
Towards Multidocument Summarization by Reformulation:
Progress and Prospects

Kathleen R. McKeown, Judith L. Klavans, Vasileios Hatzivassiloglou,
Regina Barzilay and Eleazar Eskin

Department of Computer Science
Columbia University

1214 Amsterdam Avenue
New York, NY 10027

{kathy, klavans, vh, regina, eeskin}@cs.columbia.edu

Abstract

By synthesizing information common to retrieved docu-
ments, multi-document summarization can help users of in-
formation retrieval systems to find relevant documents with
a minimal amount of reading. We are developing a multi-
document summarization system to automatically generate a
concise summary by identifying and synthesizing similarities
across a set of related documents. Our approach is unique in
its integration of machine learning and statistical techniques
to identify similar paragraphs, intersection of similar phrases
within paragraphs, and language generation to reformulate
the wording of the summary. Our evaluation of system com-
ponents shows that learning over multiple extracted linguis-
tic features is more effective than information retrieval ap-
proaches at identifying similar text units for summarization
and that it is possible to generate a fluent summary that con-
veys similarities among documents even when full semantic
interpretations of the input text are not available.

Introduction
Currently, most approaches to single document summariza-
tion involve extracting key sentences to form the summary
(e.g., [Paice 1990; Kupiec et al. 1995; Marcu 1998]). Yet,
given the multitude of sources that describe the same event
in a similar manner (e.g., on-line news sources), it would be
helpful to the end-user to have a summary of multiple re-
lated documents. Multiple document summarization could
be useful, for example, in the context of large information
retrieval systems to help determine which documents are
relevant. Such summaries can cut down on the amount of
reading by synthesizing information common among all re-
trieved documents and by explicitly highlighting distinc-
tions. In contrast, with single document summarization,
users would have to read numerous individual summaries,
one for each of the top retrieved documents and infer simi-
larities.

While sentence extraction may be adequate for single doc-
ument summarization, it will not work effectively for mul-
tiple document summarization. Any individual document
does not contain explicit comparisons with all other docu-
ments which can be extracted; alternatively, if all sentences

Copyright c© 1999, American Association for Artificial Intel-
ligence (http://www.aaai.org). All rights reserved.

A federal office building was devastated by a car bomb in
Oklahoma City on April 19th 1995. Around 250 people
are still unaccounted for. More than 80 victims were killed
in the explosion. The Oklahoma blast was the biggest act
of suspected terror in U.S. history, overtaking the 1993
bombing of the World Trade Center in New York which
killed six and injured 1,000 others.

President Clinton vowed to capture the bombers and
brought them to a swift justice.

On 04/21 Reuters reported Federal agents have arrested
a suspect in the Oklahoma City bombing. Timothy James
McVeigh, 27, was formally charged on Friday with the
bombing. Brothers James and Terry Nichols, known
friends of McVeigh and reported to share his extreme
right-wing views, have been held since last week as ma-
terial witnesses to the Oklahoma bombing.

Figure 1: Summary produced by our system using 24 news
articles as input.

containing similar information are extracted (Mani and Blo-
edorn, 1997; Yang et al. 1998), this would make for lengthy
and repetitive reading.

We are developing a multi-document summarization sys-
tem to automatically generate a concise summary by identi-
fying similarities and differences across a set of related doc-
uments. Input to the system is a set of related documents,
such as those retrieved by a standard search engine in re-
sponse to a particular query. Our work to date has focused on
generating similarities across documents. Our approach uses
machine learning over linguistic features extracted from the
input documents to identify several groups of paragraph-
sized text units which all convey approximately the same in-
formation. Syntactic linguistic analysis and comparison be-
tween phrases of these units is used to select the phrases that
can adequately convey the similar information. This task is
performed by the content planner of the language generation
component and results in the determination of the summary
content. Sentence planning and generation are then used to
combine the phrases together to form a coherent whole. An
example summary produced by the system is shown in Fig-
ure 1; this is a summary of 24 news articles on the Oklahoma

Timothy James McVeigh, 27, was formally charged on Fri-
day with the bombing of a federal building on Oklahoma
City which killed at least 65 people, the Justice Depart-
ment said.

Timothy James McVeigh, 27, was formally charged on Fri-
day with the bombing of a federal building on Oklahoma
City which killed at least 65 people, the Justice Depart-
ment said.

The first suspect, Gulf War veteran Timothy McVeigh, 27,
was charged with the bombing Friday after being arrested
for a traffic violation shortly after Wednesday’s blast.

