Beating the Perils of Non-Convexity: Training Neural Networks using Tensor Methods

Anima Anandkumar

Joint work with Majid Janzamin and Hanie Sedghi.

U.C. Irvine

Learning with Big Data

- High dimensional regime: as data grows, more variables!
- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning with Big Data

- High dimensional regime: as data grows, more variables!
- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

Learning with Big Data

- High dimensional regime: as data grows, more variables!
- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

• Learning with big data: statistically and computationally challenging!

Optimization for Learning

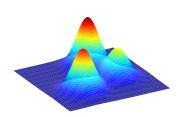
Most learning problems can be cast as optimization.

Unsupervised Learning

- Clustering k-means, hierarchical . . .
- Maximum Likelihood Estimator
 Probabilistic latent variable models

Supervised Learning

Optimizing a neural network wrt a loss function



Convex vs. Non-convex Optimization

Progress is only tip of the iceberg..

Images taken from https://www.facebook.com/nonconvex

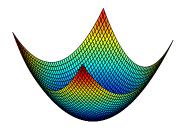
Convex vs. Non-convex Optimization

Progress is only tip of the iceberg..

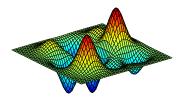
Real world is mostly non-convex!

Images taken from https://www.facebook.com/nonconvex

Convex vs. Nonconvex Optimization

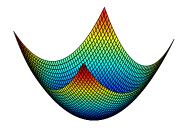


• One global optima.

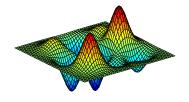


Multiple local optima

Convex vs. Nonconvex Optimization

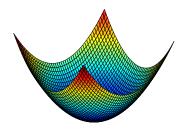


• One global optima.

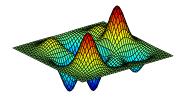


- Multiple local optima
- In high dimensions possibly exponential local optima

Convex vs. Nonconvex Optimization



• One global optima.



- Multiple local optima
- In high dimensions possibly exponential local optima

How to deal with non-convexity?

Agenda

Beating the Perils of Non-Convexity:

Guaranteed Training of Neural Networks using Tensor Methods

Recent Breakthroughs in Tensor Methods

Overcomplete models, Convolutional models, Reinforcement Learning of POMDPs ...

Outline

Introduction

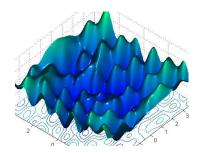
Quaranteed Training of Neural Networks

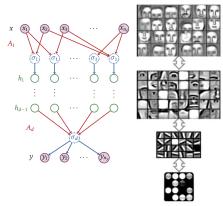
3 Overview of Other Results on Tensors

4 Conclusion

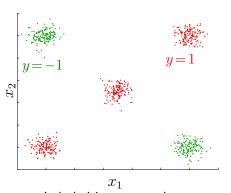
Training Neural Networks

- Tremendous practical impact with deep learning.
- Algorithm: backpropagation.
- Highly non-convex optimization





Toy Example: Failure of Backpropagation



x x_1 x_2 x_2

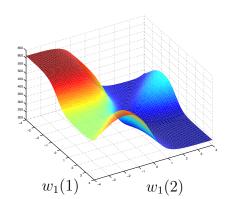
Labeled input samples Goal: binary classification

Our method: guaranteed risk bounds for training neural networks

Backpropagation vs. Our Method

Weights w_2 randomly drawn and fixed

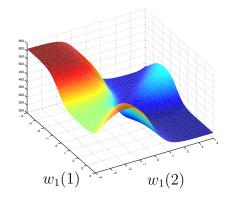
Backprop (quadratic) loss surface



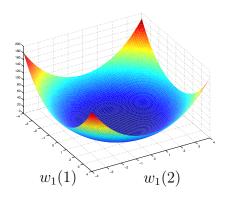
Backpropagation vs. Our Method

Weights w_2 randomly drawn and fixed

Backprop (quadratic) loss surface



Loss surface for our method



Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)

- Approximation bounds for neural networks. Barron '90.
- Risk: Approx. + Estimation. Barron '94, Bartlett '98.

