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Abstract

We show how information extraction (TE) and summarization can
be merged in a sequential pipeline, resulting in a new approach to
domain-independent summarization. IE finds the document’s terms
and entities, that when processed by the methods shown, result in a
more informative treatment of the document’s topics.

1 Introduction

A critical goal in text summarization is the development of a satisfactory
algorithm for summarizing long documents in a domain independent fashion.
Unlike their shorter counterparts, long documents often exhibit complex
discourse structure and more domain specificity, which can cause problems
for current summarization techniques, such as sentence extraction. In long
documents, sentence extraction can select sentences from distant locations in
the article and thus, lack of coherence and the possibility of false implicatures
from unrelated sentences being placed side by side is far greater than in
shorter articles.

In this paper, we present a hybrid summarization system that merges
information extraction (IE) with sentence extraction to reduce these errors.
Like IE based summarization (also called template based systems), our sum-
marizer looks for specific types of information to extract from the article
which will serve as summary content. Unlike template based systems, we do



not specify a priori the information to extract. Rather, the system dynami-
cally determines the foci of the article, which in turn determine the specific
information that will be extracted. The summary is first formed by extract-
ing sentences from the document that contain the desired information, and
later, modifying them.

The resulting system is domain independent, which allows us to summa-
rize documents in any field without including any specific domain knowledge.
This is achieved by analyzing terms and named entities, which are present
in documents across all domains. From the analysis we can elevate a few
salient entities or terms to foci, which represent the topics covered in the
article.

For example, the entity “Jane Jacobs” refers to a person; an article with
this focus will contain information about this person. Qur system recognizes
four major focus types: people, organizations, places and multiword terms.
Each focus type and the interaction between foci suggest questions that may
be answered by the text. These questions determine the information that
will be extracted from the article. We use the question answering approach
to improve sentence extraction in three ways:

1. The questions help the system select more appropriate sentences to
extract;

2. The relationships between foci serve to reorder extracted sentences to
make the resulting summary more coherent;

3. The descriptions of individual foci enable the system to find missing
information and add it in.

Complementary to work by Jing [Jing1999], whose emphasis is on sum-
mary fluency, our approach focuses on ensuring summary informativeness.
Other work on summarization at Columbia [Barzilay et al.1999, Radev and McKeown1998]
focuses on multiple document summarization.
In the next section, we describe a classification hierarchy of summariza-
tion techniques that situates current systems and show how our strategy
constitutes a new category. We then illustrate how each of the three tasks
above can be accomplished, by following an example from IE output to sum-
mary. Finally, a short evaluation of the implemented system and a discussion
of our findings conclude the paper.



2 The summarization hierarchy

Summarization systems can be broadly classified into two different cate-
gories: those that are template based and those that are text extraction
based.

A template based system often produces a good summary if a document’s
domain is known. Template systems have been extensively researched in
the past few decades [DeJongl1982, Jacobs and Raul990], in which articles
are identified as belonging to a particular domain. The articles are then
summarized by inserting extracted, domain-specific information into a text
template, such as a company’s name and the amount of its latest divi-
dend. Current efforts in this arena, such as work by Radev and McKeown
[Radev and McKeown1998], are considerably more sophisticated, using ad-
vanced techniques to dynamically add new text not present in the template.
But when no template exists for a story, what then? Since there is an infi-
nite variety of domains, we cannot simply exhaustively construct matching
templates.

Text extraction systems avoid this problem by using empirical methods
to find appropriate chunks of text for a summary. Most closely studied have
been sentence level approaches [Brandow et al.1995, Kupiec et al.1995], since
many argue that the sentence is the discourse unit with the best balance of
semantic granularity and self contained cohesiveness. Sentence extraction
has been augmented by adding other factors to compute final score of a sen-
tence, as overviewed by Paice [Paice1990]: word importance as calculated by
TF*IDF, position of the sentence in the document and the enclosing para-
graph [Lin and Hovy1997], and the presence of cue phrases, among others.
Selected sentences are given to the user as the summary of the article.

