Beating the Perils of Non-Convexity:
Training Neural Networks using Tensor Methods

Anima Anandkumar

Joint work with Majid Janzamin and Hanie Sedghi.

U.C. Irvine

Learning with Big Data

@ High dimensional regime: as data grows, more variables!
@ Useful information: low-dimensional structures.

@ Learning with big data: ill-posed problem.

Learning with Big Data

@ High dimensional regime: as data grows, more variables!
@ Useful information: low-dimensional structures.

@ Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

Learning with Big Data

@ High dimensional regime: as data grows, more variables!
@ Useful information: low-dimensional structures.

@ Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

@ Learning with big data: statistically and computationally challenging!

Optimization for Learning

Most learning problems can be cast as optimization.

Unsupervised Learning

@ Clustering
k-means, hierarchical ... A

@ Maximum Likelihood Estimator
Probabilistic latent variable models

Supervised Learning

@ Optimizing a neural network wrt a loss
function

Convex vs. Non-convex Optimization

Progress is only tip of the iceberg..

Nonconvex

optimization

Images taken from https://wuw.facebook.com/nonconvex

https://www.facebook.com/nonconvex

Convex vs. Non-convex Optimization

Progress is only tip of the iceberg.. Real world is mostly non-convex!

Nonconvex

optimization

Images taken from https://wuw.facebook.com/nonconvex

https://www.facebook.com/nonconvex

Convex vs. Nonconvex Optimization

M‘*\

7 / ”//M\\\
" M N

vmw//,l," “:e“‘:th'.»
un““

"
A0,
s
1 X 9
\‘:‘" 00‘0‘0‘0‘:’0‘0

(X D
“o‘o 0‘000"0,' i
"“o 'c"c'l/’/ll///m/ 7
i
7

5
‘\\\\\\\ \’
S
S ‘\\
Y

25
290
222

00

XN

\\\‘ R \‘:':024'

\\ ‘\‘ n ':,: 81y s s0 1
Sseseceetees '-u”
«.,,o,»;,.

@ One global optima. @ Multiple local optima

Convex vs. Nonconvex Optimization

SR
GO0
G

)
(68 X

AN
A
X0, SRS e
R0 RN AN
R 0AO0 SN s
R e N
iy BB, M
\s\ S (R 70 :‘02“2“2!“::‘
SNttt ==
SRR

@ One global optima. @ Multiple local optima

@ In high dimensions possibly
exponential local optima

Convex vs. Nonconvex Optimization

R0
Q0000
AR,
S
P00
‘0‘0.: XX

(X

SRS
\\\\\\\‘x\“\“""‘:‘
W §\\\\\\\:\‘““‘\:“t < "

NN
TR A
N

XX
KRR
SRSy,
SN totactoitoy,
N sesseteeteetes

00,
SN0,
SRR

@ One global optima.

SEXX000
SO0
S0 ':'l"l;,ll’)

“
Codttou

el
Y
it

TR
AN
AN
W
X\ W 7]/ %55 U
! %?éﬁéﬁé e

NS

S :\‘\‘1‘\‘\“\’\'

S
\\\\\\‘“ 7l

i
i
7

Ned

@ Multiple local optima

@ In high dimensions possibly
exponential local optima

How to deal with non-convexity?

Agenda

Beating the Perils of Non-Convexity:

Guaranteed Training of Neural Networks using Tensor Methods

Recent Breakthroughs in Tensor Methods

Overcomplete models, Convolutional models, Reinforcement Learning of POMDPs . ..

Outline

© Guaranteed Training of Neural Networks

Training Neural Networks

@ Tremendous practical impact
with deep learning.

@ Algorithm: backpropagation.

@ Highly non-convex optimization

Toy Example: Failure of Backpropagation

]

Z
Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks

Backpropagation vs. Our Method

Weights wa randomly drawn and fixed

Backprop (quadratic) loss surface

LEBBEEBBEEE

Backpropagation vs. Our Method

Weights wa randomly drawn and fixed

Backprop (quadratic) loss surface Loss surface for our method

LEBBEEBBEEE

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)
@ Approximation bounds for neural networks. Barron ‘90.
@ Risk: Approx. 4+ Estimation. Barron ‘94, Bartlett ‘98.

