
Software Decoys for Insider Threat ∗

Younghee Park
Department of Computer Science

Columbia University, New York, NY 10027
younghee@cs.columbia.edu

Salvatore J. Stolfo
Department of Computer Science

Columbia University, New York, NY 10027
sal@cs.columbia.edu

ABSTRACT
Decoy technology and the use of deception are useful in securing
critical computing systems by confounding and confusing adver-
saries with fake information. Deception leverages uncertainty forc-
ing adversaries to expend considerable effort to differentiate real-
istic useful information from purposely planted false information.
In this paper, we propose software-based decoy system that aims
to deceive insiders, to detect the exfiltration of proprietary source
code. The proposed system generates believable Java source code
that appear to an adversary to be entirely valuable proprietary soft-
ware. Bogus software is generated iteratively using code obfusca-
tion techniques to transform original software using various trans-
formation methods. Beacons are also injected into bogus software
to detect the exfiltration and to make an alert if the decoy soft-
ware is touched, compiled or executed. Based on similarity mea-
surement, the experimental results demonstrate that the generated
bogus software is different from the original software while main-
taining similar complexity to confuse an adversary as to which is
real and which is not.

Keywords: decoy, insider attacks, code obfuscation

1. INTRODUCTION
Information theft by insiders, who exfiltrate sensitive informa-

tion and intellectual property using legitimate credentials, has been
a serious problem for decades. Software is one of the most valu-
able assets for many organizations and enterprises, and is also the
most lucrative target for insiders. In 2010, according to the FBI, a
former employee of Goldman Sachs, a computer programmer, was
accused of stealing trading software by uploading to a server in
Germany a program implementing its proprietary trading platform
for equity products, and the use of the software made the thief in
excess of 300 million dollars in illicit profits in one year. Clearly,
it is crucial to create an environment in which the most valuable
proprietary software is isolated and protected from such theft.
∗This material is based on work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under the ADAMS
(Anomaly Detection at Multiple Scales) Program with grant award
number W911NF-11-1-0140.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’12, May 2–4, 2012, Seoul, Korea.
Copyright 2012 ACM 978-1-4503-1303-2/12/05 ...$10.00.

Much previous work has focused on the detection of insider at-
tacks that exfiltrate important and sensitive information, rather than
proprietary software. To detect the exfiltration, deception-based de-
fense methods (i.e. decoys) are important mechanisms in the pro-
tection of systems, networks, and information. In addition, document-
based decoy system has gained lots of interests for the detection of
insider threats [2, 1]. This decoy system is presented to confuse
and deceive adversaries based on fake information [5, 6, 16].

While previous research has focused on detecting information
leaks, this paper proposes a software-based decoy system to de-
ceive attackers in order to detect software exfiltration and to track
unauthorized uses. The basic concept of software-based decoys
is similar to the document-based decoy to detect insider attacks.
However, the software-based decoy system prevents insiders that il-
legally obtain proprietary software through deceptive mechanisms [4,
19, 13]. The objective of this paper is to isolate the proprietary
source code from such theft using fake source code as decoys. By
using software decoys, the proposed system identifies or detects the
exfiltration of proprietary software in enterprises or government or-
ganizations from insiders. For the design of software-based decoy
system, this paper addresses the two research problems: (1) How
to generate fake (bogus) software? (2) How to detect software ex-
filtration and unauthorized use?

First, to generate bogus software, the proposed system analyzes
and obfuscates original source code to generate bogus programs
that are compilable, realistic looking and dissimilar syntactically to
the original program, through static obfuscation. Second, to de-
tect or to track software exfiltration, the generated bogus programs
include “beacons” that serve as a trap-based defense system. The
proposed system designs various types of beacons to detect any
possible unauthorized use of bogus software by providing various
beacons for PDF, HTML as well as software itself.