Text Extraction Based

Template Focus
Based Based Sentence | | Lead
Based Based
complex shallow

Figure 1: Positioning of our system in the complexity hierarchy

Although these two categories of automatic summarization seem fairly
unrelated, they are connected as shown by Hovy and his contributors [Hovy1998]
by virtue of a close cousin, information extraction (IE). In fact, a hybrid of



the two categories that utilizes IE technology claims a middle ground that
allows us to establish a summarization methodology hierarchy. Figure 1
shows this classification, with the axis representing the depth of knowl-
edge needed from the source document. Qur approach constitutes a middle
ground, since we will show that it relies on knowing the list of the terms and
named entities, which are by nature domain independent.

3 System overview

Our system was built to produce short, four to five sentence summaries
of long (defined here as exceeding 1500 words in length) journalistically
styled documents. This specific task lends itself to some optimization of
general methods, especially since the length of the inputs and outputs are
specified. A long input article presents difficulty with its more complex
discourse structure. A short summary length forces the summary to be
indicative, since we cannot hope to represent all of the many topics touched
on in the full article. The key is to find only the most important point and
bring together its most salient aspects and relationships.

TALENT IE (0)

document
-{ Layout Recognition H Length Filter }—[ Foci Finder (1) J summary

Content Orderer (4)

Lead bm_ i Focus based
Summarization Summarization
Implemented System |

Figure 2: System architecture

Our implemented system, shown in Figure 2, is designed to address these
issues. Documents first are analyzed by a layout recognition preprocessor
[Kan1999] to highlight special sections and remove tables and lists. Next,
a length filter determines the overall length of the preprocessed document;
if it is less than the 1500 word long threshold, the document is routed to a



simple lead based approach to complete the summary.

If the document is a long document, we invoke our focus based sum-
marization approach (the shaded box in the figure) that augments sentence
extraction with an analysis of IE output. This involves four steps. First,
given IE output, the article’s foci determined (step 1). Next, the system dy-
namically determines questions to ask based on the focus types present (2)
and the text found to answer them are validated and extracted (3). In the
final steps, we determine which pieces of information are important enough
to be ordered into a coherent summary (4).

4  System modules

4.1 Step 0: Information Extraction (IE) — finding all terms
and entities in the document

We use an IE engine as a first pass selector for terms and entities that are
likely to be article topics, since topics — whether concrete (“Standard and
Poor”), abstract (“divine right”), action (“course registration”) or chronol-
ogy (“World War II”) — can and do appear nominalized as entities and
terms.

4 Jane Jacobs (PERSON): Loc 1/2]31618[12[14|16|18121125|33|47|52|54|54|57175176183186187|95]98|

2

9 Toronto (PLACE): Loc 10]15|20(43|46]47|54|55]99]

7 Ideas That Matter (PERSON): Loc 9]12|12]18]|29[29]91]
6 Dee W. Hock (PERSON): Loc 82]83|86|87|88|91]|

5 Zeidler Roberts Partnership (ORG): Loc 43|49|50|51]96]
4 Tyler (UNAME): Loc 1]6(8]32]

1 New Denver (UNAME): Loc 100]

Figure 3: Some TALENT output: left column is term/entity frequency; type
is shown in parenthesis

As input to the first step in the summarization system, we use IBM’s in-

formation extraction tool, TALENT [Wacholder et al.1997, Justeson and Katz1995]

that recognizes generic named entities, such as organizations, people and
places, as well as multiword terms and untyped names. TALENT also links to-

gether partial references to their full canonical forms, similar to [Aberdeen et al.1995],

and also reports each term/entity’s type and location. TALENT output, post-



[foci list]

1. Jane Jacobs (PERSON) 290
2. Toronto (PLACE) 129
3. Ideas That Matter (PERSON) 115
4. Tyler (TERM) 88

Figure 4: Foci found in Maclean’s article, right column is the calculated
measure of importance.

processed to highlight frequency and location information, is shown in Figure
3, for a particular example article from Maclean’s on the revolutionary urban
planner, Jane Jacobs.