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)

- Approximation bounds for neural networks. Barron '90.
- Risk: Approx. + Estimation. Barron '94, Bartlett '98.

Computational complexity

- Mostly negative results. Bartlett & Ben-David '99, Kuhlman '00.
- NP-hard to train a network with even one hidden neuron!

Previous Results on Training Neural Networks

Risk bounds (for computationally hard algorithms)

- Approximation bounds for neural networks. Barron '90.
- Risk: Approx. + Estimation. Barron '94, Bartlett '98.

Computational complexity

- Mostly negative results. Bartlett & Ben-David '99, Kuhlman '00.
- NP-hard to train a network with even one hidden neuron!

Gradient descent/ Local search

- No spurious local optima for linear networks. Baldi & Hornik '89.
- Failure cases: manifold of spurious local optima. Frasconi et al. '97.
- Random (first layer) weights suffice for polynomials under Gaussian input. *Andoni et. al. '14.*
- Incremental training with polynomial activations. Livni et al. '14.

Overcoming Hardness of Training

In general, training a neural network is NP hard.

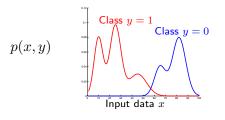
How does knowledge of input distribution help?

Overcoming Hardness of Training

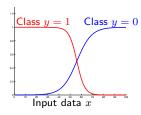
In general, training a neural network is NP hard.

How does knowledge of input distribution help?

Generative vs. Discriminative Models



p(y|x)

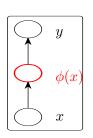


- Generative models: Encode domain knowledge.
- Discriminative: good classification performance.
- Neural Network is a discriminative model.

Feature Transformation for Training Neural Networks

Feature learning: Learn $\phi(\cdot)$ from input data.

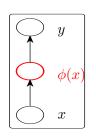
How to use $\phi(\cdot)$ to train neural networks?



Feature Transformation for Training Neural Networks

Feature learning: Learn $\phi(\cdot)$ from input data.

How to use $\phi(\cdot)$ to train neural networks?



Multivariate Moments: Many possibilities, ...

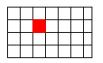
$$\mathbb{E}[x \otimes y], \quad \mathbb{E}[x \otimes x \otimes y], \quad \mathbb{E}[\phi(x) \otimes y], \quad \dots$$

Tensor Notation for Higher Order Moments

- Multi-variate higher order moments form tensors.
- Are there spectral operations on tensors akin to PCA on matrices?

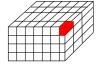
Matrix

- $\mathbb{E}[x \otimes y] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes y]_{i_1, i_2} = \mathbb{E}[x_{i_1} y_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes y] = \mathbb{E}[xy^{\top}].$



Tensor

- $\mathbb{E}[x \otimes x \otimes y] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes y]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1}x_{i_2}y_{i_3}].$



- In general, $\mathbb{E}[\phi(x) \otimes y]$ is a tensor.
- What class of $\phi(\cdot)$ useful for training neural networks?

• Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$\mathcal{S}_1(x) := -\nabla_x \log p(x)$$

Input:
$$S_1(x) \in \mathbb{R}^d$$
 $x \in \mathbb{R}^d$

• Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$\mathcal{S}_1(x) := -\nabla_x \log p(x)$$

• m^{th} -order score function:

$$S_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$$

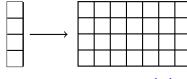
Input:
$$S_1(x) \in \mathbb{R}^d$$
 $x \in \mathbb{R}^d$

• Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$\mathcal{S}_1(x) := -\nabla_x \log p(x)$$

• m^{th} -order score function:

$$S_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$$



Input: $x \in \mathbb{R}^d$

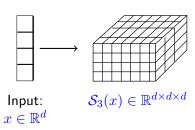
$$S_2(x) \in \mathbb{R}^{d \times d}$$

• Score function for $x \in \mathbb{R}^d$ with pdf $p(\cdot)$:

$$\mathcal{S}_1(x) := -\nabla_x \log p(x)$$

• m^{th} -order score function:

$$\mathcal{S}_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$$

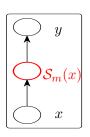


Why score functions?

