When Enough is Enough: Location Tracking, The Fourth Amendment, Mosaic Theory, and Machine Learning

Steven M. Bellovin

(Joint work with Renée Hutchins, Tony Jebara, Sebastian Zimmeck)
LAW?

• I’m a CS professor
• This is a data science class
• So why am I going to talk about law?
PATTERNS AND PREDICTIONS

• Machine learning can find all sorts of patterns
• Some uses of big data are fairly obvious, once we know how to do it
• Some aren’t—like shaping legal doctrine
• For example: should the police need a search warrant to track someone’s location?
AN OPEN LEGAL QUESTION!

- The Supreme Court has never ruled about tracking **people**
 - The closest they came was in *United States v. Knotts*, 460 U.S. 276 (1983)
 - That was about tracking a drum of chemicals
- They had a chance in *United States v. Jones*, 615 F. 3d 544 (2012)—but punted and issued a ruling on other grounds
THE FOURTH AMENDMENT

“The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures, shall not be violated, and no warrants shall issue, but upon probable cause, supported by oath or affirmation, and particularly describing the place to be searched, and the persons or things to be seized.”

Searches do not always require a warrant, but they have to be reasonable.
SHOULD POLICE NEED A WARRANT FOR GPS TRACKING?

• No: movements are public
 • Police could just follow someone
 • You have no “reasonable expectation of privacy” in public activities

• No: in *Knotts*, the Supreme Court said that putting a beeper on a chemical shipment for three days is ok
 • It tracked movements on public roads
SHOULD POLICE NEED A WARRANT FOR GPS TRACKING?

• Yes: One check on police abuse of their power is economic: they can’t afford to trail very many people for a very long time

 ➔ Modern tracking is *much* cheaper
“When changing technology or social practice makes evidence substantially harder for the government to obtain, the Supreme Court generally adopts lower Fourth Amendment protections for these new circumstances to help restore the status quo ante level of government power. On the other hand, when changing technology or social practice makes evidence substantially easier for the government to obtain, the Supreme Court often embraces higher protections to help restore the prior level of privacy protection.”
“In the pre-computer age, the greatest protections of privacy were neither constitutional nor statutory, but practical. Traditional surveillance for any extended period of time was difficult and costly and therefore rarely undertaken. The surveillance at issue in this case—constant monitoring of the location of a vehicle for four weeks—would have required a large team of agents, multiple vehicles, and perhaps aerial assistance. Only an investigation of unusual importance could have justified such an expenditure of law enforcement resources. Devices like the one used in the present case, however, make long-term monitoring relatively easy and cheap.”
THE COST OF TRACKING

SHOULD POLICE NEED A WARRANT FOR GPS TRACKING?

• Yes: One check on police abuse of their power is economic: they can’t afford to trail very many people for a very long time

 ➔ Modern tracking is *much* cheaper

• Yes: *Patterns* of movement are very revealing
MOSAIC THEORY

• *Mosaic theory*: a large-enough collection of data points is very, very revealing, and violates “reasonable expectation of privacy”

• It is the *total pattern* of movements that is revealing
 • Law enforcement cannot afford to track (most) people for a month

• But—where do you draw the line? What is “large enough”?
US V. JONES (2012)

- Police attached a GPS tracker to Jones’ car for 28 days
- The warrant had expired
- The Supreme Court overturned the conviction 9-0, but on classical Fourth Amendment grounds: a physical intrusion on his car
“Disclosed in [GPS] data . . . will be trips the indisputably private nature of which takes little imagination to conjure: trips to the psychiatrist, the plastic surgeon, the abortion clinic, the AIDS treatment center, the strip club, the criminal defense attorney, the by-the-hour motel, the union meeting, the mosque, synagogue or church, the gay bar and on and on.”

Justice Sotomayor’s concurrence in Jones
MORE SUPPORT

“We need not identify with precision the point at which the tracking of this vehicle became a search, for the line was surely crossed before the 4-week mark.”

Justice Alito’s concurrence in *Jones*, joined by three other justices
BUT…

“[I]t remains unexplained why a 4-week investigation is ‘surely’ too long”

Opinion of the Court (by Justice Scalia) in Jones
• We have a mosaic when a suitable algorithm can make accurate enough predictions about a person, based on their location history

• Computer science questions
 • Do mosaics exist?
 • Can we draw a line?
MOSAIC THEORY AND MACHINE LEARNING: A HYPOTHESIS

• Use machine learning to make predictions based on location data

• When predictions are accurate enough, a mosaic exists

• In other words, use computer science to answer Justice Scalia’s objection!
HUMAN MOBILITY PATTERNS

CREATION OF A MOSAIC

• Graph accuracy against time

• Intuitively, where the slope is increasing we can learn proportionally more from later observations than from earlier ones, that is, our prediction accuracy increases steeply.

