Network Lasso: Clustering and Optimization in Large Graphs

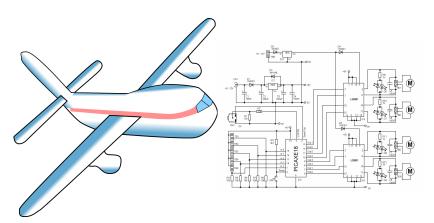
David Hallac, Jure Leskovec, Stephen Boyd

Stanford University

September 28, 2015

Convex optimization

► Convex optimization is everywhere



Introduction

Tradeoff between generality and scalability

General Solver (CVX)

- ► Simple
- Easy to use
- ▶ BUT...
- ▶ Slow $(O(n^3)$ without sparsity)
- Cannot scale to large problems

Problem-Specific Solver

- Fast
- Efficient
- ▶ BUT...
- ► Large resource/time investment
- ▶ Limited to one specific problem
- Tradeoff that everyone has to make
 - General solvers don't scale; scalable solvers aren't general

Networks

- ▶ Large problems can often be represented as a network
 - Nodes series of subproblems
 - Edges relationships that define the coupling between the different nodes (entities)
- Examples: cyber-physical, social, financial transactions, . . .

Introduction 4

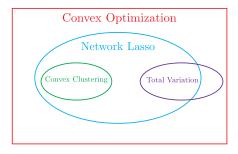
Our contributions

- ► Formally define the **network lasso**, a specific class of optimization problems on networks
- Develop a scalable method for solving problems of this form
- Show that many common and useful problems can be formulated as an instance of the network lasso
 - Focus on housing price prediction and network-enhanced classification

Introduction 5

Related work

Special case of some methods and a generalization of others



- Special type of Bayesian inference where we learn a set of models or dependencies based on latent clustering
- Many network lasso problems can be rewritten probabilistically
 - Two different ways to think of similar problems

Related work (cont'd)

- Instances of the network lasso
 - Convex clustering (Hocking et al. 2011)
 - Fused lasso (Tibshirani et al. 2005)
 - Total variation (Yang et al. 2013)
- Probabilistic Graphical Models (PGMs)
 - Latent variable mixture models (Muthen 2001)
 - Hinge-Loss MRFs with ADMM (Bach et al. 2013)
- Splitting and decomposition
 - Proximal algorithms (Parikh et al. 2014)
 - Alternating direction method of multipliers (Boyd et al. 2011)

- Optimization decomposition (Chiang et al. 2007)

Related Work 7

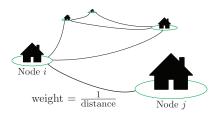
Application — housing price prediction

- ► The old way: linear regression
 - Use the same feature weights for every house in the dataset
- ▶ Problems with linear regression

We instead want to cluster the houses into "neighborhoods" that share a common model

Using the network lasso

 Build a housing network where neighboring houses (nodes) are connected by edges



- Each house solves for its own regression parameters
- Network lasso penalty encourages nearby houses to cluster together and share a common model
 - Lets the data empirically determine the neighborhoods

Network lasso

- ▶ Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with m nodes, n edges
- ▶ Solve for a set of variables $x_i \in \mathbf{R}^p, i = 1, ..., m$, one per node

minimize
$$\sum_{i \in \mathcal{V}} f_i(x_i) + \lambda \sum_{(j,k) \in \mathcal{E}} w_{jk} \|x_j - x_k\|_2$$

 $\lambda \geq 0$, $w_{jk} \geq 0$

What does it mean?

minimize
$$\sum_{i \in \mathcal{V}} f_i(x_i) + \lambda \sum_{(j,k) \in \mathcal{E}} w_{jk} \|x_j - x_k\|_2$$

- $f_i(x_i)$ is the (convex) cost function at node i
- \triangleright x_i : possible examples
 - Housing: Parameter weights in regression model
 - Optimal actions to undertake in a control system
- $ightharpoonup f_i$
 - Housing: How well the regression parameters fit the actual price
 - -1 imes expected profit
 - Fuel usage

What does it mean?

minimize
$$\sum_{i \in \mathcal{V}} f_i(x_i) + \lambda \sum_{(j,k) \in \mathcal{E}} w_{jk} \|x_j - x_k\|_2$$

- ▶ The edge between nodes j and k has weight λw_{jk}
 - w_{jk} sets the relative weights among the edges of the network
 - λ scales the edge objectives relative to the node objectives f_i
- Edge objective penalizes differences between the variables at adjacent nodes
 - ℓ_2 -norm of the difference

Network lasso penalty

minimize
$$\sum_{i \in \mathcal{V}} f_i(x_i) + \lambda \sum_{(j,k) \in \mathcal{E}} w_{jk} \|x_j - x_k\|_2$$

- ► Not Laplacian regularization!
 - Incentivizes edge differences to be *exactly* zero (i.e. not just $x_j \approx x_k$, but $x_j = x_k$)
- lacktriangle When many edges are in consensus, the nodes are clustered into sets with equal values of x
 - Houses share the exact same regression weights
- ► The network lasso problem can be thought of as simultaneous clustering and optimization

Problem Setup 13

Regularization path

minimize
$$\sum_{i \in \mathcal{V}} f_i(x_i) + \frac{\lambda}{\lambda} \sum_{(j,k) \in \mathcal{E}} w_{jk} \|x_j - x_k\|_2$$

- \blacktriangleright Varying λ can yield insight into the network structure
 - Cross-validation
- ▶ At $\lambda = 0$, the edges have no effect
- ▶ For $\lambda > \lambda_{critical}$, it turns into the consensus problem

$$\mathsf{minimize} \quad \textstyle\sum_{i \in \mathcal{V}} f_i(x)$$

where the solution x is common to every node

Alternating direction method of multipliers (ADMM)

