
Beating the Perils of Non-Convexity:
Training Neural Networks using Tensor Methods

Anima Anandkumar

..

Joint work with Majid Janzamin and Hanie Sedghi.

U.C. Irvine

Learning with Big Data

High dimensional regime: as data grows, more variables!

Useful information: low-dimensional structures.

Learning with big data: ill-posed problem.

Learning with Big Data

High dimensional regime: as data grows, more variables!

Useful information: low-dimensional structures.

Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

Learning with Big Data

High dimensional regime: as data grows, more variables!

Useful information: low-dimensional structures.

Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

Learning with big data: statistically and computationally challenging!

Optimization for Learning

Most learning problems can be cast as optimization.

Unsupervised Learning

Clustering
k-means, hierarchical . . .

Maximum Likelihood Estimator
Probabilistic latent variable models

Supervised Learning

Optimizing a neural network wrt a loss
function

Convex vs. Non-convex Optimization

Progress is only tip of the iceberg..

Images taken from https://www.facebook.com/nonconvex

https://www.facebook.com/nonconvex

Convex vs. Non-convex Optimization

Progress is only tip of the iceberg.. Real world is mostly non-convex!

Images taken from https://www.facebook.com/nonconvex

https://www.facebook.com/nonconvex

Convex vs. Nonconvex Optimization

One global optima. Multiple local optima

Convex vs. Nonconvex Optimization

One global optima. Multiple local optima

In high dimensions possibly
exponential local optima

Convex vs. Nonconvex Optimization

One global optima. Multiple local optima

In high dimensions possibly
exponential local optima

How to deal with non-convexity?

Agenda

Beating the Perils of Non-Convexity:

Guaranteed Training of Neural Networks using Tensor Methods

Recent Breakthroughs in Tensor Methods

Overcomplete models, Convolutional models, Reinforcement Learning of POMDPs . . .

Outline

1 Introduction

2 Guaranteed Training of Neural Networks

3 Overview of Other Results on Tensors

4 Conclusion

Training Neural Networks

Tremendous practical impact
with deep learning.

Algorithm: backpropagation.

Highly non-convex optimization

Toy Example: Failure of Backpropagation

x1

x
2

y=1y=−1

Labeled input samples
Goal: binary classification

σ(·) σ(·)

y

x1 x2x

w1 w2

Our method: guaranteed risk bounds for training neural networks

Backpropagation vs. Our Method

Weights w2 randomly drawn and fixed

Backprop (quadratic) loss surface

−4

−3

−2

−1

0

1

2

3

4 −4
−3

−2
−1

0
1

2
3

4

200

250

300

350

400

450

500

550

600

650

w1(1) w1(2)

Backpropagation vs. Our Method

Weights w2 randomly drawn and fixed

Backprop (quadratic) loss surface

−4

−3

−2

−1

0

1

2

3

4 −4
−3

−2
−1

0
1

2
3

4

200

250

300

350

400

450

500

550

600

650

w1(1) w1(2)

Loss surface for our method

−4

−3

−2

−1

0

1

2

3

4 −4
−3

−2
−1

0
1

2
3

4

0

20

40

60

80

100

120

140

160

180

200

w1(1) w1(2)

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)

Approximation bounds for neural networks. Barron ‘90.

Risk: Approx. + Estimation. Barron ‘94, Bartlett ‘98.

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)

Approximation bounds for neural networks. Barron ‘90.

Risk: Approx. + Estimation. Barron ‘94, Bartlett ‘98.

Computational complexity

Mostly negative results. Bartlett & Ben-David ‘99, Kuhlman ‘00.

NP-hard to train a network with even one hidden neuron!

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)

Approximation bounds for neural networks. Barron ‘90.

Risk: Approx. + Estimation. Barron ‘94, Bartlett ‘98.

Computational complexity

Mostly negative results. Bartlett & Ben-David ‘99, Kuhlman ‘00.

NP-hard to train a network with even one hidden neuron!

Gradient descent/ Local search

No spurious local optima for linear networks. Baldi & Hornik ‘89.

Failure cases: manifold of spurious local optima. Frasconi et al. ‘97.

