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Abstract. The rapid expansion of multimedia digital collections brings
to the fore the need for classifying not only text documents but their em-
bedded non-textual parts as well. We propose a model for basing classifi-
cation of multimedia on broad, non-topical features, and show how infor-
mation on targeted nearby pieces of text can be used to effectively classify
photographs on a first such feature, distinguishing between indoor and
outdoor images. We examine several variations to a TF*IDF-based ap-
proach for this task, empirically analyze their effects, and evaluate our
system on a large collection of images from current news newsgroups. In
addition, we investigate alternative classification and evaluation meth-
ods, and the effect that a secondary feature can have on indoor/outdoor
classification. We obtain a classification accuracy of 82%, a number that
clearly outperforms baseline estimates and competing image-based ap-
proaches and nears the accuracy of humans who perform the same task
with access to comparable information.

1 Introduction

As digital collections on the World Wide Web, corporate intranets, and CD-
ROMs increase vastly in size and availability, it is becomming increasingly im-
portant to find efficient methods of categorizing not only text documents but
also images, video, sound files, and other multimedia embedded within a docu-
ment. Work in information retrieval has focused primarily on text, and then on
classifying an entire document as relevant to a particular query or as a mem-
ber of a specific class. Yet, much is to be gained by independently categorizing
and indexing pieces of a document from different media; multimedia information
arguably follows a different classification hierarchy than text, and more factors
than topical relevance come into play when an image or other non-text data is
included within a document. For example, a news article on the recent events in
Kosovo may include a picture of an airplane at a U.S. base, even though that
particular aircraft never participated in the operations described in the article.
The same image can frequently be found in multiple related documents, and,
conversely, an independent classifier of images could help select an image from a
broad, separate collection for illustrating a summary of a text-only source. Un-
desirable images (e.g., advertisements) could also be detected and pruned before
a document is displayed to the user.



In the present work, we explore such an independent classification for im-
ages, using information from associated text sources such as captions and the
surrounding text in the document in which the image is embedded. We are
informed and motivated in this endeavor by the parallel development of a mul-
timedia, multiple document summarizer (Aho et al. 1998), where appropriate
images can enhance the text summary. Our approach centers on the develop-
ment of a suitable class hierarchy of broadly applicable visual features that will
facilitate the selection of appropriate images for such summaries, even when fine
distinctions (such as the subject matter of the image) are not available. Such
features include classifying the images as indoor or outdoor; as containing one or
a few persons or a crowd or no people at all; and as depicting a natural landscape
versus a city scene. If independent classifiers can be designed for these features,
then we can infer the appropriateness of the image for a particular descriptive
purpose with high likelihood given only a little domain guidance. For example,
an outdoor image with no people from the terrorism news domain is likely to
show the scene of an event or its aftermath, while an indoor photograph with a
crowd of people probably refers to a related press conference. Additional tech-
niques can refine these inferences, by using for example information extraction
methods (Wacholder et al. 1997) to identify the location of an event or the names
of specific participants in the images.

We report in this paper on our methods and results for classifying images as
indoor versus outdoor. We chose this visual feature as a basis for a first division
of the images because of its plausibility as an indicator of image content and
because it is used as a high-level feature in image ontologies for image and digital
signal processing (Vailaya et al. 1999). It is also a feature for which purely visual
classifiers can be built (Szummer and Picard 1998); in fact, we are developing
such classifiers in parallel with the text-based ones described here, and we plan
to investigate ways to integrate them in the future. Although we have focused on
this category, the methods described in the paper are independent of the specific
feature and can be applied to any of the broad categories identified earlier.1

Our indoor/outdoor classifier for images is based on information retrieval
measures of text similarity, such as term frequency and inverse document fre-
quency (TF*IDF) (Salton and Buckley 1988; Salton 1989). Unlike information
retrieval, however, we have to work with small pieces of text (a caption or a por-
tion of a caption). Hence, we examined and evaluated several potential improve-
ments to standard IR techniques, such as using targeted parts of the available
text, limiting ourselves to particular word classes, and partially disambiguating
words according to their part of speech. We collected a large sample of 1,675
images for training and evaluation, and had multiple human volunteers assign
indoor/outdoor labels to them. We measured individual human performance on
this task against the standard implied by their agreement, and compared our sys-
tem’s performance to the humans, a default baseline classifier, and image-based
classifiers that operate on purely visual features (e.g., color, texture, and edge

1 The main cost for moving on to new categories involves the necessary manual labeling
of a large set of images for training and evaluation.



direction features). We optimized our classifier using three-fold cross-validation,
varying several of the TF*IDF parameters and optional features and determin-
ing which of the features have a major effect on performance. Using probability
density estimates for the output of the classifier, we are able to correct several
potential misclassification errors. Our results show that the automatic system
clearly outperforms the baseline and image-based classifiers, approaching the
accuracy of the human volunteers. We extend these results by considering alter-
native evaluation methods and the effects of lenient versus strict definitions of
the indoor and outdoor categories. We also explore another method for identify-
ing words that discriminate between the two categories and measure the effect of
additional high-level features (in this case, the number of people in each image)
for indoor/outdoor classification.