• *Where the slope has the highest increase, a transformation in the accuracy of factual predictions occurs and a mosaic is created.*
THE SECOND DERIVATIVE

- The **Second Derivative** indicates the Rate of Change in the Slope

- At a certain point, law enforcement can learn disproportionately more relative to the effort they have expended
The technical literature supports the basic premise: with enough points, the whole is greater than the sum of its parts.

Note the jump in accuracy at 5 weeks and 28 weeks.

Figure 9. Predicting Significant Other over Time

we chose the significant other as the node with the maximum strength.

Figure 10. Predicting ethnicity using SMS social network over time (65 weeks)

- after every week we analyze the graph with the same method as described at 3.4 (Louvain Algorithm).

Figure 11 demonstrates the correlation among the learning process dynamics of several features. It was calculated using the Pearson product-moment correlation coefficient (a measure of the linear dependence between two variables X and Y, giving a value between +1 and −1). The correlation is defined as the covariance of the two variables divided by the product of their standard deviations. In general, variables of correlation higher than 0.5 are usually considered strongly correlated.

Figure 11. Pearson correlation between the learning process dynamics for three of the properties we predict.

As might be expected, there are some strong correlation between the different evolution trajectories of the learning processes of the three features. However, notice that while some are very highly correlated (e.g. Origin \ Significant other), which might point out a strong correlation in the underlying data itself (i.e. people tend to get married more within the same ethnic group), other display lower correlation (e.g. Origin \ Is student).

5. DISCUSSION AND FUTURE WORK

As reviewed in section 3.4, the Gompertz function is a well-known technique that has been used to model processes over time. Our analysis confirms that the evolving learning of social and individual features, as mobile phone sensing data accumulates over time, can also be fitted to the form of a Gompertz function. We see that this result is true for the prediction of different features, both social and individual, and for a set of different prediction methodologies, using a varying number of input signals, all collected via mobile phones in a field deployment.

Correlations between the evolution trends of the different learning process, as depicted in Figure 11, may imply underlying correlation between the raw data itself, and can hence be used as additional validation for correlated features and observations (such as the suggestion that people might have a higher tendency to marry within their own ethnic group, as has been widely observed [33, 34]). In addition, this information could be used for informing the design of data collection configuration for an ongoing or future data collection initiative. For example, if we know of two features that are highly correlated in the same experiment, but one of them is very "cheap" to gather from a processing or battery power perspective, while the other is very expensive, we might decide that the cheaper one is sufficient (e.g. one requires just reading the phone's built-in call-log database while the other requires battery-intensive GPS scanning). Alternatively, we might want to make sure that two correlated values are gathered in order to strengthen the result and help deal with noise.
ONE WEEK IS THE LIMIT

• Experiments show that week-to-week movements are very predictable (Sadilek & Krumm)

• Weekend movements are more predictable, though of course different than weekday movement

• With seven days of observation, you have a very good picture of someone’s life
JUSTICE HARLAN IN KATZ V. US (1967)

“[T]here is a twofold requirement, first that a person have exhibited an actual (subjective) expectation of privacy and, second, that the expectation be one that society is prepared to recognize as ‘reasonable’.”
THE FOURTH AMENDMENT

• Does mosaic theory make tracking “unreasonable”?

• Do people have a “reasonable expectation of privacy” in their location and the inferences that can be made from it?

• Is it “one that society is prepared to recognize as ‘reasonable’”?
WE DON’T KNOW

• Very few court rulings have addressed location privacy head-on
• Most rulings rejecting the claim have relied on other legal principles
• Some day, it will reach the Supreme Court
CURRENT LEGAL STATUS

- The DC Circuit Court has adopted the mosaic theory
- The Massachusetts Supreme Court has, too, and set a limit of two weeks (though without giving a reason for that limit)
- The 11th Circuit originally ruled for it, but that was overturned en banc (US v. Davis, 573 Fed. Appx. 925 (2014)); the Supreme Court has declined to hear the case
- Note: the en banc ruling in Davis was based on historical records, not real-time GPS tracking, and on the “third party doctrine” applied to phone company business records
 - Mosaic theory wasn’t rejected by this opinion
THE THIRD PARTY DOCTRINE

• You no longer have a privacy interest in information you voluntarily share with a third party

• Example: the phone number you dial isn’t protected because you “gave” it to the phone company (*Smith v. Maryland*, 1979)

• Have you “given” your location to your cell phone company?
WHERE ARE WE?

• From a technical perspective, mosaic theory is correct: you really can build a very full picture of someone with enough data points

• The limit should be about one week

• But—movements are still in public

• But—there are other legal issues that might arise in specific cases, such as the third party doctrine
RESULTS

• The science alone isn’t enough

• Fundamentally, this is a legal question, not a technical one. We can supply facts but the courts determine the law. Getting the right answer requires both kinds of input, legal and technical.

PERSONNEL

• Steven M. Bellovin: computer science, especially security and privacy
• Renée Hutchins: law, especially Fourth Amendment
• Tony Jebara: computer science, especially machine learning
• Sebastian Zimmeck: computer science PhD student (privacy and machine learning)—but he’s also a lawyer