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ABSTRACT
In this paper we consider the decremental single-source shortest
paths (SSSP) problem, where given a graph G and a source
node s the goal is to maintain shortest paths between s and all
other nodes in G under a sequence of online adversarial edge
deletions.

In their seminal work, Even and Shiloach [JACM 1981] pre-
sented an exact solution to the problem with only O(mn) total
update time over all edge deletions. Their classic algorithm
was the best known result for the decremental SSSP problem
for three decades, even when approximate shortest paths are
allowed.

The first improvement over the Even-Shiloach algorithm was
given by Bernstein and Roditty [SODA 2011], who for the case
of an unweighted and undirected graph presented an approxi-
mate (1 + ε) algorithm with constant query time and a total

update time of O(n2+O(1/
√
logn)). This work triggered a series

of new results, culminating in a recent breakthrough of Hen-
zinger, Krinninger and Nanongkai [FOCS 14], who presented a
(1 + ε)-approximate algorithm whose total update time is near

linear O(m1+O(1/
√
logn)). In this paper they posed as a major

open problem the question of derandomizing their result.
In fact, all known improvements over the Even-Shiloach al-

gorithm are randomized. All these algorithms maintain some
truncated shortest path trees from a small subset of nodes.
While in the randomized setting it is possible to “hide” these
nodes from the adversary, in the deterministic setting this is
impossible: the adversary can delete all edges touching these
nodes, thus forcing the algorithm to choose a new set of nodes
and incur a new computation of shortest paths.

In this paper we present the first deterministic decremen-
tal SSSP algorithm that breaks the Even-Shiloach bound of
O(mn) total update time, for unweighted and undirected graphs.
Our algorithm is (1 + ε) approximate and achieves a total up-

date time of Õ(n2). Our algorithm can also achieve the same
bounds in the incremental setting. It is worth mentioning that
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for dense instances where

m = Ω(n2−1/
√

log(n)), our algorithm is also faster than all ex-
isting randomized algorithms.
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1. INTRODUCTION
The objective of dynamic graph algorithms is to handle an

online sequence of update operations while maintaining a de-
sirable functionality on the graph, e.g., the ability to answer
shortest path queries. An update operation may involve a dele-
tion or insertion of an edge or a node, or a change in an edge’s
weight. In case the algorithm can handle only deletions, it is
called decremental, if it can handle only insertions it is called
incremental, and if it can handle both it is called fully dynamic.

Computing shortest paths in a graph is one of the funda-
mental problems of graph algorithms, and has a wide variety
of applications. Fully dynamic shortest paths has a very clear
motivation, as many shortest path applications must deal with
a graph that is changing over time. The incremental setting
is somewhat more restricted, but is applicable to any setting
in which the network is only expanding (e.g. in road networks
some new roads may be constructed but it is very rare that
roads are demolished; in social networks an edge may indicate
that the two endpoint users know each other or communicated
in the past and thus connections may only be added over time).

The decremental setting is often very important from a the-
oretical perspective, as decremental shortest paths (and decre-
mental single source shortest paths especially) are used as a
building block in a large variety of fully dynamic shortest paths
algorithms; see e.g. [26, 9, 2, 3]. In addition, in many cases, a
decremental shortest paths algorithm can be tweaked to give
the same bounds in the incremental setting (this is also the
case for our algorithm). Decremental shortest paths can also
have applications to static graphs problems; see e.g. Madry’s
paper on efficiently computing multicommodity flows [32].

In this paper we consider the problem of (approximate) sin-
gle source shortest paths (SSSP) in unweighted undirected



graphs, in the decremental setting. Specifically, given an un-
weighted undirected graph G and a source node s, our algo-
rithm needs to preform the following two operations:

• Delete(e) – delete the edge e from the graph.

• Distance(v) – return the distance between s and v, i.e.,
dist(s, v), in the current graph G.

As we allow our algorithm to return approximate solutions,
we say that an algorithm has an approximation guarantee
of α (or equivalently stretch α) if its output on the query
Distance(v) is never smaller than the actual shortest distance
and is not more than α times the shortest distance. Formally,

if we denote by d̂ist(s, v) the output of the algorithm on the
query Distance(v), we say that the algorithm has stretch α
if after any adversarial sequence of deletions Delete(e1), . . .,
Delete(e`), the following holds for any query Distance(v):

dist(s, v) ≤ d̂ist(s, v) ≤ α · dist(s, v) .

The goal in designing dynamic shortest path algorithms is
twofold. The first is to minimize the time it takes the algo-
rithm to adapt to an update, i.e., the Delete operation, and
the second is to minimize the query time, i.e., the Distance
operation. Typically one tries to keep the query time small
(polylog or constant), while getting the update time as low
as possible. In the decremental setting, which is the focus of
this paper, one usually considers the aggregate sum of update
times over the entire sequence of deletions, which is referred
to as the total update time.

1.1 Related work
The most naive solution to dynamic SSSP is to simply invoke

a static SSSP algorithm after every deletion. The classic Dijk-
stra’s algorithm takes Õ(m) 1 2 time. There have been some
improvements over the log factors (see e.g. [39, 40, 36]), but all
algorithms for this problem require at minimum O(m) time.
Since there can be a total of m deletions, the total update time
for the naive implementation is at least O(m2).