Random (first layer) weights suffice for polynomials under Gaussian
input. Andoni et. al. ‘14.

Incremental training with polynomial activations. Livni et al. ‘14.

Alternatives to gradient descent: computationally efficient with guarantees?

Overcoming Hardness of Training
In general, training a neural network is NP hard.

How does knowledge of input distribution help?

Overcoming Hardness of Training
In general, training a neural network is NP hard.

How does knowledge of input distribution help?

Generative vs. Discriminative Models

p(x, y)

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Input data x

Class y = 1
Class y = 0

p(y|x)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Input data x

Class y = 1 Class y = 0

Generative models: Encode domain knowledge.

Discriminative: good classification performance.

Neural Network is a discriminative model.

Feature Transformation for Training Neural Networks

Feature learning: Learn φ(·) from input data.

How to use φ(·) to train neural networks?
x

φ(x)

y

Feature Transformation for Training Neural Networks

Feature learning: Learn φ(·) from input data.

How to use φ(·) to train neural networks?
x

φ(x)

y

Multivariate Moments: Many possibilities, . . .

E[x⊗ y], E[x⊗ x⊗ y], E[φ(x)⊗ y], . . .

Tensor Notation for Higher Order Moments

Multi-variate higher order moments form tensors.

Are there spectral operations on tensors akin to PCA on matrices?

Matrix

E[x⊗ y] ∈ Rd×d is a second order tensor.

E[x⊗ y]i1,i2 = E[xi1yi2].

For matrices: E[x⊗ y] = E[xy"].

Tensor

E[x⊗ x⊗ y] ∈ Rd×d×d is a third order tensor.

E[x⊗ x⊗ y]i1,i2,i3 = E[xi1xi2yi3].

In general, E[φ(x)⊗ y] is a tensor.

What class of φ(·) useful for training neural networks?

Score Function Transformations

Score function for x ∈ Rd with
pdf p(·):

S1(x) := −∇x log p(x)

Input:
x ∈ Rd

S1(x) ∈ Rd

Score Function Transformations

Score function for x ∈ Rd with
pdf p(·):

S1(x) := −∇x log p(x)

mth-order score function:

Sm(x) := (−1)m
∇(m)p(x)

p(x)

Input:
x ∈ Rd

S1(x) ∈ Rd

Score Function Transformations

Score function for x ∈ Rd with
pdf p(·):

S1(x) := −∇x log p(x)

mth-order score function:

Sm(x) := (−1)m
∇(m)p(x)

p(x)

Input:
x ∈ Rd

S2(x) ∈ Rd×d

Score Function Transformations

Score function for x ∈ Rd with
pdf p(·):

S1(x) := −∇x log p(x)

mth-order score function:

Sm(x) := (−1)m
∇(m)p(x)

p(x)

Input:
x ∈ Rd

S3(x) ∈ Rd×d×d

Why score functions?

Higher order score function:

Sm(x) := (−1)m
∇(m)p(x)

p(x)

Form the cross-moments: E [y ⊗ Sm(x)].
x

Sm(x)

y

Why score functions?

Higher order score function:

Sm(x) := (−1)m
∇(m)p(x)

p(x)

Form the cross-moments: E [y ⊗ Sm(x)].
x

Sm(x)

y

Theorem (Score function property, JSA’14)

Providing derivative information: let E[y|x] := f(x), then

E [y ⊗ Sm(x)] = E

[

∇(m)
x f(x)

]

.

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.

Janzamin, H. Sedghi, and A. , Dec. 2014.

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M1 = E[y · S1(x)] =
∑

j∈[k]

λ1,j · uj⊗uj ⊗ uj

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M1 = E[y · S1(x)] =
∑

j∈[k]

λ1,j · (A1)j⊗(A1)j ⊗ (A1)j

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M1 = E[y · S1(x)] =
∑

j∈[k]

λ1,j · (A1)j⊗(A1)j ⊗ (A1)j

  

λ11(A1)1 λ12(A1)2

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M2 = E[y · S2(x)] =
∑

j∈[k]

λ2,j · (A1)j ⊗ (A1)j⊗(A1)j

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M2 = E[y · S2(x)] =
∑

j∈[k]

λ2,j · (A1)j ⊗ (A1)j⊗(A1)j

  

λ11(A1)1 ⊗ (A1)1 λ12(A1)2 ⊗ (A1)2

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M3 = E[y · S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M3 = E[y · S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

  

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M3 = E[y · S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Why tensors are required?