Federal agents have arrested suspect in the Oklahoma
City bombing Timothy James McVeigh, 27. McVeigh was
formally charged on Friday with the bombing.

Timothy McVeigh, the man charged in the Oklahoma City
bombing, had correspondence in his car vowing revenge
for the 1993 federal raid on the Branch Davidian com-
pound in Waco, Texas, the Dallas Morning News said
Monday.

Figure 2: A collection of similar paragraphs (part of a theme)
from the Oklahoma bombing event.

City bombing.
The key features of our work are:

1. Identifying themes. Given the 24 input articles, how can
we identify the similar paragraphs shown in Figure 2?
We term each set of similar paragraphs (or generally, text
units) a theme of the input articles. There may be many
themes for a set of articles; for these 24 articles, there are
9 themes. Unlike most systems that compute a measure
of similarity over text, our features extend beyond simple
word matching and include entire noun phrases, proper
nouns, and semantic senses; we also utilize positional and
relational information between pairs of words. We ran a
series of experiments that compared the use of different
features and the baseline provided by standard informa-
tion retrieval matching techniques, establishing that tar-
geted selection of linguistic features is indeed beneficial
for this task.

2. Information fusion. Given the subset of one theme ex-
tracted from the articles, shown in Figure 2, how can we
determine that only the phrases resulting in the sentence
“Timothy James McVeigh, 27, was formally charged on
Friday with the bombing.” should be represented in the
summary? We have developed and implemented a novel
algorithm for this task which analyzes grammatical struc-
ture extracted from each theme with off-the-shelf tools.
Our information fusion algorithm compares predicate ar-
gument structures of the phrases within each theme to de-
termine which are repeated often enough to be included in
the summary. This process yields an average accuracy of
79% when tested on a collection of text units from multi-
ple documents already clustered into themes by hand.

3. Text reformulation. Once the content of the summary
has been determined, how can we fluently use the similar
phrases in novel contexts? Simply stringing the phrases

together can produce ungrammatical results because phra-
ses are placed in new syntactic contexts. We have devel-
oped an algorithm that maps the predicate argument struc-
ture of input document phrases to arguments expected by
FUF/SURGE [Elhadad 1993; Robin 1994], a robust lan-
guage generation system. This has required developing
new techniques for identifying constraints on realization
choice (e.g., on the order of circumstantial roles such as
time, location, instrument, etc.), using surface features in
place of the semantic or pragmatic ones typically used in
language generation.

Related Work
To allow summarization in arbitrary domains, most current
systems use sentence extraction, identifying and extracting
key sentences from an input article using a variety of differ-
ent criteria. These approaches have all been developed to
produce a summary of a single input document. One recent
statistical approach [Kupiec et al. 1995] uses a corpus of ar-
ticles with summaries for training to identify the features of
sentences that are typically included in abstracts. Other re-
cent approaches use lexical chains [Barzilay and Elhadad
1997], sentence position [Lin and Hovy 1997], discourse
structure [Marcu 1997; Marcu 1998], and user features from
the query [Strzalkowski et al. 1998] to find key sentences.

While most work to date focuses on summarization of
single articles, early work is emerging on summarization
across multiple documents. Radev and McKeown [1998]
use a symbolic approach, pairing information extraction sys-
tems with language generation. The result is a domain de-
pendent system for summarization of multiple news arti-
cles on the same event, highlighting how perspective of the
event has changed over time. In ongoing work at Carnegie
Mellon, Yang et al. [1998] are developing statistical tech-
niques to identify similar sentences and phrases across arti-
cles. While they have developed a novel statistical approach
to identify similar sentences, their system simply lists all ex-
tracted similar sentences as the summary. Mani and Bloe-
dorn [1997] use spreading activation and graph matching to
compute similarities and differences between the salient top-
ics of two articles. Output is presented as a set of paragraphs
which contain similar and distinguishing words, emphasized
in different fonts. The problem is a redundant summary
since no synthesis of results through generation is attempted.

System Architecture
Our system follows a pipeline architecture, shown in Fig-
ure 3. Input to the system is a set of related documents, such
as those retrieved by a standard search engine. The analysis
component of the system breaks documents into smaller text
units and then computes a similarity metric across text units,
regardless of the source document. Once similar paragraphs
are identified, they are passed to the generation component
which further identifies and selects information to be refor-
mulated as coherent text.

The analysis, or similarity computation component takes
as input a set of articles that have been previously identified
as being on the same topic. In building our system, we used

Article1 Articlen Summary

Feature Synthesis

Rule Induction

Analysis Component

Feature Extraction

......

