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Abstract

We investigate one technique to produce
a summary of an original text without re-
quiring its full semantic interpretation, but
instead relying on a model of the topic
progression in the text derived from lex-
ical chains. We present a new algorithm
to compute lexical chains in a text, merg-
ing several robust knowledge sources: the
WordNet thesaurus, a part-of-speech tag-
ger and shallow parser for the identifica-
tion of nominal groups, and a segmenta-
tion algorithm derived from (Hearst, 1994).
Summarization proceeds in three steps:
the original text is first segmented, lexical
chains are constructed, strong chains are
identified and significant sentences are ex-
tracted from the text.

We present in this paper empirical results
on the identification of strong chains and of
significant sentences. Preliminary results
indicate that quality indicative summaries
are produced and are extensively docu-
mented in http://www.cs.bgu.ac.il/
summarization-test. Pending problems
are identified: the need for anaphora reso-
lution, a model for reconstructing a coher-
ent summary out of the selected sentences,
a method to handle long sentences and a
method to control the degree of condensa-
tion of the original text. Plans to address
these short-comings are briefly presented.

1 Introduction

Summarization is the process of condensing a source
text into a shorter version preserving its information
content. It can serve several goals — from survey
analysis of a scientific field to quick indicative notes
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on the general topic of a text. Producing a quality
informative summary of an arbitrary text remains
a challenge which requires full understanding of the
text. Indicative summaries, which can be used to
quickly decide whether a text is worth reading, are
naturally easier to produce. In this paper we investi-
gate a method for the production of such indicative
summaries from arbitrary text.

(Jones, 1993) describes summarization as a two-
step process: (1) Building from the source text a
source representation; (2) Summary generation —
forming summary representation from the source
representation built in the first step and synthesizing
the output summary text.

Within this framework, the relevant question is
what information has to be included in the source
representation in order to create a summary. There
are three types of source text information: linguis-
tic, domain and communicative. Each of these text
aspects can be chosen as a basis for source represen-
tation.

Summaries can be built on a deep semantic anal-
ysis of the source text. For example, in (McKeown
and Radev, 1995), McKeown and Radev investigate
ways to produce a coherent summary of several texts
describing the same event, when a detailed seman-
tic representation of the source texts is available (in
their case, they use MUC-style systems to interpret
the source texts).

Alternatively, early summarization
systems (Luhn, 1968) used only linguistic source in-
formation. The intuition was that the most frequent
words represent the important concepts of the text.
In this approach the source representation was the
frequency table of text words. This representation
abstracts the text into the union of its words without

considering any connection among them.

In contrast to these two extreme positions (using
as a source representation a full semantic representa-
tion of the text or reducing it to a simple frequency



table), we deal in this paper with the issue of pro-
ducing a summary from an arbitrary text without re-
quiring its full understanding, but using widely avail-
able knowledge sources. Our main goal is therefore
to find a middle ground for source representation,
rich enough to build quality indicative summaries,
but easy enough to extract from the source text to
work on arbitrary text.

Over-simplification can harm the quality of the
source representation. As a trivial illustration, con-
sider the following two sequences:

1. “Dr.Kenny has invented an anesthetic machine
. This device controls the rate at which an ana-
esthetic is pumped into the blood.”

2. “Dr.Kenny has invented an anesthetic machine.
The Doctor spent two years on this research.”

“Dr.Kenny” appears once in both sequences and
so does “machine”. But sequence 1 1s about the ma-
chine, and sequence 2 is about the “doctor”. This
example indicates that if the source representation
does not supply information about semantically re-
lated terms, one cannot capture the “aboutness” of
the text, and therefore the summary will not capture
the main point of the original text.

The notion of cohesion, introduced in (Halliday
and Hasan, 1976) captures part of the intuition. Co-
hesion is a device for “sticking together” different
parts of the text. Cohesion is achieved through the
use of semantically related terms, reference, ellipsis
and conjunctions.