Software decoys are composed of bogus programs that are de-
signed to deceive adversaries. Bogus programs are synthesized
by software that is automatically transformed from original source
code, but designed to be dissimilar to the original. By using the
bogus programs along with beacons, the proposed system aims to
detect internal and external adversaries who exfiltrate proprietary
(bogus) software. The experiments reported in this paper evaluate
decoy properties of bogus software by using various metrics for
similarity [17] and software complexity[7]. As a result, the bogus
software has low similarity and analogous software complexity to
the original software. As code obfuscation is performed several
times, we can obtain bogus software that is completely different
from the original software.

The proposed system makes several contributions over the typi-
cal advantages of decoy systems. First, we have developed a new
software-based decoy system that integrates deception mechanisms

using software obfuscation and beaconing techniques. Second, we
have designed fake (bogus) software by using code obfuscation
techniques. Third, we have proposed a method to detect insiders
based on bogus software instead of fake information, and track the
use of the software decoy based on beacons. Lastly, we have im-
plemented a software-decoy system and evaluated it through real
open source projects that are popularly used in the real world.

The rest of the paper is organized as follows. Section 2 explains
the desirable property of the software decoy system. Section 3
gives an overview of the proposed system and describes the de-
tailed methods used to design software-based decoys. Section 4
describes the implementation of system prototypes and the results
of that experiment. Lastly, section 5 reviews related work, and sec-
tion 6 states the conclusion drawn from this paper.

2. SOFTWARE DECOY PROPERTIES
Software decoys should be designed carefully with the knowl-

edge and capability of adversaries in mind. In addition, software
decoys should have several properties for our goal, which are sim-
ilar to document-based decoys [5]. Software decoys system should
be inherently enticing. The decoy system must detect the exfiltra-
tion of bogus software that has been purposely planted in the sys-
tem. To provide the means of detecting the exfiltration, the system
we developed injects a beacon into the bogus software. In addition,
the decoy system should be clearly conspicuous to adversaries. The
bait, any bogus software, should be accessible and visible to adver-
saries and hence provided in a honeypot or a local system. Lastly,
the decoy system has a large set of bogus programs from original
projects that are different from every other one. That is, variability
should provide a decoy system with a variety of attractive bogus
programs. Along with these properties, software decoys have to
satisfy additional core properties as follows.

• Compilable and Executable: The bogus programs should be
compilable without any error. The programs should be also
executable for a reasonable amount of time so that the decoy
can detect the software exfiltration and identify bogus soft-
ware. The program that is to be successfully compiled should
be run to produce a part of functions of the original software.
These two properties are essential requirements to make the
bogus software believable.

• Indistinguishable: An adversary should not be able to rec-
ognize whether a bogus program has been transformed from
particular source code or not. The adversary should have
great difficulty in distinguishing bogus programs from a lot
of other source code. In other words, we should produce
an unbounded collection of distinct and variable bogus pro-
grams. This property is crucial so that adversaries cannot
easily determine whether particular software is fake, nor that
it is a derivative of open source software, non-proprietary
project.

• Believable: The transformed program should logically look
like a normal program. This property makes adversaries trust
it as if the bogus software were true and real source code.
While in the process of transforming an original seed pro-
gram, we should try to maintain the original program struc-
ture and keep logical control flow so that the bogus software
look likes real runnable source code.

We will show in Section 4 that additional bogus software proper-
ties can be validated through extensive experiments with real open
source projects. Widely accepted software metrics [17, 7], such as

similarity and software complexity, provide evidence of the practi-
cality of our proposed bogus software generator.

3. SOFTWARE-BASED DECOY SYSTEM AR-
CHITECTURE

This section will provide an overview of the system architecture
that we designed and implemented to create a software-based decoy
system. The system depicted Figure 1 is given an original software
project including several programs (in Java) as an input seed. It
then produces a bogus project having a series of bogus programs.
There are three requisite processes to create the software decoy:
program analysis, code obfuscator, and program generator.

