An Overview of SURGE: a Reusable
Comprehensive Syntactic Realization Component

Michael Elhadad
elhadad@cs.bgu.ac.il

Mathematics and Computer Science Dept.
Ben Gurion University in the Negev
Beer Sheva, 84105 Israel
Fax: +972-7 472-909

Abstract

This paper describes SURGE, a syntactic realiza-
tion front-end for natural language generation
systems. By gradually integrating complemen-
tary aspects of various linguistic theories within
the computational framework of functional unifi-
cation, SURGE has evolved to be one of the most
comprehensive grammars of English for language
generation available today. It has been success-
fully re-used in a variety of generators, with very
different architectures and application domains.

1 Introduction

This paper is an overview of SURGE (Systemic
Unification Realization Grammar of English) a
syntactic realization front-end for natural lan-
guage generation systems. Developed over the
last seven years! it embeds one of the most com-
prehensive computational grammar of English
for generation available to date. It has been suc-
cessfully re-used in eight generators, that have
little in common in terms of architecture. It has
also been used for teaching natural language gen-
eration at several academic institutions.

We first define the task of a stand-alone syn-
tactic realization component within the overall

!The research presented in this paper started out while
the authors were doing their PhD. at Columbia Univer-
sity, New York. We are both indebted to Kathleen McK-

eown for her guidance and support during those years.

Jacques Robin
jr@di.ufpe.br
Departamento de Informatica
Universidade Federal de Pernambuco
Av. Prof. Luiz Freire s/n Cidade Universitaria
Recife, PE 50740-540 Brazil
Fax: +55-81 271-4925 (or 4281)

generation process and provide criteria for its
evaluation. We then briefly survey the computa-
tional formalism underlying the implementation
of SURGE as well as the syntactic theories that it
integrates. We then describe in more details the
structure of the grammar and its coverage. Fi-
nally, we review the application domains across
which sURGE has been re-used, compare it with
other syntactic realization front-ends for genera-
tion and discuss its current limitations.

2 Reusable Realization
Component for NLG

Natural language generation has been tradition-
ally divided into three successive tasks [30]: (1)
content determination, (2) content organization,
and (3) linguistic realization. The goal of a re-
usable realization component is to encapsulate
the domain-independent part of this third task.
The input to such component should thus be as
high-level as possible without hindering portabil-
ity. Independent efforts to define such an input
[23] [21] [38] [25] have crystalized around a skele-
tal, partially lexicalized thematic tree specifying
the semantic roles, open-class lexical items and
top-level syntactic category of each constituents.
An example SURGE input with the corresponding
sentence is given in Fig. 1.

Input Specification (I1):

cat clause
type composite

Process relation possessive
lex “hand"

r cat pers_pro
agent [gender feminine]
cat np

partic affected [lex “editor’]

POSSESSOT 1
cat np
I i possessed [lex “draft"]

Output Sentence (S1): “She hands the draft to the editor”

Figure 1: An example SURGE I/0O

The Syntactic Realization Subtask The
task of the realization component is to map such
skeletal tree onto a natural language sentence. It
involves the following sub-tasks:

1. Map
roles:

thematic structure onto syntactic
e.g., agent, process, possessed
and possessor onto subject, verb-group,
direct-object and indirect-object (re-

spectively) in 9.

2. Control syntactic paraphrasing and alterna-
tions [19]: e.g., adding the (dative-move
yes) feature to I; would result in the gen-
eration of the paraphrase (5;): “She hands
the editor the draft”.

3. Prevent over-generation: e.g., fail when
adding the same (dative-move yes) fea-
ture to an input similar to I; except
that the possessed role is filled by ((cat
pers-pro)) (for personal pronoun) to avoid
the generation of (53) * “She hands the ed-

itor it”.

4. Provide defaults for syntactic features: e.g.,
definite for the NPs of 5.

5. Propagate agreement features, providing
enough input to the morphology module:
e.g., after the agent and process thematic
roles have been mapped to the subject and
verb-group syntactic roles (respectively),
propagate the default (person third) fea-
ture added to the subject filler to the

verb-group filler; without such a propaga-
tion the morphology module would not be
able to inflect the verb “to hand” as “hands”
in Sl.