Among these different means, the most easily ide-
ntifiable and the most frequent type is lexical cohe-
sion (as discussed in (Hoey, 1991)). Lexical cohe-
sion is created by using semantically related words.
Halliday and Hasan classified lexical cohesion into
reiteration category and collocation category. Reit-
eration can be achieved by repetition, synonyms and
hyponyms. Collocation relations specify the relation
between words that tend to co-occur in the same lex-
ical contexts (e.g., “She works as a teacher in the
School”).

Collocation relations are more problematic for id-
entification than reiteration, but both of these cat-
egories are identifiable on the surface of the text.
Lexical cohesion occurs not only between two terms,
but among sequences of related words — called lez-
ical chains (Morris and Hirst, 1991). Lexical chains
provide a representation of the lexical cohesive struc-
ture of the text. Lexical chains have also been used
for information retrieval (Stairmand, 1996) and for
correction of malapropisms (Hirst and St-Onge, 1997
(to appear)). In this paper, we investigate how lexi-

cal chains can be used as a source representation for
summarization.

Another important dimension of the linguistic str-
ucture of a source text is captured under the re-
lated notion of coherence. Coherence defines the
macro-level semantic structure of a connected dis-
course, while cohesion creates connectedness in a
non-structural manner. Coherence is represented in
terms of coherence relations between text segments,
such as elaboration, cause and ezplanation. Some
researchers, e.g., (Ono, Kazuo, and Seiji, 1994),
use discourse structure (encoded using RST (Mann
and Thompson, 1987) as a source representation for
summarization). Clearly, this representation is ex-
pressive enough; the question is whether it is com-
putable. In contrast to lexical cohesion, coherence
is difficult to identify without complete understand-
ing of the text and complex inference. In addition,
there is no precise criteria for classification of differ-
ent relations. Consider the following example from
Hobbs(1978): “John can open the safe. He knows
the combination.”

(Morris and Hirst, 1991) show that the relation
between these two sentences can be interpreted as
elaboration or as ezxplanation, depending on “con-
text, knowledge and beliefs.”

There is, however, a close connection between dis-
course structure and cohesion. Related words tend
to co-occur within a discourse unit of the text. So
cohesion is one of the surface signs of discourse struc-
ture and lexical chains can be used to identify it.
Other signs can be used to identify discourse struc-
ture as well (connectives, paragraph markers, tense
shifts).

In this paper, we investigate the use of lexical
chains as a model of the source text for the pur-
pose of producing a summary. Obviously, other as-
pects of the source text need to be integrated in the
text representation to produce quality summaries;
but we want to empirically investigate how far one
can go exploiting mainly lexical chains. In the rest
of the paper we first present our algorithm for lex-
ical chain construction. We then present empirical
results on the identification of strong chains among
the possible candidates produced by our algorithm.
Finally, we describe how lexical chains are used to
identify significant sentences within the source text
and eventually produce a summary.

2 Algorithm for Chain Computing

One of the chief advantages of lexical cohesion is
that it is an easily recognizable relation, enabling
lexical chains computation. The first computational
model for lexical chains was presented in (Morris and



Hirst, 1991). They define lexical cohesion relations
in terms of categories, index entries and pointers in
Roget’s Thesaurus. Morris and Hirst evaluated that
their relatedness criterion covered over 90% of the
intuitive lexical relations. Chains are created by tak-
ing a new text word and finding a related chain for
it according to relatedness criteria. Morris and Hirst
introduce the notion of “activated chain” and “chain
returns” | to take into account the distance between
occurrences of related words. They also analyze fac-
tors contributing to the strength of a chain — rep-
etition, density and length. Morris and Hirst did
not implement their algorithm, because there was
no machine-readable version of Roget’s Thesaurus
at the time.

One of the drawbacks of their approach was that
they did not require the same word to appear with
the same sense in its different occurrences for it
to belong to a chain. For semantically ambiguous
words, this can lead to confusions (e.g., mixing two
senses of table as a piece of furniture or an array).
Note that choosing the appropriate chain for a word
is equivalent to disambiguating this word in context,
which is a well-known difficult problem in text un-
derstanding.

