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Abstract

We consider ad-hoc networks consisting of n wireless nodes that are located on
R2. Any two given nodes are called neighbors if they are located within a certain
distance from one another. A given node can be directly connected to any one of its
neighbors and picks its connections according to a unique topology control algo-
rithm that is available at every node. Given that each node knows only the indices
of its one- and two-hop neighbors, we identify an algorithm that preserves con-
nectivity and can operate without the need of any synchronization among nodes.
Moreover, the algorithm results in a sparse graph with at most 5n edges and a
maximum node degree of 10. Existing algorithms with the same promises further
require neighbor distance and/or direction information at each node.

1 Introduction

We consider n wireless nodes indexed (and uniquely identified) by the natural numbers 1,...,n
with locations z1, ..., z, € R% Given 1 < i < j < n, Node i may potentially be connected to any
Node j with |z; — 2;| < R, where | - | is the Euclidean distance, and R > 0 is the communication
range. As an example, a network consisting of 7 nodes with no connections is as shown in Fig. 1(a).
In this example, Node 7 can potentially be connected to any other node except Nodes 2 and 4.
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Figure 1: Instances of a network with 7 nodes. Physical locations of the nodes are kept fixed throughout (a)-(c).
The “exact” physical location of a given node is the center of the corresponding black disk.

A major goal of topology control is to have a connected network, i.e. a network where there exists
a path between any two given nodes so that information from one node may be conveyed to another
[1]. In the case of our disk-connectivity model, the network can be made connected only whenever
the Gilbert graph (V, £(V)) with V £ {1,...,n}and EW) £ {(i, ) 14,5 € W, i < j, |v;—x;| <
R}, W C Vs connected. As an example, Fig. 1(b) shows the Gilbert graph corresponding to the
setup in Fig. 1(a). This particular graph has 13 edges with a maximum (node) degree of 6, while a
general Gilbert graph may have %n(n — 1) edges with a maximum degree of n — 1.

The existence of many edges and nodes with high degrees is not desirable in wireless networks
due to several practical issues such as radio interference [2, 3]. One thus wishes to obtain sparse
connected topologies with a constant maximum node degree. In practice, such a topology should
be generated locally with every node picking its own connections according to a certain common
algorithm that requires as little information as possible. In this context, given i € V, let N £ {j :
j €V, j<i,|r;—xj| < R} represent the lower neighborhood of Node i (Lower in the sense that it
only contains neighbors with smaller indices/identification numbers.). We assume that a given Node
i only knows N; and NV, j € N;. In the following, we introduce a corresponding algorithm that
provides a connected sparse network with constant maximum degree. We note that several existing



local algorithms such as XTC [4], NTC [5], LMST [6], CBTC [7] (also see [8-10] and [11] for a
general survey on topology control and other algorithms) can all provide topologies with the same
guarantees; however, they further require each node to know its exact distance and/or direction to
its neighboring nodes as well as other extra side information. In fact, to the best of our knowledge,
no previous algorithm can guarantee even a sparse connected topology (with no degree constraints)
under the restrictions that we impose on node knowledge.

2 The Algorithm

Given i € V, consider the Gilbert graph (N, £(N;)) generated by the lower neighborhood of Node
i. It is not difficult to show that (N, £(N;)) can have at most 5 connected components, which we
shall refer to as (NV;;,E(N;;)), 7 = 1,...,5 (Of course, some or all of AV;; may be empty.). Our
algorithm (at Node ¢) is then to “Connect to all nodes in the set {max\;; : ;; # 0}.” Running the
algorithm at each node exactly once results in a graph that we refer to as (), F). Nodes may run the
algorithm in arbitrary order, or simultaneously in a completely asynchronous fashion.

As an example, for the setup in Fig. 1(a), the algorithm results in the topology in Fig. 1(c). In
detail, for Node 6 in Fig. 1(a), the vertex sets of the two connected components induced by Ny are
Ne1 = {1,2,5} and Ng2 = {3, 4} so that Node 6 will establish connections to Nodes 5 and 4. Node
1, having no lower neighbors, will not attempt to connect to any other node. On the other hand, for
Node 2, we have the single vertex set No; = {1}, so that Node 2 will connect to Node 1 (Hence,
Node 1 in fact gets connected to Node 2, even though it is not Node 1 that initiates this connection.).

The following theorem summarizes some of the properties of the resulting topology (V, F)

Theorem 1. The graph (V, F) is connected if and only if the Gilbert graph (V, E(V)) is connected.
Moreover, we have | F| < 5n and the degree of each node in (V, F) is no more than 10.

Proof. For the statement regarding connectivity, we only need to prove the “if”” part with the “only
if” part being trivial. Suppose (V, £(V)) is connected. Then, for any given two nodes in V, there is
a (finite) path in (V, £(V)) that connects these two nodes with each edge in the path consisting of
two neighboring nodes. To show that (), F) is connected, it is thus sufficient to show that any two
Nodes i and j within range and (without loss of generality) ¢ < j are path-connected in (V, F). To
prove this, first note that if ¢ = j — 1, then, by design, Node j initiates a connection to Node ¢ and
we are done. Otherwise, 3k € V with i < k < j such that (i) Node j initiates a connection to Node
k, and (ii) there is a path P in (V,£(V)) connecting Node k to Node ¢ such that the index of each
node in P is no more than k£ < j — 1. It is then sufficient to show that any two distinct neighboring
nodes that appear in P are path-connected in (V, F). On the other hand, to prove this latter claim,
it is sufficient to show that any two neighboring Nodes ¢’ and j’ with indices i’ < j' < j — 1 are
path connected in (), F). Hence, any two neighboring Nodes 7 and j with ¢ < j are path-connected
in (V, F) if either ¢ = j — 1 or any two neighboring Nodes i’ and j’ with ¢/ < j* < j — 1 are
path-connected in (), ). This last statement describes a finite descent that immediately leads to
the path-connectedness of Nodes ¢ and j. This concludes the proof of the claim on connectivity.

We now prove the rest of the claims. The inequality |F| < 5n follows immediately as each node
initiates at most 5 connections. We now prove the degree bound. Let ¢ € V. By design, a node with
a lower index (< ¢) cannot initiate a connection to Node 7. On the other hand, Node ¢ itself initiates
at most 5 connections. It is thus sufficient to show that there are at most 5 nodes with a higher index
(> 1) initiating a connection to Node 7. Assume the contrary and suppose there are 6 or more such
nodes. Two of these nodes, say Nodes j and &k (with j < k without loss of generality) should then be
within communication range as well as being within range of Node . This implies {4, j} C Ny, for
some £ € {1,...,5} withi ¢ Ny and j ¢ Ny for ¢ # £. Since max Cy > max{i,j} = j > 1,
and i ¢ Ny for ¢/ = £, we have, in fact, max Ny, # i for every £. This contradicts the fact that
Node £ initiates a connection to Node ¢ and thus proves the degree bound. O

There is more to say about the algorithm that generates (), F). For example, it can be shown that for
a uniform random network [12] on [0, 1]2, the algorithm provides asymptotically almost-sure con-
nectivity with n(1 + o(1)) edges if R € Q(L logn) is just above the connectivity threshold. There
are also applications to interference networks in the spirit of [3]. Also, the stretch factors associated
with (V, F) may be evaluated. Due to lack of space, we shall discuss these issues elsewhere.
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