6. Select closed-class words: e.g., “she”,

and “to” in 5.

({the 2

7. Provide linear precedence constraints among
syntactic constituents: e.g., subject
> verb-group > indirect-object >
direct-object once the default active
voice has been chosen for 57.

8. Inflect open-class words (morphological pro-
cessing): e.g., the verb “to hand” as “hands”
in 9.

9. Linearize the syntactic tree into a string of
inflected words following the linear prece-
dence constraints.

10. Perform syntactic inference: As an exam-
ple of syntactic inference, suppose that I is
embedded within a clause as follows:

cat clause

process [lex “require’]
soa (I1)

partic influenced .
. ca pers_pro
in fluence [number plural

I fills the soa (state-of-affair) role of “to
require” and the influenced role is co-referent
with the affected role of I;.
reference constraint and the subcategorization
constraint of “to require” (provided in the lex-
icon), SURGE deduces that the affected role of
the subordinated clause should be controlled [28]
(Chap. 7) by the influenced role of the ma-
trix clause and therefore be mapped onto the
subject syntactic role. This inferred constraint
in turn triggers the choice of the passive voice for
the subordinated clause, resulting in (S4): “They
required the draft to be handed by her to the edi-

2

From this co-

tor.

Evaluation Criteria A re-usable syntactic re-
alization component (or grammar for short) for
language generation should thrive to satisfy the
following properties:

1. Comprehensive coverage: it should be able
to generate a large set of valid syntactic
forms and to output many alternate syntac-
tic forms from a single input.

2. Prevention of over-generation: it should
generate only grammatical outputs (the
counter-part of the previous criterion).

3. Encapsulation of syntactic knowledge: it
should accept inputs that can be prepared
by the client program or user with as little
knowledge of syntax as possible.

4. Regular input: it should require inputs
whose structure is well-defined and regular,
and thus easily producible by a recursive
client program.

5. Partially canned input: it should accept in-
puts where canned phrases can co-exist with
individual words [31], to be usable across
the granularity gradient from simple tem-
plate systems to fully compositional gener-
ation systems.

6. Compact input: it should provide appropri-
ate defaults for all syntactic features, so that
the input can contain only the few features
that have non-default values.

7. Fxtensibility: it should be easy to add new
syntactic constructs, and quickly verify their
interaction with the rest of the grammar.

8. Efficiency: it should generate a sentence
from the input specification as fast as pos-

sible.

9. Robusiness: it should be able to generate
grammatical fragments from ill-formed or
incomplete inputs.

10. User-friendliness: it should be easy to use
for computational linguists not familiar with
the implementation details and easy to learn
for users with little knowledge of linguistic
theory.

11. Versatility: it should be usable in a wide va-
riety of system architectures and application
domains.

We come back to these criterion in Section 6
when we compare SURGE with other syntactic

realization components.

3 The FUF/SURGE package

SURGE is implemented in the special-purpose
programming language FUF [4] [5] and it is dis-
tributed as a package with a FUF interpreter.
This interpreter has two components:

e The functional unifier that fleshes out the
input skeletal tree with syntactic features
from the grammar.

e The linearizer that inflects each word at the
bottom of the fleshed out tree and print
them out following the linear precedence
constraints indicated in the tree.

Underlying Formalism FUF is an extension
of the original functional unification formalism
put forward by Kay [14].
powerful concepts: encoding knowledge in recur-
sive sets of attribute value pairs called Functional
Descriptions (FD) and uniformly manipulating
these FDs through the operation of unification.

Both the input and the output of a FUF pro-
gram are I'Ds, while the program itself is a meta-
FD called a Functional Grammar (FG). An FG
is an FD with disjunctions and control annota-
tions. Control annotations are used in FUF for
two distinct purposes:

It is based on two

e To control recursion on linguistic con-
stituents: the skeletal tree of the input FD
is fleshed out in top-down fashion by re-
unifying each of its sub-constituent with the

FG.

e Toreduce backtracking when processing dis-
junctions.

