XFST2FSA:
Comparing Two Finite-State Toolboxes

Yael Cohen-Sygal and Shuly Wintner
Department of Computer Science
University of Haifa

July 30, 2005

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Introduction

Motivation: finite state techniques and toolboxes
The XFST2FSA compiler:

o Compilation process
e Problems and solutions

@ Comparison of XFST and FSA:

e Usability
o Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Motivation

Finite-state technology is widely considered to be the appropriate
means for describing the phonological and morphological
phenomena of natural languages

@ Descriptive power
@ Closure properties = modularity

o Computational efficiency

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Motivation

Finite-state toolboxes:
@ Provide a language for extended regular expressions

@ Include a compiler from regular expressions to finite state
devices, automata and transducers
@ Include efficient implementations of algorithms for closure
properties, minimization, determinization, etc.
@ Implement special operators that are useful for linguistic
description.
Unfortunately, there are no standards for the syntax of extended
regular expression languages and switching from one toolbox to
another is a non-trivial task.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

XFST vs. FSA Utils

| XFST | FSA Utils
standard operators + +
advanced operators replacement
markup —
restriction

advanced methods | compile-replace | weighted networks
Flag diacritics | Prolog predicates
visualization - +

availability proprietary free, open source

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

The XFST2FSA compiler

Motivation: finite state techniques and toolboxes
The XFST2FSA compiler:

o Compilation process
e problems and solutions

@ Comparison of XFST and FSA:

e Usability
o Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

The XFST2FSA compiler

@ XFST2FSA: a compiler which translates XFST grammars into
grammars in the language of FSA Utils

@ Strong parallelism between the languages

@ Certain constructs are harder to translate and require more
innovation, e.g., replacement, markup and restriction

@ We focus on the core of the finite state calculus: naive
automata and transducers (no weights and advanced
methods).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

! XFST grammar for describing English noun pluralization
! English vowels
define vowel alelilolu;

! Nouns lexicon

define noun {book}|{case}|{box}|{watch}|{glass}|{copy}|{guy};
! Suffix with s

define AddS noun [J:[%+ s];

! If the noun ends with x, ch or s

define esException %+ -> e || x | [c h] Is _;
! If the noun ends with y precedded by non-vowel symbol
define yException [y %+] -> [i e] || \vowel _;

! Basic pluralization

define normal %+ -> [];

! The complete network

define plural AddS .o. esException .o. yException .o. normal;

regex plural; E

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% This file contains the fsa code for the xfst code in exal.xfst.
:- multifile macro/2.

;- multifile rx/2.

%% Load macros in macros.pl

:— ensure_loaded(macros).

:- user:bb_put (fsa_regex_cache:vowel,on).

:- user:bb_put(fsa_regex_cache:noun,on).

:— user:bb_put(fsa_regex_cache:AddS,on) .

:- user:bb_put (fsa_regex_cache:esException,on).

i= user:bb_put(fsa_regex_cache:yException,on).

:— user:bb_put(fsa_regex_cache:normal,on).

:- user:bb_put (fsa_regex_cache:plural,on).

%% XFST grammar for describing English noun pluralization
%% English vowels

macro(vowel,{’a’ , ‘e’ , ’i’ , ’0’, ’u’}).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% Nouns lexicon
macro(noun,{[’b’,’0’,%0’,°k’,[1], [’c’,’a’,’s’,’e’,[]1],
[’b’, 702 ,0%7, [11 s [Jw)’ ’a’,’t’,’¢c’,’h’, [11 s
g’,’1,’a’,’s?,’s’,[11, [’c’,’0’,’p’,’y’, 001, Dg’,’w,’y’, 11D
%% Suffix with s
macro (AddS, [’noun’, ([1): (([’+?,’s’1))]1).
%% If the noun ends with x, ch or s
macro (esException,cond_rep_or_or((’+’),(’e’),
Lx? , ([’c’,’h’1),’s’1), ([1))).
%% If the noun ends with y precedded by non-vowel symbol
macro(yException,cond_rep_or_or((([’y’,’+’1)),(([’1i’,%e’])),
(= Cvowel’) & 7),([1))).
%% Basic pluralization
macro(normal,uncond_rep((’+’),([1))).
%% The complete network
macro (plural, (((*AddS’) o (’esException’)) o
(’yException’)) o (’normal’)).]
macro(regex, ’plural’).