FUF/SURGE
Sentence Generator

Theme Intersection
Content Planner

Sentence Planner

Generation Component

Themes

Figure 3: System architecture.

articles from the pilot Topic Detection and Tracking (TDT)
corpus [Allan et al. 1998] for training and testing. The anal-
ysis component breaks the article into paragraph-sized units
for comparison, and then extracts a set of linguistic and po-
sitional features for input into the similarity algorithm. We
construct a vector for each pair of paragraphs, representing
matches on each of the different features. These vectors are
passed to a machine learning algorithm [Cohen 1996] which
combines these features into a classifier using the most dis-
criminating ones to judge similarity. Output is a listing of bi-
nary decisions on paragraph pairs, with each pair classified
as containing similar or dissimilar text units. The similar-
ity decisions drive a subsequent clustering algorithm, which
places the most related paragraphs in the same group, and
thus identifies themes.

The generation component consists of a content planner,
sentence planner, and a sentence generator. Since input is
full text, the process of selecting and ordering content is
quite different from typical language generators. For each
theme, the content planner identifies phrases within the para-
graphs of a theme that are close enough to other phrases in
the theme that they can be included in the summary. It does
this by producing a predicate-argument structure for each
sentence in each input paragraph, comparing arguments to
select phrases that are similar. The sentence planner then
determines which phrases should be combined into a sin-
gle, more complex sentence, looking again at constraints
from the input document as well as common references be-
tween phrases. Finally, the constituent structure produced by
these two stages is mapped to the functional representation
required as input by FUF/SURGE [Elhadad 1993; Robin
1994].

Document Analysis

Our definition of similarity is different than the one adopted
in most text matching tasks (such as information retrieval)
because of two factors: first, the size of the unit of text af-
fects what is similar; documents have a lot of information,
so even a modest amount of common elements can make
two documents similar. Second, our goal is different. We
are looking for text units that are quite close in meaning, not

just for topical similarity.1

We thus consider two textual units similar if they both
refer to the same object and that object performs the same
action in both textual units, or the object is described in the
same way in both of them. Such a common description must
be more than just a single modifier. For example, the follow-
ing two sentences satisfy our criteria for similarity,

Britain Thursday sent back to the United States a possible
suspect in the Oklahoma bomb blast, the interior ministry
said.
“A possible suspect connected with the Oklahoma bomb has
been returned to the United States by the U.K. immigration
service,” a ministry statement said.

because they both refer to a common event (the returning
of the suspect to the United States). On the other hand, the
following sentence

Federal agents have arrested a suspect in the Oklahoma City
bombing and U.S. television networks reported he was a
member of a paramilitary group called the Michigan Militia.

is not similar to the above, as it focuses on a different suspect
and his paramilitary connections. Existing methods based
on shared words are likely to identify all these sentences as
related, since they all contain key words such as “suspect”,
“Oklahoma”, and “bomb”.

Traditional metrics for determining similarity among tex-
tual units compare term occurrence vectors using frequen-
cies modified by the rarity of each term (the TF*IDF ap-
proach) [Salton and Buckley 1988]. Terms are single words,
occasionally with simple transformations such as stemming,
although sometimes multi-word units and collocations have
been used [Smeaton 1992]. Since we are aiming for a dif-
ferent, more fine-grained notion of similarity and operate on
much shorter texts than information retrieval does, we ex-
plored a number of alternative features. Our features draw
on a number of linguistic approaches to text analysis, and
are based on both single words and simplex noun phrases
(sequences of adjectives and nouns with no embedded re-
cursion). We thus consider the following potential matches
between text units:

• Word co-occurrence, i.e., sharing of a single word be-
tween text units. Variations of this feature restrict match-
ing to cases where the parts of speech of the words also
match, or relax it to cases where the stems of the two
words are identical.

• Matching noun phrases. We use the LinkIt tool [Wa-
cholder 1998] to identify simplex noun phrases and match
those that share the same head.

• WordNet synonyms. The WordNet semantic database
[Miller et al. 1990] provides sense information, placing
words in sets of synonyms (synsets). We match as syn-
onyms words that appear in the same synset.

• Common semantic classes for verbs. Levin’s [1993] se-
mantic classes for verbs have been found to be useful for
determining document type and text similarity [Klavans

1Note that we start with a set of documents about the same
topic, which is the usual goal of information retrieval systems.

and Kan 1998]. We match two verbs that share the same
semantic class in this classification.