O riginal

Source

Programs

A Project

Program

Analysis
Code

Obfuscator

Program

Generator

Bogus
Programs

A Bogus Project

Bogus

Programs

n

n-1

n-2

1. .

Software Version Control System (C VS)

(1) Java Standard C lasses and Method

(2) C lasses and Methods of Junk Codes

(3) G lossary and Dictionary Words

 < Input >

< Output >

(1)

(2)

(2)

G rammar Express for A N T L R

Syntax Analysis
Static Semantic Analysis

Statement T ransformation

Structure T ransformation

Semantic T ransformation

Junk Insertion

Generating Bogus Programs
Constructing C VS

Embedding Beacons

Figure 1: Software-based Decoy System Architecture

3.1 Analyzing Source Code
For any given input project seeding the synthesis of a software

decoy, the proposed system first analyzes the syntax and the struc-
ture of each program in the project as in Figure 1. ANTLR (An-
other Tool for Language Recognition) [14] was used to extract in-
formation about syntax and the static semantics of each program.
ANTLR is a parser generator with LL(∗) based on a context-free
grammar argumented with syntactic and semantic predicates [15].
The current prototype targets Java-based projects, but the proposed
system is easily extended because ANTLR provides a flexible and
language-agnostic grammar development environment.

As for program analysis of a target project, we obtain informa-
tion about what classes/variables/methods are defined, how they
are related and where they are used. The extracted information in-
cludes (1) package declaration and import information, (2) class
and interface names, (3) member variables names and types, (4)
member method names, types, and parameter information, (5) map-
ping between package and class/interface, (6) mapping between
member variables and method, (7) mapping between class and in-
terface, and (8) the scope of local variables. The information is
significant because when source code is transformed from one to
another, other places matched with or related to the code must be
consistently modified in order to make the overall project compil-
able and runnable.

Finally, as in Figure 1, through program analysis, we create two
databases that are used to generate a bogus project. First, we an-
alyze the syntax of Java standard APIs to generate a database of
standard classes and methods. This database is important to ob-
fuscate a target program carefully since the APIs should be mostly
preserved during code transformation. Second, we extract sample
classes and methods from Java sample source code collected from
the Internet. This database is utilized to insert junk code in obfus-
cating target programs.

3.2 Obfuscating Source Code

After determining the syntax and the structure of target programs,
the code obfuscator transforms original programs into bogus pro-
grams by making thorough changes in the form, syntax, or seman-
tics of the original programs. This is called a code transforma-
tion as Definition 1. The proposed system modifies the semantics
of the program slightly while the program is being continuously
transformed. The proposed system has four different code transfor-
mation methods as follows. All the code transformation methods
are closely related and the effects are interchangeably affected in
programs since relevant statements should be changed together.

1. Statement Transformation: This transformation renames all
the variables and methods for each statement in a program.
Based on syntax information from program analysis, it al-
ters the name for all classes, methods, and variables in an
original program. When changing all the names, the asso-
ciated statements for variables, methods, and classes should
be automatically renamed in all of the programs in a given
project. The statement transformation replaces the original
names for classes, methods and variables with bogus ones.
When changing the names of classes and methods, the bogus
names are selected in the database of glossary and dictionary
words, as in Figure 1, according to user-defined themes, such
as shopping-related, health-related, financial-related software,
etc. This is a basic code transformation before applying other
code transformations.

2. Structure Transformation: A program is structured in dif-
ferent lines in order to be more readable, but it does not
have strict and firm rules. The original structure of a pro-
gram can be changed in various ways: (1) reordering primi-
tives and methods, (2) breaking abstractions, (3) expression
change, (4) control structure modification, and (5) changing
data types.

