
The Decomposition of Human-Written Summary Sentences

Hongyan Jing and Kathleen R. McKeown
Department of Computer Science

Columbia University
New York, NY 10027, USA
{hjing, kathy}@cs.columbia.edu

Abstract

We define the problem of decomposing human-written
summary sentences and propose a novel Hidden Markov
Model solution to the problem. Human summarizers
often rely on cutting and pasting of the full document
to generate summaries. Decomposing a human-written
summary sentence requires determining: (1) whether it
is constructed by cutting and pasting, (2) what compo-
nents in the sentence come from the original document,
and (3) where in the document the components come
from. Solving the decomposition problem can poten-
tially lead to the automatic acquisition of large corpora
for summarization. It also sheds light on the generation
of summary text by cutting and pasting. The evalua-
tion shows that the proposed decomposition algorithm
performs well.

1 Introduction

We define and present a solution to the problem called
summary sentence decomposition, whose resolution, we
believe, will improve the performance of automatic text
summarizers. The goal of a decomposition program
is to determine the relations between the phrases in
a summary written by professional summarizers and
phrases in the original document. Linguistic research
[Endres-Niggemeyer and Neugebauer1995, Fries1997] sug-
gest that human summarizers often rely on cutting and
pasting text from the original document to produce
the summary. However, unlike most current automatic
summarizers which extract sentences or paragraphs with-
out any modification, human summarizers edit the ex-
tracted text to make it fit into the new context. We call
this technique cut-and-paste; it involves cutting phrases
from the original document and pasting them together

in novel ways in the summary.
The task of decomposition is to decode this cut-and-

paste process. Given a summary sentence which has
already been produced by humans using the cut-and-
paste technique, we want to somehow reconstruct the
cut-and-paste procedure and deduce how it was done.
More specifically, given a human-written summary sen-
tence, the decomposition program is required to an-
swer three questions: (1) Is this summary sentence con-
structed by cutting and pasting text from the original
document? (2) If so, what components in the sentence
come from the original document? (3) And where in
the document do the components come from? We call
this the summary sentence decomposition problem.

The benefit of solving the decomposition problem
is two-fold. First, large corpora for training and eval-
uating summarizers can be built from the decomposi-
tion result. By linking human-written summaries with
original texts, we can mark the most important con-
tent in a document. By doing it automatically, we can
afford to mark content importance for a large set of
documents, therefore providing valuable training and
testing datasets for summarization. Second, the de-
composition sheds light on the text generation prob-
lem in summarization, which has rarely been studied
to date. Nearly all current summarizers rely on simple
extraction to produce summaries, although extracted
sentences can be incoherent, redundant, or even mis-
leading. By decomposing human-written sentences, we
can learn the kind of operations which are usually per-
formed by humans to edit the extracted sentences, and
develop automatic programs to simulate the most suc-
cessful operations. Later in this paper, we discuss how
the decomposition result can be used for this purpose.

We propose a Hidden Markov Model solution to the
decomposition program. In the next section, we show
by example the cut-and-paste technique used by hu-
mans and discuss the difficulties involved in decompo-
sition. In section 3, we present our solution by first
mathematically formulating the decomposition problem
and then presenting the Hidden Markov Model. After

that, we present a corpus study using the decomposi-
tion program, showing that 78% of 1,642 human-written
summary sentences in our corpus were produced by the
cut-and-paste technique. In section 5, we demonstrate
the applications of our results and discuss related work.
Finally we conclude and discuss future work.

2 The Cut-and-Paste Technique

Expert summarizers often reuse the text in the original
document to produce a summary. Based on the man-
ual analysis of over 120 sentences in 15 human-written
summaries, we identified 6 major operations involved in
the cut-and-paste procedure.

• (1) sentence reduction

This is a common technique. Humans select a sen-
tence from the document, remove less important
material from it, and then use the reduced sen-
tence in the summary. The following is an example
of sentence reduction. The to-infinitive adjunct is
removed.

Document sentence: The bill would require
the FTC to prescribe rules for commer-
cial Web sites to follow when collecting per-
sonal information from children.
Summary sentence: The bill would require
the FTC to right privacy rules for com-
mercial web sites.

The deleted material can be at any granularity: a
word, a phrase, or a clause. Multiple components
can be removed, as shown below.