The key extensions of FUF over Kay’s original
formalism are its wide range of control annota-
tions [8] and its special constructs to define sub-
sumption among atomic values [3]. The main
advantages of FUF over PROLOG for natural lan-
guage generation are:

e Partial knowledge assumption (a conse-
quence of relying neither on predicate arity

nor on attribute order when encoding infor-
mation in FDs).

o Default control flow adapted to generation
(top-down breadth-first recursion on lin-
guistic constituents) and possibility to fine-
tune it (indexing on grammatical features
and dependency-directed backtracking and
goal freezing on uninstantiated features).

¢ Built-in linearizer and morphology compo-
nent.

Linguistic Framework SURGE represents
our own synthesis, within a single working sys-
tem and computational framework, of the de-
scriptive work of several (non-computational)

linguists. We took inspiration principally:

e I'rom [12] and [36] for the overall organi-
zation of the grammar and the core of the
clause and nominal sub-grammars.

e I'rom [9] and [20] for the semantic aspects
of the clause.

o I'rom [28] for the treatment of long-distance
dependencies.

e I'rom [29] for the many linguistic phenom-
ena not mentioned in other works, yet en-
countered in many generation application
domains.

Since many of these sources belong to the sys-
temic linguistic school, SURGE is mostly a func-
tional unification implementation of systemic
grammar rules. In particular, the type of FD
that it accepts as input specifies a “process” in
the systemic sense: it can be an event, a relation,
or state in addition to a “process” in its most
common, aspectually restricted sense. The hier-
archy of general process types defining the the-
matic structure of a clause (and the associated
semantic class of its main verb) in the current im-
plementation is compact and able to cover many
clause structures. Yet, the argument structure
and/or semantics of many English verbs do not
fit neatly in any element of this hierarchy [19].
To overcome this difficulty, SURGE also includes
lexical processes inspired by lexicalist grammars

such as the Meaning-Text Theory [24] and HPSG
[28].

A lexical process is a shallower and less seman-
tic form of input, where the sub-categorization
constraints and the mapping from the thematic
roles to the oblique roles [28] are already spec-
ified (instead of being automatically computed
by the grammar as is the case for general pro-
cess types). The use of specific lexical processes
to complement general process types is an ex-
ample of the type of theory integration that we
were forced to carry out during the development
of SURGE. In the current state of linguistic re-
search, with each theory focusing on a small set
of linguistic phenomena, such an heterogeneous
approach is the best practical strategy to provide
broad coverage.

4 Organization and Coverage

At the top-level, SURGE is organized into sub-
grammars, one for each syntactic category. Each
sub-grammar encapsulates the relevant part of
the grammar to access when recursively unify-
ing an input sub-constituent of the correspond-
ing category. For example, generating the sen-
tence “James buys the book” involves succes-
sively accessing the sub-grammars for the clause,
the verb group, the nominal group (twice) and
the determiner sequence. Each sub-grammar is
then divided into a set of systems (in the sys-
temic sense), each one encapsulating an orthog-
onal set of decisions, constraints and features.
The main top-level syntactic categories used in
SURGE are: clause, nominal group (or NP), the
determiner sequence, the verb group, the adjec-
tival phrase and the PP. We now describe the
systems and coverage currently implemented in
SURGE for each of these categories.

4.1 The Clause

Following [12], the thematic roles accepted by
SURGE in input clause specifications first di-
vide into:
roles, answer the questions “who/what was in-
volved?” about the situation described by the
clause. They include the process itself, generally

nuclear and satellite roles. Nuclear

surfacing as the verb? and its associated par-
ticipants surfacing as verb arguments. Satellite
roles (also called adverbials) answer the ques-
tions “when/where/why/how did it happen?”
and surface as the remaining clause comple-
ments.

Semantically, participants are tightly associ-
ated with specific nodes in the process type hi-
erarchy, while satellites are versatile roles com-
patible with virtually any process type. Syn-
tactically, participants can be distinguished from
satellites in that®: (1) they surface as subject
for at least one syntactic alternation [19], (2)
they can neither be moved around in the clause
nor (3) omitted from the clause while preserving
its grammaticality.