In addition to the above primitive features that all com-
pare single items from each text unit, we use composite fea-
tures that combine pairs of primitive features. Our compos-
ite features impose particular constraints on the order of the
two elements in the pair, on the maximum distance between
the two elements, and on the syntactic classes that the two
elements come from. They can vary from a simple com-
bination (e.g., “two text units must share two words to be
similar”) to complex cases with many conditions (e.g., “two
text units must have matching noun phrases that appear in
the same order and with relative difference in position no
more than five”). In this manner, we capture information
on how similarly related elements are spaced out in the two
text units, as well as syntactic information on word combi-
nations. Matches on composite features indicate combined
evidence for the similarity of the two units.

To determine whether the units match overall, we employ
a machine learning algorithm [Cohen 1996] that induces de-
cision rules using the features that really make a difference.
A set of pairs of units already marked as similar or not by a
human is used for training the classifier. We have manually
marked a set of 8,225 paragraph comparisons from the TDT
corpus for training and evaluating our similarity classifier.

For comparison, we also use an implementation of the
TF*IDF method which is standard for matching texts in in-
formation retrieval. We compute the total frequency (TF) of
words in each text unit and the number of units in our train-
ing set each word appears in (DF, or document frequency).
Then each text unit is represented as a vector of TF*IDF
scores, calculated as

TF(wordi) · log
Total number of units

DF(wordi)

Similarity between text units is measured by the cosine of
the angle between the corresponding two vectors (i.e., the
normalized inner product of the two vectors), and the opti-
mal value of a threshold for judging two units as similar is
computed from the training set.

After all pairwise similarities between text units have
been calculated, we utilize a clustering algorithm to iden-
tify themes. As a paragraph may belong to multiple themes,
most standard clustering algorithms, which partition their
input set, are not suitable for our task. We use a greedy,
one-pass algorithm that first constructs groups from the most
similar paragraphs, seeding the groups with the fully con-
nected subcomponents of the graph that the similarity rela-
tionship induces over the set of paragraphs, and then places
additional paragraphs within a group if the fraction of the
members of the group they are similar to exceeds a preset
threshold.

Language Generation
Given a group of similar paragraphs—a theme—the prob-
lem is to create a concise and fluent fusion of information in
this theme, reflecting facts common to all paragraphs. A
straightforward method would be to pick a representative

su
bje

ct

class: noun

27
class: cardinal

bombing
class: noun

McVeigh with
class: preposition

definite: yes

charge
class: verb voice :passive

polarity: +tense: past

Figure 4: Dependency grammar representation of the sen-
tence “McVeigh, 27, was charged with the bombing”.

sentence that meets some criteria (e.g., a threshold number
of common content words). In practice, however, any repre-
sentative sentence will usually include embedded phrase(s)
containing information that is not common to all sentences
in the theme. Furthermore, other sentences in the theme of-
ten contain additional information not presented in the rep-
resentative sentence. Our approach, therefore, uses inter-
section among theme sentences to identify phrases common
to most paragraphs and then generates a new sentence from
identified phrases.

Intersection among Theme Sentences
Intersection is carried out in the content planner, which uses
a parser for interpreting the input sentences, with our new
work focusing on the comparison of phrases. Theme sen-
tences are first run through a statistical parser[Collins 1996]
and then, in order to identify functional roles (e.g., subject,
object), are converted to a dependency grammar representa-
tion [Kittredge and Mel’čuk 1983], which makes predicate-
argument structure explicit.

We developed a rule-based component to produce func-
tional roles, which transforms the phrase-structure output of
Collins’ parser to dependency grammar; function words (de-
terminers and auxiliaries) are eliminated from the tree and
corresponding syntactic features are updated. An example
of a theme sentence and its dependency grammar represen-
tation are shown in Figure 4. Each non-auxiliary word in the
sentence has a node in the representation, and this node is
connected to its direct dependents.

The comparison algorithm starts with all subtrees rooted
at verbs from the input dependency structure, and traverses
them recursively: if two nodes are identical, they are added
to the output tree, and their children are compared. Once
a full phrase (verb with at least two constituents) has been
found, it is confirmed for inclusion in the summary.

Difficulties arise when two nodes are not identical, but are
similar. Such phrases may be paraphrases of each other and
still convey essentially the same information. Since theme
sentences are a priori close semantically, this significantly

constrains the kind of paraphrasing we need to check for.
We verified this assumption by analyzing paraphrasing pat-
terns through themes of our training corpus, drawn from the
TDT (see the Evaluation section). We found that that a high
percentage of paraphrasing is at the “surface” level, using
semantically related words and syntactic transformations.