First, we can randomize the placement of as many modules
within a program, methods within a module, and statements
within a method as possible. Second, by reconstructing new
packages and modules, it breaks the original abstraction of
a program, which thwart adversaries from understanding the
original target program. Third, the proposed system replaces
operators, such as assignment, multiplication, and compari-
son, into different expressions. There are an arbitrary number
of ways to turn a given arithmetic expression into a sequence
of different elementary statements. For example, multipli-
cation by a constant is often turned into a sequence of less
obvious adds and shifts. Fourth, the control structures in a
program can be used interchangeably to alter the structure
of a program. The control structures include a conditional
statement(e.g. if or else), a loop statement, (e.g. for, while),
a selective statement(e.g. switch), and a jump statement(e.g.
goto, continue, break). Lastly, data types in functions’ pa-
rameters and variables are also changed if possible.

3. Junk Code Insertion: Bogus programs are diversified while
generated in different ways by inserting any junk code as ad-
ditional parts in a program. To insert junk code, there are
several possible methods: (1) dead code insertion, (2) redun-
dant statements, (3) method injection, and (4) code copy.

First, the proposed system can add any number of blocks that
can never be executed, such as classes, methods, etc. These
are called dead code. Second, we place irrelevant or relevant
statements for each line of a program. For instance, another
variable or constant value can be declared and the variables

are used any place in a program. Third, the proposed system
clones bits and pieces of different methods in any given pro-
gram, and the copied code looks different from the original
one as a result of the code transformation, such as renam-
ing, changing parameters in a method, etc. Lastly, from the
database of classes and methods for junk code as in Figure 1,
the proposed system selects one of them and reuses an arbi-
trarily chosen part of the code to generate bogus programs.

4. Semantic Transformation: The semantics of original programs
can be also changed in different ways. First, the control flow
of a program is naturally obfuscated while performing the
proposed code transformations. Second, through call graph
modification, the semantics of an original program can be
changed. Specifically, the use of inserted methods and in-
serted code blocks first tweak an original call graph.

DEFINITION 1. Let T : P → P′ be transformation from pro-
gram to program. T is code obfuscation, where PB = T (Po) has
a part of functions of PO . T is a set of specific transformation
elements, t1, t2, . . . tn. We enumerate several transformation tech-
niques above. There are many other transformations possible, but
what we have designed is sufficient for a proof of concept demon-
stration.

The generated bogus program, PB , should be different from the
original source program, Po to make it indistinguishable from the
seed source program. The two programs can be evaluated accord-
ing to two metrics: software similarity and containment. Similarity
∆ is able to determine if two programs are very similar. Since the
two programs, Po and PB , should be very dissimilar, the similarity
should be less than a threshold λ as in Eq. (1).

∆(Po, PB) < λ (1)

Containment Θ evaluates if one program is partially contained in
another. Because the transformed bogus program PB should have
very small parts of code of the original source program Po, the
containment should be less than a threshold β as in Eq. (3.2).

Θ(Po, PB) =
of lines matched between PB and PO

Total # of lines in PO
< β

The Similarity ∆ of two programs is a number between 0 and 1,
such that when the similarity is close to 1, it is likely that the two
programs will be approximately the same. Similarly, the contain-
ment Θ of PB in Po is a number between 0 and 1 that, when close
to 1, indicates that PB is approximately contained within Po. Sec-
tion 4 shows that the generated bogus programs are completely dif-
ferent from the seed programs through these metrics.

As explained above, there are many different techniques for code
transformation. The current system stops generating targeted bo-
gus software when the similarity falls below a predefined threshold.
While transforming, Java standard libraries, keywords and reserved
words should be preserved.

3.3 Generating Bogus Programs for a Project
Based on the code transformation methods, the proposed system

generates an arbitrary amount of decoy (bogus) software with any
given input. The following outline below explains the method to
generate a large number of different programs or diverse versions
of similar programs. First, for any given input project, the pro-
posed system generates different bogus software programs either
from the original software or from the bogus software. Second,
from the bogus software, the system produces a series of similar
bogus programs so that software version control systems maintain
a chain of history for the original project.