Document sentence: James Rittinger, an at-
torney for the company pointed out that
several west features such as syllabuses and
headnotes still can’t be legally copied.
Summary sentence: An attorney for the
company noted that syllabuses and
headnotes of West still cannot be
copied.

• (2) sentence combination

Humans also generate a summary sentence by com-
bining material from several sentences in the doc-
ument. Figure 3 shows a summary sentence which
is combined from four document sentences. Sen-
tence combination can be used together with sen-
tence reduction, as shown in the following exam-
ple, which also uses paraphrase:

Text sentence 1: But it also raises seri-
ous questions about the privacy of such
highly personal information wafting about
the digital world.

Text sentence 2: The issue thus fits
squarely into the broader debate about
privacy and security on the internet,
whether it involves protecting credit card num-
ber or keeping children from offensive infor-
mation.
Summary sentence: But it also raises the
issue of privacy of such personal infor-
mation and this issue hits the head on
the nail in the broader debate about pri-
vacy and security on the internet.

• (3) syntactic transformation

In both sentence reduction and combination, syn-
tactic transformations may be involved. For ex-
ample, the position of the subject in a sentence
may be moved, or word order may be reversed.

• (4) lexical paraphrasing

Humans may borrow a block of texts from the orig-
inal document and then replace certain phrases
with their paraphrases. For instance, they sub-
stituted point out with note, and fits squarely into
with a more picturesque description hits the head
on the nail in previous examples.

• (5) generalization/specification

Similarly, humans may replace certain phrases or
clauses with high-level descriptions. For example,
the description a proposed new law that would re-
quire Web publishers to obtain parental consent be-
fore collecting personal information from children
was replaced by legislation to protect children’s pri-
vacy on-line.

We found that humans may also replace phrases or
clauses with more detailed descriptions. Examples
include substitution of the White House’s top drug
official with Gen. Barry R. McCaffrey, the White
House’s top drug official, or substitution of a pol-
icy to expand the availability of methadone to all
those who need it with a policy that recommends
that doctors be allowed to administer methadone
to heroin addicts in their private offices. 1

• (6) reordering

The borrowed sentences from a document do not
necessarily retain their precedence order when they
appear in the summary. For example, a conclud-
ing sentence in the document may be placed at the
beginning of a summary as an opening sentence.

1Intuitively, specification seems counter to the purpose of summa-
rization. One of the reasons why this technique is used, we think,
is that by substituting certain general statements with specifics, hu-
mans avoid repetition since they do not need to have another separate
sentence just to mention a detail.

There are, of course, certain summary sentences not
based on cut-and-paste, but totally created from scratch.
However, they amount to a very small portion of the
total number of sentences we analyzed. There are also
other operations used in the cut-and-paste process but
not listed here due to their infrequent occurrence. Note
that the above operations are often not used alone. We
found, for instance, examples of sentence reduction to-
gether with lexical paraphrasing, or sentence combina-
tion with syntactic transformation and generalization.

While decomposition is useful, it is also difficult.
The sentence components coming from the original doc-
ument can be at any granularity. Therefore, identifying
the boundary of a component is a complex issue. Deter-
mining the origin of a component is also hard since the
component may occur multiple times in the document
in slightly different forms. Moreover, multiple opera-
tions may have been performed in the cut-and-paste
procedure. Thus, the resulting summary sentence can
be significantly different from the document sentences
it comes from. All these factors add to the difficulty of
the decomposition problem.

3 The Decomposition of Summary Sentences

Given this difficult problem, our solution hinges on the
novel approach of reducing it to a problem of finding
for each word in a summary sentence, a document po-
sition that it most likely comes from. Based on the
cutting and pasting practice of humans, a set of gen-
eral heuristic rules are produced. We use these heuris-
tic rules to create a Hidden Markov Model [Baum1972].
The Viterbi algorithm [Viterbi1967] is used to efficiently
find the most likely document position for each word in
a summary sentence.

3.1 Formulating the problem

We first mathematically formulate the summary sen-
tence decomposition problem. An input summary sen-
tence can be represented as a word sequence: (I1, ..., IN)
where I1 is the first word of the sentence, ..., and IN is
the last word. The position of a word in a document can
be uniquely identified by the sentence position and the
word position within the sentence: (SNUM,WNUM).
For example, (4, 8) uniquely refers to the 8th word in
the 4th sentence. Multiple occurrences of a word in the
document can be represented by a list of word positions:
{(SNUM1, WNUM1), ... (SNUMm, WNUMm)}.