Matrix decomposition recovers subspace, not actual weights.

Tensor decomposition uniquely recovers under non-degeneracy.

Moments of a Neural Network

E[y|x] = G(x) = a"2 σ(A
"
1 x+ b1) + b2

Given labeled examples {(xi, yi)}

E [y · Sm(x)] = E

[

∇(m)G(x)
]

⇓

M3 = E[y · S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

σ(·) σ(·) σ(·)σ(·)
1 k

y

x1 x2 x3 xdxx

a2

A1 · · ·

· · ·

· · ·

Guaranteed learning of weights of first layer via tensor decomposition.

Learning the other parameters via a Fourier technique.

NN-LiFT: Neural Network LearnIng
using Feature Tensors

Input:
x ∈ Rd

S3(x) ∈ Rd×d×d

NN-LiFT: Neural Network LearnIng
using Feature Tensors

Input:
x ∈ Rd

S3(x) ∈ Rd×d×d

1

n

n
∑

i=1

yi ⊗ S3(xi) =
1

n

n
∑

i=1

yi⊗

Estimating M3 using

labeled data {(xi, yi)}

S3(xi)

Cross-

moment

NN-LiFT: Neural Network LearnIng
using Feature Tensors

Input:
x ∈ Rd

S3(x) ∈ Rd×d×d

1

n

n
∑

i=1

yi ⊗ S3(xi) =
1

n

n
∑

i=1

yi⊗

Estimating M3 using

labeled data {(xi, yi)}

S3(xi)

Cross-

moment

Rank-1 components are the estimates of columns of A1

+ + · · ·

CP tensor

decomposition

NN-LiFT: Neural Network LearnIng
using Feature Tensors

Input:
x ∈ Rd

S3(x) ∈ Rd×d×d

1

n

n
∑

i=1

yi ⊗ S3(xi) =
1

n

n
∑

i=1

yi⊗

Estimating M3 using

labeled data {(xi, yi)}

S3(xi)

Cross-

moment

Rank-1 components are the estimates of columns of A1

+ + · · ·

CP tensor

decomposition

Fourier technique ⇒ a2, b1, b2

Estimation error bound

Guaranteed learning of weights of first layer via tensor decomposition.

M3 = E[y ⊗ S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

Full column rank assumption on weight matrix A1

Guaranteed tensor decomposition (AGHKT’14, AGJ’14)

Estimation error bound

Guaranteed learning of weights of first layer via tensor decomposition.

M3 = E[y ⊗ S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

Full column rank assumption on weight matrix A1

Guaranteed tensor decomposition (AGHKT’14, AGJ’14)

Learning the other parameters via a Fourier technique.

Estimation error bound

Guaranteed learning of weights of first layer via tensor decomposition.

M3 = E[y ⊗ S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

Full column rank assumption on weight matrix A1

Guaranteed tensor decomposition (AGHKT’14, AGJ’14)

Learning the other parameters via a Fourier technique.

Theorem (JSA’14)

number of samples n = poly(d, k), we have w.h.p.

|f(x)− f̂(x)|2 ≤ Õ(1/n).

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor

Methods” by M. Janzamin, H. Sedghi and A., June. 2015.

Recap: Tensor Rank and Tensor Decomposition

Rank-1 tensor: T = w · a⊗ b⊗ c ⇔ T (i, j, l) = w · a(i) · b(j) · c(l).

Recap: Tensor Rank and Tensor Decomposition

Rank-1 tensor: T = w · a⊗ b⊗ c ⇔ T (i, j, l) = w · a(i) · b(j) · c(l).

CANDECOMP/PARAFAC (CP) Decomposition

T =
∑

j∈[k]

wjaj ⊗ bj ⊗ cj ∈ R
d×d×d, aj , bj, cj ∈ Sd−1.