In 1981, Even and Shiloach [18] were the first to present
a decremental SSSP algorithm with total update time better
than the naive solution. More specifically, they presented an al-
gorithm for undirected, unweighted graphs with constant query
time and a total update time of O(mn). A similar result was
independently found by Dinitz [17]. This was later generalized
to directed graphs by King [29]. The naive implementation
of [29] requires in the worst case O(n3) memory. King and
Thorup [30] later implemented a dynamic algorithm with only

O(n2.5) memory (O(n2
√
nb) memory, where b is the maximal

edge weight).
Dynamic shortest path algorithms and other related prob-

lems were extensively studied in the last three decades and
many attempts were made to improve the classic Even and
Shiloach [18] algorithm. However, no progress was made in
the exact decremental SSSP problem.

Roditty and Zwick [37] presented an explanation for this
lack of progress, by showing a reduction from boolean matrix
multiplication to both the incremental and the decremental
SSSP problem in unweighted undirected graphs. This implies
that unless a major breakthrough in combinatorial boolean

1The Õ notation suppresses polylogarithmic factors.
2As usual, n (respectively, m) is the number of nodes (resp.,
edges) in the graph.

matrix multiplication is provided, no combinatorial algorithm
for the problem can go beyond the O(mn) total update time
of Even and Shiloach (except perhaps by log factors). Very
recently, Henzinger et al [25] proved the same result for any
type of algorithm (not just a combinatorial one), assuming
their online boolean matrix-vector multiplication conjecture.

These lower bounds motivated the study of the approximate
version of this problem. There has been much progress in
the case of randomized approximate solutions. Bernstein and
Roditty [11] were the first to give an approximate decremental
SSSP algorithm to go beyond the O(mn) total update time of
Even and Shiloach [18]: they presented a (1 + ε) decremental
SSSP algorithm for undirected unweighted graphs with con-

stant query time and O(n2+O(1/
√
logn)) = O(n2+o(1)) total up-

date time. Henzinger, Krinninger and Nanongkai [23] later im-
proved the total update time for unweighted undirected graphs
to O(n1.8+o(1) +m1+o(1)).

For directed weighted graphs, Henzinger, Krinninger and
Nanongkai [22] presented a (1 + ε) approximate decremental

SSSP algorithm with total update time O(mn0.984+o(1) logW ),
where W is the largest weight in the graph. Afterwards they
improved the running time to O(mn0.9+o(1) logW ) [24].

Returning to undirected graphs, in a recent breakthrough
Henzinger, Krinninger and Nanongkai [21] presented a (1 +
ε) decremental SSSP algorithm with near linear total update

time: in particular, O(m1+o(1) logW ). This is close to optimal,
as O(m) is an obvious lower bound. They posed as a major
open problem the derandomization of their result. In fact all
the above improvements over the Even-Shiloach [18] algorithm
are randomized. The challenge of derandomizing the above
algorithms is discussed in Section 1.2.

There is also an extensive literature on the dynamic all pairs
shortest paths problem, which covers various variants and as-
pects of this problem, including exact solutions [4, 29, 26, 15,
16, 41, 42, 6], approximate solutions [5, 38, 11, 10, 20, 1, 23,
21, 22, 24], fully dynamic algorithms [29, 38, 16, 38, 9, 8, 3],
partially dynamic algorithms (i.e., only decremental or incre-
mental) [6, 5, 38, 11, 23], and special families of graphs [31,
27, 19, 2]. It is worth noting that dynamic SSSP algorithms
are a key ingredient in many of the all-pairs results mentioned
above.

1.2 Randomization in Dynamic Algorithms
The large majority of the dynamic shortest path algorithms

mentioned above are randomized, and for most dynamic short-
est path problems there is a polynomial gap between the best
randomized and deterministic algorithm. Bridging the this
randomization gap is especially important in the dynamic set-
ting because randomization almost always assumes a weaker
adversary as well. In particular, all of the randomized algo-
rithms above assume an oblivious adversary that does not have
access to the random choices made by the users. Most of them
also require the extra assumption of a non-adaptive adversary
whose updates are fixed in advance and cannot be influenced by
the queries returned by the user. These two extra assumptions
(especially the latter) render randomized algorithms entirely
unusable in certain settings.

Unfortunately, the very thing that makes randomized algo-
rithms problematic in the dynamic setting is also what gives
them their power. Consider, for illustration, a simple clustering
problem where the goal is to maintain a set of v

√
n vertices

called centers in an unweighted undirected graph, such that
all other vertices are at distance at most

√
n from one of the



centers. (We assume for simplicity that the graph is always
connected). This basic clustering tool is used in a huge num-
ber of approximate shortest path algorithms, both static and
dynamic [33, 35, 34, 7, 43, 44, 12, 13, 14, 38, 11, 23, 21]. In
the static setting, there is an obvious randomized algorithm:
sample O(

√
n log(n)) centers uniformly at random. A simple

greedy deterministic algorithm also exists in the static setting,
but in the dynamic setting, it is easy to see that an efficient
deterministic algorithm cannot exist: whatever

√
n centers

we choose, the adversary can disconnect them while leaving
the rest of graph intact, forcing us to restart from scratch.
With randomization and an oblivious adversary, however, the
problem becomes easy: once again we sample O(

√
n log(n))

centers uniformly at random. The adversary then proceeds to
change the graph, but since the updates are oblivious to our
random choices we can argue that these centers are uniformly
random in all versions of the graph, and so with high proba-
bility will form a valid clustering throughout the entire update
sequence. The extra assumption of a non-adaptive adversary
is often necessary to prevent the adversary from gaining infor-
mation about our randomly chosen centers from our answers
to whatever queries are supported by the algorithm.