Using the above notations, we formulate the decom-
position problem as follows: Given a word sequence
(I1, ..., IN) and for each word in the sequence, its posi-
tion(s) in the original document: {(SNUM1, WNUM1),
..., (SNUMM , WNUMM)}, determine for each word
in the sequence, its most likely document position.

Through this formulation, we reduce the difficult
tasks of identifying component boundaries and deter-
mining component origins into a single, unified prob-
lem of finding a most likely document position for each
word. As shown in Figure 1, when each word in the
summary sequence chooses a position, we get a sequence
of positions. For example, {(0, 21), (2, 40), (2, 41), (0, 31)}
is the position sequence we get when every summary
word chooses its first occurrence of the same word in the
document. {(0, 26), (2, 40), (2, 41), (0, 31)} is another po-
sition sequence. Every time a summary word chooses a
different position, we get a different position sequence.
For this 4-word sequence, there are a total of 1,936
(44× 1× 2× 22) possible position sequences.

the communication subcommittee of

(0,32)

(0,21)

(0,26)

...

(2,39)

...

(23,44)

(2,40) (2,41)

(4,1)

 (0,31)

(1,10)

(2,30)

(2,42)

(23,43)

(4,16)

...

...

Figure 1: Representing all possible sequences of posi-
tions for a summary fragment

Finding a most likely document position for each
word is equivalent to finding the most likely position
sequence among all possible position sequences. For the
example in Figure 1, as we can see, the most likely posi-
tion sequence should be {(2, 39), (2, 40), (2, 41), (2, 42)};
that is, the fragment comes from document sentence 2
and its position within the sentence is word number
39-41. However, how can we automatically find this
sequence among 1,936 possible sequences?

3.2 Hidden Markov Model (HMM)

Exactly what document position a word comes from
depends on the positions of the words surrounding it.
Using the bigram model, we assume that the probability
a word comes from a certain position in the document
only depends on the word directly before it in the se-
quence. Suppose Ii and Ii+1 are two adjacent words
in a summary sentence and Ii is before Ii+1. We use
PROB(Ii+1 = (S2,W2)|Ii = (S1,W1)) to represent the
probability that Ii+1 comes from sentence number S2

and word number W2 of the document when Ii comes

(S,W) (S,W+1) (S,W+n)Sentence S (S,W-n)
(n>=1) (n>=2)

(S+i,W+j)

(S+i,W+j)
i>=CONST

(S-i,W+j)

1<i<CONST

(S-i,W+j)
i>=CONST

Sentence (S-CONST)

Sentence (S+CONST)

1< i<CONST

P1

P2

P3

P6

P6

P5

P4

Figure 2: The Hidden Markov Model for Sentence Decomposition

from sentence number S1 and word number W1.
To decompose a summary sentence, we must con-

sider how humans are likely to generate it; we draw
here on the operations we noted in Section 2. There
are two general heuristic rules we can safely assume:
first, humans are more likely to cut phrases for a sum-
mary than cut single, isolated words; second, humans
are more likely to combine nearby sentences into a sin-
gle sentence than combine sentences that are far apart.
These two rules are our guidance in the decomposition
process.

We translate the heuristic rules into the above bi-
gram probability PROB(Ii+1 = (S2,W2)|Ii = (S1,W1)),
where Ii, Ii+1 represent two adjacent words in the input
summary sentence, as noted earlier. The probability is
abbreviated as PROB(Ii+1|Ii) in the following discus-
sion. It is assigned in the following manner:

• IF ((S1 = S2) and (W1 = W2−1)) (i.e., the words
are in two adjacent positions in the document),
THEN PROB(Ii+1|Ii) is assigned the maximal
value P1. For example, PROB(subcommittee =
(2, 41)|communications = (2, 40)) in the example
of Figure 1 will be assigned the maximal value.
(Rule: Two adjacent words in a summary are most
likely to come from two adjacent words in the doc-
ument.)

• IF ((S1 = S2) and (W1 < W2−1)), THEN PROB(Ii+1|Ii)
is assigned the second highest value P2. For exam-

ple, PROB(of = (4, 16)|subcommittee = (4, 1))
will be assigned a high probability. (Rule: Adja-
cent words in a summary are highly likely to come
from the same sentence in the document, retaining
their relative precedent relation, as in sentence re-
duction. This rule can be further refined by adding
restrictions on distance between words.)