1. Generating different bogus software

• From an original software:

PO

Tj→ P k
Bn

(Note that Tj = {t1, t2,, tn }, i, j, k =
{1, ..., n} and ti is an specific transformation in T)

• From previous bogus software:

P k
Bn

Tj→P l
Bn

(Note that Tj = {t1, t2,, tn } and i, j, k, l
= {1, ..., n} and ti is an element in T)

2. Generating various versions from the bogus software for the
CVS repository

CV S(Pm
Bn

)
tn→ CV S(Pm

Bn−1
)

tn−1→ . . . CV S(Pm
Bi

) · · · t1→
CV S(Pm

B1)
(Note that ti is an element in T , m=l or k, and i, l, k =
{1, ..., n})

Looking at the first step in more detail, the proposed system cre-
ates a variety of decoy software from original source code. Each
resulting bogus software is different from every other one. In ad-
dition, the system uses previous bogus software to generate other
new and different bogus software. The resulting bogus programs
are dissimilar to each other depending on the number of iterations
of code obfuscation (T). For any given input, the code transforma-
tion produces different kinds of decoy programs that are less than a
predefined threshold of similarity and containment.

Second, a project is managed by software version control sys-
tems, such as subversion, git, etc., to keep updating new source
code and tracking different software versions. To make decoy soft-
ware realistic, the bogus software should be maintained to look like
a real project by using one of the software version control systems.
We generate a series of different versions from the first resulting
bogus software under the CVS version control system. Specifi-
cally, the code transformation(T) has a set of different elements,
t1, t2,, tn. One element of the transformation method, ti, is se-
lected to generate slightly different versions of the bogus program
every time.

3.4 Embedding Beacons
Each bogus program has a stealthy beacon that provides a signal

indicating when and where the particular bogus program was used.
The beacon plays a valuable role in identifying the exfiltration of
software, distinguishing between bogus programs and original pro-
grams, by throwing an alert to a server for detectability of the de-
coy. The proposed system designs threes different types of beacons
in a bogus project: PDF-based beacons, HTML-based beacons, and
library-based beacons. The beacons report valuable information
about an IP address, current date and time, a software version, etc.

First, typically, software provides several documents such as a
README file for compiling and execution instructions, API de-
scriptions and license information. For those documents, our pro-
posed system adopts a technique to embed beacons into PDF, as
proposed in [5]. In other words, we generate a PDF file by includ-
ing any context in documents of a project and inject Javascript to
send a signal to a server when the generated PDF file is opened.

Second, we utilize the javadoc tool for generating API documen-
tation in HTML format from Java source code. After creating the
API documentation in HTML format, we embed Javascript with
the generated HTML. When the documentation is opened, the em-
bedded beacons make a signal to send the adversary information.

Lastly, for software embedded beacons, we can embed the code
(libraries) that sends signals to a server upon program compilation
or execution. The bogus program can be modified to use a library
that must be downloaded in order to successfully compile it. Then,

the request for the library on the server is a positive indication the
bogus program is about to be compiled.

4. EVALUATION
We utilized Open Source Software (OSS) to evaluate the pro-

posed system. As shown in Table 1, we evaluated 80 projects of the
latest versions of OSS based on Java language. The OSS projects
for this experiment were collected from the Apache Software Foun-
dation and SourceForge 1. Table 1 shows a summary of different
file sizes for the collected OSS projects. Even though we collected
Java-based OSS projects, a project can utilize different languages,
such as XML, HTML, Python, and so on. For this experiment, we
considered only Java-based source code files in each project.