Following this sub-division of thematic roles,
the clause sub-grammar is divided into four or-
thogonal systems:

o Transitivity, which handles mapping of nu-
clear thematic roles onto a default core syn-
tactic structure for main assertive clauses.

e Voice, which handles departures from the
default core syntactic structure triggered by
the use of syntactic alternations (e.g., pas-
sive or dative moves).

e Mood, which handles departures from the
default core syntactic structure triggered by
variations in terms speech acts (e.g., inter-
rogative or imperative clause) and syntac-
tic functions (e.g., matrix vs. subordinate
clause).

o Adverbial, which handles mapping of satel-
lite roles onto the peripheral syntactic struc-
ture.

The Transitivity System Following [9], we
distinguish among simple (either event or re-
lation) and composite processes (di-transitive,
complex-transitive [29] (p.721) and causative
constructs). For example, we view the clause
“She gives it to him” as the conflation of two

20r as direct-object in the case of clanses headed by
support-verbs [11].

While each of these three tests has a number of ex-
ceptions, taken together they are very reliable.

simple processes: (1) a simple event “She gives
it” and (2) the resulting possessive relation “It
belongs to him”. The description of composite
processes is useful to account for alternations like
dative move [19] (pp.45-49) when the relation
is possessive, locative (pp.49-55), creation
(pp.H5-58), causative (pp.25-32) and others.

The subtasks of the transitivity system are:
(1) to provide an interface to the semantic encod-
ing used in the client program, (2) to determine
which combinations of predicates are mergeable
as composite processes, (3) to constrain syntac-
tic alternations and (4) to constrain the syntactic
realization of each participant. SURGE currently
covers 21 simple process types and 15 composite
process types, thus accepting 36 different nuclear
thematic structures as input (cf. [32] for exam-
ples of each type).

The Mood System The subtasks of the
mood system are: (1) to provide an interface
to the specification of speech acts and interper-
sonal constraints in the client program (e.g., im-
perative mood to express a request to a subor-
dinate), (2) to account for hypotactic relations
among clauses (e.g., subordination, embedding)
and (3) to constrain to use of abbreviated forms
(e.g., participle and verbless clauses). The mood
of dependent clauses is often inferred by SURGE
from its syntactic function in the matrix and the
head verb of the matrix. SURGE currently covers
15 different moods (cf. [32] for examples of each
mood).

The Adverbial System The main tasks of
the adverbial system are: (1) to provide an inter-
face to the semantic encoding used in the client
program, (2) to determine the relative ordering
of adverbials within the clause, (3) to restrict
possible co-occurrences of adverbials, (4) to re-
strict the syntactic realization of adverbials and
(5) to provide default closed-class words (e.g.,
prepositions such as “for” or subordinating con-
junctions such as “when”).

The adverbial system encodes a more subtly
constrained mapping from thematic structures
to syntactic roles than the transitivity system.

While nuclear roles surface as mutually exclu-
sive core syntactic functions (e.g, each clause can
only have one subject and one direct object),
satellite roles surface as one of three peripheral
syntactic functions, predicate adjuncts, sentence
adjuncts and disjuncts following [29] (pp. 504-
505), with potentially multiple instances of each.
The adjuncts vs. disjuncts distinction is purely
syntactic and accounts for general alternations
(e.g., only adjuncts can be clefted or appear in
alternative questions). The distinction between
predicate and sentence adjunct is semantic: the
former modifies only the process of the clause,
while the latter elaborates on the entire situation
described by the clause. It has subtle repercus-
sions in terms of syntactic alternations, possible
positions and co-occurrence (e.g., predicate ad-
juncts cannot be fronted). SURGE reflects this
distinction in input where satellite roles can be
either predicate-modifier which get mapped
onto predicate adjuncts and circumstancials
which get mapped onto either sentence adjuncts
or disjuncts (depending on semantic label, syn-
tactic category and lexical content).

Integrating descriptions by [29], [34] [12],
SURGE can currently map 13 predicate modifiers
onto 26 syntactic realizations of predicate ad-
juncts and 34 circumstancials onto 32 syntactic
realizations of sentence adjuncts and 36 syntac-
tic realizations of disjuncts (cf. [32] for examples
of each adverbial form).