• IF ((S1 = S2) and (W1 > W2)), THEN PROB(Ii+1|Ii)
is assigned the third highest value P3. For exam-
ple, PROB(of = (2, 30)|subcommittee = (2, 41)).
(Rule: Adjacent words in a summary are likely to
come from the same sentence in the document but
reverse their relative orders, such as in the case
of sentence reduction with syntactic transforma-
tions.)

• IF (S2−CONST < S1 < S2), THEN PROB(Ii+1|Ii)
is assigned the fourth highest value P4. For exam-
ple, PROB(of = (3, 5)|subcommittee = (2, 41)).
(Rule: Adjacent words in a summary can come
from nearby sentences in the document and retain
their relative order, such as in sentence combina-
tion. CONST is a small constant such as 3 or 5.)

• IF (S2 < S1 < S2+CONST), THEN PROB(Ii+1|Ii)
is assigned the fifth highest value P5. For exam-
ple, PROB(of = (1, 10)|subcommittee = (2, 41)).
(Rule: Adjacent words in a summary can come
from nearby sentences in the document but reverse

their relative orders.)

• IF (|S2−S1| >= CONST), THEN PROB(Ii+1|Ii)
is assigned a small value P6. For example, PROB(of =
(23, 43)|subcommittee = (2, 41)). (Rule: Adja-
cent words in a summary are not very likely to
come from sentences far apart.)

Based on the above principles, we create a Hidden
Markov Model as shown in Figure 2. The nodes in the
figure represent possible positions in the document, and
the edges output the probability of going from one node
to another. This HMM is used in finding the most likely
position sequence in the next step. Assigning values to
P1-P6 is experimental. In our experiment, the maximal
value is assigned 1 and others are assigned evenly de-
creasing values 0.9, 0.8 and so on. We determined the
orders of the above rules based on observations over a
set of summaries. These values, however, can be ad-
justed or even trained for different corpora.

3.3 The Viterbi Algorithm

To find the most likely sequence we must find a se-
quence of positions which maximizes the probability
PROB(I1, ..., IN). Using the bigram model, it can be
approximated as:

PROB(I1, ..., IN) =
∏N−1
i=0 PROB(Ii+1|Ii)

PROB(Ii+1|Ii) has been assigned in HMM. There-
fore, we have all the information needed to solve the
problem. We use the Viterbi Algorithm to find the most
likely sequence. For a N-word sequence, supposing each
word has a document frequency of M, the Viterbi Al-
gorithm is guaranteed to find the most likely sequence
using k×N ×M2 steps, for some constant k, compared
to MN for the brute force search algorithm.

The Viterbi Algorithm [Viterbi1967] finds the most
likely sequence incrementally. It first finds the most
likely sequence for (I1I2), for each possible position of
I2. This information is then used to compute the most
likely sequence for (I1I2I3), for each possible position
of I3. The process repeats until all the words in the
sequence have been considered.

We slightly revised the Viterbi algorithm for our ap-
plication. In the initialization step, equal chance is as-
sumed for each possible document position for the first
word in the sequence. In the iteration step, we take spe-
cial measures to handle the case when a summary word
does not appear in the document (thus has an empty
position list). We mark the word as non-existent in the
original document and continue the computation as if
it had not appeared in the sequence.

3.4 An example

To demonstrate the program, we show an example from
beginning to end. The sample summary sentence is as

follows:

The input summary sentence (also
shown in Figure 3):
Arthur B. Sackler, vice president for law and
public policy of Time Warner Inc. and a mem-
ber of the Direct Marketing Association, told
the communications subcommittee of the Sen-
ate Commerce Committee that legislation to
protect children’s privacy online could destroy
the spontaneous nature that makes the Inter-
net unique.

