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Convex optimization

» Convex optimization is everywhere
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Tradeoff between generality and scalability

General Solver (CVX)

begin
variable x(3);
minimize(norm(A*x - b, 1))
subject to

x >= 0;

x <= 1;
end

Simple
Easy to use
BUT...

Slow (O(n?) without sparsity)

Cannot scale to large problems

Tradeoff that everyone has to make

Problem-Specific Solver

CATASTROPHIC ERROR

User attempted to use program in the manner
program was meant to be used

Options:
1) Erase computer

2) Weep

» Fast
Efficient
BUT...

Large resource/time investment
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Limited to one specific problem

— General solvers don't scale; scalable solvers aren’t general
Introduction



Networks

» Large problems can often be represented as a network

— Nodes - series of subproblems
— Edges - relationships that define the coupling between the different
nodes (entities)

» Examples: cyber-physical, social, financial transactions, ...

Introduction



Our contributions

» Formally define the network lasso, a specific class of optimization
problems on networks

> Develop a scalable method for solving problems of this form

» Show that many common and useful problems can be formulated as
an instance of the network lasso

— Focus on housing price prediction and network-enhanced
classification

Introduction



Related work

> Special case of some methods and a generalization of others

Convex Optimization

Network Lasso

> Special type of Bayesian inference where we learn a set of models or
dependencies based on latent clustering
» Many network lasso problems can be rewritten probabilistically

— Two different ways to think of similar problems
Related Work



Related work (cont’d)

» Instances of the network lasso

— Convex clustering (Hocking et al. 2011)
— Fused lasso (Tibshirani et al. 2005)
— Total variation (Yang et al. 2013)

» Probabilistic Graphical Models (PGMs)

— Latent variable mixture models (Muthen 2001)
— Hinge-Loss MRFs with ADMM (Bach et al. 2013)

» Splitting and decomposition

— Proximal algorithms (Parikh et al. 2014)
— Alternating direction method of multipliers (Boyd et al. 2011)
— Optimization decomposition (Chiang et al. 2007)

Related Work



Application — housing price prediction

> The old way: linear regression

— Use the same feature weights for every house in the dataset

» Problems with linear regression

> We instead want to cluster the houses into “neighborhoods” that
share a common model



Using the network lasso

» Build a housing network where neighboring houses (nodes) are
connected by edges
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» Each house solves for its own regression parameters

» Network lasso penalty encourages nearby houses to cluster together
and share a common model

— Lets the data empirically determine the neighborhoods



Network lasso

» Undirected graph G = (V, £) with m nodes, n edges

» Solve for a set of variables x; € R? i = 1,...,m, one per node

minimize > fi(zi) + A > wikllz; — k2
i€V (5,k)e€
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What does it mean?

minimize > fi(w;) + A Y0 wykllw; — wxll2
i€y (5,k)e€

> fi(x;) is the (convex) cost function at node i

» x;: possible examples

— Housing: Parameter weights in regression model
— Optimal actions to undertake in a control system

> fi

— Housing: How well the regression parameters fit the actual price
— -1 X expected profit
— Fuel usage

Problem Setup
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What does it mean?

minimize > fi(z:) + A > wikllz; — xklle
i€V (5,k)e€
> The edge between nodes j and k has weight Aw;y,

— wji, sets the relative weights among the edges of the network
— A scales the edge objectives relative to the node objectives f;

» Edge objective penalizes differences between the variables at
adjacent nodes

— {o-norm of the difference

Problem Setup
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Network lasso penalty

minimize > fi(x;) + A > wikllz; — k2
% (5,k)e€
» Not Laplacian regularization!

— Incentivizes edge differences to be exactly zero (i.e. not just
x; &~ X, but z; = k)

» When many edges are in consensus, the nodes are clustered into sets
with equal values of x

— Houses share the exact same regression weights

» The network lasso problem can be thought of as simultaneous
clustering and optimization

Problem Setup
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Regularization path

minimize > fi(x;) + A > wiklle; — k2
eV (G k)EE

» Varying X can yield insight into the network structure

— Cross-validation
» At A =0, the edges have no effect

> For A > Aipitical, it turns into the consensus problem

minimize > fi(x)

%

where the solution x is common to every node

Problem Setup

14



Alternating direction method of multipliers (ADMM)

» For large graphs, standard (centralized) solvers cannot scale

» Alternating direction method of multipliers (ADMM) splits the
problem up into a series of subproblems

— Parallelizable
— Scalable

» Each component (node/edge) solves its own private objective
function, passes this solution on to its neighbors, and repeats

» Without any global coordination, the entire network converges to
the optimal solution!

