
Parallel Distributed-Memory Based
Community Detection for Large Graphs

Diana Palsetia, William Hendrix, Ankit Agrawal, Wei-keng Liao, Alok Choudhary
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

 {drp925,whendrix,ankitag,wkliao,choudhar}@eecs.northestern.edu

Abstract
Community detection is a well-studied problem in graph data analytics. As
graph sizes have increased, more attention is turning to parallel techniques.
In general, graph algorithms may be parallelized by dividing the data or by
dividing the workload. One of the main challenges in designing a parallel
algorithm is partitioning the data. Since the data access pattern in graph
algorithms is often irregular and highly dependent on the network structure,
a poor partitioning scheme can cause high communication cost and severely
affect the quality of clustering. Here we describe our ongoing work on
developing a distributed-memory based parallel algorithm for community
detection. The algorithm adopts a data-based decomposition strategy with
duplication, which is expected to achieve good scalability without
sacrificing cluster quality.

1. Introduction

Data clustering organizes a collection of data points into groups based on their similarity.
Clustering graphs usually refers to the identification of vertex subsets (clusters) that have
significantly more internal edges than external ones. For example, in social networks, cluster
analysis helps to identify the formation of trends or user communities (relevant to marketing
studies) and social group behavior. In the past few years, the volume of data has surpasses
the capabilities of traditional graph-based techniques. For instance, a popular community
detection algorithm based on maximum modularity called CNM (Clauset, Newman, Moore)
[1] takes approximately 18 hours to process a social network data set containing 2,238,731
users and 14,608,137 connections. Such poor performance has encouraged researchers to
develop heuristic and parallel clustering approaches for tackling large data sets.

Graph problems are data-driven, i.e., the memory access pattern in graph algorithms is often
irregular and highly dependent on the network structure itself. Unlike spatial-based data
clustering algorithms where the affinity of two data points can be determined by their
distance, most graph algorithms must traverse the graph via edges to calculate the affinity of
a vertex to another. Thus, scalable graph algorithms based on partitioning of computation
can be difficult to develop, as the structure of computations in the algorithm is not known a
priori. While a few parallel implementations of graph clustering algorithms exist, they often
suffer from frequent synchronization [2], and their quality is affected by the processing order
of assigning vertices to the communities.

To tackle the irregularity of data access nature exhibited in graph algorithms, most parallel
implementations are designed for shared-memory architectures, such as multi-core CPUs or
GPUs with multi-threading capabilities. For instance, the fastest parallel community

detection algorithm published in the literature achieved a speedup of 13.7 using 80 compute
cores on a shared-memory machine [3]. Due to irregular data patterns, data partitioning is
one of the main challenges in parallelizing graph problems in a distributed environment and
a key factor for determining their performance and scalability. This is also evident from
recent work proposed using a distributed-memory based algorithm using Louvain method
[4]. This method is said to have achieved a 5x performance speedup on 128 processors.

2. Proposed Approach

Our proposed distributed-memory parallel algorithm for detecting communities in large-
scale graphs is named PMEP, built around the idea of maximizing equilibrium and purity
(MEP) of communities. MEP [5] has been demonstrated to produce high quality of results
for medium to large graphs. This motivates us to adopt its community detection properties
for determining local communities in our parallel algorithm design. Parallelizing MEP by
dividing its computation would limit parallelization based on the structure of the graph, and
it would suffer from frequent synchronization. Therefore, we choose to adopt a data-based
decomposition approach which divides a graph into sub-networks, detects communities
within each subnetwork independently using MEP, and combines the results.

Our parallel algorithm design focuses on an efficient data partitioning strategy. We use an
existing graph partitioning algorithm to partition the graph. However, the novel contribution
in our work is the duplication of partition data, so as to improve cluster quality and
scalability. Merging the local communities would obviously affect the final clustering result
quality. In our parallel design, a vertex may belong to more than one process, thereby
resulting in repetitive computation. However, this strategy allows us to run MEP algorithm
on subgraphs independently and concurrently. It also avoids the frequent inter-process
communication that would appear in the direct parallelization approach. Once the local
communities have been identified, PMEP runs a global resolution phase in parallel to
combine the local communities into a final global solution.

3 . Prel iminary Results & Ongoing Work

We have implemented our proposed algorithm using MPI for Python [6]. Preliminary
experimentation on large synthetic graphs with millions of vertices and edges on 3160 processes
indicate that our parallelization approach is able to give us high quality clusters in a scalable
fashion. Moreover, this approach is still effective when we increase the number of partitions. Our
original design assumed the partitioned data with duplication as input. We are currently working
on developing a complete end-to-end solution, which can read just the original graph, and perform
the data duplication and partitioning in parallel.

References

[1] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. Phys.
Rev. E, 70(6):066111, 2004.
[2]	
 S. Bansal, S. Bhowmick, and P. Paymal. Fast community detection for dynamic complex networks. In L.
F. Costa, A. Evsuko_, G. Mangioni, and R. Menezes, editors, Complex Networks, volume 116 of
Communications in Computer and Information Science, pages 196-207. Springer Berlin Heidelberg, 2011.	

[3] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader. Parallel community detection for massive
graphs. In Graph Partitioning and Graph Clustering, pages 207-222, 2012.
[4] C. Wickramaarachchi, M. Frincu, P. Small, and V. Prasanna. Fast parallel algorithm for unfolding of
communities in large graphs. In High Performance Extreme Computing Conference (HPEC), 2014 IEEE,
pages 1- 6, Sept 2014.
[5]H. Zardi and L. B. Romdhane. An O(n2) algorithm for detecting communities of unbalanced sizes in large
scale social networks. Know.-Based Syst., 37:19-36, Jan. 2013
[6] L. Dalcin, R. Paz, and M. Storti. Mpi for python. Journal of Parallel and Distributed Computing,
65(9):1108 - 1115, 2005.

