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Abstract 
A recent advance in computational homology gives an order-of-magnitude 
improvement in applications to neural coding analysis. 
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1 Overview 
The study of betti curves – topological shape descriptors -- of matrix order complexes has 
yielded recent insights into the structure of real symmetric matrices, with emerging 
applications in neural coding analysis [1, 2].  Unlike spectral quantifiers of structure and 
randomness, such descriptors are invariant under monotone nonlinear transformation, hence 
robust to order-preserving measurement noise.  The principle challenge to computability of 
betti curves in this setting is exponential growth of combinatorial data relative to the size of 
the input matrix.  To address this, we present a new reduction algorithm capable of lowering 
memory requirements by a factor of one to three orders of magnitude, enabling first-of-its 
kind analysis of large-scale neural connectivity data generated by fMRI, DTI, etc.  As an aid 
to computation, we present a sparse topological LU factorization technique that produces, in 
addition, refined topological invariants, termed barcode generators.  To our knowledge this 
is the first implemented library with this capability.  Barcode generators are fundamental in 
topological data analysis [3].  The availability of finer invariants at reduced memory cost 
and greater scalability will enrich existing applications. Key to both algorithms are concepts 
from the theory of cellular matroids [4] and discrete Morse theory [5]. 

 
1 Background 
A (combinatorial) simplicial complex 𝑋 is a family of subsets (or simplices) of a ground set 
𝑉, closed under set inclusion. The dimension of a simplex of cardinality (𝑘 + 1) is defined to 
be 𝑘 , the set of all 𝑘 -dimensional simplices in 𝑋  is denoted 𝑋(𝑘) , and the set of all 𝑝 -
dimensional simplices with 𝑝 ≤ 𝑘 is denoted 𝑋𝑘.  The 𝑘th betti number of 𝑋 with coefficients 
in field 𝐹 , denoted 𝛽𝑘(𝑋;  𝐹) , is the rank of the 𝑘 th homology – an algebraic invariant 
describing the number of 𝐹-linearly independent 𝑘-dimensional holes in 𝑋.   

Let 𝐾𝑚 = (𝑉,𝐸) be the complete graph on 𝑚 vertices, and 𝑤: 𝐸 → {1, … , |𝐸|} be a bijective 
weight function.  If 𝐸𝑖  = {𝑒 ∈ 𝐸 ∶ 𝑤(𝑒) ≤  𝑖} is the set of all edges “of size smaller than 𝑖,” 
one may define 𝑋𝑖 to be the set of all cliques in (𝑉,𝐸𝑖).  The function defined 𝑐(𝑖)  = 𝛽𝑘(𝑋𝑖) 
is the 𝑘th betti curve of 𝑋 with respect to 𝑤. 

Say that a weight function 𝑤 is geometric (or has geometric structure) if 𝑤({𝑖, 𝑗})  =  #{{𝑖’ <
𝑗’} ∶  𝑑(𝑖’, 𝑗’) < 𝑑(𝑖, 𝑗) } for some metric 𝑑 on 𝑉; given iid variables (𝜙𝑖,𝑗) for 0 < 𝑖 < 𝑗 ≤ 𝑚, 
we say the random variable 𝑤 defined by 𝑤(𝑖, 𝑗)  =  #{{𝑖’ < 𝑗’} ∶  𝜙𝑖′ ,𝑗′ < 𝜙𝑖,𝑗} is itself iid.   

Curto et al. [2] show that geometric and iid weight functions induce markedly distinct 
distributions on betti curves.  Further, Giusti et al. argue [1] that the distributions of betti curves 



for hippocampal place cells in rats are explained by the observation that neurons tuned to features 
that lie in a continuous coding space, such as orientation-tuned neurons [6] or hippocampal place 
cells [7], have correlations that decrease with distance.  These observations suggest new methods 
of analysis and hypothesis testing vis-à-vis random and geometric structure in neural correlation 
matrices. To perform the same analysis on large matrices, however, users must address the issue of 
exponential growth in the size of the input complex, see Figure 1 [left]. 

The contributions presented are: first, an algorithm to reduce the number of simplices stored in 
memory, and second, a sparse factorization technique for homology computation, see Figure 1 for 
sample results. 

 

  
Figure 2: Sample results. Point clouds of cardinality m = 25, …, 250 were sampled from a 
uniform distribution on the unit cube of dimension 20.  The induced filtrations on each 
simplex were coarsened to 200 levels, after which the reduction algorithm was applied. Left 
The number of 4-dimensional faces stored per sample, before and after reduction, log scale. 
Right The mean number of nonzero entries per column of the LU factorization in dimension 
3, and of the L factorization in dimension 4 (a U component in the top dimension is not 
necessary to obtain generators, and is not computed).  Note that the number of columns 
exceeds the number of nonzero entries stored in some cases, an artifact of the data structures 
employed. 

Work in progress applies these contributions to experimental data from neural correlations in 
the context of learning.  
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