Reverse-engineering the cortical processing of speech

Nima Mesgarani
Electrical Engineering
Columbia University
Anatomy of speech communication

Production

Perception

Ear drum

Cocktail party problem, Cherry, (1953)
Challenging problem

Segregating sound mixtures into separate perceptual acoustic events (sources) (Bregman’90)
Creating a model of speech communication

Understanding the brain, speech disorders, prosthesis

Closing the gap between artificial and biological computing

Computation
Representation
Implementation
Speech processing in the brain
ElectroCorticoGraphy (ECoG)

- Implanted chronic grids for localization of epileptogenic foci usually 7-10 days.
Making sense of the cortical representation of speech

- Are different auditory sites selective to specific speech sounds?
- What features organize the neural responses?
- What natural variabilities are encoded?

500 unique sentences from 400 speakers
Using phonemes to segment speech

- Smallest contrastive linguistic unit that can change the meaning
 - /b/ in /bad/
 - /d/ in /dad/
- Limited inventory in each language
Phonetic categories

Distinctive features, Chomsky, Halle, Stevens
Specificity of neural responses

- Frequency (KHz)
 - 0.1

- High gamma zscore
 - Time (s)
 - Density
 - /s/ and /n/
Examples of average phoneme responses in STG

- Plosives
- Fricatives
- Low vowels
- High vowels
- Nasals

Diversity of responses: Strong preference at various STG sites to specific phoneme groups with shared attributes

Mesgarani et al, 2014, Science
Selectivity pattern across all STG sites

What ‘types’ of selectivity patterns at local and population level?
Clustering the PSI vectors

Local structures (single electrode)

Global structures (population)

Mesgarani et. al, 2014, Science
Prediction accuracies of acoustic parameters of phones from population

The natural variability of phones is encoded in STG responses
Representation of speech in STG

• Single electrode selectivity to phonetic feature categories (e.g. place and manner)
• Accurate encoding of natural variabilities of phones
• Evidence for nonlinear encoding of Voice-Onset-Time, and joint encoding of formant frequencies
Inverse model: From neural response to sound

\[R(t) \xrightarrow{G(t,f)} S(t,f) \]

\[S(t,f) = \sum_n \sum_{\tau} G_n(t - \tau, f) r_n(\tau) \]

\[e = \sum_f \sum_t (\hat{S}(t,f) - S(t,f))^2 \]

\[G = C_{rr}^{-1} C_{rs} \]

Mesgarani et. al J. Neurophysiology 2009
Reconstruction from 200 single units in Ferret A1

Mesgarani et al. J. Neurophysiology 2009
Reconstruction from human brain

Improving reconstruction accuracy

More training data and more neurons

More advanced models (DNN)

Yang et. al, Interspeech 2015
Reconstructing noisy speech from auditory cortex

Mesgarani et. al. PNAS 2014
A dynamic model of auditory cortical neurons

Static model CANNOT account for noise robustness of neural responses

Mesgarani et. al., PNAS 2014
Attentional modulation of the cortical representation

- What is the representation of attended speaker?
- Neural correlate of perceptual failures

Cocktail party problem, Cherry, (1953)
Experiment design

“Ready [Call Sign] go to [Color] [Number] now”

Speaker 1

SP1: ready

tiger

go to

green

five

now

Speaker 2

SP2: ready

ringo

go to

red

two

now

Mix:

ready

tiger

go to

green

two

five

now

now
Experimental setup

- Target speaker changes randomly from trial to trial
- Target call sign changes after each trial block
Attentional modulation of cortical representation

Acoustic Spectrogram: Single Speaker

SP1: ready tiger go to green five now

Neural Reconstruction: Single Speaker

SP2: ready ringo go to red two now

Neural Reconstruction: ATTENDED Multi-Speaker

Mesgarani & Chang, (2012), Nature
Correlation with single speaker spectrograms

Mesgarani & Chang, (2012), Nature
Time-course of attentional modulation

AMI = \text{Corr}(SP_1 \text{ attend}, SP_1 \text{ alone}) - \text{Corr}(SP_1 \text{ attend}, SP_2 \text{ alone}) + \text{Corr}(SP_2 \text{ attend}, SP_2 \text{ alone}) - \text{Corr}(SP_2 \text{ attend}, SP_1 \text{ alone})
Decoding words and identity of attended speaker using single speaker models

- Train linear, frame-based, classifier (RLS) on examples of single speakers responses and then decode the mixture speech
Online decoding of attention using single-trial EEG

EEG recording setup

Similarity to attended speaker

Sulivan et. al., Cerebral Cortex, 2014
Cortical representation of speech

Selectivity to phonetic feature categories (e.g. place and manner)

Reduced variability due to **adaptive** mechanisms (e.g. synaptic depression)

Top-down (e.g. attention) **dynamically** modulate the representation
Creating a model of speech communication

Understanding the brain, speech disorders, prosthesis

Closing the gap between artificial and biological computing

Computation

Representation

Implementation
Neuro-inspired models for acoustic modeling

Forming a better understanding of DNN’s computation and limitation

What representation is used?
What nonlinear transformation occurs from one layer to next?
Node activations to speech

Input layer, 11 frames of log-mel filterbank, and deltas, trained on WSJ clean

5 sigmoid, hidden layers, 256 nodes each, fully connected, feed-forward

Softmax output 41 nodes context independent

Response to /t/
Response to /z/

Input layer, 11 frames of log-mel filterbank, and deltas, trained on WSJ clean

5 sigmoid, hidden layers, 256 nodes each, fully connected, feed-forward

Softmax output 41 nodes context independent

Response to /t/
Response to /z/

Actual Label
What do the nodes respond to?