4.2 Step 1 : Finding Foci — what is the article about?

Figure 4 shows the topics in the article, as determined by this first stage.
“Jane Jacobs” is the prominent focus by a wide margin, and the unnamed
entity “Tyler” has been promoted as a focus, substituting for the more
frequently occurring person “Dee W. Hock”. Let’s now examine how these
foci were determined.

Once we have the IE output, we need to select the salient foci, the
specific terms and entities that will appear in the summary. A weighting
system was employed that utilizes factors in ranking each entity, including
its type, frequency, as well as the centroid and variance of its occurrences.
All factors were normalized such that the maximum possible value is 1.0.

TERM/ENTITY TYPE (e.g. whether a term refers to a person) is an
important factor, since it is needed to balance the weighting between the
different types. This is necessary because some types of terms happen to be
topics more often, and others less, as indicated by our weighting in Table 1.
For example, PLACES often indicate a setting of a story rather than an actual
topic. Similarly, topics like “city planning” are TERMS, but will involve
occurrences of organizations and people that actually have less import, so
we assign TERM occurences a higher relative weight.

Besides the obvious importance of FREQUENCY, the CENTROID and
VARIANCE of occurrences were also selected as factors. The centroid fac-
tor models the position metric’s [Lin and Hovy1997] judgment that the ar-
ticle’s beginning is more important. The variance factor captures the in-
fluence of the particular term or entity over the course of the entire ar-



PLACE | PERSON | ORGANIZATION | MULTIWORD TERM | OTHERS
0.6 0.9 0.9 1.0 0.7

Table 1: Weights for Term/Entity Type Bias as indicated by an empirical
study of 15 NANTC articles

ticle. Thus, a term that occurs early on in a document and continues
throughout is more salient than one that is only mentioned at the begin-
ning. Weights for all factors were then established by an empirical study of
15 long articles, selected from the North American News Text Corpus from
the LDC [Consortium1997] that yielded good results.

FREQUENCY | TERM/ENTITY TYPE | VARIANCE | CENTROID
24.0 5.0 3.0 2.0

Table 2: Weights for each factor type in determining salient foci

As one can see from Table 2, the most important factor by far was
FREQUENCY, which agrees with the general literature. Newly correlated with
topicality was TERM/ENTITY TYPE, which is significant in determining the
ranking of the extracted information. CENTROID and VARIANCE also helped,
but only had marked effects in instances where the number of occurrences
were relatively low.

4.3 Step 2 : Questioner — what information should we ex-
tract?

Once the algorithm has chosen the article’s foci, we analyze their types to
determine what possible questions might be answered in the text. Figure 5
shows some questions that we might expect to be answered from the example
article.

We can enumerate these questions since each focus type has particu-
lar properties that may be expanded in the text. The concept is similar to
template based approaches, but with the unique difference that we are work-
ing with generic entities: people, places, terms and organizations appear in
texts across all domains. Take an identified focus of the Maclean’s article,
“Jane Jacobs”, a PERSON, for instance. Figure 6 lists the unary relations we
can expect to find for all PERSON foci, which are determined a priori: her
identity, her age, and possibly what she said or did.

More interesting questions can be asked by examining the relationships
between different pairs of focus types, shown in Figure 7. This corresponds



[questions]

Does Jane Jacobs live in Toronto?

Did Jane Jacobs visit Toronto?

Does Ideas That Matter live in Toronto?
How old is Jane Jacobs?

What did Jane Jacobs say, if anything?
What did Jane Jacobs do, if anything?
Does the story occur in Toronto?

N O W=

16. What did Ideas That Matter say or do, if anything?

Figure 5: Some questions posed for the Maclean’s article

Focus Type (X)
1. Person 2. Organization 3. Place 4. Multiword Term
A.WhoisX? E. Is X anonprofit or 3. What does X mean?

B. What did X say?
C. What did X do?

governmental or
corporate agency?
F. What did X say?