2 Related Work

Our classification approach draws on a long line of work for measuring text
similarity, mostly in an information retrieval context. Most of the informa-
tion retrieval approaches rely on single words (e.g., (Salton and Buckley 1988;
Salton 1989)), although sometimes compounds and collocations have been used
(Smeaton 1992). Some of the features we explore (e.g., ignoring capitalization)
are also used by default in most IR systems. Other, more natural language-
informed features have found mixed success in information retrieval (e.g., (Salton
and Smith 1989; Gay and Croft 1990; Smeaton 1992)), although the usefulness
of each feature needs to be evaluated separately for each application (classifying
image captions is different than classifying entire documents).

For topical image classification, keywords extracted from a document have
been used to index an associated image (Bach et al. 1996; Smith and Chang
1997), and image similarity has been measured on the basis of shared image
features (Niblack et al. 1993; Pentland et al. 1994) and by a combination of tex-
tual and image feature matches (Ogle and Stonebraker 1995; Smith and Chang
1997). Rowe and Guglielmo (1993) and Smeaton and Quigley (1996) use in-
formation from captions for retrieving (rather than classifying) images given a
query. Srihari (1995) uses face detection techniques along with name extraction
from captions for linking images to specific people. Classification of images along
broad, non-topical features such as those we are exploring has received less at-
tention in the image processing literature, although this is beginning to change.
Forsyth and Fleck (1996) present an image-based detector for naked people, while
Szummer and Picard (1998) describe an approach for separating consumer pho-
tographs into indoor and outdoor classes. Both of these approaches utilize as
their input only low-level visual features, such as color and edge direction.

3 Data Set

Our raw data set consists of 21,086 news postings from April 1997 to May 1998
from a variety of Usenet current news newsgroups. Of these, 1,490 contain, in



addition to a text article, one or more embedded images, each with an associated
caption. Captions are generally two to four sentences long. The first sentence
in the caption tends to describe the image, while the remainder usually gives
background information and establishes the relevance of the image to the story.
For example,

BANGKOK, THAILAND, 9-NOV-1997: New Thai Prime Minister Chuan
Leekpai gives a traditional “wai” to thank members of his party appplauding
his entrance, November 9, during a ceremony appointing him as the country’s
23rd prime minister in Bangkok, Thailand. Chuan was named prime minister
for the second time, replacing Chavalit Yongchaiyudh at the helm of a country
plagued by economic woes.

For training and testing, a web-based interface was set up allowing volun-
teers to label images according to two high-level features. The first feature cor-
responded to the indoor versus outdoor dichotomy, and the choices given were
Indoor, Outdoor, Likely Indoor, Likely Outdoor, and Ambiguous. The second
feature was number of people, and the available choices were No People, One
Person, Two People, Three or More People, Crowd, and Ambiguous. In both
cases, the authors went over a sample of images in advance, identified potential
problems, and supplied the evaluators with detailed instructions which can be
viewed at http://www.cs.columbia.edu/~sable/research/readme.html.

Using our interface, fourteen volunteers labeled the images under different
access conditions: by viewing the image alone, the caption alone, both the image
and the caption, or just the first sentence of the caption. Each image received
two such labels under the full access condition (when volunteers viewed both the
image and caption), which we consider representative of normal use of the images
in multimedia documents.2 We use the labels obtained for this condition as the
basis for both our training and testing sets. A single label was obtained for each
image under the other conditions; these are used to estimate human performance
and to compare with our system (which uses only text information).

For the indoor versus outdoor distinction, analysis of the assigned labels re-
veals that in most cases (87.7%), a definite indoor or outdoor judgement was
made, and only 3% of labels assigned were “Ambiguous”. Agreement between
humans was also high (90.4% of the images had compatible labels, although
sometimes with different degrees of confidence). There was, however, some dis-
agreement between human categorizers. 137 images had labels that differed by
more than one step on the scale from “definite indoor” to “definite outdoor”, and
39 of them had in fact one “definite indoor” and one “definite outdoor” label.
Our analysis of the labels for the number of people feature indicated a somewhat
lower but still significant level of agreement (80.4%). Inspection of the images
that received conflicting labels reveals that several of the disagreements are due

2 Four volunteers labeled the images under this specific access condition. One provided
labels for all images, while each of the other three provided a second label for a third
of the images. Thus, each of the 1,675 images received exactly two labels under this
condition.



Fig. 1. An image that is hard to classify as indoor or outdoor.

to mistakes by the categorizers, but in some cases, even markedly different la-
bels can be attributed to different opinions about how terms like “indoor” and
“outdoor” should be defined. For example, close-ups of people within a vehicle
such as a car or a plane, or pictures of people under a roof of a structure with
no walls, were often labeled differently by different judges. Fig. 1 shows one of
the images that reasonable people could disagree on; more can be inspected at
http://www.cs.columbia.edu/~sable/unusual.html.