Essentially every randomized algorithms for dynamic short-
est paths (all pairs or single source) uses some generalization
of the above clustering, and so is difficult to match with a de-
terministic algorithm. As far as we know the only exception is
the decremental (1 + ε)-approximate all pairs shortest path al-
gorithm with O(mn) total update time of Henzinger et al. (for
unweighted undirected graphs) [20], which is a derandomiza-
tion of the clustering-based algorithm of Roditty and Zwick [38]
that achieves the same bounds. For decremental SSSP in par-
ticular, all the approximation algorithms that break through
the O(mn) barrier rely on clustering using randomization, and
all require an oblivious non-adaptive adversary. We develop a
different approach that does not rely on any clustering scheme,
and is the first to break through the O(mn) barrier determin-
istically.

1.3 Our Results

Theorem 1.1 Given an undirected unweighted graph G sub-
ject to a sequence of edge deletions, and a fixed source s, there
exists a deterministic algorithm that maintains (1 + ε) approx-
imate distances from s to every vertex in total update time
O(m log3(n) + n2 log(n)ε−1). The query time is O(1).

We can easily extend our algorithm to work for graphs with
small positive integer weights, at the cost of multiplying the up-
date time O(W ). We can also extend our algorithm to work in
the incremental setting, where we start with an empty graph,
and the adversary inserts edges one at a time. In Section 6 we
explain the modifications needed to make our algorithm work
in the incremental case.

Finally, we can extend the algorithm to answer approximate
shortest path queries. We leave this extensions for the full
version of the paper.

Our algorithm does not match the randomized state of the
art of O(m1+o(1)), but it is optimal up to log factors for dense
graphs, and is the first deterministic algorithm to go beyond
the O(mn) barrier. In addition to being deterministic, our al-
gorithm has several secondary advantages. The first is that
is much simpler than the three randomized algorithms for the
problem [11, 23, 21]. The reason for this is that those al-

gorithms all relied on variations of the same clustering tech-
nique of Thorup and Zwick [44] which is somewhat involved,
especially in the dynamic setting. We develop an entirely dif-
ferent approach which is much simpler, and could potentially
be of use in other deterministic algorithms for dynamic short-
est paths. The simplicity also allows us to avoid the extra

mO(1/
√

log(n)) = mo(1) term incurred by all the randomized
algorithms, which again arose from the Thorup and Zwick
clustering. Thus, in addition to being deterministic, our al-
gorithm is simpler and faster than the O(n2+o(1)) of Bern-
stein and Roditty, and is in fact faster than all existing ran-
domized algorithms for the problem in dense graphs where

m = Ω(n2−1/
√

log(n)).

2. PRELIMINARIES
In our model, edges are being deleted one by one from an

unweighted undirected graph. Let G = (V,E) always re-
fer to the current version of the graph. Let m refer to the
number of edges in the original graph, and n to the num-
ber of vertices. For any pair of vertices u, v, let π(u, v) be
the shortest u − v path in G (ties can be broken arbitrar-
ily), and let dist(u, v) be the length of π(u, v). Let s be the
fixed source from which our algorithm must maintain approxi-
mate distances, and let ε refer to our approximation parameter;
when the adversary queries the distance to a vertex v, the algo-

rithm must return an approximate distance d̂ist(v) such that

dist(s, t) ≤ d̂ist(s, t) ≤ (1 + ε)dist(s, t).
Our algorithm will make use of several graphs that are dif-

ferent from G. Given any subset of vertices V ′ ⊆ V , we define
the induced graph G[V ′] to contain all the vertices V ′, and all
edges (u, v) ∈ E such that u and v are both in V ′. Given any
graph H, and any two vertices u, v in H, we define πH(s, t) to
be the shortest u−v path in H, and we define distH(s, t) to be
the length of πH(s, t). Given any two sets S, T we define the
set difference S \ T to contain all elements s such that s ∈ S
but s /∈ T .

We will measure the update time of the dynamic subroutines
used by our algorithm in terms of their total update time over
the entire sequence of edge changes. Note that although edges
in the main graph G are only being deleted, there may be edge
insertions into the auxiliary graphs used by the algorithm.

Definition 2.1 Given a graph G subject to a sequence of edge
deletions and insertions, define max-edges(G) to be the num-
ber of pairs (u, v) such that edge (u, v) is in the graph at some
point during the update sequence. Note that if the update se-
quence contains only deletions, then max-edges(G) is simply
the number of edges in the original graph.

The basic building block of almost every decremental short-
est path algorithms, including ours, is an algorithm of Even
and Shiloach from 1981 that maintains a shortest path tree up
to some depth d.