= +

Tensor T w1 · a1 ⊗ b1 ⊗ c1 w2 · a2 ⊗ b2 ⊗ c2

Recap: Tensor Rank and Tensor Decomposition

Rank-1 tensor: T = w · a⊗ b⊗ c ⇔ T (i, j, l) = w · a(i) · b(j) · c(l).

CANDECOMP/PARAFAC (CP) Decomposition

T =
∑

j∈[k]

wjaj ⊗ bj ⊗ cj ∈ R
d×d×d, aj , bj, cj ∈ Sd−1.

= +

Tensor T w1 · a1 ⊗ b1 ⊗ c1 w2 · a2 ⊗ b2 ⊗ c2

Algorithm: Alternating Least Square (ALS), Tensor power iteration,
. . .

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T ∈ Rd×d×d:

T =
∑

i∈[k]

λivi ⊗ vi ⊗ vi.

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T ∈ Rd×d×d:

T =
∑

i∈[k]

λivi ⊗ vi ⊗ vi.

Recall matrix power method: v)→
M(I, v)

‖M(I, v)‖
=

Mv

‖Mv‖
.

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T ∈ Rd×d×d:

T =
∑

i∈[k]

λivi ⊗ vi ⊗ vi.

Recall matrix power method: v)→
M(I, v)

‖M(I, v)‖
=

Mv

‖Mv‖
.

Algorithm: tensor power method: v)→
T (I, v, v)

‖T (I, v, v)‖
.

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T ∈ Rd×d×d:

T =
∑

i∈[k]

λivi ⊗ vi ⊗ vi.

Recall matrix power method: v)→
M(I, v)

‖M(I, v)‖
=

Mv

‖Mv‖
.

Algorithm: tensor power method: v)→
T (I, v, v)

‖T (I, v, v)‖
.

• {vi}’s are the only robust fixed points.

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T ∈ Rd×d×d:

T =
∑

i∈[k]

λivi ⊗ vi ⊗ vi.

Recall matrix power method: v)→
M(I, v)

‖M(I, v)‖
=

Mv

‖Mv‖
.

Algorithm: tensor power method: v)→
T (I, v, v)

‖T (I, v, v)‖
.

• {vi}’s are the only robust fixed points. • All other eigenvectors are saddle points.

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T ∈ Rd×d×d:

T =
∑

i∈[k]

λivi ⊗ vi ⊗ vi.

Recall matrix power method: v)→
M(I, v)

‖M(I, v)‖
=

Mv

‖Mv‖
.

Algorithm: tensor power method: v)→
T (I, v, v)

‖T (I, v, v)‖
.

• {vi}’s are the only robust fixed points. • All other eigenvectors are saddle points.

For an orthogonal tensor, no spurious local optima!

Guaranteed Tensor Decomposition

Undercomplete tensors (k ≤ d) with full rank components

Non-orthogonal decomposition T1 =
∑

i∈[k] λiai ⊗ ai ⊗ ai.

Whitening matrix W : computed from
tensor slices.

Multilinear transform: T2 = T1(W,W,W)
to orthogonalize.

To do whitening we need A1 to be full
column rank.

v1
v2

v3

Wa1
a2a3

Tensor T1 Tensor T2

How to handle k > d?
Flatten higher order tensor to third order so that full rank condition holds,
e.g. using 6th order moments, we can handle k = o(d2).

Estimation error bound

Guaranteed learning of weights of first layer via tensor decomposition.

M3 = E[y ⊗ S3(x)] =
∑

j∈[k]

λ3,j · (A1)j ⊗ (A1)j ⊗ (A1)j

Full column rank assumption on weight matrix A1

Guaranteed tensor decomposition (AGHKT’14, AGJ’14)

Learning the other parameters via a Fourier technique.

Theorem (JSA’14)

number of samples n = poly(d, k), we have w.h.p.

|f(x)− f̂(x)|2 ≤ Õ(1/n).

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor

Methods” by M. Janzamin, H. Sedghi and A., June. 2015.

Risk Bound for Neural Networks

Non-realizable setting: arbitrary target function E[y|x] := f(x).