We have compiled four different sets of images according to these manual
categorizations. First, we consider the images for which both evaluators provide
a definite judgement in the same direction on the indoor versus outdoor question.
This set contains 1,339 images (79.9% of the original 1,675) and is the primary
focus of our experiments. 401 (29.9%) of these images were classified as indoor
while 938 (70.1%) were classified as outdoor.

Our second experimental data set relaxes the requirement of strong beliefs
from each evaluator. It consists of those images that received two judgements
in the same direction on the indoor versus outdoor question, regardless of the
reported degrees of confidence. This set includes 1,501 images (89.6% of the
original 1,675). 475 (31.6%) of them are classified as indoor while 1,026 (68.4%)
are classified as outdoor.

Turning to the number of people question, we define a third set, consisting
of the images that received identical (non-ambiguous) judgements from both
evaluators on that question. This set includes 1,346 images (80.4% of the total),
further divided as 88 (6.5%) with no people, 304 (22.6%) with one person, 213
(15.8%) with two people, 609 (45.2%) with three or more people, and 132 (9.8%)
with crowds. We also define a fourth experimental set for studying the interaction
between the indoor/outdoor and number of people categories, as the intersection
of the first and third sets described above. This last set contains 1,081 images
(64.5% of the total).



4 Measuring Similarity for Indoor/Outdoor Classification

We base our classification of images into indoor or outdoor classes on a measure
of similarity between each document we examine and the two category prototypes
that correspond to the two classes. The term document is used above with a
general sense, standing for any piece of text that is associated with the image
under consideration; in many of our experimental runs, this is much smaller than
the entire article that contains the image.

For a single piece of text, a word’s TF, or term frequency, is the number
of times that this word occurs in that text. For a category (such as all indoor
images), the TF assigned to a word is the number of times that word occurs in
all documents of that category. A word’s IDF, or inverse document frequency, is
the logarithm of the ratio of the total number of documents to the number of
documents that contain that word; this measure remains constant independently
of the particular document or category examined. The product TF*IDF,

TFIDF (word ) = TF (word )× log
Total number of documents

DF (word)
(1)

is therefore highest when a word contains a balance of high frequency within a
document or category (signifying high importance to the document or category)
and low overall dispersion within the collection (signifying high specificity).

Every document and category is represented by a vector of TF*IDF values,
with each dimension corresponding to a word. By abstracting content in this
manner, word vectors of documents and categories can be compared to determine
how well a document fits in each category. We use the inner product between
document and category vectors, i.e.,

Score(document, category) =
∑

i

TFIDF document [i]× TFIDF category [i] (2)

as our measure of similarity. Each document is then assigned to the category for
which the fit is best, i.e., for which (2) is maximized.

We varied this measure of similarity in different experimental runs by using
different restrictions on what enters the TF*IDF formula (i.e., what a “word” is)
and by modifying (2) with the introduction of normalizing factors. Our first set
of parameters, corresponding to the definition of words, involves four choices:

– Text span considered. What is the text that should be associated with
each image, becoming the “document” in the TF*IDF calculations above?
We have experimented by using the entire article, the article without the im-
age caption, just the caption, or only the first sentence of the caption. While
the articles are longer and provide more information about the related story
than the caption, they are less related to the specific image, and therefore
may contain too much noise to be helpful for the type of categorization we are
performing. Hence, we can trade some information of questionable quality
for increased specificity by limiting ourselves to the caption only. Similarly,
the first sentence of the caption tends to be more descriptive of the image
than the rest, which often provides background information.



– Resctriction to specific grammatical categories. Should all the words
in the selected text span be included in the TF*IDF computations? Open-
class words (adjectives, nouns, verbs, and adverbs) carry in general most of
the content information, while words such as numbers and pronouns do not
usually affect an image’s classification. We used a statistical part-of-speech
(POS) tagger (Church 1988) to automatically assign a grammatical category
tag to each word, and then experimented with using all words, only open-
class words and prepositions (because of the nature of the indoor/outdoor
distinction), and open-class words and prepositions with proper nouns ex-
cluded.

– Disambiguation of words. A word’s sense is frequently ambiguous, and
sometimes knowing its grammatical part-of-speech can help disambiguate
it. For example, can is most often an auxiliary verb, but sometimes a noun
with a different meaning. We experimented with keeping the POS tag as
part of the word (thus distinguishing between the two senses of can/verb
and can/noun above), versus ignoring this information.

– Case sensitivity. Should capitalization matter for treating words as differ-
ent? Capitalization may indicate a proper noun, but may also be the result of
sentence-initial placement. We experimented with collapsing words that dif-
fer only in capitalization to the same token versus treating words as different
if they differ in case.

Each combination of the above parameters results in a different set of TF*IDF
vectors for each document. Three more parameters were varied when calculating
the similarity between a document and a category:

– Ignoring words with low TF*IDF during similarity computations.
We have experimented with optionally ignoring words whose TF*IDF val-
ues within a document fall below a given constant, for several alternative
values of that constant. This eliminates relatively insignificant words, which
have minimal impact on the classification, while potentially speeding up the
necessary calculations and avoiding some rare words whose TF and IDF is
hard to estimate accurately.