More recently, two algorithms for the calculation
of lexical chains have been presented in Hirst and St-
Onge (1995) and Stairmand (1996). Both of these
algorithms use the WordNet lexical database for de-
termining relatedness of the words (Miller et al.,
1990). Senses in the WordNet database are repre-
sented relationally by synonym sets (‘synsets’) —
which are the sets of all the words sharing a com-
mon sense. For example two senses of “computer”
are represented as: {calculator, reckoner, figurer, es-
timator, computer} (i.e., a person who computes)
and {computer, data processor, electronic computer,
information processing system}. WordNet contains
more than 118,000 different word forms. Words of
the same category are linked through semantic rela-
tions like synonymy and hyponymy.

Polysemous words appear in more than one syn-
sets (for example, computer occurs in two synsets).
Approximately 17% of the words in WordNet are
polysemous. But, as noted by Stairmand, this fig-
ure is very misleading: “a significant proportion of
WordNet nouns are Latin labels for biological en-
tities, which by their nature are monosemous and
our experience with the news-report texts we have
processed is that approximately half of the nouns
encountered are polysemous.” (Stairmand, 1996).

Generally, a procedure for constructing lexical ch-
ains follows three steps: (1) Select a set of candidate
words; (2) For each candidate word, find an appro-

priate chain relying on a relatedness criterion among
members of the chains; (3) If it is found, insert the
word in the chain and update it accordingly.

An example of such a procedure was represented
by Hirst and St-Onge (H&S). In the preprocessor
step, all words that appear as a noun entry in Word-
Net are chosen. Relatedness of words is determined
in terms of the distance between their occurrences
and the shape of the path connecting them in the
WordNet thesaurus. Three kinds of relation are de-
fined: extra-strong (between a word and its rep-
etition), strong (between two words connected by
a Wordnet relation) and medium-strong when the
link between the synsets of the words is longer than
one (only paths satisfying certain restrictions are ac-
cepted as valid connections).

The maximum distance between related words de-
pends on the kind of relation: for extra-strong rela-
tions, there 1s not limit in distance, for strong rela-
tions, it is limited to a window of seven sentences;
and for medium-strong relations, it is within three
sentences back.

To find a chain in which to insert a given can-
didate word, extra-strong relations are preferred to
strong-relations and both of them are preferred to
medium-strong relations. If a chain is found, then
the candidate word is inserted with the appropriate
sense, and the senses of the other words in the receiv-
ing chain are updated, so that every word connected
to the new word in the chain relates to its selected
senses only. If no chain is found, then a new chain 1s
created and the candidate word is inserted with all
its possible senses in WordNet.

The greedy disambiguation strategy implemented
in this algorithm has some limitations illustrated by
the following example:

Mr. Kenny is the person that invented an
anaesthetic machine which uses micro-
computers to control the rate at which
an anaesthetic is pumped into the blood.
Such machines are nothing new. But
his device uses two micro-computers
to achieve much closer monitoring of the
pump feeding the anaesthetic into the pa-
tient.

According to H&S’s algorithm, the chain for the
word “Mr.” is first created [lex "Mr.'", sense
{mister, Mr.}]. “Mr.” belongs only to one synset,
so 1t is disambiguated from the beginning. The word
“person” 1is related to this chain in the sense “a
human being” by a medium-strong relation, so the
chain now contains two entries:

[lex "Mr.", sense {mister, Mr.}]



[lex "person", sense {person, individual,

someone, man, mortal, human, soul}].
When the algorithm processes the word “machine”,
it relates it to this chain, because “machine” in
the first WordNet sense (“an efficient person”) is
a holonym of “person” in the chosen sense. In other
words, “machine” and “person” are related by a
strong relation. In this case, “machine” is disam-
biguated in the wrong way, even though after this
first occurrence of “machine”, there is strong evi-
dence supporting the selection of its more common
sense: “micro-computer”, “device” and “pump” all
point to its correct sense in this context — “any me-
chanical or electrical device that performs or assists
i the performance”.