• Higher order score function:

$$\mathcal{S}_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$$

• Form the cross-moments: $\mathbb{E}\left[y\otimes\mathcal{S}_m(x)\right]$.



Why score functions?

• Higher order score function:

$$\mathcal{S}_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$$

 $\mathcal{S}_m(x)$ x

• Form the cross-moments: $\mathbb{E}\left[y\otimes\mathcal{S}_m(x)\right]$.

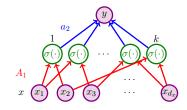
Theorem (Score function property, JSA'14)

• Providing derivative information: let $\mathbb{E}[y|x] := f(x)$, then

$$\left[\mathbb{E}\left[y\otimes\mathcal{S}_m(x)\right]=\mathbb{E}\left[
abla_x^{(m)}f(x)
ight]
ight].$$

[&]quot;Score Function Features for Discriminative Learning: Matrix and Tensor Framework" by M. Janzamin, H. Sedghi, and A., Dec. 2014.

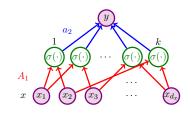
$$\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2$$



$$\left(\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2\right)$$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

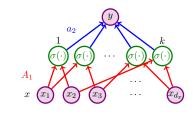
$$\downarrow$$



$$\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2$$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$

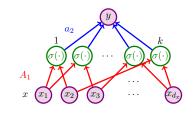


$$M_1 = \mathbb{E}[y \cdot \mathcal{S}_1(x)] = \sum_{j \in [k]} \lambda_{1,j} \cdot (A_1)_j$$

$$\mathbb{E}[y|x] = G(x) = a_2^{\mathsf{T}} \sigma(A_1^{\mathsf{T}} x + b_1) + b_2$$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$



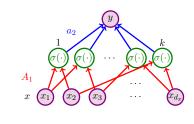
$$M_1 = \mathbb{E}[y \cdot \mathcal{S}_1(x)] = \sum_{j \in [k]} \lambda_{1,j} \cdot (A_1)_j$$

$$\lambda_{11}(A_1)_1 \qquad \quad \lambda_{12}(A_1)_2$$

$$\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2$$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$

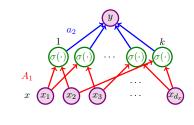


$$M_2 = \mathbb{E}[y \cdot \mathcal{S}_2(x)] = \sum_{j \in [k]} \lambda_{2,j} \cdot (A_1)_j \otimes (A_1)_j$$

$$\mathbb{E}[y|x] = G(x) = a_2^{\mathsf{T}} \sigma(A_1^{\mathsf{T}} x + b_1) + b_2$$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$



$$M_2 = \mathbb{E}[y \cdot S_2(x)] = \sum_{j \in [k]} \lambda_{2,j} \cdot (A_1)_j \otimes (A_1)_j$$

$$= + \cdots$$

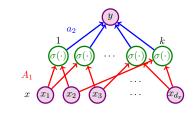
$$\lambda_{11}(A_1)_1 \otimes (A_1)_1 \quad \lambda_{12}(A_1)_2 \otimes (A_1)_2$$

$$\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2$$

• Given labeled examples $\{(x_i, y_i)\}$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$



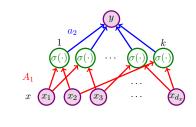
$$M_3 = \mathbb{E}[y \cdot \mathcal{S}_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

$$\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2$$

• Given labeled examples $\{(x_i, y_i)\}$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$



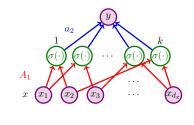
$$M_3 = \mathbb{E}[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

$$\mathbb{E}[y|x] = G(x) = a_2^{\top} \sigma(A_1^{\top} x + b_1) + b_2$$

• Given labeled examples $\{(x_i, y_i)\}$

$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$



$$M_3 = \mathbb{E}[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

Why tensors are required?