H. Is X the setting
of the story?
I. Is X the governing

K. Arethere
synonyms for X?

ency of X?
D. How old is X? agency

G. What did X do?

Figure 6: Some unary relations found in texts

roughly to the notion of named relations, in which two foci enter into a
defined relationship. This differs from all template based approaches because
the target information is decided dynamically, based on the specific pairs of
focus types that are found in the article.

As a starting point for finding the answers to these questions, all sen-
tences containing focus occurrences are retrieved and are used as basis for
the summary, the list of sentences to be pruned by the later stages. Even
at this early stage, by limiting the sentence extraction to foci, we guarantee
that the system can select sentences that are both topical and tightly bound,
which fulfills the first task of IE integration as stated in the introduction.

4.4 Step 3 : Answerer — Identifying sentences and phrases
that contain needed information

Now that we have focused on a small group of sentences, we can escalate
the amount of effort used to analyze them. We parse them to find the gram-
matical relationships (as in Boguraev and Kennedy, 1997), by passing each
of the extracted sentences to IBM’s English Slot Grammar [McCord1990].



Focus Type (X)

Person Organization Place Multiword Term
- a X developed Y m. X developed Y X and Y -
erm y. X and Y are synonym:
u. Y developed at X
b. X uses Y n. X usesY ped anionyms
c. X doesY 0. X does Y v. X isatypeof Y z. X and Y are hypernyms/
d. X isatypeof Y p.XisaY hyponyms
e XlivesinY w. X and Y are adjacent
- Place . X islocated at Y !
e f. X visited Y isi wdiny x. X and Y are subparts/
S g. X isnowinY r. X isinterested in superparts of each other
2]
§ Organ- h. X works for Y s X andY arealies/
L ization i. X headsY competitors
j. X is against/supports t. X isasubsidiary of Y
Y’spolicies
Person k.X andY are friends/
enemies
I. X or Y work for each
other

Figure 7: Generic binary relationships between two focus types

Figures 9 and 10 shows the patterns that we attempt to detect to de-

termine whether a sentence or phrase answers a question involving a sin-
gle focus type (hereafter, unary relation) or a pair of focus types (binary
relation). Unary relationships are simpler to detect, since they use shal-
lower features than the binary ones. As to be expected, verb analysis
[Levin1993, Klavans and Kan1998, Dang et al.1998] plays a large role in the
detection of binary relationships.

Most importantly, note that binary relationships are typically filled by
sentence level constituents, whereas unary relations are more frequently filled
by noun appositives and relative clauses. In fact, this is such a general
division between unary and binary relations that we can cast it as a rule,
summarized as:

Relationship with one focus (Unary) == Phrase unit that attaches to focus’
occurrence == Can be inserted
Relationship with two foci (Binary) == Sentence unit with relation as matrix
verb == Can be reordered

In our current prototype, we have implemented detection methods for
the unary and binary relationships indicated by the asterisks in the two
figures.



[answers]

1. Binary: [20]. Does Jane Jacobs live in Toronto?

2. No evidence. Did Jane Jacobs visit Toronto?

3. No evidence. Does Ideas That Matter live in Toronto?

4. Unary: [2]. How o0ld is Jane Jacobs?

5. Unary: [57]. What did Jane Jacobs say, if anything?

6. Unary: [3 17 87]. What did Jane Jacobs do, if anything?

7. Unary: [47]. Does the story occur in Toronto?

16. Binary: [29 (Jane Jacobs)]. What did Ideas That Matter say or do, if anything?

Figure 8: Questions answered for the Maclean’s article. Sentence numbers
indicated in brackets

Entity or Term Type (X)

1. Person 2. Organization 3. Place

4. Multiword Term

A. look for appositive
relative clause, or "be" verb*

1. look for active verbs

E. (sameasA)* adding cue H. look for byline structure J. (sameas A)* or by

e phrases for each type and object position “defining" verbs
B. look f*or communication* . occurences** d
verbs _ F. (sameasB) K. try other terms with same
C. look for action verbs* head or with different word

D. look for appositive number* | G. (same as C)* order

Figure 9: Detecting Unary Relationships (*=implemented, **=partially im-
plemented)

4.5 Step 4 : Content Ordering — Putting it all together

To assess which answers are worthwhile enough to put in the summary, we
reuse the focus importance scores derived earlier in Section 4.2. Two heuris-
tics govern which answers are selected for inclusion into the final summary:
1) binary relations take precedence over unary ones and 2) relationships
involving the first occurrence of the focus’ canonical form are favored over
ones using variant forms.