Definition 2.2 Given any number d, the function boundd(x)
is equal to x if x ≤ d, and to ∞ otherwise.

Definition 2.3 Let G be a dynamic graph subject to a se-
quence of edge insertions and deletions, let s be a fixed source,
and let d be some depth bound. Then, the algorithm ES(G, s, d)
maintains the value boundd(dist(s, v)) for every vertex v over



the entire sequence of changes to G. We refer to this as run-
ning an Even and Shiloach tree in G from source s up to depth
d.

Lemma 2.4 [18] Let G = (V,E) be a dynamic graph with pos-
itive integer weights, let s be a fixed source, and say that for
every vertex v we are guaranteed that the distance dist(s, v)
never decreases due to an edge insertion. Then, the total up-
date time of ES(G, s, d) over the entire sequence of edge up-
dates is O(m · d + ∆), where m = max-edges(G), and ∆ is
the total number of edge changes.

Remark 2.5 The typical guarantee given for the ES-tree is
that ES(G, s, d) has total update time O(md) as long as the
graph is subject to only deletions. But as pointed out in [11],
the only-deletions assumption is only necessary to guarantee
that distances do not decrease, so the same bound holds as
long as we can separately guarantee this monotonicity for the
insertions as well. The existence of insertions leads to the extra
O(∆) term because the algorithm needs to spend O(1) time per
edge change. (In the case of only deletions, we have ∆ ≤ m,
so we can ignore the ∆ term).

Corollary 2.6 If a dynamic graph G and a source s satisfy all
the assumptions of Lemma 2.4 except that weights in G are not
necessarily integral, but all the weights are positive and integer
multiples of some number x, then the total running time of
ES(G, s, d) is O(md/x+ ∆), where m = max-edges(G). (We
simply divide all weights by x and apply Lemma 2.4.)

3. HIGH LEVEL OVERVIEW
To highlight the simplicity of our approach, and to make

the technical details in the body of the paper easier to fol-
low, we start with a high level description of how to main-
tain (1 + ε)-approximate distances from a source s in total

update time Õ(n2.5), ignoring log factors that arise from some
of the technical details. We assume for this section that ε is
a fixed constant. Note that the Even and Shiloach tree of
Lemma 2.4 already provides a method for maintaining short
distances. In particular, running ES(G, s, 5

√
nε−1) only re-

quires O(m
√
n) = O(n2.5) time and maintains all distances

dist(s, v) for which dist(s, v) ≤ 5
√
nε−1.

To maintain long distances, we will sparsify the graph G.
Let us say that a vertex v ∈ V is heavy if it has degree at
least

√
n, and light otherwise. Our main observation is that

any shortest path π in G can contain at most 3
√
n heavy ver-

tices: intuitively, this is because no two heavy vertices on π
can share a common neighbor because then there would be a
very short path between them, which we could use to obtain
a path shorter than the shortest path π. (The formal proof is
only slightly complicated by the fact that two heavy vertices
on the path can share a common neighbor if the two heavy
vertices are already right next to each other on the shortest
path π; however if they are at distance 3 away from each other
in π, they cannot have a common neighbor.) Thus, since the
neighborhood of a single heavy vertex contains

√
n vertices,

and there are only n vertices in total, there can only be
√
n

heavy vertices on the shortest path π.
Since we are only concerned with vertices v for which

dist(s, v) >>
√
n, we know that the shortest path from s to v

will contain far more light vertices than heavy vertices. Thus, if
we are only seeking an approximate distance, we can effectively

ignore the heavy vertices and thus reduce the number of edges
in the graph. More specifically, our sparsification works as
follows. Let heavy be the set of heavy vertices in G, and let
G[heavy] be the subgraph of G induced by the heavy vertices.
Consider the (still unweighted) graph G′ which contains all
the edges of G, as well as an edge between all pairs of vertices
v, w such that v and w are both heavy and are in the same
connected component in G[heavy]. (Of course these connected
components will change as edges in G are deleted, but they
are easy to maintain because dynamic connectivity is easy to
do efficiently in undirected graphs.) As described, G′ in fact
contains more edges than G, but it is easy to exactly mimic
G′ with a sparse graph; include only the edges of G incident
to at least one light vertex, and then for every component C
in G[heavy] create a new vertex c in G′ and add an edge of
weight 1/2 from c to every vertex in the component C. The
resulting graph has at most O(n1.5) edges: O(

√
n) per light

vertex, and a single extra edge of weight 1/2 per heavy vertex.
Of course distances in G′ differ from those in G. In fact they

are shorter because G′ allows us to skip over whole components
of heavy vertices. But intuitively, as long as dist(s, v) is large,
distG′(s, v) will not be too much smaller than dist(s, v), be-
cause dist(s, v) is dominated by light vertices anyway, so skip-
ping over the heavy ones does not change much. In particular,
we will prove in the paper that

distG′(s, v) ≤ dist(s, v) < distG′(s, v) + 5
√
n .