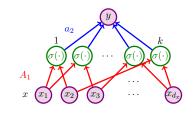
- Matrix decomposition recovers subspace, not actual weights.
- Tensor decomposition uniquely recovers under non-degeneracy.

$$\mathbb{E}[y|x] = G(x) = a_2^{\mathsf{T}} \sigma(A_1^{\mathsf{T}} x + b_1) + b_2$$

• Given labeled examples $\{(x_i, y_i)\}$

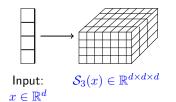
$$\mathbb{E}\left[y\cdot\mathcal{S}_m(x)\right] = \mathbb{E}\left[\nabla^{(m)}G(x)\right]$$

$$\downarrow$$

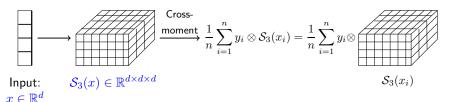


$$M_3 = \mathbb{E}[y \cdot S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

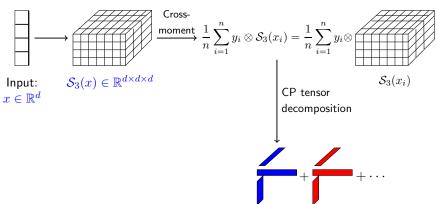
- Guaranteed learning of weights of first layer via tensor decomposition.
- Learning the other parameters via a Fourier technique.



Estimating M_3 using labeled data $\{(x_i, y_i)\}$

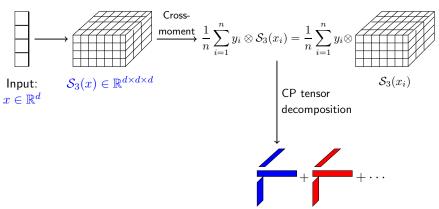


Estimating M_3 using labeled data $\{(x_i, y_i)\}$



Rank-1 components are the estimates of columns of A_1

Estimating M_3 using labeled data $\{(x_i, y_i)\}$



Rank-1 components are the estimates of columns of A_{1}

Fourier technique $\Rightarrow a_2, b_1, b_2$

• Guaranteed learning of weights of first layer via tensor decomposition.

$$M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

- Full column rank assumption on weight matrix A_1
- Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

• Guaranteed learning of weights of first layer via tensor decomposition.

$$M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

- Full column rank assumption on weight matrix A_1
- Guaranteed tensor decomposition (AGHKT'14, AGJ'14)
- Learning the other parameters via a Fourier technique.

• Guaranteed learning of weights of first layer via tensor decomposition.

$$M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

- Full column rank assumption on weight matrix A_1
- Guaranteed tensor decomposition (AGHKT'14, AGJ'14)
- Learning the other parameters via a Fourier technique.

Theorem (JSA'14)

• number of samples n = poly(d, k), we have w.h.p.

$$|f(x) - \hat{f}(x)|^2 \le \tilde{O}(1/n).$$

[&]quot;Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods" by M. Janzamin, H. Sedghi and A., June. 2015.

Recap: Tensor Rank and Tensor Decomposition

Rank-1 tensor: $T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i, j, l) = w \cdot a(i) \cdot b(j) \cdot c(l)$.

Recap: Tensor Rank and Tensor Decomposition

Rank-1 tensor: $T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i,j,l) = w \cdot a(i) \cdot b(j) \cdot c(l)$.

CANDECOMP/PARAFAC (CP) Decomposition

Recap: Tensor Rank and Tensor Decomposition

Rank-1 tensor: $T = w \cdot a \otimes b \otimes c \Leftrightarrow T(i,j,l) = w \cdot a(i) \cdot b(j) \cdot c(l)$.

CANDECOMP/PARAFAC (CP) Decomposition

• Algorithm: Alternating Least Square (ALS), Tensor power iteration,

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I,v)}{\|M(I,v)\|} = \frac{Mv}{\|Mv\|}$.

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I,v)}{\|M(I,v)\|} = \frac{Mv}{\|Mv\|}$.

Algorithm: tensor power method:
$$v \mapsto \frac{T(I,v,v)}{\|T(I,v,v)\|}$$
.

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I,v)}{\|M(I,v)\|} = \frac{Mv}{\|Mv\|}$.