Individual nodes become responsive to various phonetic features.
What features organize the hidden representations?

Progressive representation of phonetic features learned by the network that was trained to extract Phonemes from speech

Nagamine et. al. Interspeech 2015
Solving the “invariance problem”?

A phoneme instance (phone) is affected by speaker, context, mood, etc., but perception is robust.

Clustering “phones” based on the response of nodes selective to same phoneme.

Network learns the variability of the phonemes (phones) and models them explicitly with different nodes.
What transformations occur from layer to layer?

\[\sum_i (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^p \beta_j^2 \]

\[\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y \]

Regression errors are the nonlinear part of the responses.
How separable are phonemes in each layer?

Separability of phoneme categories from layer to layer
The representation becomes increasingly **nonlinear** and **separable**

But *What* becomes more separable, and *How*? All phoneme/phones or only some?
Decoding phonemes from different layers

Inseparable phones become more separable due to nonlinear transformations
Nonlinear warping of the feature space in the network

The DNN selectively and progressively stretches the feature space to “carve” phonetic categories
Representational properties of DNN

• Progressive selectivity to **phonetic features** in DNN layers

• Network solves the “**invariance problem**” by explicitly modeling the sources of variability

• Non-uniform, category-driven **nonlinear stretching** of acoustic space

• Incorporating neuro-inspired mechanisms?
Synaptic depression in biological neural networks

\[
\begin{align*}
 z(t) &= \sum_i w_i x_i(t) + b \\
 y(t) &= f(z(t))
\end{align*}
\]
Modeling synaptic depression

(a) Weight Depression model

\[y(t) = f(\sum_i w_i x_i(t)(1 - d_{i,w}(t))) + b \]
\[d_{i,w}(t) = (1 - \frac{1}{\tau})d_{i,w}(t - 1) + vx_i(t - 1)(1 - d_{i,w}(t - 1)) \]

(b) Bias Depression model

\[y(t) = f(\sum_i w_i x_i + b - d_b(t)) \]
\[d_b(t) = (1 - \frac{1}{\tau})d_b(t - 1) + vz_0(t - 1) \]
Adaptive, nonlinear effects of synaptic depression

Autoencoder network with/without SD
Bias depression in a DNN for phoneme recognition

Synaptic depression stabilizes the average activation of nodes in noise conditions

- **HL 1**: $r = 0.02, 0.17$
- **HL 2**: $r = 0.45, 0.91$
- **HL 3**: $r = 0.50, 0.98$
- **HL 4**: $r = 0.88, 0.99$
Synaptic depression in DNN for phoneme recognition

<table>
<thead>
<tr>
<th>SNR</th>
<th>White Noise</th>
<th>Pink Noise</th>
<th>Jet Noise</th>
<th>City Noise</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>56.65% / 54.61%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>41.98% / 44.35%</td>
</tr>
<tr>
<td>20</td>
<td>35.81% / 41.39%</td>
<td>42.89% / 45.33%</td>
<td>42.13% / 43.83%</td>
<td>47.07% / 46.84%</td>
<td>41.98% / 44.35%</td>
</tr>
<tr>
<td>15</td>
<td>27.39% / 34.63%</td>
<td>34.27% / 38.99%</td>
<td>33.13% / 37.18%</td>
<td>41.03% / 42.22%</td>
<td>33.96% / 38.26%</td>
</tr>
<tr>
<td>10</td>
<td>19.05% / 26.71%</td>
<td>24.83% / 31.69%</td>
<td>24.28% / 29.23%</td>
<td>33.11% / 35.52%</td>
<td>25.32% / 30.79%</td>
</tr>
<tr>
<td>5</td>
<td>12.38% / 19.37%</td>
<td>15.89% / 22.52%</td>
<td>15.48% / 20.94%</td>
<td>23.40% / 27.92%</td>
<td>16.79% / 22.69%</td>
</tr>
<tr>
<td>0</td>
<td>7.90% / 14.17%</td>
<td>9.15% / 14.83%</td>
<td>8.45% / 13.85%</td>
<td>14.95% / 19.52%</td>
<td>10.11% / 15.59%</td>
</tr>
<tr>
<td>Average</td>
<td>20.51% / 27.25%</td>
<td>25.41% / 30.67%</td>
<td>24.69% / 29.01%</td>
<td>31.91% / 34.40%</td>
<td>–</td>
</tr>
</tbody>
</table>
Creating a model of speech communication

Understanding the brain, speech disorders, prosthesis

Closing the gap between artificial and biological computing

Computation

Representation

Implementation
Properties of the cortical representation

<table>
<thead>
<tr>
<th>Selective</th>
<th>Dynamic</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation when listener attends to:</td>
<td>Noisy speech</td>
<td>Cleaned speech</td>
</tr>
<tr>
<td>Frequency</td>
<td>Speaker 1</td>
<td>Speaker 2</td>
</tr>
<tr>
<td>Time (s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Making new models:

- Temporal integration, higher order units
- What does the feedback change?
- Interaction of top-down and bottom-up

(Nagamine et. al. 2016)
(Nagamine et. al. 2016)
(Zhang et. al., 2016)
Our Lab:
James O’Sullivan
Tasha Nagamine
Laura Long
Zhou Chen
Bahar Khalighinejad

National Institute on Deafness and Other Communication Disorders
R01DC014279

NSF Career Award

THE PEW CHARITABLE TRUSTS