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)
@ Approximation bounds for neural networks. Barron ‘90.
@ Risk: Approx. 4+ Estimation. Barron ‘94, Bartlett ‘98.

Computational complexity
@ Mostly negative results. Bartlett & Ben-David ‘99, Kuhlman ‘00.

@ NP-hard to train a network with even one hidden neuron!

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)
@ Approximation bounds for neural networks. Barron ‘90.
@ Risk: Approx. 4+ Estimation. Barron ‘94, Bartlett ‘98.

Computational complexity
@ Mostly negative results. Bartlett & Ben-David ‘99, Kuhlman ‘00.

@ NP-hard to train a network with even one hidden neuron!

Gradient descent/ Local search
@ No spurious local optima for linear networks. Baldi & Hornik ‘89.
@ Failure cases: manifold of spurious local optima. Frasconi et al. ‘97.

@ Random (first layer) weights suffice for polynomials under Gaussian
input. Andoni et. al. ‘14.

@ Incremental training with polynomial activations. Livni et al. ‘14.

Alternatives to gradient descent: computationally efficient with guarantees?

Overcoming Hardness of Training

In general, training a neural network is NP hard.

How does knowledge of input distribution help?

Overcoming Hardness of Training

In general, training a neural network is NP hard.

How does knowledge of input distribution help?
Generative vs. Discriminative Models

Class y =1
Class y =0

pla,y) . p(ylz)

" " Inputdataz © "7 “lnput'dataz "~ " "

@ Generative models: Encode domain knowledge.
@ Discriminative: good classification performance.

@ Neural Network is a discriminative model.

Feature Transformation for Training Neural Networks

Feature learning: Learn ¢(-) from input data.

How to use ¢(-) to train neural networks?

Feature Transformation for Training Neural Networks

)
Feature learning: Learn ¢(-) from input data.
¢(x
How to use ¢(-) to train neural networks?
x

Multivariate Moments: Many possibilities, . ..

Ez®yl, Ererey]l, Elj(r)®yl,

Tensor Notation for Higher Order Moments

@ Multi-variate higher order moments form tensors.

@ Are there spectral operations on tensors akin to PCA on matrices?

Matrix

o E[z ® y] € R™? is a second order tensor. H
° E[x ® y]ilz«iQ = E[xhyiz]'
@ For matrices: E[z ® y] = E[zy'].

Tensor

o Elzr ® z ® y] € R¥*¥*4 is 3 third order tensor. %

° E[x ®r® y]il=i27’i3 = E[xilxigyis]'

@ In general, E[¢(x) @ y] is a tensor.
@ What class of ¢(-) useful for training neural networks?

Score Function Transformations

@ Score function for z € R% with
pdf p(-):

[Sl(a:) ==s logp(a:)j -

m
s
=9

Input: Si(x
r € RY

Score Function Transformations

@ Score function for z € R% with
pdf p(-):

[81(9:) ==s logp(a:)J -

@ mt-order score function:
Input: Sy (z) € R?
m V™ p(x) z € R

p(x)

Sm(z) = (1)

Score Function Transformations

@ Score function for z € R% with
pdf p(-):

[Sl(x) = -V, logp(x)}

@ mt"-order score function:
Input: So(z) € R¥xd
Vm™p(x) r € R?

p(z)

Splz) == (=1)™

Score Function Transformations

@ Score function for z € R% with

- Y
Si(@) == ~V.logp(a) —
@ m™-order score function:
Input: S3(z) € Rdxdxd
Vm™p(x) r € R?

Sm(a) i= (1"

Why score functions?

@ Higher order score function:

m V™p(z)

@ Form the cross-moments: E [y ® S,,(x)].

Why score functions?

@ Higher order score function: Y
Sm(z) = (_1)WM S ()
- p(z)
x

@ Form the cross-moments: E [y ® S,,(x)].

Theorem (Score function property, JSA'14)

@ Providing derivative information: let E[y|z] := f(x), then

Efy® Sn(o)] = E[Vi"S(@)] |

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.

