
FLIPS: Hybrid Adaptive Intrusion Prevention

Michael E. Locasto*, Ke Wang, Angelos D. Keromytis, and Salvatore J. Stolfo

Department of Computer Science, Columbia University
1214 Amsterdam Avenue

Mailcode 0401
New York, NY 10027

+1 212 939 7177
{locasto, kewang, angelos, sal}@cs.columbia.edu

Abstract. Intrusion detection systems are fundamentally passive and
fail–open. Because their primary task is classification, they do noth-
ing to prevent an attack from succeeding. An intrusion prevention sys-
tem (IPS) adds protection mechanisms that provide fail–safe semantics,
automatic response capabilities, and adaptive enforcement. We present
FLIPS (Feedback Learning IPS), a hybrid approach to host security that
prevents binary code injection attacks. It incorporates three major com-
ponents: an anomaly-based classifier, a signature-based filtering scheme,
and a supervision framework that employs Instruction Set Randomiza-
tion (ISR). Since ISR prevents code injection attacks and can also pre-
cisely identify the injected code, we can tune the classifier and the filter
via a learning mechanism based on this feedback. Capturing the injected
code allows FLIPS to construct signatures for zero-day exploits. The
filter can discard input that is anomalous or matches known malicious
input, effectively protecting the application from additional instances of
an attack – even zero-day attacks or attacks that are metamorphic in
nature. FLIPS does not require a known user base and can be deployed
transparently to clients and with minimal impact on servers. We describe
a prototype that protects HTTP servers, but FLIPS can be applied to a
variety of server and client applications.

Keywords: Adaptive Response, Intrusion Prevention, Intrusion Tolerance

1 Introduction

One key problem for network defense systems is the inability to automatically
mount a reliable, targeted, and adaptive response [21]. This problem is magnified
when exploits are delivered via previously unseen inputs. Network defense sys-
tems are usually composed of network-based IDS’s and packet filtering firewalls.
These systems have shortcomings that make it difficult for them to identify and
characterize new attacks and respond intelligently to them.

Since IDS’s passively classify information, they can enable but not enact a
response. Both signature-based and anomaly-based approaches to classification
merely warn that an attack may have occurred. Attack prevention is a task often

left to a firewall, and it is usually accomplished by string matching signatures
of known malicious content or dropping packets according to site policy. Of
course, successfully blocking the correct traffic requires a flexible and well defined
policy. Furthermore, signature matching large amounts of network traffic often
requires specialized hardware and presumes the existence of accurate signatures.
In addition, encrypted and tunneled network traffic poses problems for both
firewalls and IDS’s. To compound these problems, since neither IDS’s or firewalls
know for sure how a packet is processed at an end host, they may make an
incorrect decision [10].

These obstacles motivate the argument for placing protection mechanisms
closer to the end host (e.g., distributed firewalls [11]). This approach to system
security can benefit not only enterprise-level networks, but home users as well.
The principle of “defense-in-depth” suggests that traditional perimeter defenses
like firewalls be augmented with host-based protection mechanisms. This pa-
per advocates one such system that employs a hybrid anomaly and signature
detection scheme to adaptively react to new exploits.

1.1 Hybrid Detection

In general, detection systems that rely solely on signatures cannot enable a de-
fense against previously unseen attacks. On the other hand, anomaly-based clas-
sifiers can recognize new behavior, but are often unable to distinguish between
previously unseen “good” behavior and previously unseen “bad” behavior. This
blind spot usually results in a high false positive rate and requires that these
classifiers be extensively trained.

A hybrid approach to detection can provide the basis for an Intrusion Preven-
tion System (IPS): an automated response system capable of stopping an attack
from succeeding. The core of our hybrid system is an anomaly-based classifier
that incorporates feedback to both tune its models and automatically generate
signatures of known malicious behavior. Our anomaly detector is based on PayL
[38], but other classifiers can be used [17].

The biggest obstacle for a hybrid system is the source of the feedback infor-
mation. Ideally, it should be automated and transparent to users. For example,
the feedback to email spam classifiers may be a user hitting a button in their
email client that notifies the mail server to reconsider an inappropriately classi-
fied email as spam. This feedback loop is an example of supervised online learning
and distributes the burden of supervision to users of the system. The feedback
mechanism in our system facilitates unsupervised online learning. The source
of information is based on an x86 emulator, STEM [29], that is augmented to
protect processes with Instruction Set Randomization.

1.2 Instruction Set Randomization

ISR is the process of creating a unique execution environment to effectively
negate the success of code-injection attacks. This unique environment is created

by performing some reversible transformation on the instruction set; the trans-
formation is driven by a random key for each executable. The binary is then
decoded during runtime with the appropriate key.