– Normalization of category vectors. The size of each of the two classes
does not enter (2) or the TF*IDF calculations. Yet, it is natural to expect
that the a priori most frequent category will have higher TF values, simply
because it contains more documents. This is a concern for our experiments,
since the “outdoor” category contains more than two thirds of the images
in our collection. We therefore experiment with a modification to (2), where
the TF*IDF value of each word in a category vector is divided by the total
number of documents that fall into that category. This modification, which
replaces total frequency with average per document frequency, makes the
TF*IDF values directly comparable across categories.

– Density estimation. The standard approach for assigning documents to
categories is to select the category for which similarity is largest. This, how-
ever, implicity assumes that the similarity scores are on the same scale for
both categories, and makes it hard to tell when a difference between the



similarity scores for the two categories is large enough for the system to
be confident in its decision. We experimented with a modification of the
category decision rule by transforming the difference of the raw similarity
scores between the two categories into the corresponding probability that
a document with the given score difference belongs in the indoor category.
In other words, we empirically estimate the probability density of the com-
posite random variable Score(document, indoor )−Score(document, outdoor ).
We calculate the histogram of this difference function from the training part
of the data (see the next section), and then use a rectangular smoothing
window on top of the histogram to estimate the probability density (Scott
1992). For a new image in the test set, we again compute the difference
and apply the conversion procedure that was fixed during training. The re-
sulting probability is more directly interpretable than the difference of the
raw similarity scores, automatically adjusts the cut-off point between the
two categories (from the arbitrary 0 on the unrestricted difference scale to
the now well-justified 0.5 on the 0 to 1 probability scale), and provides a
measure of confidence in the system’s decision (values near 0 or 1 indicate
higher confidence) that can be easily combined with information from other
independent categorizers.

5 Results and Evaluation

We randomly selected 894 (approximately two thirds) of the 1,339 images that
had definite human agreement on the indoor versus outdoor classification ques-
tion for training, and the remaining 445 images for testing. 276 (30.9%) of the
training images were indoor while 618 (69.1%) were outdoor. 125 (28.1%) of the
testing images were indoor while 320 (71.9%) were outdoor. So, on that partic-
ular breakdown of our main experimental image set, a default classifier would
achieve 71.9% accuracy on the test set by labeling every image with the more
frequent category in the training set.

Using this training/testing partition, we calculated the TF*IDF vectors and
similarity scores described in the previous section for each of the 768 possible
combinations of parameters, performing a complete designed experiment (Hicks
1982). The training set was randomly divided into three equal parts, and for
each such experiment, we repeatedly trained on two parts and measured system
performance on the third. This three-fold cross validation on the training set
gives us the ability to compare the relative performance of the various settings
for the experimental parameters. It also allows us to select the best combination
of parameters, which is fixed for subsequent experiments, and in particular for
scoring against the completely unseen test set.

We found a wide variety in the obtained average accuracy score (percentage
of correct categorizations) depending on the parameter settings. The parameters
which had the most major effect were:

– Text Span. Restricting analysis to the first sentences of captions accounted
for the 37 top scoring experiments. First sentences clearly outperformed cap-



tions, while text spans that included the entire article (with or without the
caption) were far behind. This provides support to our thesis that specifi-
cally selected and narrowly targeted pieces of text can be more useful for
classifying embedded multimedia information than the document as a whole.

– Restriction to specific grammatical categories. Using only open-class
words plus prepositions accounted for 4 of the top 5 experiments. The average
accuracy over all experiments for this setting was also higher that that for
using all parts of speech, which, in turn, was higher than that using open-
class words plus prepositions but excluding proper nouns. So it appears that
proper nouns help in this classification task, a somewhat counter-intuitive
result, especially since we generally have a high number of low-frequency
proper nouns.

– Normalization of category vectors. Normalizing category vectors ac-
counted for 12 of the top 15 experiments, and had a higher average accuracy
among all experiments, even more so for cases where density estimates were
used.

– Density estimation. Using probability densities instead of raw similarity
scores improved performance in almost every case, including all combinations
of parameters ranked near the top. This optional component had one of the
most pronounced effects in overall system performance.

On the other hand, ignoring words with low TF*IDF, keeping the part of
speech information for disambiguation, and ignoring case differences played much
smaller roles. High thresholds for including words in the TF*IDF vector were
clearly bad, but other than that, all setting of these parameters were used in some
of the best experiments, and the average accuracy for each were similar. Table 1
summarizes the effect of each value of each parameter over all experiments,
while Table 2 shows the top fifteen combinations of parameters (those which
achieved over 82.5% accuracy) in terms of performance during the three-fold
cross validation on the training set. The average cross-validated accuracy of all
384 experiments that directly use the TF*IDF scores was 71.74%, and of the 384
experiments that include the probability conversions, 74.26%. Note that these
overall accuracies are close to the baseline of the default classifier (71.9%), while
31 of the 768 combinations of parameters performed better than 82% during
cross validation. This indicates that an informed choice of the parameters is
important for this classification task.