Janzamin, H. Sedghi, and A. , Dec. 2014.

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(x;,y;)}

My&mﬂ:EWW@@ﬂ
I3

Moments of a Neural Network

[E[y\x] = G(z) = ago(A] z+by) + 52]

@ Given labeled examples {(x;,y;)}

Ely - Sp(z)] =E {vWG(x)} .
N8

JEK]

M =Ely-Si(z)] = Y M- (A); J

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(x;,y;)}

my&mﬂzmﬁwbmﬂ
I3

{M1 Ely - Si(z Z)\lj (A1); J

A11(A1)1 A12(A1)2

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(x;,y;)}

E@ﬁMM:EWW@m} .
I3

My = Ely - Sala §}m (4); ® (A1) J

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(z;,v;)}

my&mﬂzEWW@@ﬂ
I3

{MQ Ely- (o ZAQJ (41); ® (A1), J

=i_+i_.._.

A1(A1)1 ® (A1)1 A12(A1)2 ® (A1)2

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(x;,y;)}

my&mﬂzmﬁwbmﬂ
I3

=Ely-Ss(x)] = > Az - (A1); ® (A1); ® (A1);
JEK]

Moments of a Neural Network

[E[y\x] =G(x) = a;ra(AIx +b1)+ b2}
@ Given labeled examples {(z;,vy;)}
Ely-Sn(x)] = E [V ()]
I

=Ely-Ss(x)] = > Az - (A1); ® (A1); ® (A1);
JEK]

/—‘\

L. L.
T

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(z;,v;)}

my&mﬂzEWW@mﬂ
I3

=Ely-Ss(x Z /\3J Al (Al)j ® (Al)j
JEK]

Why tensors are required?
@ Matrix decomposition recovers subspace, not actual weights.

@ Tensor decomposition uniquely recovers under non-degeneracy.

Moments of a Neural Network

Elyls] = G(z) = afo(Aw + b)) + by

@ Given labeled examples {(x;,y;)}

my&mﬂzEWW@@ﬂ
I3

=Ely-Ss(x)] = > Az - (A1); ® (A1); ® (A1);
JEK]

@ Guaranteed learning of weights of first layer via tensor decomposition.

@ Learning the other parameters via a Fourier technique.

NN-LiFT: Neural Network Learning
using Feature Tensors

E_}%

Input: S3(x) € Rixdxd
z € R4

NN-LiFT: Neural Network Learning

using Feature Tensors
Estimating M3 using
labeled data {(x;,v:)}

t 1
SN moment ~ Zyl ® Ss(x;) = Zyz

i=1

Input: S3(x) € Rixdxd Ss(z;)
z € R4

NN-LiFT: Neural Network Learning

using Feature Tensors
Estimating M3 using
labeled data {(x;,v:)}

— m 1Zyz®‘s3 :L'z - Zyz

Input: S3(x) € Rixdxd Ss(z;)
e Re CP tensor

decomposition

y a4
i—+i—+...

Rank-1 components are the estimates of columns of A;

NN-LiFT: Neural Network Learning

using Feature Tensors
Estimating M3 using
labeled data {(z;,y:)}

— m) 1Zyz®‘s3 :L'z - Zyz

Input: S3(x) € Rixdxd Ss(wi)
e Re CP tensor

decomposition

r + r 4.
Rank-1 components are the estimates of columns of A;

Fourier technique = a9, b1, by

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

M; =Ely® S3(z Z A3 (A1) ® (A1); ® (A1);

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

M; =Ely® Ss3(x Z A3 (A1) ® (A1); ® (A1);

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

@ Learning the other parameters via a Fourier technique.

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

Ms =E[y®S3(z)] = Y Az;- (41); ® (A1); ® (A1);
J€[k]

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

@ Learning the other parameters via a Fourier technique.

Theorem (JSA'14)

@ number of samples n = poly(d, k), we have w.h.p.

@) = f@)P < O(1/n).

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor
Methods” by M. Janzamin, H. Sedghi and A., June. 2015.