Risk: E[|f(x)− f̂(x)|2].

Risk Bound for Neural Networks

Non-realizable setting: arbitrary target function E[y|x] := f(x).

Risk: E[|f(x)− f̂(x)|2].

Approximation error in fitting the target function to a neural network

Estimation error in estimating the weights of fixed neural network

Risk Bound for Neural Networks

Non-realizable setting: arbitrary target function E[y|x] := f(x).

Risk: E[|f(x)− f̂(x)|2].

Approximation error in fitting the target function to a neural network

Estimation error in estimating the weights of fixed neural network

Known: continuous functions with compact domain can be arbitrarily
well approximated by neural networks with one hidden layer.

Approximation Error

Approx. error related to Fourier spectrum of f(x). (Barron ‘93).
E[y|x] = f(x)

Approximation Error

Approx. error related to Fourier spectrum of f(x). (Barron ‘93).
E[y|x] = f(x)

F (ω) :=

∫

Rd

f(x)e−j〈ω,x〉dx

Cf :=

∫

Rd

‖ω‖2 · |F (ω)|dω

Approximation error ≤ Cf/
√
k

Approximation Error

Approx. error related to Fourier spectrum of f(x). (Barron ‘93).
E[y|x] = f(x)

f(x)

Fourier
Transform

‖ω‖|F (w)|

Our Main Result: Risk Bounds

Approximating arbitrary function f(x) with bounded

Cf :=

∫

Rd

‖ω‖2 · |F (ω)|dω

n samples, d input dimension, k number of neurons.

Our Main Result: Risk Bounds

Approximating arbitrary function f(x) with bounded

Cf :=

∫

Rd

‖ω‖2 · |F (ω)|dω

n samples, d input dimension, k number of neurons.

Theorem(JSA’14)

Assume Cf is small.

E[|f(x)− f̂(x)|2] ≤ O(C2
f/k) +O(1/n).

Polynomial sample complexity n in terms of dimensions d, k.

Computational complexity same as SGD with enough parallel
processors.

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor

Methods” by M. Janzamin, H. Sedghi and A. , June. 2015.

FEAST: Feature ExtrAction using
Score function Tensors

Mixture of generalized linear
models (SA’14)

! The first framework to learn
the weight vectors instead of
their subspace.

Mixture of Linear Regression





“Provable Tensor Methods for Learning Mixtures of Classifiers” by H. Sedghi and A. , Dec.

2014.

FEAST: Feature ExtrAction using
Score function Tensors

Mixture of generalized linear
models (SA’14)

! The first framework to learn
the weight vectors instead of
their subspace.

Mixture of Linear Regression

Conditional Random Fields

Recurrent Neural Networks





“Provable Tensor Methods for Learning Mixtures of Classifiers” by H. Sedghi and A. , Dec.

2014.

Outline

1 Introduction

2 Guaranteed Training of Neural Networks

3 Overview of Other Results on Tensors

4 Conclusion

Tractable Learning for LVMs

GMM HMM

h1 h2 h3

x1 x2 x3

ICA

h1 h2 hk

x1 x2 xd

Multiview and Topic Models

Results for Community Detection

Tensor vs. Variational

Datasets
FB (18,163) DBLP-sub (116,317) DBLP-full (1,054,066)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

102

103

104

105

106 Scalability

Variational
Tensor

Our Tensor Code

Number of communities
100 200 300 400 500 600 700 800 900 1000

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

10-1

100

101

102

103

104 Scalability

Previous code
Our opt code

At Scale Tensor Computations

Randomized Tensor Sketches
Naive computation scales exponentially in order of the tensor.

Propose randomized FFT sketches.

Computational complexity independent of tensor order.

Linear scaling in input dimension and number of samples.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.

(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

(3) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

At Scale Tensor Computations

Randomized Tensor Sketches
Naive computation scales exponentially in order of the tensor.

Propose randomized FFT sketches.

Computational complexity independent of tensor order.

Linear scaling in input dimension and number of samples.

Distributed Spark Implementation

In-memory processing of Spark: ideal for iterative tensor methods.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.