4.2 Nominals

Nominals are an extremely versatile syntactic
category, and except for limited cases (cf. [35],
[18], [10]), no linguistic semantic classification
of nominals has been provided. Consequently,
while for clauses input can be provided in the-
matic form, for nominals it must be provided
directly in terms of syntactic roles. The task
of mapping domain-specific thematic relations to
the syntactic slots in an NP is therefore left to
the client program (cf. [6] for a discussion of this
process).

Nominal Types SURGE distinguishes among

the following nominal types: common nouns,

Proper nouns, Ppronouns, Measures,
compounds and partitives. Noun-compounds can
have a deep embedded structure. Measures have
a very specific syntactic behavior (when used as
classifiers the head noun of the measure does not

noun-

take a number inflection, e.g., “a 3 meter boat”
vs. “the boat measures 3 meters”).

NP Structure and Functions The specific
syntactic roles accepted by SURGE for nominal
description are (given in their partial order of
precedence):
determiner-sequence, describer, classifier, head,
and qualifier.

There are two types of pre-modifiers: de-
scribers, which can be also appear as subject
complements (e.g., “a blue book” = “the book is
blue) and classifiers which cannot [36], since they
are an abbreviated form of an indirect relation
[18] (e.g., “a theory book” # ? “the book is the-
ory” but rather “a theory book” = “the book is
about theory”). SURGE currently covers a total
of 28 syntactic realizations for the 5 functions
above (cf. [32] for examples of each).

Determiner Sequence The determiner-
sequence is itself decomposed into the following
elements:

pre-determiner, determiner,

ordinal, cardinal, quantifier. This sub-
grammar is special in that it is mainly a closed
system, i.e., all lexical differences must be de-
termined by some configuration of syntactic fea-
tures. The determiner sequence sub-grammar
currently covers 24 features controlling 109 deci-

sion points (cf. [5] for examples).

4.3 The Verb Group

The verb group grammar decomposes in three
major systems: tense, polarity and modality.
SURGE implements the full 36 English tenses
identified in [12] pp.198-207 It provides an in-
terface to the client program is in terms Allen’s
temporal relations [2] (e.g., to describe a past
event, the client provides the feature (tpattern
(:et :before :st)), specifying that the event
time (et) precedes the speech time (st)).

5 Implemented Applications

SURGE has already been successfully re-used by
at least? eight generators. The practical us-
ability and versatility of SURGE is demonstrated
by the fact that these systems differ widely in
their application domains, their research em-
phasis and the strategy they use to generate
the skeletal thematic trees that they pass on to
SURGE.

COOK [33] generates stock market reports from
semantic messages summarizing the daily fluc-
tuations of several financial indexes.
on the semi-automatic acquisition of a declar-
ative lexicon including collocations and idioms
statistically compiled from a large textual cor-
pus. It composes a SURGE input by using FUF
to unify this declarative lexicon with the input
semantic message. It relies on a fixed, bottom-
up control strategy driven by output syntactic
function: first choose the verb arguments, then
the verb and finally the adjuncts.

ADVISOR-IT [5] generates query responses in
an interactive student advising system. It fo-
cuses on presenting the same underlying content
as argument towards different conclusions and on
expressing the same piece of content across lin-
guistic ranks (from complex clause down to the
determiner sequence). It composes a SURGE in-
put by using FUF to unify an input semantic net-
work (enriched with argumentative constraints)
with a declarative, word-based lexicon. It re-
lies on a complex, input driven control strategy
involving goal freezing and dependency-directed
backtracking.

It focuses

COMET [22] generates natural language expla-
nations coordinated with graphics in an multi-
media tutorial and troubleshooting system for a
military radio. It focuses on combining an wide
variety of constraints on lexical choice, includ-
ing the accompanying illustration, the user’s vo-
cabulary and previous discourse in addition to
the usual syntax and domain semantics. It com-
poses a SURGE input by using FUF to unify text
plan fragments with a word-based lexicon. It re-

*1t is also currently used by several other systems not
mentioned here either because they are still in preliminary
stages or because we have little information about them .

lies on a co-routine control strategy allowing the
lexicon to request partial re-planning of textual
fragments when it reaches an impasse while com-
bining constraints.