Algorithm: tensor power method: $v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}$.

$$v \mapsto \frac{T(I, v, v)}{\|T(I, v, v)\|}.$$

[•] $\{v_i\}$'s are the only robust fixed points.

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I, v)}{\|M(I, v)\|} = \frac{Mv}{\|Mv\|}$.

Algorithm: tensor power method:
$$v \mapsto \frac{T(I,v,v)}{\|T(I,v,v)\|}$$
.

• $\{v_i\}$'s are the only robust fixed points.

All other eigenvectors are saddle points.

Symmetric orthogonal tensor $T \in \mathbb{R}^{d \times d \times d}$:

$$T = \sum_{i \in [k]} \lambda_i v_i \otimes v_i \otimes v_i.$$

Recall matrix power method: $v \mapsto \frac{M(I, v)}{\|M(I, v)\|} = \frac{Mv}{\|Mv\|}$.

• $\{v_i\}$'s are the only robust fixed points.

All other eigenvectors are saddle points.

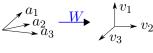
For an orthogonal tensor, no spurious local optima!

Guaranteed Tensor Decomposition

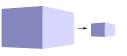
Undercomplete tensors $(k \le d)$ with full rank components

Non-orthogonal decomposition $T_1 = \sum_{i \in [k]} \lambda_i a_i \otimes a_i \otimes a_i$.

• Whitening matrix *W*: computed from tensor slices.



• Multilinear transform: $T_2 = T_1(W, W, W)$ to orthogonalize.



Tensor T_1 Tensor T_2

 To do whitening we need A₁ to be full column rank.

How to handle k > d?

Flatten higher order tensor to third order so that full rank condition holds, e.g. using 6^{th} order moments, we can handle $k = o(d^2)$.

• Guaranteed learning of weights of first layer via tensor decomposition.

$$M_3 = \mathbb{E}[y \otimes S_3(x)] = \sum_{j \in [k]} \lambda_{3,j} \cdot (A_1)_j \otimes (A_1)_j \otimes (A_1)_j$$

- Full column rank assumption on weight matrix A_1
- Guaranteed tensor decomposition (AGHKT'14, AGJ'14)
- Learning the other parameters via a Fourier technique.

Theorem (JSA'14)

• number of samples n = poly(d, k), we have w.h.p.

$$|f(x) - \hat{f}(x)|^2 \le \tilde{O}(1/n).$$

[&]quot;Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods" by M. Janzamin, H. Sedghi and A., June. 2015.

Risk Bound for Neural Networks

- Non-realizable setting: arbitrary target function $\mathbb{E}[y|x] := f(x)$.
- Risk: $\mathbb{E}[|f(x) \hat{f}(x)|^2]$.

Risk Bound for Neural Networks

- Non-realizable setting: arbitrary target function $\mathbb{E}[y|x] := f(x)$.
- Risk: $\mathbb{E}[|f(x) \hat{f}(x)|^2]$.
- Approximation error in fitting the target function to a neural network
- Estimation error in estimating the weights of fixed neural network

Risk Bound for Neural Networks

- Non-realizable setting: arbitrary target function $\mathbb{E}[y|x] := f(x)$.
- Risk: $\mathbb{E}[|f(x) \hat{f}(x)|^2]$.
- Approximation error in fitting the target function to a neural network
- Estimation error in estimating the weights of fixed neural network

• Known: continuous functions with compact domain can be arbitrarily well approximated by neural networks with one hidden layer.