Recap: Tensor Rank and Tensor Decomposition

Rank-1tensor: T =w-a®b®c< T(i,7,1) =w-a(i)-b(j) - c(l).

Recap: Tensor Rank and Tensor Decomposition

Rank-1tensor: T =w-a®b®c< T(i,7,1) =w-a(i)-b(j) - c(l).
CANDECOMP /PARAFAC (CP) Decomposition

T = ijaj@)b'@cj ERdXdXd, aj,bj,c; e s,
JEK]

S

Tensor T’ w1 a1 @by ®cy w2 - a2 @ bz ® c2

Recap: Tensor Rank and Tensor Decomposition

Rank-1tensor: T =w-a®b®c< T(i,7,1) =w-a(i)-b(j) - c(l).
CANDECOMP /PARAFAC (CP) Decomposition

T = ijaj®b'®cj ERdXdXd, aj,bj,c; e s,

p /s S
T

Tensor T’ w1 -a1 Qb ®cy w2 - a2 @ bz ® c2

@ Algorithm: Alternating Least Square (ALS), Tensor power iteration,

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T € R4*4xd:

T=>Y M\vi®v®uv
i€k]

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T € R4*4xd:

T = Z iV ® v; @ ;.
i€k]

M(I,v) Mv
ML)l Mol

Recall matrix power method: v +—

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T' € R#*d4xd:
T = Z A ® v; ® v;.
€[k

M(I,v) Mv
ML)l Mol

Recall matrix power method: v +—

_ T(I,v,v)
Algorithm: tensor power method: |v — —————.
1T(1,v,v)]

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T' € R#*d4xd:

T = Z A ® v; ® v;.
i€k]

M(I,v) Mv
ML)l Mol

Recall matrix power method: v +—

_ T(I,v,v)
Algorithm: tensor power method: |v — —————.
1T(1,v,v)]

e {v;}'s are the only robust fixed points.

\J

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T' €

-y

€[k

Recall matrix power method: v +—

Rdxdxd.

AiV; ® v; ® v;.

M(I,v) Mv

ML) (M)

Algorithm: tensor power method:

s T(I,v,v)
I

(L, v,)|

[
¢

\

e {v;}'s are the only robust fixed points.

\J

e All other eigenvectors are saddle points.

/

Orthogonal Tensor Power Method

Symmetric orthogonal tensor T' € R#*d4xd:
T = Z A ® v; ® v;.
i€k]

M(I,v) Mv
ML)l Mol

T(1
Algorithm: tensor power method: |v +— HT(’ifU’v) .

(Lo,
bR

Recall matrix power method: v +—

e {v;}'s are the only robust fixed points. e All other eigenvectors are saddle points.

\/ fa

For an orthogonal tensor, no spurious local optimal

Guaranteed Tensor Decomposition

Undercomplete tensors (k < d) with full rank components

Non-orthogonal decomposition 7 = Zie[k:] Aia; ® a; R a;.

o . U1
@ Whitening matrix 1/: computed from 4&12 _Ww, v
as v
3

tensor slices.

@ Multilinear transform: T, = T (W, W, W) . ad |
to orthogonalize.
Tensor 77 Tensor To

@ To do whitening we need A; to be full
column rank.

How to handle k > d?

Flatten higher order tensor to third order so that full rank condition holds,
e.g. using 6™ order moments, we can handle k = o(d?).

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

Ms =E[y®S3(z)] = Y Az;- (41); ® (A1); ® (A1);
J€[k]

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

@ Learning the other parameters via a Fourier technique.

Theorem (JSA'14)

@ number of samples n = poly(d, k), we have w.h.p.

@) = f@)P < O(1/n).

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor
Methods” by M. Janzamin, H. Sedghi and A., June. 2015.

Risk Bound for Neural Networks

o Non-realizable setting: arbitrary target function E[y|z] := f(x).

o Risk: E[|f(x) — f(z)]’):

Risk Bound for Neural Networks

@ Non-realizable setting: arbitrary target function E[y|z] := f(x).