File Size(F) # of OSS Projects Category # of OSS Projects

F < 10MB 30 System/Build Tools 12
10MB≤ F < 30MB 18 Financial/Shopping Programs 2
30MB≤ F < 60MB 12 Health Programs 3
60MB≤ F < 100MB 11 Content/Project Management Tools 17
100MB≤ F < 500MB 7 Language Tools 6

500MB≤ F < 1G 1 PDF Generating Program 5
1GB≤ F 1 Web Applications 12

Total # of Projects 80 Miscellaneous 23

Table 1: The Collection of Open Source Software (OSS)
Projects. A total of 80 OSS projects covering a variety of
themes were studied.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

Si
m

ila
rit

y(
%

)

Open Source Projects

(a) Experiment A

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

Si
m

ila
rit

y(
%

)

Open Source Projects

First code transformation
Second code transformation

Third code transformation

(b) Experiment B

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

Si
m

ila
rit

y(
%

)

Open Source Projects

(c) Experiment C

Figure 2: Similarity based on MOSS. (The x-axis is each of 80
open source projects.)

In the experiments, we evaluate various features of the proposed
system as follows. 2

• Similarity and Containment: We evaluate the similarity and
the containment between the bogus project and the targeted
original project. We used well-known software plagiarism
tools, MOSS [17]. This experiment shows that the generated
bogus software is completely different from the original one.

• Software Complexity: Based on software metrics proposed
in [7], we evaluate the software complexity of the resulting

1http://www.apache.org/, http://sourceforge.net/
2For beacons, we tested all types of beacons with the collected OSS
projects.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

Co
nt

ai
nm

en
t(%

)

Open Source Projects

(a) Experiment A

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

Co
nt

ai
nm

en
t(%

)

Open Source Projects

First code transformation
Second code transformation

Third code transformation

(b) Experiment B

Figure 3: Containment (The x-axis is each of 80 open source
projects.)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80

W
M

C

Open Source Projects

(a) WMC(Number of methods
defined in class)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80

CB
O

Open Source Projects

(b) CBO(Coupling between
object classes)

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

NO
C

Open Source Projects

(c) NOC(Number of immedi-
ate sub-classes of a class)

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

DI
T

Open Source Projects

(d) DIT(Maximum inheritance
path from the class to the root
class

Figure 4: Software Complexity for diverse bogus projects and
an ordinal project (from Experiment A)

bogus projects. As original projects are transformed to cre-
ate bogus programs, design weaknesses in the structure of
the newly created bogus programs can make them vulnera-
ble to detection by professional adversaries. Hence, we use
software metrics [7] to evaluate the soundness of the design
and structure of a bogus project so that the generated bogus
software looks like normal source code. We utilize various
metrics: Weighted Method per Class(WMC), Coupling Be-
tween Objects(CBO), Number of Children(NOC), and Depth
of Inheritance Tree(DIT). These software metrics are widely
accepted to evaluate software complexity.

We experimented with various combinations of bogus projects
and original projects as follows (Note that Tj = {t1, t2,, tn }
and j, k, l = {1, ..., n}). These various experiments demonstrate
that the proposed system creates a large number of dissimilar bogus
projects for a given project. We executed code transformation for
Experiment A and B as follows.

1. Experiment A: With the same input, we produced diverse
bogus projects. We transform an original project three times
to generate different bogus projects. The input is always the
same target original project. Thus, the output will be three
different bogus projects from the same original project, P 1

Bn
,

P 2
Bn

, P 3
Bn

. (i.e. PO

Tj→ P k
Bn

)

2. Experiment B: With different inputs, we generate different
bogus projects. We transform an original project and its re-
sulting bogus projects consecutively. In other words, the first
input is an original project, the second input is the first result-
ing bogus project, the third input is the second resulting bo-
gus project, and so on. The output is three different kinds of
bogus projects from different inputs. We estimate the num-
ber of code transformation iterations to satisfy a desirable

threshold. (i.e. PO

Tj→ P k
Bn

Tj→ P l
Bn

)

3. Comparison C: We evaluate the similarity among all the re-
sulting bogus projects from Experiment A and Experiment
B. (i.e. The comparison is a combination of P k

Bn
and P l

Bn
)

Similarity: Figure 2 (a) shows that the proposed system drops
from 45% to 60% of the similarities between bogus and original
projects in the first iteration. This means that the proposed sys-
tem dramatically changes given original software to bogus soft-
ware. The bogus software seems totally different from the original
software.