Approximation Error

ullet Approx. error related to Fourier spectrum of f(x). (Barron '93). $\mathbb{E}[y|x]=f(x)$

Approximation Error

• Approx. error related to Fourier spectrum of f(x). (Barron '93). $\mathbb{E}[y|x] = f(x)$

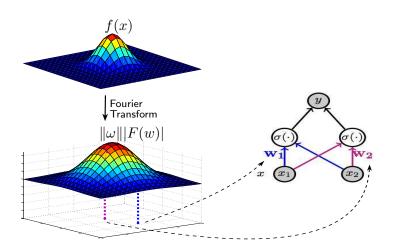
$$F(\omega) := \int_{\mathbb{R}^d} f(x) e^{-j\langle \omega, x \rangle} dx$$

$$C_f := \int_{\mathbb{R}^d} \|\omega\|_2 \cdot |F(\omega)| d\omega$$

Approximation error $\leq C_f/\sqrt{k}$

Approximation Error

• Approx. error related to Fourier spectrum of f(x). (Barron '93). $\mathbb{E}[y|x] = f(x)$



Our Main Result: Risk Bounds

ullet Approximating arbitrary function f(x) with bounded

$$C_f := \int_{\mathbb{R}^d} \|\omega\|_2 \cdot |F(\omega)| d\omega$$

• n samples, d input dimension, k number of neurons.

Our Main Result: Risk Bounds

ullet Approximating arbitrary function f(x) with bounded

$$C_f := \int_{\mathbb{R}^d} \|\omega\|_2 \cdot |F(\omega)| d\omega$$

• n samples, d input dimension, k number of neurons.

Theorem(JSA'14)

• Assume C_f is small.

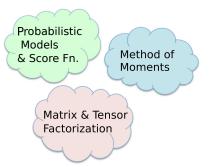
$$\mathbb{E}[|f(x) - \hat{f}(x)|^2] \le O(C_f^2/k) + O(1/n).$$

- Polynomial sample complexity n in terms of dimensions d, k.
- Computational complexity same as SGD with enough parallel processors.

[&]quot;Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods" by M. Janzamin, H. Sedghi and A., June. 2015.

FEAST: Feature ExtrAction using Score function Tensors

- Mixture of generalized linear models (SA'14)
 - The first framework to learn the weight vectors instead of their subspace.
- Mixture of Linear Regression



"Provable Tensor Methods for Learning Mixtures of Classifiers" by H. Sedghi and A. , Dec. 2014.

FEAST: Feature ExtrAction using Score function Tensors

- Mixture of generalized linear models (SA'14)
 - The first framework to learn the weight vectors instead of their subspace.
- Mixture of Linear Regression
- Conditional Random Fields
- Recurrent Neural Networks

Probabilistic
Models
& Score Fn.

Method of
Moments

Matrix & Tensor
Factorization

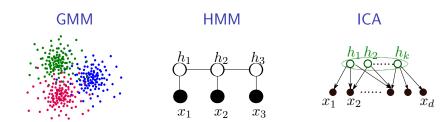
"Provable Tensor Methods for Learning Mixtures of Classifiers" by H. Sedghi and A. , Dec. 2014.

Outline

Introduction

- 2 Guaranteed Training of Neural Networks
- Overview of Other Results on Tensors
- 4 Conclusion

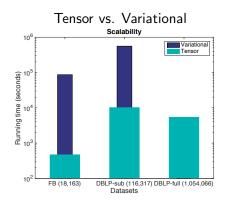
Tractable Learning for LVMs

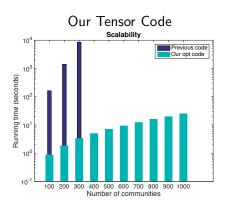


Multiview and Topic Models

k = # components, $\ell = \#$ views (e.g., audio, video, text).

Results for Community Detection





At Scale Tensor Computations

Randomized Tensor Sketches

- Naive computation scales exponentially in order of the tensor.
- Propose randomized FFT sketches.
- Computational complexity independent of tensor order.
- Linear scaling in input dimension and number of samples.

⁽³⁾ Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

⁽¹⁾ Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A., NIPS 2015.

⁽²⁾ Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A., under preparation.

At Scale Tensor Computations

Randomized Tensor Sketches

- Naive computation scales exponentially in order of the tensor.
- Propose randomized FFT sketches.
- Computational complexity independent of tensor order.
- Linear scaling in input dimension and number of samples.

Distributed Spark Implementation

In-memory processing of Spark: ideal for iterative tensor methods.

⁽³⁾ Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

⁽¹⁾ Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A., NIPS 2015.

⁽²⁾ Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A., under preparation.