Since an attacker crafts an exploit to match some expected execution environ-
ment (e.g. x86 machine instructions) and the attacker cannot easily reproduce
the transformation for his exploit code, the injected exploit code will most likely
be invalid for the specialized execution environment. The mismatch between the
language of the exploit code and the language of the execution environment
causes the exploit to fail. Without knowledge of the key, otherwise valid (from
the attacker’s point of view) machine instructions resolve to invalid opcodes or
eventually crash the program by accessing illegal memory addresses. Previous
approaches to ISR [3] [12] have proved successful in defeating code injection at-
tacks. Such techniques are typically combined with address-space obfuscation [4]
to prevent “jump into libc” attacks.

Randomizing an instruction set requires that the execution environment pos-
sess the ability to de-randomize or decode the binary instruction stream during
runtime. For machine code, this requirement means that either the processor
hardware must contain the decoding logic or that the processor be emulated in
software. STEM minimizes the cost of executing in software by selectively em-
ulating parts of an application. During the application’s runtime, control can
freely switch between the real and the virtual processors. By carefully selecting
the pieces of the application that are emulated, it is possible to minimize the
runtime overhead of the emulation.

This practical form of ISR allows us to capture injected code and correlate it
with input that has been classified as anomalous. Barrantes et al. [3] show that
code injection attacks against protected binaries fail within a few bytes (two or
three instructions) of control flow switching to the injected code. Therefore, the
code pointed to by the instruction pointer at the time the program halts is (with
a high probability) malicious code. We can extract this code and send it to our
filter to create a new signature and update our classifier’s model.

1.3 Contributions

The main contribution of this paper is a complete system that uses information
confirming an attack to assist a classifier and update a signature-based filter.
Filtering strategies are rarely based solely on anomaly detection; anomaly-based
classifiers usually have a high false positive rate. However, when combined with
feedback information confirming an attack, the initial classification provided by
the anomaly detector can assist in creating a signature. This signature can then
be deployed to the filter to block further malicious input. It is important to
note that our protection mechanism catches the exploit code itself. Having the
exploit code allows very precise signature creation and tuning of the classifier.
Furthermore, this signature can be exchanged with other instances of this system
via a centralized trusted third party or a peer-to-peer network. Such information
exchange [7], [14] can potentially inoculate the network against a zero-day worm
attack [1], [13], [18], [35].

We present the design of FLIPS, a host-based application-level firewall that
adapts to new malicious input. Our prototype implementation adjusts its fil-
tering capability based on feedback from two sources: (a) an anomaly-based
classifier [38] that is specialized to the content flows for a specific host and (b) a
binary supervision framework [29] that prevents code-injection attacks via ISR
and captures injected code. The details of our design are presented in Section 3,
and we describe the prototype implementation of the system for an HTTP server
in Section 4. We discuss related work in Section 2, our experimental validation
of FLIPS in Section 5, directions for future research in Section 6, and conclude
the paper in Section 7.

2 Related Work

Augmenting detection systems with an adaptive response mechanism is an emerg-
ing area of research. Intrusion prevention, the design and selection of mechanisms
to automatically respond to network attacks, has recently received an amount
of attention that rivals its equally difficult sibling intrusion detection. Response
systems vary from the low–tech (manually shut down misbehaving machines)
to the highly ambitious (on the fly “vaccination”, validation, and replacement
of infected software). In the middle lies a wide variety of practical techniques,
promising technology, and nascent research.

The system proposed by Anagnostakis et al. [2] has many of the same goals
as FLIPS. However, there are a number of differences in architecture and imple-
mentation. Most importantly, our use of ISR allows FLIPS to detect and stop all
instances of code injection attacks, not just stack-based buffer overflows. Also,
FLIPS is meant to protect a single host without the need for a “shadow.”

Two other closely related systems are the network worm vaccine architecture
[28] and the HACQIT system [25]. More recently, researchers have investigated
transparently detecting malicious email attachments [27] with techniques similar
to ours and [28]. HACQIT employs a pair of servers in which the outputs of the
primary and secondary server are compared. If the outputs are different, then a
failure has occurred. The HACQIT system then attempts to classify the input
that caused this error and generalize a rule for blocking it. The network and
email worm vaccine architectures propose the use of honeypot and auxiliary
servers, respectively, to provide supervised environments where malware can
infect instrumented instances of an application. The system can then construct
a fix based on the observed infection vector and deploy the fix to the production
server. In the case of the email worm vaccine, the email can be silently dropped,
stripped of the attachment, or rejected.