This example indicates that disambiguation can-
not be a greedy decision. In order to choose the right
sense of the word the ‘whole picture’ of chain distri-
bution in the text must be considered. We propose
to develop a chaining model according to all possible
alternatives of word senses and then choose the best
one among them.

Let us illustrate this method on the above exam-
ple. First, a node for the word “Mr.” is created [lex
"Mr.", sense {mister, Mr.}]. The next candi-
date word is “person”. It has two senses: “human
being” (person — 1) and “grammatical category of
pronouns and verb forms” (person — 2). The choice
of sense for “person” splits the chain world to two
different interpretations as shown in Figure 1.
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Figure 1: Step 1: Interpretations 1 and 2

We define a component as a list of interpretations
that are exclusive of each other. Component words
influence each other in the selection of their respec-
tive senses.

The next candidate word “anaesthetic” is not re-
lated to any word in the first component, so we cre-
ate a new component for it with a single interpreta-
tion.

The word “machine” has 5 senses machine; to
machines. In its first sense, “an efficient person”,
it is related to the senses “person” and “Mr.”. It
therefore influences the selection of their senses, thus

{Mr.,mister}

{person,individual,

Person Someone, ... }
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Figure 2: Step 2: Interpretation 1
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Figure 3: Step 2: Interpretation 2
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“machine” has to be inserted in the first component.
After its insertion the picture of the first component
becomes the one shown in Figures 2 to 5.

But if we continue the process and insert the wor-
ds “micro-computer”, “device” and “pump”, the nu-
mber of alternative greatly increases. The strongest
interpretations are given in Figures 6 and 7.

Under the assumption that the text is cohesive,
we define the best interpretation as the interpreta-
tion with the most connections (edges in the graph).
In this case, the second interpretation at the end of
Step 3 is selected, which predicts the right sense for
“machine”. We define the score of an interpretation
as the sum of its chain scores. Chain score is deter-
mined by the number and weight of the relations be-
tween chain members. Experimentally, we fixed the
weight of reiteration and synonym to 10, of antonym
to 7, and of hyperonym and holonym to 4. Our al-

M)

Person

{Mr.,mister}

{person,individual,
Someone, ... }

{machine2 ma(:hine5 }

Figure 4: Step 2: Interpretation 3
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Figure 5: Step 2: Interpretation 4
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Figure 6: Step 3: Interpretation 1

gorithm develops all possible interpretations, main-
taining each one without self contradiction. When
the number of possible interpretations is larger than
a certain threshold, we prune the weak interpreta-
tions according to this criteria. In the end, we select
from each component the strongest interpretation.

In summary, our algorithm differs from H&S’s al-
gorithm in that it introduces, in addition to the re-
latedness criterion for membership to a chain, a non-
greedy disambiguation heuristic to select the appro-
priate senses of chain members.

The two algorithms differ in two other major as-
pects: the criterion for the selection of candidate
words and the operative definition of a text unit.

We choose as candidate words simple nouns and
noun compounds. As mentioned above, nouns are
the main contributors to the “aboutness” of a text,
and noun synsets dominate in WordNet. Both
(Stairmand, 1996) and H&S rely only on nouns as
candidate words. In our algorithm, we rely on the
results of Brill’s part-of-speech tagging algorithm to
identify nouns, while H&S do not go through this
step and only select tokens that happen to occur as
nouns in WordNet.

In addition, we extend the set of candidate words
to include noun compound. We first empirically eval-
uated the importance of noun compounds by taking

{machine, } Mi {PC, mi
icro- » micro-
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Figure 7: Step 3: Interpretation 2

into account the noun compounds explicitly present
in WordNet (some 50,000 entries in WordNet are
noun compounds such as “sea level” or collocations
such as “digital computer”). However, English in-
cludes a productive system of noun compounds, and
in each domain, new noun-compounds and colloca-
tions not present in WordNet play a major role.