At Scale Tensor Computations

Randomized Tensor Sketches

- Naive computation scales exponentially in order of the tensor.
- Propose randomized FFT sketches.
- Computational complexity independent of tensor order.
- Linear scaling in input dimension and number of samples.

Distributed Spark Implementation

In-memory processing of Spark: ideal for iterative tensor methods.

Tensor Contractions with Extended BLAS Kernels on CPU and GPU

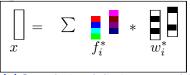
- BLAS: Basic Linear Algebraic Subprograms, highly optimized libraries.
- Use extended BLAS to minimize data permutation, I/O calls.

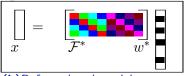
⁽³⁾ Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

⁽¹⁾ Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A., NIPS 2015.

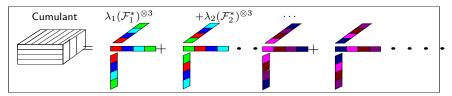
⁽²⁾ Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A., under preparation.

Convolutional Tensor Decomposition





(a) Convolutional dictionary model (b) Reformulated model



Efficient methods for tensor decomposition with circulant constraints.

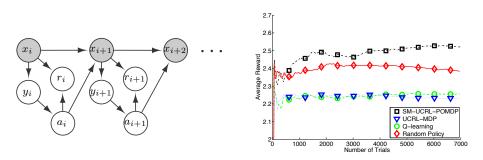
Convolutional Dictionary Learning through Tensor Factorization by F. Huang, A., June 2015.

Reinforcement Learning (RL) of POMDPs

Partially observable Markov decision processes.

Proposed Method

- Consider memoryless policies. Episodic learning: indirect exploration.
- Tensor methods: careful conditioning required for learning.
- First RL method for POMDPs with logarithmic regret bounds.

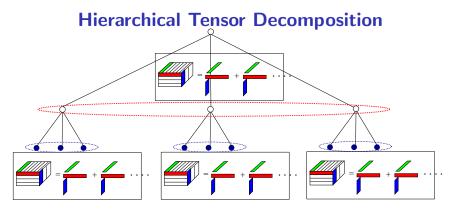


Logarithmic Regret Bounds for POMDPs using Spectral Methods by K. Azzizade, A. Lazaric, A.

Sparse+Low Rank Tensor Decomposition

- Decompose input tensor as low rank tensor + sparse tensor.
- Analyze convergence to global optimum for alternating projections (non-convex method)
- Power of tensor methods: Can handle much larger amount of block sparse perturbations than matrix methods applied to input tensor.

Robust tensor decomposition: Guarantees under block sparse perturbations by A. , U.N. Niranjan, Y. Shi, P. Jain, under preparation.



- Relevant for learning latent tree graphical models.
- Propose first algorithm for integrated learning of hierarchy and components of tensor decomposition.
- Highly parallelized operations but with global consistency guarantees.

Overcomplete Tensor Decomposition

- Overcomplete: Tensor rank larger than input dimension (k > d).
- First guaranteed results for recovery under incoherent components.
- Tensor rank much higher than dimension: for third order, $k = o(d^{1.5})$.

Learning Overcomplete Latent Variable Models through Tensor Methods by A., R. Ge, M. Janzamin, COLT 2015.

Outline

Introduction

- 2 Guaranteed Training of Neural Networks
- 3 Overview of Other Results on Tensors
- 4 Conclusion

Summary and Outlook

Summary

- Tensor methods: a powerful paradigm for guaranteed large-scale machine learning.
- First methods to provide provable bounds for training neural networks, many latent variable models (e.g HMM, LDA), POMDPs!

Summary and Outlook

Summary

- Tensor methods: a powerful paradigm for guaranteed large-scale machine learning.
- First methods to provide provable bounds for training neural networks, many latent variable models (e.g HMM, LDA), POMDPs!

Outlook

- Training multi-layer neural networks, models with invariances, reinforcement learning using neural networks . . .
- Unified framework for tractable non-convex methods with guaranteed convergence to global optima?

My Research Group and Resources

 Podcast/lectures/papers/software available at http://newport.eecs.uci.edu/anandkumar/