When similar nodes are detected, the algorithm tries to
apply an appropriate paraphrasing rule, drawn from the cor-
pus analysis. For example, if the phrases “group of students”
and “students” are compared, then the omit empty head rule
is applicable, since “group” is an empty noun and can be
dropped from the comparison, leaving two identical words,
“students”. In the case that a matching paraphrase rule can-
not be found, the comparison is finished and the phrase is
dropped. Other examples of paraphrase include ordering of
syntactic components in the sentence (e.g., inversion of sub-
ject and object because of passive), realization of the pred-
icate in a main clause versus a relative clause, and use of
synonyms based on WordNet.

For the theme in Figure 2, intersection results in the clause
“McVeigh was formally charged on Friday with the bomb-
ing” and the description “Timothy James McVeigh, 27”.

Sentence Generation Component
The primary task of this component is to construct the sum-
mary text from phrases selected from the theme. During
this process, the system orders phrases based on their time
sequence of appearance, adds additional information needed
for clarification (e.g., entity descriptions, temporal refer-
ences, and newswire source references) that appeared in the
full articles but not in the theme [Barzilay et al. 1999], and
maps the dependency representations to an English sentence.
Output of this component is the full summary, such as the
one shown in Figure 1.

Ordering of phrases within the summary is based on
chronological order inferred from their appearance in the
original text. To do this, for each theme, we record a date
that is the earliest date on which any of its sentences were
published. We sort extracted phrases according to these
dates.

Sentence realization is done by mapping the dependency
structure to the input required by FUF/SURGE [Elhadad
1993; Robin 1994]. The use of a language generator, with
full grammar, means that the system can combine phrases to-
gether in ways that did not occur in the input text. A phrase
that occurred as the main clause in an input text, for exam-
ple, may be realized in the summary as a subordinate clause.
The grammar is used to determine inflections, subject-verb
agreement, and word orderings. This gives us the ability
to generate coherent, fluent text as opposed to rigidly using
extracted sentences in the same ways they were used in the
input.

Sentence generators such as FUF/SURGE, however, typi-
cally require a set of sentential semantic roles as input. They
were developed for use within a system that builds a se-
mantic sentence representation from data. However, in our
case, we have no access to semantic information; all that
we have are syntactic roles, derived from the parse tree for
the sentence. In many cases, this simply means less work

for FUF/SURGE. Processing starts using roles such as sub-
ject, object, and main verb instead of deriving these syn-
tactic roles from roles such as agent, goal, and predicate.
However, in other cases, it means producing a sentence with
only vague knowledge of the function of a particular con-
stituent. For example, for circumstantials such as time, lo-
cation, or manner, the summarizer can only determine from
the input that it is a circumstantial and cannot determine its
type. The specific function determines the options for para-
phrasing (e.g., whether it appears at the beginning or end
of the sentence, or next to some other constituent). We use
the ordering derived from the input to constrain these op-
tions and leave the specific function unspecified. We will
continue to look at cases where different kinds of syntactic
constraints on paraphrasing can be derived from the input in
place of semantic or pragmatic constraints.

System Status

We have an initial system prototype which includes imple-
mentation of system components and integration of compo-
nents for a number of examples. More work needs to be
done to tune output of the theme identifier to produce better
input for the generation component. Our experiments show
that high recall and low precision in finding themes is better
for the generator than low recall and high precision. This
is because the content planner, which performs information
fusion, makes a more thorough analysis and weeds out sen-
tences that are not similar when comparing phrases. Thus,
it can handle errors in its input, but it cannot handle miss-
ing input. As the noise in its input increases, the size of the
intersection decreases. In such cases, the output summary
will be short, but the system will never generate nonsensical
output.

Given noisy input (i.e., dissimilar articles), the system
components degrade in different ways. Given poor input, the
theme identification component may produce low-quality
themes. But, as noted above, the intersection component
will weed out these errors and produce an empty, or small
intersection, and a short summary. Also, we are focusing
on articles that have already been judged similar by some
means (e.g., by an information retrieval engine), so it is un-
likely that our system will receive markedly different docu-
ments as input.

Evaluation

Given that our implementation of components is complete,
but full integration of components is still underway, our eval-
uation at this stage focuses on quantifying results for each of
the system components separately. Following the division
in our system architecture, we identify three separate ques-
tions to which results can be produced independently and to
which the system’s answers can be evaluated. We elaborate
on these three questions and on how we quantitatively mea-
sure performance on them in the first subsection, and then
present the results of the evaluation on specific data collec-
tions.