@ Risk: E[|f(z) — f(x)|?].
@ Approximation error in fitting the target function to a neural network

@ Estimation error in estimating the weights of fixed neural network

Risk Bound for Neural Networks

Non-realizable setting: arbitrary target function E[y|z| := f(z).

Risk: E[|f(z) — f(x)[%].
Approximation error in fitting the target function to a neural network

Estimation error in estimating the weights of fixed neural network

Known: continuous functions with compact domain can be arbitrarily
well approximated by neural networks with one hidden layer.

Approximation Error

@ Approx. error related to Fourier spectrum of f(z). (Barron ‘93).
Elylz] = f(=)

Approximation Error
@ Approx. error related to Fourier spectrum of f(z). (Barron ‘93).
Elylz] = f(=)
F(w):= f(x)e 7 @) dg
Rd
Cpi= [ol 1P (o)

Approximation error < C’f/\/E

Approximation Error

@ Approx. error related to Fourier spectrum of f(z). (Barron ‘93).
Elylz] = f(=)

f(x)

Fourier
Transform

lellF()|

Our Main Result: Risk Bounds

@ Approximating arbitrary function f(z) with bounded

Cp = / lwollz - |F(w)]dw

@ n samples, d input dimension, k& number of neurons.

Our Main Result: Risk Bounds

@ Approximating arbitrary function f(z) with bounded

C%:/HWrWWWw
Rd

@ n samples, d input dimension, k& number of neurons.

Theorem(JSA'14)
® Assume C'y is small.
Ellf(z) — f(@)] < O(C3/k) + O(1/n).
@ Polynomial sample complexity n in terms of dimensions d, k.

@ Computational complexity same as SGD with enough parallel
processors.

"“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor

Methods” by M. Janzamin, H. Sedghi and A. , June. 2015.

FEAST: Feature ExtrAction using
Score function Tensors

@ Mixture of generalized linear
models (SA'14)

[Probabilistic
» The first framework to learn Models Method of
. . ethod o
the weight vectors instead of | & Score Fn. s
their subspace.
@ Mixture of Linear Regression Matrix & Tensor

Factorization

“Provable Tensor Methods for Learning Mixtures of Classifiers” by H. Sedghi and A. , Dec.
2014.

FEAST: Feature ExtrAction using
Score function Tensors

@ Mixture of generalized linear
models (SA'14)

| Probabilistic
» The first framework to learn Models Method of
. . ethod o
the weight vectors instead of | & Score Fn. e
their subspace.
@ Mixture of Linear Regression Matrix & Tensor

Factorization
@ Conditional Random Fields

@ Recurrent Neural Networks

“Provable Tensor Methods for Learning Mixtures of Classifiers” by H. Sedghi and A. , Dec.
2014.

Outline

© Overview of Other Results on Tensors

Tractable Learning for LVMs

GMM HMM ICA

Multiview and Topic Models

0 h e [K],
@@ ‘ X € RY % € R%,... X € R%

k = # components, ¢ = # views (e.g., audio, video, text).

N & B

View 1: X; € R% View 2: X, ¢ R%2 View 3: X3 € R%

Running time (seconds)

Results for Community Detection

Tensor vs. Variational

Scalability

10° T

10?

FB (18,163)

ariational
‘ensor

DBLP-sub (116,317) DBLP-full (1,054,066)

Datasets

Running time (seconds)

10°

=)
N

L

=)
>

107

Our Tensor Code

Scalability

evious code
[Our opt code

100 200 300 400 500 600 700 800 900 1000
Number of communities

At Scale Tensor Computations

Randomized Tensor Sketches
@ Naive computation scales exponentially in order of the tensor.
@ Propose randomized FFT sketches.
@ Computational complexity independent of tensor order.
°

Linear scaling in input dimension and number of samples.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.
(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

(3) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

At Scale Tensor Computations

Randomized Tensor Sketches
@ Naive computation scales exponentially in order of the tensor.
@ Propose randomized FFT sketches.
@ Computational complexity independent of tensor order.
°

Linear scaling in input dimension and number of samples.