STREAK [32] generates newswire style sum-
maries of basketball games from game statistics
and related historical data. It focuses on usage of
concise linguistic forms, generation of very com-
plex sentences, high paraphrasing power and em-
pirical evaluation of architecture and knowledge
structures based on corpus analysis. It incremen-
tally composes the SURGE input using a revision-
based control strategy. It first composes a draft
of this input by using FUF to unify a semantic
network of obligatory facts with a phrase plan-
ner and then a lexicon. This draft is then incre-
mentally revised (at times non-monotonically) to
opportunistically incorporate as many optional
or background fact that can fit under corpus-
observed space and linguistic complexity limits.

PLANDOC [16] generates documentation of
telephone network extension and upgrade pro-
posals by planning engineers, from the trace of
the simulation system that they use to come-up
with their proposals. Its focuses on high para-
phrasing power and on aggregation of related se-
mantic messages into complex clauses. It com-
poses SURGE inputs using a strategy similar to
ADVISOR-II, but using constraints derived from
the extended discourse instead of argumentative
orientation.

FLOWDOC [27] generates executive summaries
of workflow diagrams acquired and displayed
using the sHOWBIzZ [37] graphical business re-
engineering tool. It focuses on pointing out
characteristics of the workflow relevant to re-
engineering but obscured by the diagram com-
plexity. It composes SURGE inputs using a strat-
egy similar to STREAK’s initial draft building
stage, except for the combination of composi-
tional generation from a word-based lexicon of
general workflow terms together with canned
phrases for task-specific operations (entered by
the user during workflow acquisition).

KNIGHT [17] generates paragraph-long expla-
nations of scientific processes from a large knowl-
edge base in biology. It focuses on the robustness
of the generator when used in a vast domain and

the evaluation of the produced output. It com-
poses SURGE inputs procedurally by filling FD
templates using information extracted from the
knowledge base.

Abella’s system [1] generates visual scene de-
scriptions from camera input in two domains:
map-aided navigation and kidney X-rays anal-
ysis. Its strategy to compose SURGE inputs is
entirely geared toward its very specific research
focus: validating a fuzzy lexical semantic model
of English spatial prepositions. It thus first per-
forms visual reasoning to pick the prepositions
best describing the main spatial relations among
the input picture landmarks and then procedu-
rally fills locative clause FD templates associated
with each chosen preposition.

6 Related Work

Three other available systems provide reusable
surface realization components: MUMBLE [26],
NIGEL [21] and the systems developed at Co-
gentex (e.g., [13]). These three systems dif-
fer from SURGE in that they are all developed
within a single linguistic theory (TAGs for MUM-
BLE, systemic functional for NIGEL and Meaning-
Text Theory (MTT) [24] for Cogentex’s sys-
tems), whereas SURGE integrates several ones.
Each system also puts the emphasis on different
dimensions resulting in different strengths and
weaknesses.

MUMBLE’s determinism (motivated on cogni-
tive grounds) makes it very efficient. Another
of its strengths is the regular input provided by
Meteer’s text-structure [25]. NIGEL’s strengths
are comprehensive coverage and encapsulation of
syntactic knowledge through the inquiry mecha-
nism. However, the procedural implementation
of both these systems make them weak on exten-
sibility and user-friendliness. In addition, NIGEL
also has a tendency to over-generate. This last
weakness has however recently being turned into
a strength by the addition of a post-processor
that filters outputs using a statistical language
model [15]. This post-processor allows NIGEL’s
output to nicely degrades in the face of ill-formed
or incomplete input, making it more robust than

other systems.

MTT-based syntactic realization components
are strong on extensibility (declarative PROLOG
implementation) and comprehensive coverage.
But the fact that they must work in tandem
with an MTT-based lexicon (the Explanatory
Combinatorial Dictionary) make them weak on
versatility and encapsulation of syntactic knowl-
edge. SURGE’s strengths are comprehensive cov-
erage, encapsulation of syntactic knowledge, the
extensibility and user-friendliness of its purely
declarative implementation and the versatility of
its compact, and regular input where individual
words and canned phrases can co-exist. Its main
weakness, inefficiency for complex sentences, is
currently being addressed by the development of
a graph-based, re-implementation the FUF inter-
preter in C to replace the current list-based im-
plementation in LISP. We expect SURGE’s tun
times to improve by an order of magnitude with
this new interpreter. A more systematic use of
control annotations in the grammar could also
improve run time though less dramatically.