Thus, as long as dist(s, v) >>
√
n, distG′(s, v) + 5

√
n will be

a good approximation to dist(s, v).
All in all, our algorithm runs two Even and Shiloach trees;

ES(G, s, 5
√
nε−1) handles short distances, while ES(G′, s, n)

handles long ones. The first part runs in time O(m
√
n) =

O(n2.5) because we have bounded depth, while the second runs
in time O(n2.5) because G′ is sparse. To answer queries for a
vertex v, the algorithm simply takes the minimum of the sub-
routine for short distances, and the subroutine for long ones.
Using these ideas it is not hard to reduce the total update time
to Õ(n2) by using O(log(n)) different heaviness thresholds to
handle O(log(n)) ranges of dist(s, v), and taking the minimum
of the O(log(n)) subroutines.

4. THE THRESHOLD GRAPH

Definition 4.1 Given a graph G and a positive integer thresh-
old τ , we say that a vertex v in G is τ -heavy if v has degree at
least τ , and we say that v is τ -light otherwise. Let heavy(τ)
be the set of all τ -heavy vertices in G; note that when we say
that a vertex v is τ -heavy or τ -light, this is always with respect
to the main graph G, never with respect to any other graph the
algorithm relies on.

Definition 4.2 Given a graph G = (V,E) with |V | = n and
|E| = m, and an integer τ ∈ [1, n], define the threshold graph
Gτ = (Vτ , Eτ ) as follows (note that although G is unweighted,
the edges in Gτ have weights 1 and 1/2):

• Vτ contains every vertex v ∈ V .

• Vτ also contains an additional vertex c for each connected
component C in the induced subgraph G[heavy(τ)].

• Eτ contains all edges incident to τ -light vertices v ∈ V .
All such edges are given weight 1.



• For every τ -heavy vertex v ∈ V , Eτ contains an edge
from v to c of weight 1/2, where c is the component ver-
tex in Vτ \ V that corresponds to the component C in
G[heavy(τ)] that contains v.

For any pair of vertices s, t ∈ V define πτ (s, t) to be the shortest
path from s to t in Gτ , and define distτ (s, t) to be the weight
of this path.

Lemma 4.3 The number of edges in the threshold graph Gτ
is always O(nτ)

Proof. This follows directly from the definition of Gτ . Eτ
contains the O(nτ) edges incident to τ -light vertices in V , as
well as a single additional edge for every τ -heavy vertex in
V .

Lemma 4.4 For any graph G = (V,E), any positive integer
threshold τ , and any pair of vertices s, t ∈ V :

distτ (s, t) ≤ dist(s, t) < distτ (s, t) +
5n

τ
.

Proof. We first show the simpler claim that distτ (s, t) ≤
dist(s, t). Consider the shortest s − t path π(s, t) ∈ G. We
will exhibit a (not necessarily simple) path Pτ (s, t) ∈ Gτ with
weight exactly dist(s, t). Pτ (s, t) contains all the edges of
π(s, t) that are incident to some τ -light vertex: these edges
have weight 1 in both G and Gτ . The only edges that remain
are edges (v, w) ∈ π(s, t) where v and w are both τ -heavy.
Since v and w are neighbors in G, they are part of the same
connected component C in G[heavy(τ)], and so Gτ contains a
path of length 1 from v to w; namely, the path (v, c)◦(c, w). We
thus replace every edge (v, w) ∈ π(s, t) with a path of length
1 in Gτ . Hence exhibiting a path Pτ (s, t) ∈ Gτ with weight
exactly dist(s, t), as needed.

We now prove that dist(s, t) ≤ distτ (s, t) + 5n
τ

. Let πτ (s, t)
be the shortest s − t path in Gτ . Let Lπτ be the set of τ -
light vertices v ∈ V

⋂
πτ (s, t). Now, let V ∗ ⊆ V be the set of

vertices containing

• All the vertices in Lπτ

• All the τ -heavy vertices in G

• All the neighbors of τ -heavy vertices in G

Let G∗ be the subgraph of G induced by V ∗. We first show
that there must exist an s − t path in G∗. We construct this
path by looking at πτ (s, t). πτ (s, t) contains edges incident to
τ -light vertices in G∗, as well as subpaths of length 2 of the
form (v, c) ◦ (c, w), where v and w are τ -heavy vertices that
are in the same connected component C in G[heavy(τ)]. The
edges on πτ (s, t) incident to light vertices exist in G∗ as well,
so we can follow those directly. For every subpath (v, c)◦(c, w),
since v and w are both in the same connected component in
G[heavy(τ)], there is a v − w path in G using only heavy
vertices, so that path is in G∗ as well. We get that there exists
an s− t path in G∗.

Now, let π∗(s, t) be the shortest s − t path in G∗. Let
dist∗(s, t) be the length of π∗(s, t). Since G∗ is a subgraph
of G, we know that dist(s, t) ≤ dist∗(s, t). We now show that

dist∗(s, t) < distτ (s, t) +
5n

τ
(1)

which completes the proof of Lemma 4.4. Let X∗ contain all
vertices in π∗(s, t) that are NOT in Lπτ : observe that by defi-
nition of V ∗, every vertex v ∈ X∗ is either τ -heavy, or adjacent
in G∗ to a τ -heavy vertex. Note that dist∗(s, t) ≤ |Lπτ |+|X∗|,
while distτ (s, t) ≥ |Lπτ | because all the vertices in Lπτ are on
πτ (s, t). Thus, to prove Inequality 1, it suffices to show that

|X∗| < 5n

τ
. (2)

