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Abstract

A recent advance in computational homology gives an order-of-magnitude
improvement in applications to neural coding analysis.
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1 Overview

The study of betti curves — topological shape descriptors -- of matrix order complexes has
yielded recent insights into the structure of real symmetric matrices, with emerging
applications in neural coding analysis [1, 2]. Unlike spectral quantifiers of structure and
randomness, such descriptors are invariant under monotone nonlinear transformation, hence
robust to order-preserving measurement noise. The principle challenge to computability of
betti curves in this setting is exponential growth of combinatorial data relative to the size of
the input matrix. To address this, we present a new reduction algorithm capable of lowering
memory requirements by a factor of one to three orders of magnitude, enabling first-of-its
kind analysis of large-scale neural connectivity data generated by fMRI, DTI, etc. As an aid
to computation, we present a sparse topological LU factorization technique that produces, in
addition, refined topological invariants, termed barcode generators. To our knowledge this
is the first implemented library with this capability. Barcode generators are fundamental in
topological data analysis [3]. The availability of finer invariants at reduced memory cost
and greater scalability will enrich existing applications. Key to both algorithms are concepts
from the theory of cellular matroids [4] and discrete Morse theory [5].

1 Background

A (combinatorial) simplicial complex X is a family of subsets (or simplices) of a ground set
V, closed under set inclusion. The dimension of a simplex of cardinality (k + 1) is defined to
be k, the set of all k-dimensional simplices in X is denoted X, and the set of all p-
dimensional simplices with p < k is denoted X*. The k™ betti number of X with coefficients
in field F, denoted B, (X; F), is the rank of the k™ homology — an algebraic invariant
describing the number of F-linearly independent k-dimensional holes in X.

Let K,, = (V,E) be the complete graph on m vertices, and w: E — {1, ..., |E|} be a bijective
weight function. IfE; ={e € E : w(e) < i} is the set of all edges “of size smaller than i,”
one may define X; to be the set of all cliques in (V, E;). The function defined c(i) = B, (X;)
is the k™ betti curve of X with respect to w.

Say that a weight function w is geometric (or has geometric structure) if w({i,j}) = #{{i’ <
j’}: d(@@,j) <d(i,j) } for some metric d on V; given iid variables (¢;;) for 0 <i <j<m,
we say the random variable w defined by w(i,j) = #{{i" <j'}: ¢y j» < ¢y} is itself iid.

Curto et al. [2] show that geometric and iid weight functions induce markedly distinct
distributions on betti curves. Further, Giusti et al. argue [1] that the distributions of betti curves



for hippocampal place cells in rats are explained by the observation that neurons tuned to features
that lie in a continuous coding space, such as orientation-tuned neurons [6] or hippocampal place
cells [7], have correlations that decrease with distance. These observations suggest new methods
of analysis and hypothesis testing vis-a-vis random and geometric structure in neural correlation
matrices. To perform the same analysis on large matrices, however, users must address the issue of
exponential growth in the size of the input complex, see Figure 1 [left].

The contributions presented are: first, an algorithm to reduce the number of simplices stored in
memory, and second, a sparse factorization technique for homology computation, see Figure 1 for
sample results.
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Figure 2: Sample results. Point clouds of cardinality m = 25, ..., 250 were sampled from a

uniform distribution on the unit cube of dimension 20. The induced filtrations on each
simplex were coarsened to 200 levels, after which the reduction algorithm was applied. Left
The number of 4-dimensional faces stored per sample, before and after reduction, log scale.
Right The mean number of nonzero entries per column of the LU factorization in dimension
3, and of the L factorization in dimension 4 (a U component in the top dimension is not
necessary to obtain generators, and is not computed). Note that the number of columns
exceeds the number of nonzero entries stored in some cases, an artifact of the data structures
employed.

Work in progress applies these contributions to experimental data from neural correlations in
the context of learning.

References

[1] C. Giusti, E. Pastalkova, C. Curto, & V. Itskov, arXiv:1502.06172, 2015.
[2] C. Curto, C. Giusti , & V. Itskov, arXiv:1502.06173, 2015.

[3] R. Ghrist, Elementary Applied Topology, 2014.

[4] A. Bjorner et al., Oriented Matroids, 1993.

[5] R. Foreman, Advances in Mathematics 134(1), p. 90ff., 1998.

[6] D. Hubel, T. Wiesel, Journal of Physiology 148, p. 574, 1959.

[7] J. O’Keefe, J. Dostrovsky, Brain Research 34, p. 171, 1971.