Figure 2 (b) shows the similarity after transforming one target
project three consecutive times. The similarities between the first
resulting bogus projects and the target original project are less than
50%. However, as we proceeded to perform code transformation
several times, the similarities were decreased approximately 10%
to 20% for each iteration. The similarity between the bogus project
in the last iteration and the original project was in the range of
0%-30% for MOSS. This means that the proposed system can dra-
matically obfuscate original source code with only 2 or 3 iterations
to obtain desirable similarity satisfying a predefined threshold.

Figure 2 (c) displays the diversity of bogus programs. Even
though we used the same original project, the similarities among
the resulting bogus projects are very different. In addition, through
the course of several iterations, the similarities among the different
bogus projects become low.

Based on our findings, we expect that the resulting bogus project
will have low similarity so as to thwart adversaries and render them
incapable of distinguishing bogus programs from real programs.

Containment: Figure 3 describes the containment between bo-
gus projects and original projects. To measure it, we extracted the
number of lines matched between two projects by using MOSS. We
calculated the total number of lines in Java source code for each
project. The results is very similar to the result of similarity, so we
discuss these results in brief., Figure 3(a) showed that the first re-
sulting bogus program had less than half of the original code. As in
Figure 3(b), the containment between different bogus projects from
one target project gradually decreases, according to the number of
transformation iterations. The last bogus project from one target
project includes a small portion of original source code. However,
the containment is high between different versions of one bogus
project for the version control system.

Software Complexity: Figure 43 shows the results concerning
software complexity with respect to each of the four metrics: WMC,
CBO, NOC, DIT. The experiment validates one of the system prop-
erties in Section 2 as being believable.

To achieve another property, that is, to be believable, the trans-
formed bogus projects should have similar software complexity
simulating real projects. Figures 4 shows that the complexity in
the resulting bogus projects in our proposed system is in fact sim-
ilar to the original projects. In the case of WMC, the bogus and
original projects have small classes in the codes. The DIT is 2 in

3Due to the space limitation, we show only the result of Experiment
A. However, the result of Experiment B is similar to Figure 4.

each case, since DIT should in general be less than 5. Since the
CBO should generally be less than 14, the accumulated total for
both projects is less than 20. Almost identical results are obtained
in both projects when measuring NOC.

Therefore, even though the proposed system transforms source
code, the resulting software complexity remains similar to the orig-
inal project. We expect that adversaries can not help but interpret
bogus projects as normal source code, failing to notice the forg-
eries despite their best efforts using these standard software mea-
surement tools.

5. RELATED WORK
Decoy Technologies have been a critical defense method to se-

cure our computing system. Cliff Stoll was the first to use decoy
files and honeytokens to detect insider attacks exfiltrating informa-
tion [18, 20]. Bell and Whaley proposed the structure of deception
used to hide real information while exposing false information [4].
Bowen et al. designed an automated system for generating decoy
documents [5, 6]. They also defined the desirable properties for de-
coy documents [5], and the proper deployment of decoy documents
was suggested through various user studies [16]. These methods
aimed to detect insider attacks based on fake information to con-
fuse and deceive adversaries.

To create software decoys, we utilized various code obfusca-
tion techniques that are used in order to protect software copyright.
Fred Cohen [9] first proposed call obfuscation to generate syntacti-
cally different but semantically identical versions of the same pro-
gram. There has been much work on program diversity through
semantics-preserving transformations [3, 12, 11]. Such code ob-
fuscation is also used in generating malicious programs, such as
metamorphic or polymorphic codes to avoid virus scanners [8, 10].
In this paper, we utilized code obfuscation to automatically gener-
ate software decoys.