- For large graphs, standard (centralized) solvers cannot scale
- Alternating direction method of multipliers (ADMM) splits the problem up into a series of subproblems
 - Parallelizable
 - Scalable
- Each component (node/edge) solves its own private objective function, passes this solution on to its neighbors, and repeats
- Without any global coordination, the entire network converges to the optimal solution!
 - Works for **any** convex f_i , x_i

Problem Setup 15

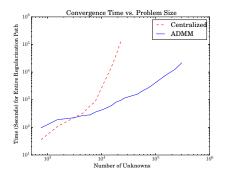
Experiments

- ► Scale our ADMM implementation to very large problems
 - Code and solver available at http://snap.stanford.edu/snapvx
- ► We see how the network lasso can be used to model many common examples
 - Compare accuracy/performance to baselines

Results 16

Scalability

▶ ADMM can solve for 100 million variables in under 14 minutes!

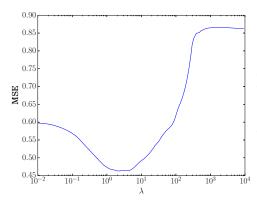


Number of Unknowns	ADMM Convergence (seconds)
100,000	12.20
1 million	18.16
10 million	128.98
100 million	822.62

Results 17

Housing

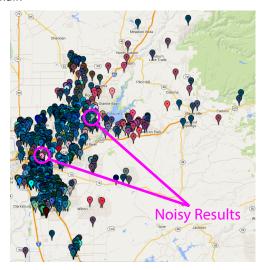
- Use network lasso to empirically find housing neighborhoods
- Compute mean squared error of sales price on test set
- ▶ Regularization path endpoints are important baselines



Method	MSE
Geographic ($\lambda = 0$)	0.6013
Linear Regression ($\lambda \geq \lambda_{critical}$)	0.8611
Naive Prediction (Global Mean)	1.0245
Network Lasso	0.4630

Regularization path heat map: $\lambda = 0.1$

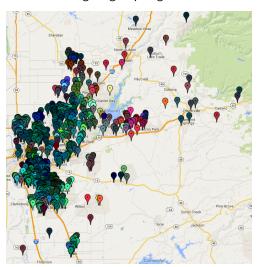
 \triangleright λ too small!



Housing 19

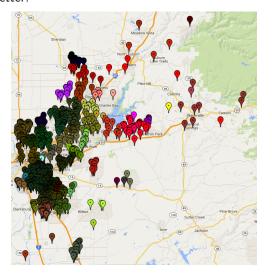
Regularization path: $\lambda = 1$

- ▶ Still too small...
- ...but houses are starting to group together



$$\lambda = 10$$

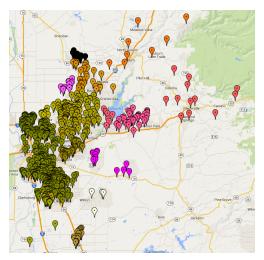
► Much better!



Housing 21

$\lambda = 100$

- ▶ Now it's too large...
- ► The network lasso pulls together clusters which are actually quite different



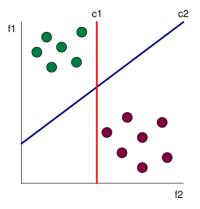
Housing

Network-enhanced classifier

- Support vector machine (SVM) at each node
 - Given an input $x \in \mathbf{R}^{50}$, predict an output $y \in \{-1, 1\}$
- However, individual nodes have insufficient information to properly classify new inputs
- Borrow statistical power from the network (nearby nodes) to improve prediction accuracy
 - Assumption: neighboring nodes often have similar (or the same) underlying classifier
- Example: music preferences in a social network

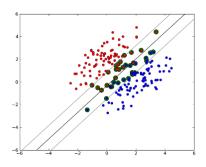
Training set

- ▶ Each node has very few training examples (known (x, y)-pairs)
- ▶ In higher dimensions, the uncertainty becomes even more significant
 - 50-dimensional data with only 25 training examples!



Network effect

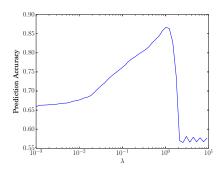
- ▶ Where can we find more data?
 - If we use training examples from our relevant neighbors, we can improve our own classifier
 - But how do we know who our relevant neighbors are? Use the network lasso!



Regularization path

- $ightharpoonup \lambda = 0$: Each node does not have enough data, so there is uncertainty in our classifier
- $\lambda > \lambda_{
 m critical}$: All the nodes will be clumped together and averaged into one uniform classifier
- \blacktriangleright We calculate the regularization path and evaluate performance on a separate test set to choose a good λ

SVM results



Method	Prediction Accuracy
Local SVM ($\lambda = 0$)	65.9%
Global SVM ($\lambda \geq \lambda_{\text{critical}}$)	57.1%
Network Lasso	86.7%

Additional Applications

Event detection in time series data

...and many more! (Image denoising, financial modeling, etc...)

Summary

- ▶ The network lasso
- ► A computationally tractable method of leveraging network data
- ► Fast, scalable, and robust
- ▶ The same setup can solve a variety of different problems
- ► Solver available at http://snap.stanford.edu/snapvx

Next Steps 29

Thanks for listening!

- ▶ Website: http://www.stanford.edu/~hallac
- ► Code and Solver: http://snap.stanford.edu/snapvx
- Acknowledgements: Tim Althoff, Stephen Bach, Trevor Hastie, Christopher Ré, Rok Sosič

Questions?

Next Steps 30