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

! XFST grammar for Arabic nominative definite and indefinite nouns

! The lexicon - Arabic nouns
define noun {qammar} | {kitaab} | {/$ams} | {daftar};

! Indefinite nouns: add un suffix
define indefinite noun []:[u n];

! definite nouns: add ‘al prefix and u suffix
define definite [1:[%‘ a 1] noun []:[ul;

! Assimilation: the ‘1’ in the prefix assimilates with the first
! letter of the noun when the consonant is $, d, etc.

define shAssim 1 -> %$ || .#. % a _ %$;

define dAssim 1 ->d || .#. % a _4d ;

define Arabic [definite .o. shAssim .o. dAssim] | [indefinite];
regex Arabic; E

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

hh

hh

This file contains the fsa code for the xfst code in exa3.xfst.

multifile macro/2.
multifile rx/2.

Load macros in macros.pl
ensure_loaded(macros) .

user
user
user
user
user
user

:bb_put (fsa_regex_cache:
:bb_put(fsa_regex_cache:
:bb_put (fsa_regex_cache:
:bb_put (fsa_regex_cache:
:bb_put(fsa_regex_cache:
:bb_put (fsa_regex_cache:

noun,on) .
indefinite,on).
definite,on).
shAssimilation,on).
dAssimilation,on) .
ArabicExample,on) .

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Examples

%% XFST grammar for Arabic nominative definite and indefinite nouns
%% The lexicon - Arabic nouns
macro(noun,{[’q’,’a’,’m’,’m’,’a’,’r’,[1] ,
[7k)’Ji)’7t)’7a3’7a7’7b3,[]] s
[)$”Ja),)m”)sl,[]]’[)d,’)al,)f),’t),)a),frJ,[]]})‘
%% Indefinite nouns: add un suffix
macro(indefinite, [’noun’, ([1): (([’u’,’n’]1))]1).
%% definite nouns: add ‘al prefix and u suffix
macro(definite, [([1):(([*¢> , ’a’,’1’]1)) , ’noun’,([1):((C’u’))]).
%% Assimilation: the ‘1’ in the prefix ‘al assimilate with the first
%% letter of the noun when the consonant is $, d, etc.
macro (shAssim,cond_rep_or_or_start((’1°),(’$’),([*“’,’a’1),(’$°))).
macro (dAssimi,cond_rep_or_or_start((’1’),(’d’),([’>¢’,’a’]),(’d*))).
macro (ArabicExample,{(((’definite’) o (’shAssim’)) o
(’dAssim’)), (’indefinite’)}).
macro (regex, ’ArabicExample’) .

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation process

@ The XFST grammar is parsed, and a tree representing its
syntax is created

o A specification of XFST syntax is needed...
e but is unavailable

@ Traversing the tree, the equivalent FSA grammar is generated

o A specification of XFST semantics is needed...
e but is not fully available

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: basic operators

XFST syntax FSA syntax Meaning

Ax Ax Kleene star

A | B {A,B} union

A& B A&B intersection

A-B A-B A minus B

A/B ignore(A,B) A ignoring B

$A $A containment

AB [A,B] concatenation

A°n does not exist n-ary concatenation
A.x.B AxB crossproduct
A.o0.B AoB composition

€9) A optionality

[]) precedence

R.1i invert (R) regular relation inverse

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

@ Include replacement, markup and restriction

@ Have no equivalents in FSA, and therefore have to be
implemented from scratch

@ This was done using existing documentation.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Problem 1: not all operators are fully documented

@ The operator A@<-B (obligatory, lower to upper, left to right,
longest match replacement) is not documented. However:

@ The operator A<-B (obligatory, lower to upper replacement)
is defined as [B->A].i (where B->A is the obligatory, upper
to lower replacement of the language B by the language A).