To order the sentences and phrases in a way that is meaningful, we first
lay out the sentence level (binary) units, and then merge in the phrasal
(unary) components at appropriate locations.

e Sentence ordering. Problems often occur in sentence extraction ap-
proaches when sentences are presented in the preserved order of the
original story, that can result in false implicatures and unexplained ref-
erences without the intervening material. To deal with this problem,
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Focus Type (Y)

Focus Type (X)

h. find "work" verb. can be

Organ- A o s. look for coordination*
ization in appositive form*
i. find officer titlesin appositive »
or "lead” verbst* t. look for appostllvle or
j. find "conflict/support” verbs* "sub/super” modifier**
Person

k. find coodination (and test j)

I. find coordination (and test h)

Figure 10: Patterns for Detecting Binary Relationships (*=implemented,
**=partially implemented)

we order our extracted sentences in such a way to enable smooth tran-
sitions between foci. Starting with the focus of highest importance,
the sentences that represent binary relationships are ordered such that
each references a focus from the previous one. We traverse the foci in
the order of rank importance, as established in section 4.2, resulting
in a skeleton summary.

Partial reference resolution and phrase insertion. When the
skeleton summary is completed, we correct misreferences for any fo-
cus. The initial reference to each focus is checked to see whether the
canonical form is used; if not, the reference is replaced. This guar-
antees that the introduced form is in its normal form. Integrating
any unary relationship phrases is the final step in constructing the
summary. Appositives, relative clauses and other unary relations are
attached to instances of the focus in subject position, whenever pos-
sible. These insertions have a minimal chance of creating discordancy
in the text, since they are unary relationships that only involve the
particular focus being described. Taken together, partial reference
resolution and phrase insertion are used to merge identified missing
information into the summary.

11

Person Organization Place Term
Term . m. (same as test a)* y. find X as appositive
a find "make, develop" verbs* : / u. (same as test a)* description of Y, or in
b. find "use" verbs* n. (same astest b) parenthetical expression
c. find "perform, do" verbs* 0. (same astest c)* V. (same astest d)* z. check subsumption of X’s
d.find Y as appositive of X p. (same as test d)* wordsin Y in appositive
Place e. find "reside” verbs* g. find passive "locate” verb, w. coordinated X Y*
. . Y asaddress form, or (test €)*
f. find "go, visit" verbs* ' .
_ _ B r. <unspecified as of now> X. X superordinates Y
g. find "current" time modifiers




In theory, each focus’ importance and its grammatical roles in the docu-
ment’s sentences are all we would need to determine the resulting summary
order. However, proximal sentences are often dependent on each other for

referencing and causal relationships.
of adjacent sentences, any pair of sentences that originally occurred close
together (defined as within 3 sentences and in the same paragraph) are
grouped together as a unit and are internally positioned in their original
order. Conceptually, this is similar to passage retrieval [?].

The completed summary for the example, with the relationships enu-
merated, is shown below:

To account for this cohesive effect

Original Relations Represented Text of Sentence

Sentence (uppercase indicates unary relations; lower-

Number case are binary relations)

1 b. Jane Jacobs = Tyler The late afternoon sun filters through the autumn leaves and rests for a gentle moment

J. Tyler on Jane Jacobs’s face as Jacobs, at 81, savors a mouthful of Tyler pudding, a concoction
D. Jane Jacobs of eggs, granulated sugar, milk and a little flour baked in a pie crust.

20 e. Jane Jacobs = Toronto Jacobs works where she lives in a three-storey brick house in Toronto’s Annex area, a
tree-lined residential pocket on the edge of the University of Toronto and half a block
from the hurly-burly of Bloor Street.

