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Convex optimization

I Convex optimization is everywhere
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Tradeoff between generality and scalability

General Solver (CVX)

I Simple

I Easy to use

I BUT...

I Slow (O(n3) without sparsity)

I Cannot scale to large problems

Problem-Specific Solver

I Fast

I Efficient

I BUT...

I Large resource/time investment

I Limited to one specific problem

I Tradeoff that everyone has to make

– General solvers don’t scale; scalable solvers aren’t general
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Networks

I Large problems can often be represented as a network

– Nodes - series of subproblems
– Edges - relationships that define the coupling between the different

nodes (entities)

I Examples: cyber-physical, social, financial transactions, . . .
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Our contributions

I Formally define the network lasso, a specific class of optimization
problems on networks

I Develop a scalable method for solving problems of this form

I Show that many common and useful problems can be formulated as
an instance of the network lasso

– Focus on housing price prediction and network-enhanced
classification
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Related work

I Special case of some methods and a generalization of others

I Special type of Bayesian inference where we learn a set of models or
dependencies based on latent clustering

I Many network lasso problems can be rewritten probabilistically

– Two different ways to think of similar problems
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Related work (cont’d)

I Instances of the network lasso

– Convex clustering (Hocking et al. 2011)
– Fused lasso (Tibshirani et al. 2005)
– Total variation (Yang et al. 2013)

I Probabilistic Graphical Models (PGMs)

– Latent variable mixture models (Muthen 2001)
– Hinge-Loss MRFs with ADMM (Bach et al. 2013)

I Splitting and decomposition

– Proximal algorithms (Parikh et al. 2014)
– Alternating direction method of multipliers (Boyd et al. 2011)
– Optimization decomposition (Chiang et al. 2007)
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Application — housing price prediction

I The old way: linear regression

– Use the same feature weights for every house in the dataset

I Problems with linear regression

I We instead want to cluster the houses into “neighborhoods” that
share a common model 8



Using the network lasso

I Build a housing network where neighboring houses (nodes) are
connected by edges

I Each house solves for its own regression parameters

I Network lasso penalty encourages nearby houses to cluster together
and share a common model

– Lets the data empirically determine the neighborhoods
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Network lasso

I Undirected graph G = (V, E) with m nodes, n edges

I Solve for a set of variables xi ∈ Rp, i = 1, . . . ,m, one per node

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2

I λ ≥ 0, wjk ≥ 0
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What does it mean?

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2

I fi(xi) is the (convex) cost function at node i

I xi: possible examples

– Housing: Parameter weights in regression model
– Optimal actions to undertake in a control system

I fi

– Housing: How well the regression parameters fit the actual price
– -1 × expected profit
– Fuel usage
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What does it mean?

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2

I The edge between nodes j and k has weight λwjk

– wjk sets the relative weights among the edges of the network
– λ scales the edge objectives relative to the node objectives fi

I Edge objective penalizes differences between the variables at
adjacent nodes

– `2-norm of the difference
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Network lasso penalty

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2

I Not Laplacian regularization!

– Incentivizes edge differences to be exactly zero (i.e. not just
xj ≈ xk, but xj = xk)

I When many edges are in consensus, the nodes are clustered into sets
with equal values of x

– Houses share the exact same regression weights

I The network lasso problem can be thought of as simultaneous
clustering and optimization
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Regularization path

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2

I Varying λ can yield insight into the network structure

– Cross-validation

I At λ = 0, the edges have no effect

I For λ > λcritical, it turns into the consensus problem

minimize
∑
i∈V

fi(x)

where the solution x is common to every node
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Alternating direction method of multipliers (ADMM)

I For large graphs, standard (centralized) solvers cannot scale

I Alternating direction method of multipliers (ADMM) splits the
problem up into a series of subproblems

– Parallelizable
– Scalable

I Each component (node/edge) solves its own private objective
function, passes this solution on to its neighbors, and repeats

I Without any global coordination, the entire network converges to
the optimal solution!

– Works for any convex fi, xi
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Experiments

I Scale our ADMM implementation to very large problems

– Code and solver available at http://snap.stanford.edu/snapvx

I We see how the network lasso can be used to model many common
examples

– Compare accuracy/performance to baselines
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Scalability

I ADMM can solve for 100 million variables in under 14 minutes!
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Convergence Time vs. Problem Size

Centralized
ADMM

Number of Unknowns ADMM Convergence (seconds)
100,000 12.20
1 million 18.16
10 million 128.98
100 million 822.62
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Housing

I Use network lasso to empirically find housing neighborhoods

I Compute mean squared error of sales price on test set

I Regularization path endpoints are important baselines
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Method MSE
Geographic (λ = 0) 0.6013
Linear Regression (λ ≥ λcritical) 0.8611
Naive Prediction (Global Mean) 1.0245
Network Lasso 0.4630
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Regularization path heat map: λ = 0.1

I λ too small!

Noisy Results
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Regularization path: λ = 1

I Still too small...
I ...but houses are starting to group together
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λ = 10

I Much better!
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λ = 100

I Now it’s too large...
I The network lasso pulls together clusters which are actually quite

different
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Network-enhanced classifier

I Support vector machine (SVM) at each node

– Given an input x ∈ R50, predict an output y ∈ {−1, 1}

I However, individual nodes have insufficient information to properly
classify new inputs

I Borrow statistical power from the network (nearby nodes) to
improve prediction accuracy

– Assumption: neighboring nodes often have similar (or the same)
underlying classifier

I Example: music preferences in a social network
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Training set

I Each node has very few training examples (known (x, y)-pairs)

I In higher dimensions, the uncertainty becomes even more significant

– 50-dimensional data with only 25 training examples!
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Network effect

I Where can we find more data?

– If we use training examples from our relevant neighbors, we can
improve our own classifier

– But how do we know who our relevant neighbors are? Use the
network lasso!
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Regularization path

I λ = 0: Each node does not have enough data, so there is
uncertainty in our classifier

I λ > λcritical: All the nodes will be clumped together and averaged
into one uniform classifier

I We calculate the regularization path and evaluate performance on a
separate test set to choose a good λ
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SVM results
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Method Prediction Accuracy

Local SVM (λ = 0) 65.9%
Global SVM (λ ≥ λcritical) 57.1%
Network Lasso 86.7%
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Additional Applications

I Event detection in time series data

I ...and many more! (Image denoising, financial modeling, etc...)
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Summary

I The network lasso

I A computationally tractable method of leveraging network data

I Fast, scalable, and robust

I The same setup can solve a variety of different problems

I Solver available at http://snap.stanford.edu/snapvx
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Thanks for listening!

I Website: http://www.stanford.edu/~hallac

I Code and Solver: http://snap.stanford.edu/snapvx

I Acknowledgements: Tim Althoff, Stephen Bach, Trevor Hastie,
Christopher Ré, Rok Sosič

I Questions?
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