On the basis of these cross-validation experiments, we selected the following
combination of parameters for our system: using the first sentences of captions
only; restricting words to those of an open class plus prepositions; treating words
that differ only in part of speech as identical; keeping capitalization information;
not applying any thresholds for including words in the TF*IDF vector; nor-
malizing according to category size; and applying the density transformation.
These are the parameters that were used in the experiment represented by the
first line of Table 2, which was one of two that tied for the best results during
cross-validation. With these parameters fixed, we retrained on the full training
set and tested on the unseen test set. The corresponding categorizer achieved



Table 1. Average overall accuracy during cross-validation of all experiments with the
given value of each parameter.

Parameter Value Average Accuracy

Text Span

first sentences of captions 79.45%
captions 76.06%
articles (including captions) 69.22%
articles (excluding captions) 67.26%

Part of speech restriction

open-class and prepositions 73.54%
all words 73.09%
open-class and prepositions,
exluding proper nouns

72.36%

Keeping tags for disambiguation
yes 73.08%
no 72.91%

Case sensitivity
yes 73.01%
no 72.99%

Threshold on TF*IDF

medium 73.63%
low 73.57%
none 73.21%
high 71.57%

Normalization according to
category size

yes 73.36%
no 72.64%

Using probability density estimates
yes 74.26%
no 71.74%

on the test set 82.02% accuracy, and 90.72% on the training set.3 If the density
estimate transformation were not employed, the accuracy on the tests set falls
dramatically to 72.36%. Tables 3 and 4 are contingency tables further breaking
down these accuracy scores on a per category basis, separately for the cases
where the density adjustments are used or not. Note that the use of probability
densities tends to shift the system’s categorizations from the smaller category
to the larger category. Therefore, the smaller category winds up having a higher
precision and lower recall, while the larger category ends with a lower preci-
sion and higher recall. Detailed results on our 445 individual test images can be
observed at http://www.cs.columbia.edu/~sable/research/demo results/

demo results.cgi.

Naturally, we want to compare these results with alternative classifiers, in-
cluding humans. Our accuracy on the test set (82.02%) clearly surpasses that
of the default classifier which always selects the “outdoor” label for every image
(71.9%). We estimate human performance on this task by measuring the per-
centage of correct classifications achieved by a human volunteer who looked only
at the captions of the images (i.e., who had access to the same kind of informa-
tion that our system does). Of the 1,339 images in our main set, 1,172 (87.52%)

3 An indoor output probability of more than 50% is translated to a decision in favor
of the indoor category during this evaluation.



Table 2. Top fifteen combinations of TF*IDF experiment parameters after three-fold
cross validation on the training set. The “tags” column indicates whether tags were
kept for disambiguating words; the “case” column indicates whether word comparisons
were case sensitive; and the “norm.” column indicates whether the normalization for
category size was applied during the similarity calculations.

Text span Part of speech
restriction

Tags Case Threshold
on TF*IDF

Norm.
Accuracy
without
densities

Accuracy
with

densities

first sentences
of captions

open-class plus
prepositions

no yes none yes 75.06% 83.22%

first sentences
of captions

open-class plus
prepositions

no yes low yes 75.06% 83.22%

first sentences
of captions

all words yes no medium yes 78.08% 82.89%

first sentences
of captions

open-class plus
prepositions

no no low yes 74.83% 82.89%

first sentences
of captions

open-class plus
prepositions

no no none yes 74.61% 82.89%

first sentences
of captions

all words no no medium yes 79.08% 82.77%

first sentences
of captions

open-class plus
prepositions

no yes none no 78.75% 82.77%

first sentences
of captions

all words yes no medium no 78.97% 82.66%

first sentences
of captions

all words no yes low yes 77.29% 82.66%

first sentences
of captions

all words no no low yes 76.73% 82.66%

first sentences
of captions

open-class plus
prepositions

yes no low yes 75.17% 82.66%

first sentences
of captions

open-class plus
prepositions

no yes medium no 81.99% 82.55%

first sentences
of captions

all words no yes none yes 77.40% 82.55%

first sentences
of captions

all words no no none yes 77.07% 82.55%

first sentences
of captions

all words yes no none yes 76.96% 82.55%

were correctly categorized under this access condition.4 This figure can serve as
a reasonable, approximate upper bound for how well we might hope our system
to perform given only text information.

Recently, an image-based approach for classifying photographs as indoor or
outdoor has been proposed (Szummer and Picard 1998). This approach is based
on a decomposition of the image by applying a 4 × 4 grid on it and taking

4 For this purpose, any categorization in the right direction (i.e., indoor or outdoor),
regardless of the degree of confidence, was considered correct while assignments of
the “Ambiguous” label received half credit.



Table 3. Contingency table showing the breakdown of the system’s categorizations on
the test set with conversions to probability densities.

Actual Indoor Actual Outdoor Precision

System Indoor 75 30 71.43%

System Outdoor 50 290 85.29%

Recall 60.00% 90.63%

Table 4. Contingency table showing the breakdown of the system’s categorizations on
the test set using the raw similarity scores.