(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

(3) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

At Scale Tensor Computations

Randomized Tensor Sketches
Naive computation scales exponentially in order of the tensor.

Propose randomized FFT sketches.

Computational complexity independent of tensor order.

Linear scaling in input dimension and number of samples.

Distributed Spark Implementation

In-memory processing of Spark: ideal for iterative tensor methods.

Tensor Contractions with Extended BLAS Kernels on CPU and GPU
BLAS: Basic Linear Algebraic Subprograms, highly optimized libraries.

Use extended BLAS to minimize data permutation, I/O calls.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.

(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

(3) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

Convolutional Tensor Decomposition

== ∗
xx

∑

f∗
i w∗

i F∗ w∗

(a)Convolutional dictionary model (b)Reformulated model

....= ++

Cumulant λ1(F∗
1)

⊗3 +λ2(F∗
2)

⊗3 . . .

Efficient methods for tensor decomposition with circulant constraints.

Convolutional Dictionary Learning through Tensor Factorization by F. Huang, A. , June 2015.

Reinforcement Learning (RL) of POMDPs
Partially observable Markov decision processes.

Proposed Method

Consider memoryless policies. Episodic learning: indirect exploration.

Tensor methods: careful conditioning required for learning.

First RL method for POMDPs with logarithmic regret bounds.

xi xi+1 xi+2

yi yi+1

ri ri+1

ai ai+1

0 1000 2000 3000 4000 5000 6000 70002

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Number of Trials

Av
er

ag
e

R
ew

ar
d

SM−UCRL−POMDP
UCRL−MDP
Q−learning
Random Policy

Logarithmic Regret Bounds for POMDPs using Spectral Methods by K. Azzizade, A. Lazaric, A.

, under preparation.

Sparse+Low Rank Tensor Decomposition

Decompose input tensor as low rank tensor + sparse tensor.

Analyze convergence to global optimum for alternating projections
(non-convex method)

Power of tensor methods: Can handle much larger amount of block
sparse perturbations than matrix methods applied to input tensor.

Robust tensor decomposition: Guarantees under block sparse perturbations by A. , U.N.

Niranjan, Y. Shi, P. Jain, under preparation.

Hierarchical Tensor Decomposition

= + = + = +

= +

Relevant for learning latent tree graphical models.

Propose first algorithm for integrated learning of hierarchy and
components of tensor decomposition.

Highly parallelized operations but with global consistency guarantees.

Scalable Latent Tree Model and its Application to Health Analytics By F. Huang, U. N.

Niranjan, J. Perros, R. Chen, J. Sun, A. , Preprint, June 2014.

Overcomplete Tensor Decomposition

T =
∑

j∈[k]

wjaj ⊗ bj ⊗ cj .

= +

Tensor T w1 · a1 ⊗ b1 ⊗ c1 w2 · a2 ⊗ b2 ⊗ c2

Overcomplete: Tensor rank larger than input dimension (k > d).

First guaranteed results for recovery under incoherent components.

Tensor rank much higher than dimension: for third order, k = o(d1.5).

Learning Overcomplete Latent Variable Models through Tensor Methods by A. , R. Ge, M.

Janzamin, COLT 2015.

Outline

1 Introduction

2 Guaranteed Training of Neural Networks

3 Overview of Other Results on Tensors

4 Conclusion

Summary and Outlook

Summary

Tensor methods: a powerful paradigm for guaranteed large-scale
machine learning.

First methods to provide provable bounds for training neural
networks, many latent variable models (e.g HMM, LDA), POMDPs!

Summary and Outlook

Summary

Tensor methods: a powerful paradigm for guaranteed large-scale
machine learning.

First methods to provide provable bounds for training neural
networks, many latent variable models (e.g HMM, LDA), POMDPs!

Outlook
Training multi-layer neural networks, models with invariances,
reinforcement learning using neural networks . . .

Unified framework for tractable non-convex methods with guaranteed
convergence to global optima?

My Research Group and Resources

Podcast/lectures/papers/software available at
http://newport.eecs.uci.edu/anandkumar/

	Introduction
	Guaranteed Training of Neural Networks
	Overview of Other Results on Tensors
	Conclusion