Let Y ∗ be the set containing every 5th vertex in X∗: that
is, Y ∗ contains the vertex in X∗ that is closest to s in G∗, the
one that is 6th closest to s, the one that is 11th closest to s,
and so on. Clearly, |Y ∗| ≥ |X∗|/5. We complete the proof of
Equation 2, and hence of Lemma 4.4 as a whole, by arguing
that

|Y ∗| < n

τ
. (3)

To prove Equation 3 above, for any vertex v ∈ Vτ we de-
fine ball(G∗, v, 2) ⊆ V ∗ to be the set containing v itself, the
neighbors of v in G∗, and all vertices at distance 2 from v in
G∗. Now, on the one hand, for every v ∈ Y ∗ we have that
|ball(G∗, v, 2)| > τ because since v ∈ Y ∗ ⊂ X∗ we know that
v is either itself τ -heavy or adjacent in G∗ to a τ -heavy ver-
tex, and so ball(G∗, v, 2) must contain that τ -heavy vertex
as well as its ≥ τ neighbors. On the other hand, if v and w
are both in Y ∗ then ball(G∗, v, 2) and ball(G∗, w, 2) must
be disjoint because otherwise there would be a path of length
at most 4 between v and w in G∗, which contradicts the fact
that the subpath of the shortest path π∗(s, t) between v and
w is of length at least 5. Thus, the total number of vertices
among all of the ball(G∗, v, 2) for v ∈ Y ∗ is strictly greater
than τ |Y ∗|, but since there are only n vertices in the graph,
we have |Y ∗| < n/τ , as desired.

Now that we have shown that distances in Gτ are a close
approximation to those in G, we show that these distances, as
well as the graph Gτ itself, can be easily maintained.

Lemma 4.5 Given a graph G subject to a sequence of edge
deletions, and a positive integer threshold τ , we can maintain
the graph Gτ in total time O(m log2(n)).
Moreover, max-edges(Gτ ) = O(nτ + n log(n)).

Proof. Gτ contains two types of edges: those incident to τ -
light vertices, and those from a τ -heavy vertex to its component
vertex c. The first types of edges are trivial to maintain, since
they are simply a subset of the edges in G; when a deletion
causes a τ -heavy vertex to become τ -light we must add all of its
incident O(τ) edges to Gτ , but this transition can only happen
a single time per vertex over the entire sequence of deletions
because vertex degrees are only decreasing. This first type of
edges thus requires O(m) time to maintain, and only leads to
O(min {nτ,m}) edge insertions into Gτ .

We now show how to maintain the edge from each τ -heavy
vertex v to its component vertex c, where c corresponds to the
connected component C in G[heavy(τ)] that contains v. First
off, note that G[heavy(τ)] itself is easy to maintain because it
is simply a subgraph of G. We can maintain connected com-
ponents in G[heavy(τ)] by using a dynamic connectivity data
structure (CDS) on the graph G[heavy(τ)]. We use the CDS
of Holm et al.[28], which is based on top trees. This CDS can
process insertions and deletions into the graph with amortized
update time of O(log2(n)). It is not hard to check that the top



trees used by their algorithm can be augmented to support
more than just basic connectivity queries. In particular, their
CDS can answer the following queries:

• connected(u,v): determines whether u and v are in the
same connected component in the current graph. The
query time is O(log(n)).

• size(v): returns the size of the connected component of
v. The query time is O(log(n)).

• component(v): Returns a list of all the vertices in
the same connected component as v. The query time
is O(log(n) + number of vertices returned).

To maintain the graph Gτ as G changes, we will run the above
CDS on the graph G[heavy(τ)]. Note that G[heavy(τ)], like
G, is only subject to edge deletions. When the adversary
deletes an edge (u, v) in G where both u and v are τ -heavy,
this edge must be deleted from G[heavy(τ)] as well, and this
deletion is processed by the CDS in time O(log2(n)). Similarly,
when a vertex v ∈ V transitions from τ -heavy to τ -light, all of
its incident edges must be deleted from G[heavy(τ)], and pro-
cessed by the CDS. Each edge is deleted from G[heavy(τ)] at
most once, so the total update time of the CDS isO(m log2(n)).

We must now show how to use the connectivity informa-
tion maintained by the CDS to maintain the graph Gτ ; in
particular, how to maintain the edges from a τ -heavy ver-
tex to its component vertex C. Whenever an edge (u, v) ∈
G[heavy(τ)] is deleted, we first query the CDS in O(log(n))
time to check whether u and v are still part of the same con-
nected component in G[heavy(τ)]; if yes, the edges of Gτ do
not change, and we are done. Otherwise, the deletion of (u, v)
has caused the component to split into two. We now query
CDS.size(u) and CDS.size(v) to determine in O(log(n)) time
which of the two parts is smaller. Say, wlog, that CDS.size(v)
≤ CDS.size(u). Let C be the original component that con-
tained both u and v before the deletion of (u, v). Let Cv
be the component containing v after the deletion. We can
use CDS.component(v) to find all the vertices in Cv in time
O(log(n) + |Cv|). Before the deletion, Gτ contained an edge
from every vertex in C to the component vertex c ∈ Vτ \ V .
After the deletion, we add a new component vertex cv to Gτ ,
and for every w ∈ Cv we remove the edge (w, c) and add the
edge (w, cv). This takes time O(|Cv|) and makes O(|Cv|) edge
changes to G[heavy(τ)]. Amortized over all edge deletions
in G[heavy(τ)] we have

∑
|Cv| ≤ n log(n) because edges in

G[heavy(τ)] are only being deleted, so components are only
splitting apart, and each time a vertex w is part of the smaller
component Cv in a component split, we know that its compo-
nent has shrunk by a factor of at least two.

