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Abstract

There is often the need to update an installed Intrusion Detection System (IDS) due to new attack methods

or upgraded computing environments. Since many current IDSs are constructed by manual encoding of

expert security knowledge, changes to IDSs are expensive and require many hours of programming and

debugging. We describe a data mining framework for adaptively building Intrusion Detection (ID) models

specifically for the use of in Network Flight Recorder (NFR) [10]. The central idea is to utilize auditing

programs to extract an extensive set of features that describe each network connection or host session, and

apply data mining programs to learn rules that accurately capture the behavior of intrusions and normal

activities. These rules can then be used for misuse detection and anomaly detection. Detection models are

then incorporated into NFR through a machine translator, which produces a working detection model in the

form of N-Code, NFR’s powerful filtering language.

1 Motivation

Intrusion detection is often used as another wall to protectcomputer systems, in addition to the standard

methods of security measures such as user authentication (e.g. user passwords or biometrics), avoiding

programming errors, and information protection (e.g., encryption). Intrusion detection techniques can be

categorized intoanomaly detection andmisuse detection. Anomaly detection systems, for example, IDES

[7], flag observed activities (i.e., possible intrusions) that deviate significantly from the established nor-

mal (statistical-based) usage profile as anomalies. Misusedetection systems, for example, IDIOT [5] and

STAT [4], use patterns of known attacks or weak spots of a system to match and identify intrusions. While

accuracy is the essential requirement, its extensibility and adaptability are also critical design criteria in to-

day’s network computing environment. There are multiple “penetration points” for intrusions to take place

in a network system. For example, at the network level, carefully crafted “malicious” IP packets can crash

a victim host; at the host level, vulnerabilities in system software can be exploited to yield an illegal root

shell. Since activities at different penetration points are normally recorded in different audit data sources, an
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IDS often needs to be extended to incorporate (additional) modules that specialize on certain components

(e.g., hosts, subnets, etc.) of a network systems. The largetraffic volume in security related mailing lists and

Web sites suggest that new system security holes and intrusion methods are continously being discovered.

Therefore, it is imperative that IDSs be updated frequentlyand rapidly.

Currently building an effective IDS is an enormous knowledge engineering task. System builders largely

rely on their intuition and experience to select the statistical measures for anomaly detection [8]. Many IDSs

only handle one particular audit data source, and updating these systems is expensive and slow . Some of

the recent research and commercial IDSs have begun to provide built-in mechanisms for customization

and extension. The Network Flight Recorder (NFR) is one suchextensible system that combines data

collection and analysis and storage within a single platform. More than likely, systems such as these would

be located between a firewall and an Internet connection, an area aptly named the DMZ [?] Analysis in NFR

is accomplished by scripts based on a language called N-code, NFR’s flexible language for traffic analysis.

Information is displayed in NFR to a web-based interface with Java support. One of NFR’s key features is

that it does not interfere with network activity, which is a necessary design criteria to obtain accurate data for

analysis. NFR also has a real time alerting capability and a storage subsystem that allows data to be stored,

rotated, and archived to other external devices [10]. However, this does not eliminate the need experts to first

analyze and categorize attack scenarios and system vulnerabilities, and hand-code the corresponding rules

and patterns in N-code for misuse detection. Because of the manual and ad hoc nature of the development

process, current IDSs including NFR have limited extensibility and adaptability. Our goal is to substantially

reduce this effort by automating:

1) the task of intrusion detection through data-mining.

2) generating the N-code for NFR to monitor such intrusions via machine translator.

While using such methods, system builders and administrators will still have to maintain and fine-tune

the respective IDS. However a large amount of their work willbe automated, thus effectively reducing time

and man-power costs in fielding an effective IDS.

2 Data-Mining and Meta-Learning Overview

In this section we provide an overview of our data-mining algorithms. Data mining generally refers to the

process of (automatically) extracting models from large stores of data [3]. The recent rapid development

in data mining has made available a wide variety of algorithms, drawn from the fields of statistics, pattern

recognition, machine learning, and databases. Several types of algorithms are particularly useful for mining

2



audit data.

Classification : maps a data item into one of several pre-defined categories.These algorithms normally

output “classifiers”, for example, in the form of decision trees or rules. An ideal application in intru-

sion detection will be to gather sufficient “normal” and “abnormal” audit data for a user or program,

then apply a classification algorithm to learn a classifier that can label or predict new unseen audit

data as belonging to the normal class or the abnormal class.

Link analysis : determines relations between fields in database records. Correlations of system features in

audit data can serve as the basis for constructing normal usage profiles. A programmer would have

“emacs” highly associated with “C” files, for example. Observed deviations from these automatically

learned associations may suggest an attack.

Sequence analysis: models sequential patterns. These algorithms can discover what (time-based) se-

quence of audit events frequently occur together. These frequent event patterns provide guidelines for

incorporating temporal statistical measures into intrusion detection models.

A framework has been developed, first proposed in [6], of applying data mining techniques to build

intrusion detection models. This framework consists of programs for learning classifiers (and meta-

classifiers [2]), association rules [1] (for link analysis)and frequent episodes [9] (for sequence analysis),

as well as a support environment that enables system builders to interactively and iteratively drive the pro-

cess of constructing and evaluating improved detection models. The end product of this process is a set of

concise and intuitive rules (that can be easily inspected and edited by security experts when needed) that

can detect intrusions. The rules are then subsequently compiled over to N-code by a translator using various

modules and sub-routines we have written.