— Works for any convex f;, z;

Problem Setup
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Experiments

» Scale our ADMM implementation to very large problems

— Code and solver available at http://snap.stanford.edu/snapvx

» We see how the network lasso can be used to model many common
examples

— Compare accuracy/performance to baselines

Results
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http://snap.stanford.edu/snapvx

Scalability

» ADMM can solve for 100 million variables in under 14 minutes!

106 Convergence Time vs. Problem Size

Central;
ADMM
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Time (Seconds) for Entire Regularization Path
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10° 10" 10° 10°
Number of Unknowns

Number of Unknowns ADMM Convergence (seconds)

100,000 12.20
1 million 18.16
10 million 128.98
100 million 822.62

Results
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Housing

» Use network lasso to empirically find housing neighborhoods

» Compute mean squared error of sales price on test set

» Regularization path endpoints are important baselines

0.90

MSE

Housing

Method MSE
Geographic (A = 0) 0.6013
Linear Regression (A > Acritical)  0.8611
Naive Prediction (Global Mean)  1.0245
Network Lasso 0.4630
18



Regularization path heat map: \ = 0.1

> )\ too small!
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Regularization path: A\ =1

> Still too small...
> ...but houses are starting to group together

Housing
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» Much better!

Housing

A =10
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A =100

» Now it's too large...
» The network lasso pulls together clusters which are actually quite
different

Housing
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Network-enhanced classifier

» Support vector machine (SVM) at each node

— Given an input = € R%, predict an output y € {—1,1}

» However, individual nodes have insufficient information to properly
classify new inputs

» Borrow statistical power from the network (nearby nodes) to
improve prediction accuracy

— Assumption: neighboring nodes often have similar (or the same)
underlying classifier

» Example: music preferences in a social network

Support Vector Machine
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Training set

» Each node has very few training examples (known (z,y)-pairs)

> In higher dimensions, the uncertainty becomes even more significant

— 50-dimensional data with only 25 training examples!

Support Vector Machine
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Network effect

» Where can we find more data?

— If we use training examples from our relevant neighbors, we can
improve our own classifier

— But how do we know who our relevant neighbors are? Use the
network lasso!

vy

Support Vector Machine
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Regularization path

» X = 0: Each node does not have enough data, so there is
uncertainty in our classifier

> X\ > Auitical: All the nodes will be clumped together and averaged
into one uniform classifier

> We calculate the regularization path and evaluate performance on a
separate test set to choose a good A

Support Vector Machine
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SVM results
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Method Prediction Accuracy
Local SVM (A =0) 65.9%
Global SVM (X > Acritical) 57.1%
Network Lasso 86.7%

Support Vector Machine



Additional Applications

» Event detection in time series data

“Break oft”
(] ()
Tuesday Tuesday A
@ 3:00 @ 3:30 @ 5:3

» ...and many more! (Image denoising, financial modeling, etc...)

Support Vector Machine
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Summary

v

The network lasso

v

A computationally tractable method of leveraging network data

v

Fast, scalable, and robust

» The same setup can solve a variety of different problems

v

Solver available at http://snap.stanford.edu/snapvx

Next Steps
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http://snap.stanford.edu/snapvx

Thanks for listening!

v

Website: http://www.stanford.edu/~hallac

v

Code and Solver: http://snap.stanford.edu/snapvx

v

Acknowledgements: Tim Althoff, Stephen Bach, Trevor Hastie,
Christopher Ré, Rok Sosi¢
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Questions?

Next Steps

30


http://www.stanford.edu/~hallac
http://snap.stanford.edu/snapvx

	Introduction
	Related Work
	Problem Setup
	Results
	Housing
	Support Vector Machine
	Next Steps

