 7 3 4 0 96%
Baseline 25 75 8 62 5 66%

Table 5: Manually computed precision estimate, derived from a random sample of 100 tuples from each extracted
table.

(a) (b)
Figure 7: Recall (a) and sample-basedprecision (b) as a function of the threshold τt used for the last-step pruning
of the Snowballtables ( Ideal tuples with occurrence ≥ 1; test collection).



to be 45%, both of which are higher than the corresponding
metrics of DIPRE’s output.

In summary, bothSnowballand DIPRE show significantly
higher precision thanBaseline. In effect,Baselinetends to
generate many tuples, which results in high recall at the ex-
pense of low precision.Snowball’s recall is at least as high
as that ofBaselinefor most of the tests, with higher precision
values.Snowball’s recall is generally higher than DIPRE’s,
while the precision of both techniques is comparable.

6 CONCLUSIONS AND FUTURE WORK
This paper presentsSnowball, a system for extracting rela-
tions from large collections of plain-text documents that re-
quires minimal training for each new scenario. We intro-
duced novel strategies for generating extraction patterns for
Snowball, as well as techniques for evaluating the quality of
the patterns and tuples generated at each step of the extrac-
tion process. Our large-scale experimental evaluation of our
system shows that the new techniques produce high-quality
tables, according to the scalable evaluation methodology that
we introduce in this paper. Our experiments involved over
300,000 newspaper articles.

We only evaluated our techniques on plain text documents,
and it would require future work to adopt our methodology
to HTML data. While HTML tags can be naturally incor-
porated intoSnowball’s pattern representation, it is problem-
atic to extract named-entity tags from arbitrary HTML doc-
uments. State-of-the-art taggers rely on clues from the text
surrounding each entity, which may be absent in HTML doc-
uments that often rely on visual formatting to convey infor-
mation. On a related note, we have assumed throughout that
the attributes of the relation we extract (i.e., organization and
location) correspond to named entities that our tagger can
identify accurately. As we mentioned, named-entity taggers
like Alembic can be extended to recognize entities that are
distinct in a context-independent way (e.g., numbers, dates,
proper names). For some other attributes, we will need to
extendSnowballso that its pattern generation and matching
could be anchored around, say, a noun phrase as opposed to
a named entity as in this paper. In the future, we will also
generalizeSnowballto relations of more than two attributes.
Finally, a crucial open problem is how to generalize our tuple
and pattern evaluation strategy of Section 2.3 so that it does
not rely on an attribute being a key for the relation.
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