In contrast, FLIPS is meant to protect a single host without the need for
additional infrastructure. Since the system is modular, it is an implementation
choice whether or not to distribute the components across multiple machines.
FLIPS also precisely identifies attack code by employing ISR. It does not need to
correlate input strings against other services or try to deduce where attack code
is placed inside a particular input request. In addition, our anomaly detection

component can construct models of both good and “bad” inputs to detect and
block slight variants of malicious input.

2.1 Code Injection and ISR

One of the major contributions of this work is the use of a practical form of ISR.
The basic premise of ISR [3] [12] is to prevent code injection attacks [23] from
succeeding by creating unique execution environments for individual processes.
Code injection is not limited to overflowing stack buffers or format strings. Other
injection vectors include web forms that allow arbitrary SQL expressions (a
solution to this problem using SQL randomization is proposed in [5]), CGI scripts
that invoke shell programs based on user input, and log files containing character
sequences capable of corrupting the terminal display.

Our x86 emulator STEM can selectively derandomize portions of an instruc-
tion stream, effectively supporting two different instruction sets at the same time.
Various processors support the ability to emulate or execute other instruction
sets. These abilities could conceivably be leveraged to provide hardware support
for ISR. For example, the Transmeta Crusoe chip1 employs a software layer for
interpreting code into its native instruction format. The PowerPC chip employs
“Mixed-Mode” execution2 for supporting the Motorola 68k instruction set. Like-
wise, the ARM chip can switch freely between executing its regular instruction
set and executing the Thumb instruction set. A processor that supports ISR
could use a similar capability to switch between executing regular machine in-
structions and randomized machine instructions. In fact, this is almost exactly
what STEM does in software. Having hardware support for ISR would obviate
the need for (along with the performance impact of) software-level ISR.

2.2 Anomaly Detection and Remediation

Anomaly-based classification is a powerful method of detecting inputs that are
probably malicious. This conclusion is based on the assumption that malicious
inputs are rare in the normal operation of the system. However, since a sys-
tem can evolve over time, it is also likely that new non-malicious inputs will
be seen [9] [32]. Indeed, some work [16] has shown that it is possible to evade
anomaly-based classifiers. Therefore, anomaly-based detectors [38] [17] require
an additional source of information that can confirm or reject the initial classifi-
cation. Pietraszek [22] presents a method that uses supervised machine learning
to tune an alert classification system based on observations of a human expert.
Sommer and Paxon [33] explore a related problem: how to augment signature-
based NIDS to make use of context when applying signatures.

FLIPS receives feedback from an emulator that monitors the execution of a
vulnerable application. If the emulator tries to execute injected code, it catches
the fault and notifies the classifier and filter. It can then terminate and restart

1 http://www.transmeta.com/crusoe/codemorphing.html
2 http://developer.apple.com/documentation/mac/runtimehtml/RTArch-75.html

the process, or simulate an error return from the current function. While our pro-
totype system employs ISR, there are many other types of program supervision
that can provide useful information. Each could be employed in parallel to gather
as much information as possible. These approaches include input taint tracking
[36] [20], program shepherding [15], (a similar technique is proposed in [24]) and
compiler-inserted checks [31]. One advantage of FLIPS’s feedback mechanism is
that it can identify with high confidence the binary code of the attack. In an
interesting approach to detection, Toth and Kruegel [37] and Andersson et al.
[34]) consider the problem of finding x86 code in network packets.

Effective remediation strategies remain a challenge. The typical response of
protection mechanisms has traditionally been to terminate the attacked pro-
cess. This approach is unappealing for a variety of reasons; to wit, the loss of
accumlated state is an overarching concern. Several other approaches are pos-
sible, including failure oblivious computing [26], STEM’s error virtualization
[29], DIRA’s rollback of memory updates [31], crash-only software [6], and data
structure repair [8]. Remediation strategies sometimes include the deployment
of firewall rules that block malicious input. The most common form of this strat-
egy is based on dropping packets from “malicious” hosts. Even with whitelists
to counter spoofing, this strategy is too coarse a mechanism. Our system allows
for the generation of very precise signatures because the actual exploit code can
be caught “in the act.”

Automatically creating reliable signatures of zero-day exploits is the focus
of intense research efforts [13]. Signatures of viruses and other malware are cur-
rently produced by manual inspection of the malware source code. Involving
humans in the response loop dramatically lengthens response time and does
nothing to stop the initial infection. In addition, deployed signatures and IDS
rules do nothing to guard against new threats. Singh et al. describe the Early-
bird system for automatically generating worm signatures and provide a good
overview of the shortcomings of current approaches to signature generation [30].