Actual Indoor Actual Outdoor Precision

System Indoor 106 104 40.48%

System Outdoor 19 216 91.91%

Recall 84.80% 67.50%

measures of low-level image features such as color and texture on each of the 16
image regions. Then, similarities between blocks in a given image and blocks in
known indoor and outdoor images are calculated, and the image is assigned to
one of the two categories. In cooperation with image processing researchers at
Columbia,5 we reimplemented this technique and measured its performance on
our collection of photographs. We found that its accuracy on our test set was
74%, significantly less than what we obtain with our text-based methods. We
also added supplemental low-level features, such as edge direction histograms,
to those used by Szummer and Picard, and a machine learning component for
estimating classification thresholds. The resulting classifier (Paek et al. 1999)

achieves 76% performance, still less than the method described in this paper.

For each of the above comparisons, we calculated a level of significance by
applying Pearson’s chi-square test (Fleiss 1981) on the contingency table that
represents the cross-classification of the answers of the two compared meth-
ods.6 We observe that the difference between the performance of our system
and either the default baseline, Szummer’s and Picard’s image-based classifier,
or (regrettably) the human judges, is strongly significant at the 1% level or less;
the probability that similar or more pronounced differences in the observed ac-
curacy rates between the compared methods would be observed by chance is
0.046%, 0.464%, and 0.460%, respectively. When comparing our system to our
enhanced image-based model (Paek et al. 1999), the difference is still significant
at the 5% level (P-value of 3.24%).

5 Seungyup Paek, Alejandro Jaimes, and Shih-Fu Chang, of the Department of Elec-
trical Engineering, Columbia University.

6 The large-sample assumption of the chi-square test is satisfied for these contingency
tables. Because we test on several hundreds of images, the exact Fisher test (Fisher
1934) is computationally impractical.



Table 5. System accuracy stratified according to high, medium, or low confidence.

Confidence Level Number Correct Number Incorrect Accuracy

p ≥ 0.9 or p ≤ 0.1 234 21 91.76%

0.7 ≤ p < 0.9 or 0.1 < p ≤ 0.3 89 32 73.55%

0.3 < p < 0.7 42 27 60.87%

Total 365 80 82.02%

A final evaluation question is how reliable the confidence estimates provided
by our system’s output probabilities are. Preferably, decisions with a high degree
of confidence should be more likely to be accurate than decisions given a low
degree of confidence. We have therefore broken down the test set into three
subsets according to the probability assigned by our system, p, that a given
image is indoor. These three ranges of p were defined as high confidence (p ≥ 0.9
or p ≤ 0.1), medium confidence (0.7 ≤ p < 0.9 or 0.1 < p ≤ 0.3), and low
confidence (0.3 < p < 0.7). Note that the indoor probability equals 1 minus
the outdoor probability, with the classifier selecting the indoor category when
p > 0.5 and the outdoor category otherwise; hence, probabilities of p and 1−p are
equivalent in terms of the expressed confidence. Table 5 shows the accuracy of our
system within each confidence category, and verifies that decisions given a higher
level of confidence are more likely to be correct, thus validating our confidence
estimates. In particular, 255 (57.3%) of the 445 test images were labeled with
over 90% confidence, and 91.76% of these categorizations were correct.

6 Identifying Words with High Discriminating Power

Methodology. A second approach to the classification problem is to automatically
locate words (or multi-word phrases) whose presence strongly indicates one of
the competing classes. We explore this technique by first extracting all open-
class words plus prepositions from the first sentences of captions. We exclude
proper nouns from this analysis since they are unlikely to be general indicators
of one of the categories, and only consider words occurring five times or more
in our training set. This last step is done to ensure that the words we keep will
be frequent enough to be general discriminators, and to avoid cases where a
particular word occurs in a few captions of images from a particular class simply
by chance.

We construct a log-linear regression model (Santner and Duffy 1989) using
binary variables corresponding to the occurrence of each of these words as predic-
tors and the output feature (e.g., indoor or outdoor image) as the response. The
model is fitted with iterative reweighted least squares (Bates and Watts 1988),
and the fit assigns a weight to each of the candidate discriminators. Words with
higher weights are those that actually help discriminate between the two classes.



As an alternative machine learning technique, we also consider decision trees
(Quinlan 1986). The prediction model remains the same, but now the tree is
constructed with recursive partitioning, with the most discriminating variable
being selected first. The resulting tree is shrunk (Hastie and Pregibon 1990)

(node probabilities are optimally regressed to their parents) to reduce the possi-
bility of overfitting; we select the shrinking parameter α through cross-validation
within the training set.

Results. Using the same training/test set division as with the TF*IDF exper-
iments reported in the previous section, our list of candidate discriminators
contains 665 words. Both the log-linear regression model and the tree select a
subset of these words as classification features; in the case of the selected tree,
80 words are used during classification.

It is interesting to note which these words are, especially since the results of
this procedure are likely to generalize to other sets of images. The five words
most favoring an indoor classification are conference, meeting, meets, hands
(plural noun), and L, while the five words most strongly indicating an outdoor
image are of, from, soldiers, police, and demonstration. Some of them are
expected (e.g., demonstration or police for an outdoor image, or conference for
an indoor one), but some come as a surprise, for example, the “words” C, L, and
R (indicating an indoor image) used in parentheses to identify people in images
by position (i.e., center, left, or right).

