
SIMPLEX Proposal: Network Lasso

David Hallac
Stanford University

hallac@stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

Stephen Boyd
Stanford University

boyd@stanford.edu

Abstract

Convex optimization is an essential tool for modern data analysis, as it provides
a framework to formulate and solve many problems in machine learning and data
mining. However, general convex optimization solvers do not scale well, and
scalable solvers are often specialized to only work on a narrow class of problems.
Therefore, there is a need for simple, scalable algorithms that can solve many
common optimization problems. We introduce the network lasso, a generalization
of the group lasso to a network setting that allows for simultaneous clustering and
optimization on graphs. We develop an algorithm based on the Alternating Di-
rection Method of Multipliers (ADMM) to solve this problem in a distributed and
scalable manner, which allows for guaranteed global convergence even on large
graphs. We then demonstrate that many types of problems can be expressed in our
framework. We focus on three in particular — binary classification, predicting
housing prices, and event detection in time series data — comparing the network
lasso to baseline approaches and showing that it is both a fast and accurate method
of solving large optimization problems.

1 Problem Setup

Consider the following problem on a graph G = (V, E), where V is the vertex set and E the set of
edges:

minimize
∑
i∈V

fi(xi) +
∑

(j,k)∈E
gjk(xj , xk). (1)

The variables are x1, . . . , xm ∈ Rp, where m = |V|. (The total number of scalar variables is
mp.) Here xi ∈ Rp is the variable at node i, fi : Rp → R ∪ {∞} is the cost function at node i, and
gjk : Rp×Rp → R∪{∞} is the cost function associated with edge (j, k). Extended (infinite) values
of fi and gjk describe constraints on the variables, or pairs of variables across an edge, respectively.

Network lasso. Our focus will be on the special case in which the fi are convex, and gjk(xj , xk) =
λwjk‖xj − xk‖2, with λ ≥ 0 and user-defined weights wjk ≥ 0:

minimize
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E
wjk‖xj − xk‖2. (2)

The edge objectives penalize differences between the variables at adjacent nodes, where the edge
between nodes i and j has weight λwij . Here we can think of wij as setting the relative weights
among the edges of the network, and λ as an overall parameter that scales the edge objectives relative
to the node objectives. We call problem (2) the network lasso [1] problem, since the edge cost is a
sum of norms of differences of the adjacent edge variables.

Regularization Path. Although the regularization parameter λ can be incorporated into the wij’s
by scaling the edge weights, it is best viewed separately as a single parameter which is tuned to yield
different global results. λ defines a trade-off for the nodes between minimizing its own objective
and agreeing with its neighbors. At λ = 0, x?i , the solution at node i, is simply a minimizer of fi.

1

This can be computed locally at each node, since when λ = 0 the edges of the network have no
effect. At the other extreme, as λ→∞, problem (2) turns into

minimize
∑
i∈V

fi(x̃), (3)

since a common x̃ must be the solution at every node. This is solved by xcons ∈ Rp. We refer to (3)
as the consensus problem and to xcons as the consensus solution. If a solution to (3) exists, it can be
shown that there is a finite λcritical such that for any λ ≥ λcritical, the consensus solution holds. For
λ’s in between λ = 0 and λcritical, the family of solutions is known as the regularization path.

2 Experiments

We analyze both the scalability and generality of our approach, examining several common exam-
ples. Our code and solver are available at http://snap.stanford.edu/snapvx.

2.1 Timing Results

Without any structure or sparsity to the problem, general (centralized) convex optimization solvers
scale with the cube of the problem size. Our approach, based on the alternating direction method of
multipliers (ADMM) [2], splits the problem into a series of subproblems and solves it iteratively via
message passing between neighbors on the graph. To do so, it combines two pieces of open-source
software, Snap.py [3] (for network analysis) and CVXPY [4] (for a convex solver). Our solution is
parallelizable, scalable, and provides guaranteed convergence without any global coordination. We
compare our approach with a general solver for the entire regularization path below.

103 104 105 106

Number of Unknowns

101

102

103

104

105

106

T
im

e
(S

ec
on

ds
)f

or
E

nt
ir

e
R

eg
ul

ar
iz

at
io

n
Pa

th

Convergence Time vs. Problem Size

Centralized
ADMM

2.2 Applications

The network lasso can apply to a variety of applications. This is because the algorithm works
regardless of the network structure (as long as the graph is connected) and for any convex fi and xi.
Thus, by changing these parameters, we can analyze problems from many different fields.

• Event detection in time series data - We analyze a building’s entry and exit data over a 4
month interval. We use the network lasso to find “outliers”, or times with anomalous traffic,
and compare it to the official events that occurred in the building during that interval.
• Housing price prediction - We cluster houses into empirically determined neighborhoods

that share a common regression model. Each house solves for its own regression parame-
ters, but the lasso encourages nearby homes to cluster together with a shared model.
• Network-enhanced classifier - We look at a synthetic graph where each node has its own

SVM, but individual nodes have insufficient information to build robust classifiers. As-
suming that neighboring nodes have similar (or the same) classifiers, nodes can “borrow”
statistical power from the network to improve prediction accuracy.

For each of these examples, we use the network lasso to make predictions on the network, and in all
cases we outperform common baselines, showing that our approach is both a general and powerful
method of solving convex optimization problems defined on networks.

2

http://snap.stanford.edu/snapvx

References

[1] D. Hallac, J. Leskovec, and S. Boyd. Network Lasso: Clustering and Optimization in Large Graphs. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2015.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1–122, 2011.

[3] J. Leskovec and R. Sosič. Snap.py: SNAP for Python. http://snap.stanford.edu, 2014.

[4] S. Diamond, E. Chu, and S. Boyd. CVXPY. http://cvxpy.org/, 2014.

3

http://snap.stanford.edu
http://cvxpy.org/

	Problem Setup
	Experiments
	Timing Results
	Applications