We addressed the issue, by using a shallow parser
(developed by Ido Dagan’s team at Bar Ilan Uni-
versity) to identify noun-compounds using a simple
characterization of noun sequences. This has two
major benefits: (1) it identifies important concepts
in the domain (for example, in a text on “quan-
tum computing”, the main token was the noun com-
pound “gquantum computing” which was not present
in WordNet); (2) it eliminates words that occur as
modifiers as possible candidates for chain member-
ship. For example, when “quantum computing” 1is
selected as a single unit, the word “quantum” is not
selected. This is beneficial because in this example,
the text was not about “quantum”, but more about
computers. When a noun compound is selected, the
relatedness criterion in WordNet is used by consider-
ing its head noun only. Thus, “quantum computer”
is related to “machine” as a “computer”.

The second difference in our algorithm lies in
the operative definition we give to the notion of
text unit. We use as text units the segments ob-
tained from Hearst’s algorithm of text segmentation
(Hearst, 1994). We build chains in every segment
according to relatedness criteria, and in a second
stage, we merge chains from the different segments
using much stronger criteria for connectedness only:
two chains are merged across a segment boundary
only if they contain a common word with the same
sense. Our intra-segment relatedness criterion is less
strict: members of the same synsets are related, a
node and its offspring in the hyperonym graph are
related, siblings in the hyperonym graph are related



only if the length of the path is less than a threshold.

The relation between text segmentation and lex-
ical chain is delicate, since they are both derived
from partially common source of knowledge: lexical
distribution and repetitions. In fact, lexical chains
could serve as a basis for an algorithm for segmen-
tation. We have found empirically, however, that
Hearst’s algorithm behaves well on the type of texts
we checked and that it provides effectively a solid
basis for lexical chains construction.

3 Building Summaries Using
Lexical Chains

We now investigate how lexical chains can serve as
a source representation of the original text to build
a summary. The next question is how to build sum-
mary representation from this source representation.

The most prevalent discourse topic will play an
important role in the summary. We first present
the intuition why lexical chains are a good indicator
of the central topic of a text. Given an appropri-
ate measure of strength, we show that picking the
concepts represented by strong lexical chains gives a
better indication of the central topic of a text than
simply picking the most frequent words in the text
(which forms the zero-hypothesis).

For example, we show in Appendix A a sample
text about Bayesian Network technology. There, the
concept of network was represented by the words
“network” with 6 occurrences, “net” with 2, and
“system” with 4. But the summary representa-
tion has to reflect that all these words represent
the same concept. Otherwise, the summary gen-
eration stage would extract information separately
for each term. The chain representation approach
avoids completely this problem, because all these
terms occur in the same chain, which reflects that
they represent the same concept.

An additional argument for the chain representa-
tion as opposed to a simple word frequency model
is the case when a single concept is represented by a
number of words, each with relatively low frequency.
In the same Bayesian Network sample text, the con-
cept of “information” was represented by the words
“information” (3), “datum” (2), “knowledge” (3),
“concept” (1) and “model” 1. In this text, “informa-
tton” is a more important concept than “computer”
which occurs 4 times. Because the “information”
chain combines the number of occurrences of all 1ts
members, it can overcome the weight of the single
word “computer”.

3.1 Scoring Chains

In order to use lexical chains as outlined above, one
must first identify the strongest chains among all
those that are produced by our algorithm. As is
frequent in summarization, there is no formal way
to evaluate chain strength (as there is no formal
method to evaluate a summary quality). We there-
fore rely on an empirical methodology. We have
developed an environment to compute and graph-
ically visualize lexical chains to evaluate experimen-
tally how they capture the main topics of the texts.
Figure 8 shows how lexical chains are visualized to
help human testers evaluate their importance.
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Figure 8: Visual representatlon of lexical chains

We have collected data for a set of 30 texts
extracted from popular magazines (from “The
Economist” and “Scientific American”), all of them
are popular science genre. For each text, we manu-
ally ranked chains in terms of relevance to the main
topics. We then computed different formal measures
on the chains, including: chain length, distribution
in the text, text span covered by the chain, density,
graph topology (diameter of the graph of the words)
and number of repetitions. The results on our data
set indicate that only the following parameters are
good predictors of the strength of a chain:

Length: The number of occurrences of members of
the chain.