Distributed Spark Implementation
@ In-memory processing of Spark: ideal for iterative tensor methods.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.
(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

(3) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

At Scale Tensor Computations

Randomized Tensor Sketches
@ Naive computation scales exponentially in order of the tensor.
@ Propose randomized FFT sketches.
@ Computational complexity independent of tensor order.
°

Linear scaling in input dimension and number of samples.

Distributed Spark Implementation
@ In-memory processing of Spark: ideal for iterative tensor methods.

Tensor Contractions with Extended BLAS Kernels on CPU and GPU
@ BLAS: Basic Linear Algebraic Subprograms, highly optimized libraries.

@ Use extended BLAS to minimize data permutation, /O calls.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.
(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

(3) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

Convolutional Tensor Decomposition

J- > eb- R
x I wy

(a)Convolutional dictionary model (b)Reformulated model

T Vae w*

Cumulant A1 (F7)®s +A2(F3)®3

L N

Efficient methods for tensor decomposition with circulant constraints.

Convolutional Dictionary Learning through Tensor Factorization by F. Huang, A. , June 2015.

Reinforcement Learning (RL) of POMDPs
o Partially observable Markov decision processes.
Proposed Method

@ Consider memoryless policies. Episodic learning: indirect exploration.
@ Tensor methods: careful conditioning required for learning.
@ First RL method for POMDPs with logarithmic regret bounds.

277
26f
o b e 25} ol ..|a--g---a--aE e
T P
524 W
o
@ i)
S
@ b gaa
e VYV ee
! O SM-UCRL-POMDP|
o1 ¥ UCRL-MDP
) O Q-learning
. . . . O Random Policy
D 1000 2000 3000 4000 5000 6000 7000

Number of Trials

Logarithmic Regret Bounds for POMDPs using Spectral Methods by K. Azzizade, A. Lazaric, A.

, under preparation.

Sparse+Low Rank Tensor Decomposition

ANy 4

= I— +I— +OOO+H>MH

@ Decompose input tensor as low rank tensor + sparse tensor.

@ Analyze convergence to global optimum for alternating projections
(non-convex method)

@ Power of tensor methods: Can handle much larger amount of block
sparse perturbations than matrix methods applied to input tensor.

Robust tensor decomposition: Guarantees under block sparse perturbations by A. , U.N.

Niranjan, Y. Shi, P. Jain, under preparation.

Hierarchical Tensor Decomposition

S Flaf

@ Relevant for learning latent tree graphical models.

@ Propose first algorithm for integrated learning of hierarchy and
components of tensor decomposition.

@ Highly parallelized operations but with global consistency guarantees.

Scalable Latent Tree Model and its Application to Health Analytics By F. Huang, U. N.
Niranjan, J. Perros, R. Chen, J. Sun, A. , Preprint, June 2014.

Overcomplete Tensor Decomposition

T = ijaj®bj®cj.

J€[k]
r + r R
Tensor T wi-ar ®bi®cr w2 a2 @bz ®c2

@ Overcomplete: Tensor rank larger than input dimension (k > d).
@ First guaranteed results for recovery under incoherent components.

@ Tensor rank much higher than dimension: for third order, k& = o(d'*).

Learning Overcomplete Latent Variable Models through Tensor Methods by A. , R. Ge, M.
Janzamin, COLT 2015.

Outline

@ Conclusion

Summary and Outlook

Summary

@ Tensor methods: a powerful paradigm for guaranteed large-scale
machine learning.

@ First methods to provide provable bounds for training neural
networks, many latent variable models (e.g HMM, LDA), POMDPs!

Summary and Outlook

Summary

@ Tensor methods: a powerful paradigm for guaranteed large-scale
machine learning.

@ First methods to provide provable bounds for training neural
networks, many latent variable models (e.g HMM, LDA), POMDPs!

Outlook

@ Training multi-layer neural networks, models with invariances,
reinforcement learning using neural networks . ..

@ Unified framework for tractable non-convex methods with guaranteed
convergence to global optima?

My Research Group and Resources

@ Podcast/lectures/papers/software available at
http://newport.eecs.uci.edu/anandkumar/

	Introduction
	Guaranteed Training of Neural Networks
	Overview of Other Results on Tensors
	Conclusion