Identifying Themes
The first question we address is how good our system is in
identifying themes, or similar paragraphs. We quantify the
answer to this question by presenting to the system a list
of pairs of paragraphs (all extracted from documents on the
same topic) and measuring how many correct decisions the
system makes on characterizing the paragraphs in each pair
as similar or dissimilar.

Since placing incoming documents into topical clusters is
a non-trivial task for large document collections, we use as
input a set of articles already classified according to sub-
ject matter, the pilot Topic Detection and Tracking (TDT)
corpus. The TDT effort, sponsored by DARPA and NIST,
aims to promote new research on document classification
and clustering; as a necessary step towards comparing differ-
ent systems on these tasks, a corpus of articles from written
and broadcast news sources (Reuters and CNN) is marked
with subject categories that correspond to our criteria for se-
lecting similar documents (e.g., “Oklahoma City bombing”
or “Pentium chip flaw”). We are using the Reuters part of the
first such collection made available in early 1998 (the TDT
pilot corpus), which contains 16,000 articles (see http://
morph.ldc.upenn.edu/ Catalog/ LDC98T25.
html for more details).

We selected 6 of the 25 topical categories in the pilot TDT
corpus, favoring categories that had a significant number of
member documents. For each such category, we selected
articles from randomly chosen days, for a total of 30 articles.

Documents in each topical category are broken into para-
graphs, and paragraphs from different documents in the
same theme are compared using the various alternatives de-
scribed in our document analysis section. For example, our
first category about two Americans lost in Iraq has 61 para-
graphs across 8 selected articles, and 61 · 60 / 2 = 1, 830
comparisons are made between those 61 paragraphs. All the
selected categories have 264 paragraphs and 8,225 compar-
isons between paragraphs, calculated as

6∑

i=1

(
Ni
2

)

where Ni is the number of paragraphs in category i. We
randomly divided these pairs of paragraphs into a training
set (6,225 pairs) and a testing set (2,000 pairs). These 8,225
pairs were manually compared independently by two eval-
uators (who subsequently met and reconciled differences),
and classified as either similar or dissimilar.

We extracted the primitive features discussed in the doc-
ument analysis section, calculated our composite features,
and trained both the machine learning model that uses these
features and the TF*IDF classifier on the training set. Our
feature-based approach was able to recover 39.7% of the
similar pairs of paragraphs with 60% precision and had an
overall accuracy over both similar and dissimilar pairs of
97%, while the corresponding numbers for the TF*IDF
method were 31.4% recall of similar paragraphs, 41.8% pre-
cision and 96.5% overall accuracy.

Note that since we have a fine-grained model of similar-
ity, most paragraphs are dissimilar to most other paragraphs.

As a result, the baseline method of always guessing “dissim-
ilar” will have a very high accuracy (percentage of total cor-
rect answers), 97% in our experiments. However, as in com-
parable information retrieval tasks with no pre-constructed,
balanced evaluation document sets, it is important to focus
primarily on evaluation results for the rarer similar pairs (re-
spectively, on the documents relevant to a particular query),
rather than all pairs (or documents) in the collection. Our re-
sults indicate that our approach outperforms traditional text
matching techniques, especially on the harder-to-find simi-
lar paragraphs.

Information Fusion

The second evaluation question addresses the performance
of our content planner, measuring how well we identify
phrases that are repeated throughout the multiple paragraphs
within a theme. We present the system with several manu-
ally constructed themes and compare the system-produced
collection of phrases to manually identified common phra-
ses. Manually constructed themes allow us to obtain an in-
dependent view of the content planner’s performance, with-
out including any misclassifications that the first stage of the
system makes. Then standard measures such as precision
and recall can be used to quantitatively compare the system’s
results to the reference list.

To carry out this evaluation, we constructed five themes
each containing 3.8 paragraphs on average. To do this, we
used themes automatically constructed by the first stage of
the system and edited errors by hand. Repeated information
was manually extracted from each theme, producing seven
sentence-level predicate-argument structures corresponding
to phrases that should be included in the summary. Then
we applied our intersection algorithm which proposed six
predicate-argument structures for the summary and was able
to correctly identify 81% of the subjects, 85% of the main
verbs, and 72% of the other constituents in our list of model
predicate-argument structures.