Homogeneity index: 1 - the number of distinct
occurrences divided by the length.

We designed a score function for chains as:
Score(Chain) = Length * Homogeneity
When ranking chains according to their score, we
evaluated that strong chains are those which satisfy
our “Strength Criterion”:
Score(Chain) > Average(Scores) +
2 StandardDeviation(Scores)



These are preliminary results but they are con-
firmed by our experience on 30 texts analyzed ex-
tensively. We have experimented with different nor-
malization methods for the score function, but they
do not seem to improve the results. We plan on
extending the empirical analysis in the future and
to use formal learning methods to determine a good
scoring function.

The average number of strong chains selected by
this selection method was 5 for texts of 1055 words
on average (474 words minimum, 3198 words maxi-
mum), when 32 chains were originally generated on
average. The strongest chain of the sample text are
represented in Appendix B.

3.2 Extracting Significant Sentences

Once strong chains have been selected, the next step
of the summarization algorithm is to extract full sen-
tences from the original text based on chain distri-
bution.

We investigated three alternatives for this step:

Heuristic 1: For each chain in the summary rep-
resentation choose the sentence that contains the
first appearance of a chain member in the text.

This heuristic produced the following summary for
the text shown in Appendix:
When Microsoft Senior Vice President Steve Ballmer
first heard his company was planning to make a huge in-
vestment in an Internet service offering movie reviews
and local entertainment information in major cities
across the nation, he went to Chairman Bill Gates with
his concerns. Microsoft’s competitive advantage, he re-
sponded, was its expertise in Bayesian networks.
Bayesian networks are complex diagrams that organize
the body of knowledge in any given area by mapping oul
cause and effect relationships among key variables and
encoding them with numbers that represent the extent to
which one variable is likely to affect another.
Programmed into computers, these systems can auto-
matically generate optimal predictions or decisions even
when key pieces of information are missing.

When Microsoft in 1993 hired Eric Horvitz, David Heck-
erman and Jack Breese, pioneers in the development of
Bayesian systems, colleagues in the field were surprised.

The problem with this approach is that all words
in a chain reflect the same concept, but to a different
extent. For example, in the AT chain, (Appendix B,
Chain 3) the token “science” is related to the con-
cept “AI”, but the words “AI” and “field” are more
suitable to represent the main topic “AI” in the con-
text of the text. That is, not all chain members are
good representatives of the topic (even though they
all contribute to its meaning).

We therefore defined a criterion to evaluate the
appropriateness of a chain member to represent its
chain based on its frequency of occurrence in the

chain. We found experimentally that such words,
call them representative words, have a frequency in
the chain no less than the average word frequency
in the chain. For example, in the third chain the

representative words are “field” and “AI”.

Heuristic 2: We therefore defined a second heu-
ristic based on the notion of representative words:

For each chain in the summary representation,
choose the sentence that contains the first appear-
ance of a representative chain member in the text.

In this special case this heuristic gives the same
result as the first one.

Heuristic 3: Often, the same topic is discussed
in a number of places in the text, so its chain 1s
distributed across the whole text. Still, in some text
unit, this global topic is the central topic (focus) of
the segment. We try to identify this unit and extract
sentences related to the topic from this segment (or
successive segments) only.

We characterize this text unit as a cluster of suc-
cessive segments with high density of chain mem-
bers. Our third heuristic is based on this approach.