We first index the document, listing for each word
its possible positions in the document. Stemming can
be performed before indexing, although it is not used in
this example. Augmenting each word with its possible
document positions, we therefore have the input for the
Viterbi program, as shown below:

Input to the Viterbi Program (words
and their possible document positions):
arthur : 1,0
b : 1,1
sackler : 1,2 2,34 ... 15,6
...
the : 0,21 0,26 ... 23,44
internet : 0,27 1,39 ... 18,16
unique : 0,28

For this 48-word sentence, there are a total of 5.08×
1027 possible position sequences. Using the HMM in
Figure 2, we run the Viterbi Program to find the most
likely position sequence. The intermediate output of
the Viterbi program is shown as follows:

Intermediate output of the Viterbi
program(Each possible position of each
word is attached with a score shown in a
bracket. The score indicates the maximal
probability of the subsequence which ends with
that position. For example, 1,39[0.0016] for
the word internet means that for all position
sequences which end at the word internet and
assume internet take the document position
(1,39), the highest score we can achieve is
0.0016.)

arthur : 1,0[1]
b : 1,1[1]
sackler : 1,2[1] 2,34[0.6] ... 12,2[0.5]
... :
the : 0,21[0.0019] 0,26[0.0027] ... 23,44[0.0014]
internet : 0,27[0.0027] 1,39[0.0016] ... 18,16[0.0014]
unique : 0,28[0.0027]

Choosing the sequence with the highest score, we
find the most likely position sequence. Therefore, ev-
ery word is determined a most likely document posi-

Summary sentence:
(F0:S1 arthur b sackler vice president for law and public policy of time warner
inc) (F1:S-1 and) (F2:S0 a member of the direct marketing association told) (F3:S2
the communications subcommittee of the senate commerce committee) (F4:S-1
that legislation) (F5:S1to protect) (F6:S4 children’ s) (F7:S4 privacy) (F8:S4 online
) (F9:S0 could destroy the spontaneous nature that makes the internet unique)

Source document sentences:
Sentence 0: a proposed new law that would require web publishers to obtain parental consent
before collecting personal information from children (F9 could destroy the spontaneous
nature that makes the internet unique) (F2 a member of the direct marketing
association told) a senate panel thursday
Sentence 1: (F0 arthur b sackler vice president for law and public policy of time
warner inc) said the association supported efforts (F5 to protect) children online but
he urged lawmakers to find some middle ground that also allows for interactivity on the
internet
Sentence 2: for example a child’s e-mail address is necessary in order to respond to inquiries
such as updates on mark mcguire’s and sammy sosa’s home run figures this year or updates of
an online magazine sackler said in testimony to (F3 the communications subcommittee
of the senate commerce committee)
Sentence 4: the subcommittee is considering the (F6 children’s) (F8 online) (F7 pri-
vacy) protection act which was drafted on the recommendation of the federal trade com-
mission

Figure 3: A sample output of the decomposition program

tion. After that, we differentiate the components in
the sentence by combining words coming from adjacent
document positions.

After the sentence components have been identified,
the program does simple post-editing to cancel certain
mismatchings. The Viterbi program assigns each word
in the input sequence a position in the document, as
long as the word appears in the document at least once.
In this step, if any document sentence contributes only
stop words for the summary, the matching is cancelled
since the stop words are more likely to be inserted by
humans rather than coming from the original document.
Similarly, we remove document sentences providing only
a single non-stop word.

Figure 3 shows the final result. The components in
the summary are tagged as (FNUM:SNUM actual-text),
where FNUM is the sequential number of the compo-
nent and SNUM is the number of the document sen-
tence where the component comes from. SNUM = -1
means that the component does not come from the orig-
inal document. The borrowed components are tagged
as (FNUM actual-text) in the document sentences.

In this example, the program correctly identified the
four document sentences from which the summary sen-
tence was combined; it correctly divided the summary
sentence into components and pinpointed the exact doc-
ument origin of each component. In this example, the
components that were borrowed from the document range
from a single word to long clauses. Certain borrowed

phrases were also syntactically transformed. Despite
these, the program successfully decomposed the sen-
tence.

4 Evaluation

We carried out two evaluation experiments, one de-
tailed, small-scale experiment and a second larger scale
experiment. In the first experiment, we use 10 doc-
uments from the Ziff-Davis corpus that were selected
and presented to 14 human judges, together with their
human-written summaries, in an experiment done by
Marcu [Marcu1999]. The human judges were instructed
to extract sentences from the original document which
are semantically equivalent to the summary sentences.
Sentences selected by the majority of human judges
were collected to build an extract of the document, which
serves as the gold standard in evaluation.