Generating Sentences

The final evaluation task is to assess how well our surface
generation component performs on the task of putting to-
gether the extracted phrases in coherent sentences. We eval-
uate performance on this task by asking humans to rate each
produced sentence in terms of fluency, but not in terms of
content. In fact, the evaluators do not see the original docu-
ments, and thus base their judgements only on the quality of
the produced sentences in isolation.

This is an important first step in evaluation; given that we
are taking apart sentences and putting them together in novel
ways, we need to measure how well we do at producing flu-
ent and grammatical sentences. While this is not an issue
for extraction-based summarization systems, robustness at
the sentence generation level is critical to success in our ap-
proach. We are also looking at alternative methods for rating
sentences on fluency. A logical next step will be to eval-
uate sentences in context, measuring overall coherence. In
addition, the grades that people assign to sentences are sub-
jective; an alternative is to ask evaluators to order sentences

The defense department said an OH-58 military U.S.
scout helicopter made an emergency landing in the North
Korea friday. Score: 95

North Korea said it shot the helicopter down over the its
territory. Score: 80

Richardson cancelled other discussions that it was taken
place on the recent nuclear U.S.-NORTH KOREA agree-
ment. Score: 50

Figure 5: Three of the sentences automatically generated by
our system and the fluency scores assigned to them.

on the basis of fluency, presenting them with the system’s
output together with sentences written by humans.

We evaluated the fluency of our sentence generator by
having it generate 31 sentences from the correct list of pred-
icate argument structures used in the second evaluation ex-
periment. Each of these sentences was read by an inde-
pendent evaluator, who graded it on fluency with a numeric
score between 0 and 100. This process resulted in an aver-
age score of 79.5, with 15 of the 31 sentences scored at 90 or
more. Figure 5 shows three of the generated sentences and
their assigned scores.

Conclusions and Future Work
This paper presents a novel architecture for accomplishing
summarization of multiple documents in any domain. In or-
der to achieve this, our work builds on existing tools, such
as a parser and generator, as a springboard to take us fur-
ther than would otherwise be possible. This has allowed
us to address key higher-level issues including the develop-
ment of a paragraph similarity module using learning over
a set of linguistic features, an algorithm for identifying sim-
ilar clauses within the resulting themes, and sentence gen-
eration techniques to combine clauses in novel ways within
new contexts. These new features enable the development
of a multi-document summarizer that uses reformulation to
produce natural and fluent text. Unlike sentence extraction
techniques which present a concatenated list of sentences or
phrases picked on the basis of statistical or locational cri-
teria, our system presents a synthesized summary, created
using both statistical and linguistic techniques.

In the future, we plan to experiment with an alternative
evaluation approach that rates the produced summary as a
whole. We are in contact with professional journalists who
perform the task of synthesizing an article from multiple
news sources. One possibility is to ask them to evaluate
the summaries directly; another is to identify through user
analysis other measures that they internally use to arrive at
“good” articles and try to apply them to the summarization
task.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under grant No. IRI-96-1879. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foun-
dation.

References
[Allan et al. 1998] James Allan, Jaime Carbonell, George

Doddington, Jon Yamron, and Y. Yang. Topic Detection
and Tracking Pilot Study: Final Report. In Proceedings
of the Broadcast News Understanding and Transcription
Workshop, pages 194–218, 1998.

[Barzilay and Elhadad 1997] Regina Barzilay and Michael
Elhadad. Using Lexical Chains for Text Summarization.
In Proceedings of the ACL Workshop on Intelligent Scal-
able Text Summarization, pages 10–17, Madrid, Spain,
August 1997. Association for Computational Linguistics.

[Barzilay et al. 1999] Regina Barzilay, Kathleen R. McKe-
own, and Michael Elhadad. Information Fusion in the
Context of Multi-Document Summarization. In Proceed-
ings of the 37th Annual Meeting of the ACL, College Park,
Maryland, June 1999. Association for Computational Lin-
guistics.

[Cohen 1996] William Cohen. Learning Trees and Rules
with Set-Valued Features. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence
(AAAI-96). American Association for Artificial Intelli-
gence, 1996.

[Collins 1996] Michael Collins. A New Statistical Parser
Based on Bigram Lexical Dependencies. In Proceedings
of the 35th Annual Meeting of the Association for Com-
putational Linguistics, Santa Cruz, California, 1996.

[Elhadad 1993] Michael Elhadad. Using Argumentation to
Control Lexical Choice: A Functional Unification Imple-
mentation. PhD thesis, Department of Computer Science,
Columbia University, New York, 1993.