Overall performance of the word discriminant method was 93.62% over the
training set and 78.65% over the test set.

Integrating the two classifiers. The two classifiers discussed in the present and
the previous section utilize different approaches to arrive at similar classification
performance. Hence, it is natural to investigate how correlated their answers
are, and whether a combined classifier might improve overall performance on
the indoor/outdoor classification task.

We have built such combined classifiers using both general machine learning
techniques discussed above (log-linear models and decision trees). However, the
overall performance of the composite classifiers was in both cases slightly less
than that obtained by the best individual classifier (82.02%). We attribute this to
overtraining during the construction of the composite classifiers, especially since
the same training set was used for building each of them and for combining
them.7 Nevertheless, our implementation of two classification methods provides
us with two different general tools that can be easily ported to other high-level
classification tasks; and the ability to identify key discriminating words may
prove helpful in future exploration of what makes images in distinct categories
different.

7 A further subdivision of our image data in two separate training sets and a test set
would leave us with too few images in each set.



7 An Alternative Evaluation Metric

So far, all reported accuracies considered the system to be completely right
if the category with the higher probability was correct and completely wrong
otherwise. An alternative evaluation method is to take the probability assigned
by the system to the correct category and consider that to be the system’s
score for that document, in a manner similar to the partial credits proposed in
(Hatzivassiloglou and McKeown 1993). For example, let’s say that the system
analyzes an image and says the probability that the image is indoor is 65%
(meaning that the probability that the image is outdoor is 35%). If the image
is actually indoor, the system is given a score of 0.65 for this image, while if
the image is actually outdoor, the system is given a score of 0.35. The overall
accuracy of the system is then the sum of the system’s scores for all images
divided by the total number of images. In the ideal case, the system would assign
all indoor images a probability of 1 of being indoor, and all outdoor images a
probability of 0 of being indoor. Thus its total overall accuracy would be 1, or
100%. Indeed, if the system always has complete confidence in its decisions, the
revised evaluation method becomes equivalent to the standard one.

In this way, the system receives partial credit for each answer, more if the
system leans in the correct direction and directly increasing as the system’s
confidence in a correct decision increases. In general, when a system already
classifies most images correctly under the original 0/1 scoring method, it will
tend to be penalized for its uncertainty on correct decisions more than it is
credited for uncertain wrong answers. This is the case in our task when our
classifier is evaluated on our main set of images (those with definite agreement by
the human volunteers); the system achieves 82.02% accuracy under the original
evaluation method, and 76.71% under the revised one. However, we consider this
modified method as more revealing, as it offers a way to evaluate the system’s
confidence in its decisions.

To further illustrate this alternative evaluation technique, and also the gen-
erality of our parameter selection mechanism, we repeated our training of the
indoor/outdoor classifier on our second set of images, those that had any kind
of agreement from the human judges (not necessarily with strong beliefs; see
Sect. 3). We randomly selected 1,000 (approximately two thirds) of the 1,501
images in that set for training and the remaining 501 images for testing, and
retrained the classifier using the optimal combination of parameters determined
in Sect. 5. 308 (30.8%) of the training images were indoor while 692 (69.2%) were
outdoor; within the test set, 167 (33.3%) images were indoor while 334 (66.7%)
were outdoor. Our system achieved on the test set 77.05% accuracy using the
raw TF*IDF similarities and 80.04% after converting those to probability esti-
mates. The latter of these results is the most important, and it is 1.98% lower
than the result from the main set with definite agreement. This makes sense,
since manual categorizations with a lower degree of confidence are less likely to
be accurate, and also may indicate images that are inherently harder to classify.
This is in fact reflected in the system’s confidence measure, which tends to be
lower on these problematic cases; applying the alternative evaluation method to



Table 6. Breakdown of the set of images with definite agreement on indoor/outdoor
and number of people features into indoor and outdoor images for each value of the
number of people feature.

Number of people Indoor images Outdoor images Percentage of indoor images

No People 2 75 2.6%

One Person 122 108 53.0%

Two People 75 85 46.9%

Three or More People 155 332 31.8%

Crowd 8 119 6.3%

Total 362 719 33.5%

this second test set, we obtain overall accuracy of 76.56%, almost as high as that
measure is for the first test set.

8 Using Information about Number of People

Earlier on, we noted that our goal in this line of research is to develop multiple
classifiers for a number of broadly applicable classification features. It is natural
to consider interactions between such classifiers, as information about one feature
may well help the categorization according to another feature. In this section,
we report on investigations regarding the effect knowledge about the number
of people in a photograph has on our ability to classify the image as indoor or
outdoor.

We have not yet built a text-based classifier for this second feature,8 so we
use instead ideal knowledge, provided by the human categorization of images
according to this feature. We analyze the set of images that has both definite
agreement between the human judges in the indoor/outdoor question and agree-
ment in the number of people question (excluding ambiguous labels). This set
contains 1,081 images, 362 (33.5%) of which are indoor and 719 (66.5%) are
outdoor, a similar distribution as in the larger set which we used for our main
experiments. However, if we take the number of people as given, the distribution
of indoor versus outdoor images within each category of the secondary feature
changes, sometimes dramatically, as Table 6 shows.