Our program can provide a set of relevant document
sentences for each summary sentence, as shown in Fig-
ure 3. Taking the union of the selected sentences, we
can build an extract for the document. We compared
this extract with the gold standard extract based on the
majority of human judgments. We achieved an aver-
age 81.5% precision,78.5% recall, and 79.1% f-measure
for 10 documents. The average performance of 14 hu-
man judges is 88.8% precision, 84.4% recall, and 85.7%
f-measure. The detailed result for each document is
shown in Table 1. Precision, Recall, and F-measure are

computed as follows:

Prec =
of sentences in the extract and also the gold standard

total # of sentences in the extract

Recall =
of sentences in the extract and also the gold standard

total # of sentences in the gold standard

F-measure =
2× Recall× Prec

Recall + Prec

Docno Prec Recall F-measure
ZF109-601-903 0.67 0.67 0.67
ZF109-685-555 0.75 1 0.86
ZF109-631-813 1 1 1
ZF109-712-593 0.86 0.55 0.67
ZF109-645-951 1 1 1
ZF109-714-915 0.56 0.64 0.6
ZF109-662-269 0.79 0.79 0.79
ZF109-715-629 0.67 0.67 0.67
ZF109-666-869 0.86 0.55 0.67
ZF109-754-223 1 1 1

Average 0.815 0.785 0.791

Table 1: The evaluation result for 10 documents

Further analysis indicates that there are two types
of errors by the program. The first is that the pro-
gram missed finding semantically equivalent sentences
which have very different wordings. For example, it
failed to find the correspondence between the summary
sentence Running Higgins is much easier than installing
it and the document sentence The program is very easy
to use, although the installation procedure is somewhat
complex. This is not really an “error” since the program
is not designed to find such paraphrases. For sentence
decomposition, the program only needs to indicate that
the summary sentence is not produced by cutting and
pasting text from the original document. The program
correctly indicated it by returning no matching sen-
tence.

The second problem is that the program may iden-
tify a non-relevant document sentence as relevant if it
contains some common words with the summary sen-
tence. This typically occurs when a summary sentence
is not constructed by cutting and pasting text from the
document but does share some words with certain doc-
ument sentences. Our post-editing steps are designed to
cancel such false matchings although we can not remove
them completely.

The program also demonstrates some advantages.
One of them is that it can capture the duplications in
the gold standard extract. The extract based on hu-
man judgments is not perfect. If two paraphrases from
the document are chosen by an equal number of human
subjects then both will be included in the extract. This

is exactly what happened in the extract of document
ZF109-601-903. The program, in contrast, picked up
only one of the paraphrases. However, this correct de-
cision is penalized in the evaluation due to the mistake
in the gold standard.

The program won perfect scores for 3 out of 10 doc-
uments. We checked the 3 summaries and found that
their texts were largely produced by cut-and-paste, com-
pared to other summaries which might have new sen-
tences written by humans. This indicates that when
only the decomposition task is considered, the algo-
rithm performs very well and finishes the task success-
fully.

In the second experiment, we selected 50 summaries
from the corpus and ran the decomposition program on
the documents. A human subject then read the de-
composition results to judge whether they are correct.
The program’s answer is considered correct when all 3
questions we posed in the decomposition problem are
correctly answered 2. There are a total of 305 sentences
in 50 summaries. 18 (6.2%) sentences were wrongly de-
composed, so we achieve an accuracy of 93.8%. Most of
the errors occur when a summary sentence is not con-
structed by cut-and-paste but have many overlapping
words with certain sentence in the document. The ac-
curacy rate here is much higher than the precision and
recall results in the first experiment. An important fac-
tor for this is that here we do not require the program to
find the semantically equivalent document sentence(s)
if a summary sentence uses very different wordings.

5 Corpus study

Using the decomposition program, we analyzed 300 human-
written summaries of news articles. We collected the
summaries from a free news service. The news articles
come from various sections of a number of newspapers
and cover a broad topic. 300 summaries contain 1,642
sentences in total, ranging from 2 sentences per sum-
mary to 21 sentences per summary. The results show
that 315 (19%) sentences do not have matching sen-
tences in the document, 686 (42%) sentences match to
a single sentence in the document, 592 (36%) sentences
match to 2 or 3 sentences in the document, and only 49
(3%) sentences match to more than 3 sentences in the
document. These results suggest that a significant por-
tion (78%) of summary sentences produced by humans
are based on cut-and-paste.