Thus, the total time to process a deletion in G[heavy(τ)] is
dominated by the O(log2(n)) update time of the CDS, yielding
the desired O(m log2(n)) total update time. Moreover, from
the bounds above, we see that at most O(nτ + n log(n)) edges
are inserted into the graph; O(nτ) of the first type (edges
incident to a τ -light vertex), and O(n log(n)) of the second
(edges from a τ -heavy vertex to its component vertex c). By
Lemma 4.3, the number of edges in the initial Gτ is O(nτ), so
max-edges(Gτ ) = O(nτ + n log(n)).

Lemma 4.6 Given a graph G subject to a sequence of edge
deletions, a positive integer threshold τ , and a pair of vertices

u, v in G, the distance distτ (u, v) never decreases as edges in
G are deleted.

Proof. Say that the adversary deleted edge (x, y) in G.
Note that any path in Gτ consists of a concatenation of sub-
paths of length 1 between vertices in V ; each subpath is either
an edge of weight 1 incident to a τ -light vertex, or two edges
of weight 1/2 through a component vertex c ∈ Vτ \ V . Thus,
to show that distances in Gτ do not decrease, we show that
for any pair of vertices a, b ∈ V such that distτ (a, b) = 1 after
the deletion of (x, y), we also had distτ (a, b) = 1 before the
deletion of (x, y). We know that distτ (a, b) = 1 after the dele-
tion if and only if edge (a, b) is in E, AND/OR a and b are in
the same connected component in G[heavy(τ)]. But either of
these cases would clearly hold before the deletion of an edge
as well, so we had distτ (a, b) = 1 before the deletion.

Lemma 4.7 Given a graph G = (V,E) subject to a sequence
of deletions, a fixed source s, a positive integer threshold τ , and
a depth bound d, we can maintain the distance
boundd(distτ (s, v)) for all vertices v in a total update time of
O(m log2(n) + n · d · (τ + log(n)).

Proof. We simply maintain the graph Gτ as edges in G are
deleted, and run ES(Gτ , s, d) (See Definition 2.3). By Lemma
4.5, we can maintain the graphGτ in timeO(m log2(n)). More-
over, by Lemma 4.5 we have max-edges(Gτ ) = O(nτ+n log(n)).
This bound on max-edges(Gτ ) implies that the total number
of changes made to Gτ is ∆ = O(nτ + n log(n)). By Lemma
4.6 distances in Gτ never decrease, and all weights in Gτ are
either 1/2 or 1, so by Lemma 2.4 and Corollary 2.6, the to-
tal running time of the ES-tree is O(max-edges(Gτ ) · d+ ∆),
which is O(n · d · (τ + log(n))).

5. THE DECREMENTAL SSSP ALGORITHM
Our goal is to maintain approximate distances from a fixed

source s. For every integer i ∈ [1, blog(n)c], let τi = n
2i

, let

di = 2i · 10
ε

, and for every vertex v let

d̂isti(v) = bounddi(distτi(s, v))

Let d̂ist(v) = mini{d̂isti(v) + 5 · 2i}. When the adversary

queries the distance to a vertex v, our algorithm returns d̂ist(v).
The execution of the algorithm is simple. By Lemma 4.7,

for any i we maintain d̂isti(v) for all vertices v in total up-
date time O(m log2(n) + n · di · (τi + log(n)) = O(m log2(n) +
n2ε−1 + n log(n)di). Doing this for every i yields total update
time O(m log3(n) + n2 log(n)ε−1) because

∑
i di = O(nε−1).

To maintain all the d̂ist(v), for each vertex v we create a min-

heap heapv containing d̂isti(v) for every i. The algorithm can

access any d̂ist(v) in O(1) time by looking at the minimum
of the heap, thus leading to an O(1) query time. Maintain-

ing the heaps is easy: each d̂isti(v) can change at most di =
O(2iε−1) times, so there will be at most

∑
i di = nε−1 changes

to each heapv, and since each heap contain O(log(n)) ele-
ments, a change requires O(log log(n)) time to process. Main-
taining heapv for all v thus requires total update time only
O(n2 log log(n)ε−1).

We now turn to proving that for any vertex v, dist(s, v) ≤
d̂ist(s, v) ≤ (1+ε)dist(s, v). The fact that dist(s, v) ≤ d̂ist(s, v)



follows directly from Lemma 4.4, because for every i

dist(s, v) ≤ distτi(s, v) +
5n

τi

≤ d̂isti(s, v) +
5n

τi

= d̂isti(s, v) + 5 · 2i .