For each chain, find the text unit where the chain
is highly concentrated. Extract the sentence with
the first chain appearance in this central unit. Con-
centration is computed as the number of chain mem-
bers occurrences in a segment divided by the number
of nouns in the segment. A chain has high concen-
tration 1f its concentration is the maximum of all
chains. Cluster is group of successive segments such
that every segment contains chain members.

Note that in all these three techniques only one
sentence is extracted for each chain (regardless of
its strength).

For most texts we tested, the first and second tech-
niques produce the same results, but when they are
different, the output of the second technique is bet-
ter. Generally, the second technique produces the
best summary. We checked these methods on our
30 texts data set. Surprisingly, the third heuris-
tic, which intuition predicts as the most sophisti-
cated, gives the least indicative results. This may
be due to several factors: our criteria for ‘cen-
trality’ or ‘clustering’ may be insufficient or, more
likely, the problem seems to be related to the in-
teraction with text structure. The third heuristics
tends to extract sentences from the middle of the
text and to extract several sentences from distant
places in the text for a single chain. The complete
results of our experiments are available on-line at
http://wuw.cs.bgu.ac.il/summarization-test.



4 Limitations and Future Work

We have identified the following main problems with
our method:

e Sentence granularity: all our methods extract
whole sentences as single units. This has several
drawbacks: long sentences have significantly hi-
gher likelihood to be selected, they also include
many constituents which would not have been
selected on their own merit. The alternative

is extremely costly: it involves some parsing of

the sentences, the extraction of only the central
constituents from the source text and the regen-
eration of a summary text using text generation

techniques.

e Extracted sentences contain anaphora links to
the rest of the text. This has been investigated
and observed by (Black, 1994). Several heuris-
tics have been proposed in the literature to ad-
dress this problem (Paice, 1990), (Paice and
Husk, 1991) and (Black, 1994). The strongest
seems to be to include together with the ex-
tracted sentence the one immediately preceding
it. Unfortunately, when we select the first sen-
tence in a segment, the preceding sentence does
not belong to the paragraph and its insertion
has a detrimental effect on the overall coherence
of the summary. A preferable solution would
be to replace anaphora with their referent, but
again this is an extremely costly solution.

e Our method does not provide any way to control
the length and level of detail of the summary.
In all of the methods, we extract one sentence
for each chain. The number of strong chains re-
mains small (around 5 or 6 for the texts we have
tested, regardless of their length), and the re-
maining chains would introduce too much noise
to be of interest in adding details. The best so-
lution seems to be to extract more material for
the strongest chains.

The method presented in this paper is obviously
partial in that it only considers lexical chains as a
source representation, and ignores any other clues
that could be gathered from the text. Still, our
first informal evaluation indicates our results are of a
quality superior to that of summarizers usually em-
ployed in commercial systems such as search systems
on the World Wide Web on the texts we investigated.
A large-scale evaluation of the method and how sen-
sitive it is to the quality of the thesaurus and to its
parameters is under way.

A Bayesian Networks Text

When Microsoft Senior Vice President Steve Ballmer first
heard his company was planning to make a huge invest-
ment in an Internet service offering movie reviews and local
entertainment information in major cities across the nation,
he went to Chairman Bill Gates with his concerns.

After all, Ballmer has billions of dollars of his own money in
Microsoft stock, and entertainment isn't exactly the com-
pany’s strong point.

But Gates dismissed such reservations. Microsoft's compet-
itive advantage, he responded, was its expertise in Bayesian
networks.

Asked recently when computers would finally begin to un-
derstand human speech, Gates began discussing the critical
role of “Bayesian” systems.

Ask any other software executive about anything Bayesian
and you're liable to get a blank stare.

Is Gates onto something? Is this alien-sounding technology
Microsoft's new secret weapon?

Bayesian networks are complex diagrams that organize the
body of knowledge in any given area by mapping out cause-
and-effect relationships among key variables and encoding
them with numbers that represent the extent to which one
variable is likely to affect another.

Programmed into computers, these systems can automat-
ically generate optimal predictions or decisions even when
key pieces of information are missing.