7 Future Work

The development of SURGE itself continues, as
prompted by the needs of new applications, and
by our better understanding of the respective
tasks of syntactic realization and lexical choice
[7]. We are specifically working on (1) inte-
grating a more systematic implementation of
Levin’s alternations within the grammar, (2)
extending composite processes to include men-
tal and verbal ones, (3) modifying the nominal
grammar to support nominalizations and some
forms of syntactic alternations (relying on [10])
and (4) improving the treatment of obligatory
pronominalization and binding. As it stands,
SURGE provides a comprehensive syntactic re-
alization component, easy to integrate within a
wide range of architectures for complete gener-
ation systems. It is available on the WWW at
http://www.cs.bgu.ac.il/surge/.

References

[1]

[3]

A. Abella. From imagery to salience: loca-
PhD thesis,
Computer Science Department, Columbia
Universtity, New York, NY, 1994.

tive expressions in context.

J. Allen.
temporal intervals. Communications of the
ACM, 26(11):832-843, 1983.

Maintaining knowledge about

M. Elhadad. Types in functional unification
grammars. In Proceedings of the 28th An-
nual Meeting of the Association for Com-
putational Linguistics, Detroit, MI, 1990.
ACL.

M. Elhadad. Fuf: The universal unifier -
user manual, version 5.2. Technical Report
CUCS-038-91, Columbia University, 1993.

M. Elhadad. Using argumentation to control
lexical choice: a unification-based imple-
mentation. PhD thesis, Computer Science

Department, Columbia University, 1993.

M. Elhadad.
noun phrases. Submitted to Journal of Ma-
chine Translation, 1996.

Lexical choice for complex

M. Flhadad, K. McKeown, and J. Robin.
Floatings constraints in lexical choice. Com-
putational Linguistics, 1996. To appear.

M. Elhadad and J. Robin. Controlling con-
tent realization with functional unification
grammars. In R. Dale, H. Hovy, D. Roesner,
and O. Stock, editors, Aspects of automated
natural language generation, pages 89-104.
Springer Verlag, 1992.

R. Fawcett. The semantics of clause and
verb for relational processes in english.
In M. Halliday and R. Fawcett, editors,
New developments in systemic linguistics.
Frances Pinter, London and New York,

1987.

P. Fries. Tagmeme sequences in the English
noun phrase. Number 36 in Summer insti-
tute of linguistics publications in linguistics

[14]

[15]

[18]

[19]

and related fields. Benjamin F. Elson for
The Church Press Inc., Glendale, CA, 1970.

M. Gross. Lexicon-grammar and the syntac-
tic analysis of french. In Proceedings of the
10th International Conference on Computa-
tional Linguistics, pages 275-282. COLING,
1984.

M. Halliday. An introduction to functional
grammar. FEdward Arnold, London, 1994.
2nd Edition.

L. lordanskaja, M. Kim, R. Kittredge,
B. Lavoie, and A. Polguere. Generation
of extended bilingual statistical reports.
In Proceedings of the 15th International
Conference on Computational Linguistics.

COLING, 1994.

M. Kay. Functional grammar. In Proceed-
ings of the 5th Annual Meeting of the Berke-
ley Linguistic Society, 1979.

K. Knight and V. Hatzivassiloglou. Two-
levels, many-paths generation. In Proceed-
ings of the 33rd Annual Meeting of the
Association for Computational Linguistics,

pages 252-260, Boston, MA, 1995. ACL.

K. Kukich, K. McKeown, J. Shaw, J. Robin,
N. Morgan, and J. Phillips. User-needs anal-
ysis and design methodology for an auto-
mated document generator. In A. Zam-
polli, N. Calzolari, and M. Palmer, editors,
Current Issues in Computational Linguis-
tics: In Honour of Don Walker. Kluwer
Academic Press, Boston, 1994.