To prove that d̂ist(s, v) ≤ (1 + ε)dist(s, v), we need to show

that for some i, we have d̂isti(s, v) + 5 · 2i ≤ (1 + ε)dist(s, v).
Let k be the largest index for which dist(s, v) ≥ 2k · 5

ε
, so

2k · 10

ε
≥ dist(s, v) ≥ 2k · 5

ε
. (4)

Now, by Lemma 4.4, distτk (s, v) ≤ dist(s, v) ≤ 2k · 10
ε

= dk,
so we have

d̂istk(s, v) = bounddk (distτk (s, v)) = distτk (s, v) ≤ dist(s, v) .

Thus,

d̂istk(s, v) + 5 · 2k ≤ dist(s, v) + 5 · 2k ≤ (1 + ε)dist(s, v) .

(The last inequality follows from dist(s, v) ≥ 2k · 5
ε

in Equation
4.)

6. THE INCREMENTAL SSSP ALGORITHM
In this section we sketch the modifications needed to make

our algorithm incremental rather than decremental.
We first remind the reader that the Even-Shiloach algorithm

works with the same bounds in the incremental setting. That
is, Lemma 2.4 can be formulated as follows. Given a dynamic
graph G = (V,E) with positive integer weights, and s is a
fixed source, and say that for every vertex v we are guar-
anteed that the distance dist(s, v) never increases due to an
edge deletions. Then, the total update time of ES(G, s, d)
over the entire sequence of edge updates is O(m · d + ∆),
where m = max-edges(G), and ∆ is the total number of edge
changes.

In our incremental algorithm we invoke the incremental ver-
sion of the Even-Shiloach algorithm described above. We will
therefore need to make sure that distances never increases dur-
ing edge deletions.

Similarly to the decremental case, we maintain the threshold
graph Gτ described in Section 4. The only difference is that
we need to maintain Gτ incrementally. Initially the graph is
empty and all nodes are τ -light. As edges are added to G, some
of these nodes may become τ -heavy (note that once a node
becomes τ -heavy it will always remain τ -heavy as edges may
only be added to G). We maintain the connected components
of the τ -heavy nodes using again the result of Holm et al.[28]
that works also in the incremental settings (with the same time
bounds).

The graph Gτ is the same as in the decremental algorithm:
for every connected component C in G[heavy], Gτ contains a
new node c that corresponds to this heavy connected compo-
nent, with edges of weight 1/2 from c to every vertex in C. As
new nodes in G become τ -heavy, components in G[heavy] can
merge; once two connected components in G[heavy] merge,
their corresponding nodes c and c′ are also merged by pick-
ing the smaller connected component, say c′, and replacing all
edges (c′, v) with edges (c, v). Similarly to the analysis in Sec-
tion 4 a node may belong to the smaller component at most
logn times.

Since we maintain exactly the same threshold graph Gτ as in
Section 4, the rest of the algorithm and correctness is identical
to the decremental case. Moreover, using arguments analogous
to those in Lemma 4.6, it is not hard to see that distances in
Gτ never increase. Using the same analysis in the decremental
case, we get that the asymptotic bound of the total update
time of our incremental algorithm is the same as that of the
decremental one.

7. CONCLUSIONS
In this paper we present the first deterministic decremental

SSSP algorithm that goes beyond the Even-Shiloach bound of
O(mn) total update time. More precisely, we introduce a sim-
ple deterministic decremental SSSP algorithm for unweighted
and undirected graphs with stretch 1+ε and total update time

of Õ(n2). For dense instances where m = Ω(n2−1/
√

log(n)),
our algorithm is also faster than all existing randomized algo-
rithms.

We leave a couple of important open questions. The first is
whether a deterministic algorithm can go beyond O(n2) total
update time bound for sparse graphs. Or even more ambi-
tiously, can we get the total update time all the way down to
near linear, thus matching the randomized state of the art of
Henzinger, Krinninger and Nanongkai [23]?

The second question is whether there exist better deter-
ministic algorithms for decremental SSSP in weighted undi-
rected graphs, where an update can either delete an edge or
increase an edge weight. For exact distances, the state of the
art is still the Even and Shiloach algorithm, which has to-
tal update time O(mnW ). Bernstein [9] showed that if we
allow a (1 + ε) approximation we can use scaling to reduce
this to O(mn log(W )). In this paper we achieve O(n2W ): can
we bring this down to O(n2 log(W ))? (For randomized algo-
rithms, Henzinger et al achieve a close to optimal update time
of O(m1+o(1) log(W )).)

Thirdly, is there a deterministic algorithm that goes beyond
the O(mn) total update time in directed unweighted graphs?
Note that all three of the open problems above have no known
solution even when we allow a large constant approximation
ratio.

Finally, many dynamic shortest paths algorithms of all va-
rieties are randomized and assume a non-adaptive oblivious
adversary; a natural open question is to derandomize these al-
gorithms. For example, all the decremental approximate APSP
algorithms with total update time less than O(mn) are ran-
domized (e.g., [8, 38, 20, 1, 3]). In fact, as far as we know
it is not known how to achieve a decremental dynamic APSP
algorithm with less than O(mn) total update time with any
constant approximation. Showing such an algorithm or prov-
ing impossibility results is a very challenging and interesting
open problem.
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