12 k. Jane Jacobs = Ideas That Matter Billed as an ”International gathering to create and share knowledge,” Jane Jacobs: Ideas

C. Ideas That Matter that Matter, who may be turning Jacobs into a celebrity, began Sept. 20.
C. (upgraded unary from sent 18)
Ideas That Matter = Jane Jacobs
54 C. (upgraded unary) Jane Jacobs = Toronto By writing a newspaper article castigating city planners for attempting to ”Los Angelize”

Toronto, "the most hopeful and healthy city in North America, still unmangled, still with
options,” Jacobs galvanized a group of local citizens into forming Stop Spadina, a protest
in which Jacobs played a major role as a political strategist.

5 Evaluation

5.1

Experimental design

We evaluated the entire implemented summarization system (the outer box
in figure 2), which has the focus based summarization algorithm at its core.
To judge the implemented system’s performance, we performed a rank-
ing evaluation that tests our performance against two other systems. This
type of evaluation nicely avoids the difficult problem of having to produce
canonical summaries from human subjects [Jing et al.1998] and having to
reconcile different, but equally ideal summaries. We chose the lead based
method and a TF*IDF based method as the two competing techniques.
We collected a set of ten new long test articles for the evaluation, which
we partitioned into two sets of five. Because of time limitations, we designed

the experiment to take each subject through only one of the two test article
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sets. Some subjects that had more time were asked to perform the summa-
rization evaluation on both sets. The order of the articles was randomized,
and each article was passed to each of the three summarization engines to
produce a short, four sentence summary. The three summaries were shown
to the human subjects in a random order on a single screen. Subjects were
asked to rank the summaries in order of best to worst for informativeness
and fluency. The original article was accessible to them via a hyperlink.
A total of 38 subjects evaluated one set of articles. Because of randomiza-
tion and several subjects terminating the study early, we ended up having
between 13 and 19 judgments per article.

5.2 Results

To assess whether there was any significance, we used a non-parametric test,
Friedman Analysis of Variances (x2). The evaluations show very little statis-
tical significance bias toward any of the three summary types, as marked by
asterisks in table 5.2. In fact, in the few cases in which statistical significance
was reached, the simplest lead based method was usually favored.

Informativeness Fluency
Question No. | 2 Best Summary | Question No. | 2 Best Summary
Type Type
1 2.0 TF*IDF 1 17.2 TF*IDF
2 16.1 Lead 2 27.1%* Lead
3 0.4 Foci 3 13.6 TF*IDF
4 1.2 Lead 4 18.5* TF*IDF
5 2.0 TF*IDF 5 10.5 TF*IDF
6 4.5 Lead 6 4.6 Foci
7 17.2% Lead 7 7.0 Foci
8 15.9 Lead 8 14.2 Foci
9 10.3 Lead 9 4.1 None
10 4.2 TF*IDF 10 2.9 TF*IDF
Table 5.2: x2 results, (x = p < .05)
6 Discussion and future work

Unfortunately, the results are inconclusive. Comments from the evaluators
included that the experimental design could have been controlled for dif-
ferent levels of domain expertise, and that using a task-based evaluation
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scheme may have been more appropriate. Many subjects also felt that read-
ing the full article was a requirement to correctly judge the adequacy of the
summary, but time constraints forced many to skip or only skim the long
source articles. Evaluation of summarization systems is an open problem,
but progress towards a standard is being pursued. We feel that a redesign
of the experiment is needed before any conclusions can be drawn.

Our question answering model currently relies on sentence extraction as
a first approximation. We are working on improving it such that will extract
only the answers to the questions, bypassing sentence extraction entirely.

7 Conclusions

In this paper, we have shown how incorporating an analysis of a document’s
named entities and terms can produce a more informative summary by: 1)
improving information selection, 2) highlighting relationships between arti-
cle foci, 3) identifying descriptions of each foci that can be added. These
contributions make fundamental progress in realizing a robust, domain-
independent algorithm for summarizing long texts. Our current efforts are
integrating work by Jing [Jing1999], which will help us further refine the
coherence and conciseness of the summary.
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