J. Lester. Generating natural language ex-
planations from large-scale knowledge bases.
PhD thesis, Computer Science Department,
Universtity of Texas at Austin, New York,
NY, 1994.

J. Levi. The syntaz and semantics of com-
plex nominals. Academic Press, 1978.

B. Levin. FEnglish verb classes and alterna-
tions: a preliminary investigation. Univer-
sity of Chicago Press, 1993.

[20] J. Lyons. Semantics. Cambridge University
Press, 1977.

[21] C. Matthiessen. The organization of the en-
vironment of a text-generation grammar. In
G. Kempen, editor, Natural Language Gen-
eration: New Results in Artificial Intellli-
gence, Psychology and Linguistics. Martinus
Ninjhoff Publishers, 1987.

[22] K. McKeown, J. Robin, and M. Tanenblatt.
Tailoring lexical choice to the user’s vocab-
ulary in multimedia explanation generation.
In Proceedings of the 31st Annual Meeting
of the Association for Computational Lin-
guistics. ACL, 1993.

[23] K. R. McKeown, M. Elhadad, Y. Fuku-
moto, J. Lim, C. Lombardi, J. Robin, and
F. Smadja. Text generation in comet. In
R. Dale, C. Mellish, and M. Zock, editors,
Current Research in Natural Language Gen-
eration, pages 103—-140. Academic Press,
1990.

[24] I. Mel’cuk and N. Pertsov. Surface-
syntax of English, a formal model in the

Meaning-Text Theory. Benjamins, Amster-
dam /Philadelphia, 1987.

[25] M. Meteer. FEzpressibility: The problem
of efficient text planning. Pinter, London,
1992.

[26] M. Meteer, D. McDonald, S. Anderson,
D. Forster, .. Gay, A. Huettner, and P. Si-
bun. Mumble-86: Design and implementa-
tion. Technical Report COINS 87-87, Uni-
versity of Massachussets at Amherst, Ah-
merst, Ma., 1987.

[27] R. Passoneau, K. Kukich, J. Robin, and
L. Lefkowitz. Generating executive sum-
maries of workflow diagrams, 1996. Submit-
ted to the 8th International Workshop on

Natural Language Generation, Herstmon-
ceux, UK.

[28] C. Pollard and I. A. Sag. Head Driven

Phrase Structure Grammar. University of
Chicago Press, Chicago, 1994.

10

[29]

[30]

[31]

[33]

[34]

[35]

[36]

[38]

R. Quirk, S. Greenbaum, G. Leech, and
J. Svartvik. A comprehensive grammar of
the English language. Longman, 1985.

E. Reiter. Has a consensus natural language
generation architecture appeared and is it
psycholinguistically plausible? In Proceed-
ings of the 7th International Workshop on
Natural Language Generation, pages 163—
170, June 1994.

E. Reiter. Nlg vs templates. In Proceedings
of the 5th Furopean Workshop on Natural-
Language Generation (ENLGW-95), Lei-
den, The Netherlands, 1995.

J. Robin. Revision-based generation of
natural language summaries providing his-
torical background: corpus-based analy-
sis, design, implementation and evaluation.
Technical Report CU-CS-034-94, Computer
Science Department, Columbia Universtity,
New York, NY, 1994. PhD. Thesis.

F. Smadja and K. McKeown. Using collo-
cations for language generation. Computa-
tional Intelligence, 7(4):229-239, December
1991.

S. Thompson and R. Longacre. Adverbial
clauses. In T. Shopen, editor, Complex con-
structions, volume 2 of Language typology
and syntactic description. Cambridge Uni-
versity Press, 1985.

7. Vendler. Adjectives and Nominalizations.
Mouton, The Hague, Paris, 1968.

T. Winograd. Language as a cognitive pro-
cess. Addison-Wesley, 1983.

K. Wittenburg. Visual language parsing: if
i has a hammer ... In Proceedings of the In-
ternational Conference on Cooperative Mul-
timodal Communication, pages 17-33, Eind-
hoven, The Netherlands, 1995.

G. Yang, K. McCoy, and K. Vijay-Shanker.
From functional specification to syntactic
structure: systemic grammar and tree ad-
joining grammars. Computational Intelli-
gence, 7(4), December 1991.