In order for data-mining programs to compute effective intrusion detection models, we first process and

summarize packet-level network traffic data into “connection” records. Each record has an extensive set of

features. By examining connections in the pastn seconds (e.g. 2 seconds), we include features describing

connections that have thesame destination host as the current connection (Table 1) and include features

describing connections that use thesame service as the current connection (Table 2).

For each connection, we also include the features describedin Table 3.

An N-code filter has been written for each of these attributes. It is best to think of these terms as sub-

routines or modules that the data-mining process can then call upon when it deems necessary for building a

new model.
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short count the count of such connections
short rej count the count of connections that get the flag“REJ”

(i.e. a packet that has a flag ”S” which is
met by an ”R” packet from the receiving end)

short s01 count the count of connections that send a S packet
but never get the ack packet (s0), or receive
an ack on S that they never have sent (s1)

short diff services the count of unique (different) services
short diff srv rate short diff services / shortcount

Table 1: Same Destination

srv short count the count of such connections
srv short diff hosts the count of unique (different) destination hosts
srv short diff rate srv short diff hosts / srvshort count

Table 2: Same Service

3 Implementation

Here we provide several example rules used to detect known attacks. In particular, we illustrate how to

detect and recognize an attack categorized as “denial-of-service”, (e.g. teardrop, smurf, ping-of-death).

A “training” period is initially required for the algorithms to gather the necessary training data on the

network to compute models. The purpose is two-fold:

1) establishing “normal” traffic patterns and variants thatthe network may encounter to establish

anomaly detection,

2) introducing known intrusion methods and attack scripts into the network in order for the data-mining

process to establish sufficient data for classification of intrusions

Once normal network traffic and attacks have generated sufficient audit data, scripts, the data-mining

algorithms produce rules that are characteristic of each intrusion. This tool, saves the System Builder hours

of labor intensive effort to find a pattern for each intrusion.

Let us suppose that a hacker launches “teardrop” from machine im.a.hacker.com is attempting to bring

duration the length (in seconds) of the connection
protocol type type of protocol being used
protocol if the protocol is privileged (≥ 1024) or not
flag normally SF (successfully connected and terminated according to

the protocols, but can be REJ, S0, or S1
urgent is the ”urgent” flag used in any of the data
wrong size rate if wrong fragmentation, the rate≥ 1 packet?

Table 3: Other Features
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down the server your.machine.org. Teardrop transmits a number of overlapping fragmented UDP packets to

a specified host. Since UDP is an unreliable protocol, no acknowledgment would be needed, therefore the

tcpdump data file would record the following events:

...

...
12:22:18.336681 im.a.hacker.com.2019 > your.machine.org.talk: udp 28 (frag 242:36@0+)
12:22:18.336681 im.a.hacker.com > your.machine.org: (frag 242:4@24)
12:22:18.356681 im.a.hacker.com.2019 > your.machine.org.talk: udp 28 (frag 242:36@0+)
12:22:18.356681 im.a.hacker.com > your.machine.org: (frag 242:4@24)
12:22:18.376681 im.a.hacker.com.2019 > your.machine.org.talk: udp 28 (frag 242:36@0+)
12:22:18.376681 im.a.hacker.com > your.machine.org: (frag 242:4@24)
...
...

Here we know the intrusion and approximately its start time,source port and destination port, we use

this knowledge to “label” the connection records and train our model to “recognize or classify” this type

of intrusion. Thus, applying our data-mining algorithms, the IDS generates a rule referred to in Table 4 for

monitoring the TEARDROP intrusion.

Rule Translation
if (protocol = private and wrongsize rate≥ 1) (the connection is on a privileged port≤ 1024 and

fragmentation is wrong)

Table 4: Tear Drop Rule

While this may seem intuitive to a System Builder, it is important to distinguish that the IDS hasauto-

mated the process of generating such heuristics. Our system wouldthen call upon the machine translator

to compile the teardrop rule, and generate from the sub-routines defined earlier, the appropriate N-code that

filters out all network traffic except for the information concerning this particular type of attack. Recording

the data onto disk proves to be an easy task as NFR has provideda thorough and complete resource package

that is capable of accessing the data in terms of a sequentialdatabase [10]. The types of intrusions that we

are primarily concerned with fall into 4 main categories:

1) denial-of-service (e.g., ping-of-death, SYN flood, smurf, teardrop, etc)

2) unauthorized access from a remote machine (e.g./ guessing password)

3) unauthorized access to local superuser privileges by a local unprivileged user (e.g., various buffer

overflow attacks)

4) surveillance and probing (e.g., port-scan, IPscan,etc)

It makes sense to have these four different types of alerts and ways to access the data, each unique in the
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frequency in which they occur. These alerts and triggers would then simply be concatenated to the end of

the N-code generated by the machine translator.

4 Conclusions

In this paper, we have outlined a data mining framework integrated with an existing IDS, namely NFR. The

key idea is to apply data mining algorithms to compute and generate misuse and anomaly detection models,

according to the observed behavior in audit data.

We extend the basic association rules and frequent episodesalgorithms to accommodate the special

requirements of analyzing audit data. Our experiments showthat the frequent patterns mined from audit

data can be used as reliable anomaly detection models, and asguidelines for selecting temporal statistical

features to build effect N-code filters.
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