When Microsoft in 1993 hired Eric Horvitz, David Heck-
erman and Jack Breese, pioneers in the development of
Bayesian systems, colleagues in the field were surprised.
The field was still an obscure, largely academic enterprise.
Today the field is still obscure. But scratch the surface of
a range of new Microsoft products and you're likely to find
Bayesian networks embedded in the software. And Bayesian
nets are being built into models that are used to predict oil
and stock prices, control the space shuttle and diagnose
disease.

Artificial intelligence (Al) experts, who saw their field dis-
credited in the early 1980s after promising a wave of “think-
ing” computers that they ultimately couldn’t produce, be-
lieve widening acceptance of the Bayesian approach could
herald a renaissance in the field.

Bayesian nets provide “an overarching graphical fra-
mework” that brings together diverse elements of Al and
increases the range of its likely application to the real world,
says Michael Jordon, professor of brain and cognitive sci-
ence at the Massachusetts Institute of Technology.
Microsoft is unquestionably the most aggressive in exploit-
ing the new approach. The company offers a free Web ser-
vice that helps customers diagnose printing problems with
their computers and recommends the quickest way to re-
solve them. Another Web service helps parents diagnose
their children’s health problems.

The latest version of Microsoft Office software uses the
technology to offer a user help based on past experience,
how the mouse is being moved and what task is being done.
“If his actions show he is distracted, he is likely to need
help,” Horvitz says. “If he's been working on a chart,
chances are he needs help formatting the chart”.

“Gates likes to talk about how computers are now deaf,
dumb, blind and clueless. The Bayesian stuff helps deal
with the clueless part,” says Daniel T. Ling, director of
Microsoft's research division and a former IBM scientist.



Horvitz and his two Microsoft colleagues, who were then
classmates at Stanford University, began building Bayesian
networks to help diagnose the condition of patients without
turning to surgery.

The approach was efficient, says Horvitz, because you could
combine historical data, which had been meticulously gath-
ered, with the less precise but more intuitive knowledge of
experts on how things work to get the optimal answer given
the information available at a given time.

Horvitz, who with two colleagues founded Knowledge In-
dustries to develop tools for developing Bayesian systems,
says he and the others left the company to join Microsoft
in part because they wanted to see their theoretical work
more broadly applied.

Although the company did important work for the National
Aeronautics and Space Administration and on medical di-
agnostics, Horvitz says, “It's not like your grandmother will
use it".

Microsoft's activities in the field are now helping to build a
groundswell of support for Bayesian ideas.

People look up to Microsoft,” says Pearl, who wrote one of
the key early texts on Bayesian networks in 1988 and has
become an unofficial spokesman for the field. “They've
given a boost to the whole area”.

Microsoft is working on techniques that will enable the
Bayesian networks to “learn” or update themselves auto-
matically based on new knowledge, a task that is currently
cumbersome.

The company is also working on using Bayesian techniques
to improve upon popular Al approaches such as “data min-
ing” and ‘“collaborative filtering” that help draw out rel-
evant pieces of information from massive databases. The
latter will be used by Microsoft in its new online entertain-
ment service to help people identify the kind of restaurants
or entertainment they are most likely to enjoy.

B Bayesian Network Text: the
Strongest Chain

The Criterion is 3.58, here are the five strong chains:

CHAIN 1: Score = 14.0
microsoft: 10 concern: 1 company: 6
entertainment-service: 1 enterprise: 1
massachusetts-institute: 1
CHAIN 2: Score = 9.0
bayesian-system: 2 system: 2 bayesian-net: 2
network: 1 bayesian-network: 5 weapon: 1
CHAIN 3: Score = 7.0
ai: 2 artificial-intelligence: 1
field: 7 technology: 1 science: 1
CHAIN 4: Score = 6.0
technique: 1 bayesian-technique: 1 condition: 1
datum: 2 model: 1 information: 3 area: 1
knowledge: 3
CHAIN 5: Score = 3.0
computer: 4
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