To utilize this information, we need a formula that connects f(I |c, d), the
probability density of an image being indoor given that it belongs to category
c according to the number of people feature and that it receives a similarity
difference of d, to our old probability density estimates, f(I |d). Unfortunately,
a Bayesian expansion of f(I |c, d) involves the joint density f(c, d), which we
cannot estimate without a classifier that predicts the number of people c from
the difference d (or vice versa). Therefore, we intuitively derive an approximate

8 Although work is under way for building one based on face detection combined with
name extraction from captions.



formula for f(I |c, d) as follows: Given N images with similarity difference in a
small neighborhood ∆d around d, approximately P (I |∆d) · N of them will be
indoor. Now, for any image that has a specific number of people c, its odds
for being indoor will change (for better or worse) from the global proportion of
indoor images P (I) by the ratio P (I |c)/P (I). If P (c) is the global proportion
of images with c people in them, the overall number of indoor images with c
people among the initial N images with similarity difference close to d can be
estimated as

N(I |c,∆d) ≈ P (c) · P (I |c)
P (I)

· P (I |∆d) ·N (3)

Similarly, the overall number of outdoor images with c people among the
same N images can be estimated as

N(O|c,∆d) ≈ P (c) · 1− P (I |c)
1− P (I)

· (1− P (I |∆d)) ·N (4)

By combining (3) and (4), we get our formula for updating P (I |∆d):

P (I |c,∆d) ≈ N(I |c,∆d)

N(I |c,∆d) +N(O|c,∆d)

≈
P (I |c)
P (I)

· P (I |∆d)

P (I |c)
P (I)

· P (I |∆d) +
1− P (I |c)
1− P (I)

· (1− P (I |∆d))
(5)

We applied this update formula to the images in the set with definite agree-
ment on both the indoor/outdoor and number of people questions. Since that
set is a subset of our main experimental image set, we took those images that
were in the training set for the main set (see Sect. 5) as our training images,
and the remaining as test images. The resulting training set had 732 images,
of which 249 (34.0%) were indoor, and the testing set contained 349 images, of
which 113 (32.4%) were indoor. If the methods of Sect. 5 are applied to this
training/test set partition while ignoring the number of people information, we
obtain 79.94% accuracy on the test set. If instead we assume perfect knowledge
of the number of people variable and update the probability estimates by ap-
plying (5) (estimating quantitities such as P (I) and P (I |c) from the training
set), we obtain 80.23% accuracy on the test set. This is only a minor improve-
ment, not statistically significant. However, if the alternative evaluation metric
of the previous section is employed, accuracy improves from 74.96% to 77.19%.
So while few categorizations actually changed from wrong to right or vice versa,
the system’s confidence values in its decisions were more appropriate when the
number of people was taken into account. In other words, on average, correct
decisions were given higher confidence while the reverse happened to incorrect
decisions.



9 Conclusions and Future Work

We have shown that our methods for categorization of images as indoor or out-
door strongly beat baseline performance and competing, image-based techniques,
and even begin to approach human performance. In fact, our system provides
93.72% of the correct answers that a human judge with access to the same kind
of information does (82.02% versus 87.52% overall accuracy). By staying within
the TF*IDF paradigm but experimenting with several parameters and adding
the use of probability density estimates, we have created a system that achieves
82% accuracy on unseen images. The output of our system is in terms of a
probability, which is readily interpretable and provides a level of confidence in
the system’s decision. We have explored additional techniques both for image
classification and for evaluating the constructed classifiers. In addition, we inves-
tigated the possibility of using additional information about images that might
change a priori probabilities of an image being indoor or outdoor, and there is
some promise that the system’s results may be improved. Our methods are gen-
eral, and could be applied to other high-level visual features, although currently
our model of probability densities assumes dichotomous classifications.

We have examined a classification approach that relates to the Rocchio
paradigm (Rocchio 1971) and combines TF*IDF estimates with a probabilistic
normalization. A future alternative is to compare our results with pure proba-
bilistic approaches such as naive Bayes (Lewis 1998) and connectionist models
(Lewis et al. 1996). Certainly, we have not exhausted the space of possible fea-
tures and transformations of the input data; we plan to examine additional such
options, including morphological transformations/stemming, semantic informa-
tion linking related words, and different weighing of identified named entities.

Our immediate next step is to integrate this text-based classifier with image-
based ones that are being developed at Columbia, and expand the range of
classification questions considered. We will explore high-level classifications such
as indoor/outdoor, number of people, and city versus landscape, and comple-
ment the general classifiers with specific image feature detectors (e.g., detectors
of skies, handshakes, or faces). Our goal is to provide a hierarchy of such classi-
fiers and analyze their interactions so that we can build a model that relates a
combination of the high-level visual features to specific conditions under which
an image is appropriate for inclusion in a multimedia document.
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