[Kittredge and Mel’čuk 1983] Richard Kittredge and Igor A.
Mel’čuk. Towards a Computable Model of Meaning-Text
Relations Within a Natural Sublanguage. In Proceedings
of the Eighth International Joint Conference on Artificial
Intelligence (IJCAI-83), pages 657–659, Karlsruhe, West
Germany, August 1983.

[Klavans and Kan 1998] Judith Klavans and Min-Yen Kan.
The Role of Verbs in Document Access. In Proceedings
of the 36th Annual Meeting of the Association for Com-
putational Linguistics and the 17th International Confer-
ence on Computational Linguistics (ACL/COLING-98),
Montreal, Canada, 1998.

[Kupiec et al. 1995] Julian M. Kupiec, Jan Pedersen, and
Francine Chen. A Trainable Document Summarizer. In
Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors,
Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 68–73, Seattle, Washington, July 1995.

[Levin 1993] Beth Levin. English Verb Classes and Alterna-
tions: A Preliminary Investigation. University of Chicago
Press, Chicago, Illinois, 1993.

[Lin and Hovy 1997] Chin-Yew Lin and Eduard Hovy. Iden-
tifying Topics by Position. In Proceedings of the 5th
ACL Conference on Applied Natural Language Process-
ing, pages 283–290, Washington, D.C., April 1997.

[Mani and Bloedorn 1997] Inderjeet Mani and Eric Bloe-
dorn. Multi-document Summarization by Graph Search
and Matching. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-97), pages
622–628, Providence, Rhode Island, 1997. American As-
sociation for Artificial Intelligence.

[Marcu 1997] Daniel Marcu. From Discourse Structures to
Text Summaries. In Proceedings of the ACL Workshop
on Intelligent Scalable Text Summarization, pages 82–88,
Madrid, Spain, August 1997. Association for Computa-
tional Linguistics.

[Marcu 1998] Daniel Marcu. To Build Text Summaries of
High Quality, Nuclearity is not Sufficient. In Proceed-
ings of the AAAI Symposium on Intelligent Text Summa-
rization, pages 1–8, Stanford University, Stanford, Cali-
fornia, March 1998. American Association for Artificial
Intelligence.

[Miller et al. 1990] George A. Miller, Richard Beckwith,
Christiane Fellbaum, Derek Gross, and Katherine J.
Miller. Introduction to WordNet: An On-Line Lexi-
cal Database. International Journal of Lexicography,
3(4):235–312, 1990.

[Paice 1990] Chris D. Paice. Constructing Literature Ab-
stracts by Computer: Techniques and Prospects. Infor-
mation Processing and Management, 26:171–186, 1990.

[Radev and McKeown 1998] Dragomir R. Radev and Kath-
leen R. McKeown. Generating Natural Language Sum-
maries from Multiple On-Line Sources. Computational
Linguistics, 24(3):469–500, September 1998.

[Robin 1994] Jacques Robin. Revision-Based Generation of
Natural Language Summaries Providing Historical Back-
ground: Corpus-Based Analysis, Design, Implementa-
tion, and Evaluation. PhD thesis, Department of Com-
puter Science, Columbia University, New York, 1994.
Also Columbia University Technical Report CU-CS-034-
94.

[Salton and Buckley 1988] G. Salton and C. Buckley. Term
Weighting Approaches in Automatic Text Retrieval. In-
formation Processing and Management, 25(5):513–523,
1988.

[Smeaton 1992] Alan F. Smeaton. Progress in the Applica-
tion of Natural Language Processing to Information Re-
trieval Tasks. The Computer Journal, 35(3):268–278,
1992.

[Strzalkowski et al. 1998] Tomek Strzalkowski, Jin Wang,
and Bowden Wise. A Robust Practical Text Summariza-
tion. In Proceedings of the AAAI Symposium on Intelli-
gent Text Summarization, pages 26–33, Stanford Univer-
sity, Stanford, California, March 1998. American Associ-
ation for Artificial Intelligence.

[Wacholder 1998] Nina Wacholder. Simplex NPs Clustered
by Head: A Method For Identifying Significant Topics
in a Document. In Proceedings of the Workshop on
the Computational Treatment of Nominals, pages 70–79,
Montreal, Canada, October 1998. COLING-ACL.

[Yang et al. 1998] Yiming Yang, Tom Pierce, and Jaime Car-
bonell. A Study on Retrospective and On-Line Event De-
tection. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval, Melbourne, Australia, August
1998.