@ Conclusion: A@<-B is constructed as [B@->A].i (where
[B@->A] is the obligatory, upper to lower, left to right, longest
match replacement of the language B by the language 4).

@ The construction of the operator B@->A is documented.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Problem 2: for some of the documented operators, the published
algorithms are erroneous in some special cases

o Consider the replace operator A->B || L _ R (conditional
replacement of the language A by the language B, in the
context of L on the left and R on the right side, where both
contexts are on the upper side).

@ Consider a rule of the form A->B || _ ?, where A and B are
some regular expressions denoting languages.

@ This rule states that any member of the language A on the
upper side is replaced by all members of the language B on
the lower side when the upper side member is not followed by
the end of the string on which the rule operates.
;

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

@ For example, the rule a->b || _ 7 is expected to generate
the following automaton:

7,b
O
\@%@
N
U
a:b

@ However, a direct implementation of the documented
algorithms always yields a network accepting the empty
language, independently of the way A and B are defined.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

Problem 3: in some cases XFST produces networks that are
somewhat different from the ones in the literature: the relations

(as sets) are equal but the resulting networks (as graphs) are not
isomorphic.

For example, consider the replace rule a->b || ¢ _ d

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

XFST network Self-implemented network
(by the documented algorithms)

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Compilation: advanced operators

@ In some cases multiple accepting paths are obtained

@ This is probably a result of adding e-self-loops in order to deal
correctly with e-symbols in composition

@ The multiple paths can then be removed using filters
@ Presumably, XFST implements this strategy

@ This solution requires direct access to the underlying network,
and cannot be applied at the level of the regular expression
language.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Validation of correctness

@ Ideally: check that the obtained FSA networks are equivalent
to the XFST ones from which they were generated

@ Unfortunately, this is only possible for very small networks

@ Therefore, validation strategy:
o Check each operator independently for several instances
o Test the compiler on a large-scale grammar: HAMSAH
o Exhaustive tests produced the same outputs for both networks.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison

Motivation: finite state techniques and toolboxes
The XFST2FSA compiler:

o Compilation process
e problems and solutions

@ Comparison of XFST and FSA:

e Usability
o Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: Usability

| XFST | FSA |
display formats | text (limited) | text
GUI
save as binary binary, text, PostScript
Code generation | — C, C4++, Java, Prolog

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: performance

@ A true comparison of the two systems should compare two
different grammars, each designed specifically for one of the
two toolboxes, yielding the same comprehensive network

@ However, as such grammars are not available, we compare the
two toolboxes using a grammar designed and implemented in
XFST and compiled into FSA.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: performance

HAMSAH:

Approximately 2 million states and 2.2 million arcs

Hebrew adjectives: approximately 100,000 states and 120,000
arcs

Hebrew nouns: approximately 700,000 states and 950,000
arcs.

Each network created by composing a series of rules over a
large-scale lexicon

Significant usage of replace rules and compositions

Grammars compiled and executed on a 64-bit computer with
16Gb of memory.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Comparison of XFST and FSA: performance

FSA XEST
Time Space Time Space
Full 13h 43m 11Gb | 27m 41s 3Gb
Compilation | nouns 2h 29m 11m 4s
adjectives 14m 56s 8m 21s
Full, 350 words - bs
Analysis nouns, 120 1h 50m 0.17s
adjectives, 50 2m 34s 0.17s

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Conclusion

Motivation: finite state techniques and toolboxes
The XFST2FSA compiler:

o Compilation process
e problems and solutions

@ Comparison of XFST and FSA:

e Usability
o Performance

Conclusions and future work

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Conclusion

Contributions:

e Facilitating the use of grammars developed with XFST on
publicly available systems

@ Providing a closer insight into the theoretical algorithms
which XFST is based on

@ A full implementation, in FSA, of most of XFST's operators

@ Investigation of two similar, but different systems, facilitating
a comparison on compatible benchmarks.

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

Future work

@ Construct more XFST operators in FSA

@ Locate more boundary cases in replace rules

e Convert XFST grammars into other formalisms (FSM)
e FSA2XFST...

Yael Cohen-Sygal and Shuly Wintner XFST2FSA