6. CONCLUSION
We proposed a software-based decoy system that is designed to

identify software exfiltration by insiders through complete isolation
of proprietary software from planted bogus software. The proposed
system is a trap-based defensive system that is intended to deceive
malicious adversaries, forcing them to expend considerable effort
to differentiate real source code from bogus programs. To create
software decoys, we utilized various code obfuscation techniques
that are designed to protect a program from analysis and unwanted
modification. Code obfuscation transforms a program either by in-
serting new code or modifying existing code. This makes the pro-
posed system generate a large number of diverse believable bogus
software programs from any given input program. To our knowl-
edge, the proposed system is the first to study how to automatically
generate large volumes of bait software, represented as ordinary
normal source code project archives in a file system, that is believ-
able and difficult it for an adversary to judge as fake.

7. REFERENCES
[1] http://sneakers.cs.columbia.edu:8080/fog/.
[2] DARPA-funded fake docs track unauthorized users.

http://www.theverge.com/2011/11/4/2537647/darpa-fake-
documents-security-wikileaks.

[3] B. Anckaert, M. Jakubowski, R. Venkatesan, and
K. De Bosschere. Run-time randomization to mitigate
tampering. In Proceedings of the Security 2nd international
conference on Advances in information and computer
security, pages 153–168, 2007.

[4] J. B. Bell and B. Whaley. Cheating and deception.
Transaction Publishers, 1991.

[5] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J.
Stolfo. Baiting inside attackers using decoy documents. In
5th International ICST conference for Security and Privacy
in Communication Networks (SecureComm), pages 51–70,
2009.

[6] B. M. Bowen, M. B. Salem, S. Hershkop, A. D. Keromytis,
and S. J. Stolfo. Designing host and network sensors to
mitigate the insider threat. IEEE Security & Privacy,
7(6):22–29, 2009.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transaction on Software
Engingeering, 20:476–493, June 1994.

[8] F. B. Cohen. Defense-in-depth against computer viruses.
Computers & Security, 11(6):563–579, 1992.

[9] F. B. Cohen. Operating system protection through program
evolution. Computers & Security, 12(6):565–584, 1993.

[10] F. B. Cohen. A Short Course on Computer Viruses. John
Wiley & Sons, 1994.

[11] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical report, Department of
Computer Science, The University of Aukland, 1997.

[12] K. Heffner and C. S. Collberg. The obfuscation executive. In
Proceedings of 7th International Information Security
Conference(ISC), volume 3225 of Lecture Notes in
Computer Science, pages 428–440, September 2004.

[13] M. A. McQueen and W. F. Boyer. Deception used for cyber
defense of control systems. In Proceedings of the 2nd
conference on Human System Interactions, HSI’09, 2009.

[14] T. Parr and K. Fisher. Ll(*): the foundation of the antlr parser
generator. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and
implementation(PLDI ’11), 2011.

[15] T. J. Parr and R. W. Quong. Adding semantic and syntactic
predicates to ll(k): pred-ll(k). In International Conference on
Compiler Constrution (CC), pages 263–277.
Springer-Verlag, 1994.

[16] M. B. Salem and S. J. Stolfo. Decoy document deployment
for effective masquerade attack detection. In Proceedings of
the Eighth Conference on Detection of Intrusions and
Malware & Vulnerability Assessment(DIMVA), July 2011.

[17] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, California,
USA, June 9-12, 2003, pages 76–85, 2003.

[18] L. Spitzner. Honeytokens: The other honeypot. 2003.
[19] J. Yuill, D. Denning, and F. Feer. Using deception to hide

things from hackers: Processes, principles, and techniques.
5:26–40, 2006.

[20] J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles:
deceptive files for intrusion detection. Proceedings from the
Fifth Annual IEEE SMC Information Assurance Workshop
2004, (June):116–122, 2004.