6 Applications and related work

We have used the decomposition results in our develop-
ment of a text generation system for domain-independent

2However, if a sentence is not constructed by cut-and-paste, the
program only needs to answer the first question.

summarization. The generation system mimics certain
operations by humans in the cutting and pasting pro-
cess as discussed in Section 2. Two main modules in our
generation system are the sentence reduction module
and sentence combination module. Using the decom-
position program, we were able to collect a corpus of
summary sentences which were constructed by humans
using reduction operations. This corpus of reduction-
based, human-written summary sentences is then used
to train as well as evaluate our automatic sentence re-
duction module. Similarly, we collected a corpus of
combination-based summary sentences, which reveals
to us interesting techniques that humans use frequently
to paste fragments in the original document into a co-
herent and informative sentence.

The task of decomposition is somewhat related to
the summary alignment problem addressed in [Marcu1999].
However, his alignment algorithm operates at the sen-
tence or clause level, while our decomposition program
aligns phrases of various granularity. Furthermore, the
methodology of the two systems, ours using Hidden
Markov Model and his using an IR based approach cou-
pled with a discourse model, are very different.

We reduced the decomposition problem to the prob-
lem of finding the most likely document position for
each word in the summary, which is in some sense sim-
ilar to the problem of aligning parallel bilingual cor-
pora [Brown et al.1991, Gale and Church1991]. While
they align sentences in a parallel bilingual corpus, we
align phrases in a summary with phrases in a docu-
ment. While they use sentence length as a feature, we
use word position as a feature. The approach we used
for determining the probabilities in the Hidden Markov
Model is also totally different from theirs.

7 Conclusion

In this paper, we defined the problem of decompos-
ing a human-written summary sentence and proposed
a novel Hidden Markov Model solution to the problem.
The decomposition program can automatically deter-
mine whether a summary sentence is constructed by
cutting and pasting text from the original document; it
can accurately recognize components in a sentence de-
spite the wide variety of their granularities; it can also
pinpoint the exact origin in the document for a compo-
nent. The algorithm is fast and straightforward. It does
not need other tools such as a tagger or parser as pre-
processor. It does not have complex processing steps.
The evaluation shows that the program performs very
well for the decomposition task.

We also discussed in some detail the cut-and-paste
technique for summary sentence generation. Six ma-
jor operations involved in the cut-and-paste procedure
were identified. Using the output of the decomposi-

tion program, we are investigating methods to auto-
matically learn such cut-and-paste rules from large cor-
pora for fast and reliably generation of higher quality
summaries.

Acknowledgment

We thank Daniel Marcu for sharing with us his evalu-
ation dataset. This material is based upon work sup-
ported by the National Science Foundation under Grant
No. IRI 96-19124, IRI 96-18797 and by a grant from
Columbia University’s Strategic Initiative Fund. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the National Sci-
ence Foundation.

References

L. Baum. 1972. An inequality and associated maxi-
mization technique in statistical estimation of prob-
abilistic functions of a markov process. Inequalities,
(3):1–8.

Peter F. Brown, J. C. Lai, and R. L. Mercer. 1991.
Aligning sentences in parallel corpora. In Proceed-
ings of the 29th Annual Meeting of the ACL, pages
169–176, Berkeley, California, June. Association for
Computational Linguistics.

B. Endres-Niggemeyer and E. Neugebauer. 1995.
Professional summarising: No cognitive simulation
without observation. In Proceedings of the Interna-
tional Conference in Cognitive Science, San Sebas-
tian, May.

Udo Fries. 1997. Summaries in newspapers: A
textlinguistic investigation. In Udo Fries, editor, The
Structure of Texts. Gunter Narr Verlag Tübingen.

William A. Gale and Kenneth W. Church. 1991. A
program for aligning sentences in parallel corpora. In
Proceedings of the 29th Annual Meeting of the ACL,
pages 177–184, Berkeley, California, June. Associa-
tion for Computational Linguistics.

Daniel Marcu. 1999. The automatic construction of
large-scale corpora for summarization research. In
Proceedings of SIGIR’99, University of Berkeley, CA,
August.

A.J. Viterbi. 1967. Error bounds for convolution
codes and an asymptotically optimal decoding algo-
rithm. IEEE Transactions on Information Theory,
13:260–269.