3 FLIPS – A Learning Application Filter

While we describe our implementation of FLIPS in Section 4, this section pro-
vides an overview of the design space for a host-based intrusion prevention sys-
tem. The system is composed of a number of modules that provide filtering,
classification, supervision, and remediation services. We can use the metrics pro-
posed by Smirnov and Chiueh [31] to classify FLIPS: it detects attacks, identifies
the attack vector, and provides an automatic repair mechanism.

The goal of the system is to provide a modular and compact application-
level firewall with the ability to automatically learn and drop confirmed zero-
day attacks. In addition, the system should be able to generate zero-day worm
and attack signatures, even for slightly metamorphic attack input. We tune
the anomaly detection by catching code injection attacks with our supervision
component. Only attacks that actually inject and execute code are confirmed

as malicious and fed back to the anomaly detector and filter. As a result, only
confirmed attacks are dropped in the future.

3.1 FLIPS Design

The design of FLIPS is based on two major components: a filtering proxy and an
application supervision framework. A major goal of the design is to keep the sys-
tem modular and deployable on a single host. Figure 1 shows a high-level view of
this design. The protected application can be either a server waiting for requests
or a client program receiving input. Input to a client program or requests to a
server are passed through the filtering proxy and dropped if deemed malicious.
If the supervision framework detects something wrong with the protected appli-
cation, it signals the filter to update its signatures and models. Although server
replies and outgoing client traffic can also be modeled and filtered, our current
implementation does not perform this extra step. Outgoing filtering is useful in
protecting a client application by stopping information leaks or the spread of
self-propagating malware.

Proxy

firewall

Protected
Application

Supervision
framework &
feedback source

Anomaly
&filter

classifier
chain

Signature
&filter

classifier
chain

source
Input

Fig. 1. General Architecture of FLIPS. Requests are passed through a filtering proxy
and dropped if deemed malicious. The application should be protected by a packet
filtering firewall that only allows the local proxy instance to contact the application.
The application processes the requests and sends the response back through the proxy.
If the input causes a code injection attack, the supervision framework contacts the
proxy with the injected code and the proxy updates its models and signatures.

The function of the proxy is to grade or score the input and optionally drop
it. The proxy is a hybrid of the two major classification schemes, and its sub-
components reflect this dichotomy. A chain of signature-based filters can score
and drop a request if it matches known malicious data, and a chain of anomaly-
based classifiers can score and drop the input if it is outside the normal model.

Either chain can allow the request to pass even if it is anomalous or matches
previous malicious input. The default policy for our prototype implementation
is to only drop requests that match a signature filter. Requests that the anomaly
classifier deems suspicious are copied to a special cache and forwarded on to the
application. We adopt this stance to avoid dropping requests that the anomaly
component mislabels (false positives). The current implementation only drops
requests that have been confirmed to be malicious to the protected application
and requests that are closely related to such inputs.

The function of the application supervision framework is to provide a way
to stop an exploit, automatically repair the exploited vulnerability, and report
information about an exploit back to the filters and classifiers. Similar to the
filtering and classification chains, the supervision framework could include a
number of host-based monitors to provide a wide array of complementary feed-
back information to the proxy. Our prototype implementation is based on one
type of monitor (ISR) and will only provide feedback information related to
code-injection attacks. Many other types of attacks are possible, and whether
something is an attack or not often depends on context. FLIPS’s design allows for
an array of more complicated monitors. STEM allows the application to recover
from a code injection attack by simulating an error return from the emulated
function after notifying the proxy about the injected code.

3.2 Threat Model

In this work, we assume a threat model that closely matches that of previous
ISR efforts. Specifically, we assume that an attacker does not have access to the
randomized binary or the key used to effect achieve this randomization. These
objects are usually stored on a system’s disk or in system memory; we assume the
attacker does not have local access to these resources. In addition, the attacker’s
intent is to inject code into a running process and thereby gain control over the
process by virtue of the injected instructions. ISR is especially effective against
these types of threats because it interferes with an attacker’s ability to automate
the attack. The entire target population executes binaries encoded under keys
unique to each instance. A successful breach on one machine does not weaken
the security of other target hosts.

3.3 Caveats and Limitations

While the design of FLIPS is quite flexible, the nature of host-based protection
and our choices for a prototype implementation impose several limitations. First,
host-based protection mechanisms are thought to be difficult to manage because
of the potential scale of large deployments. Outside the enterprise environment,
home users are unlikely to have the technical skill to monitor and patch a com-
plicated system. We purposefully designed FLIPS to require little management
beyond installation and initial training. PayL can perform unsupervised train-
ing. One task that should be performed during system installation is the addition

of a firewall rule that redirects traffic aimed at the protected application to the
proxy and only allows the proxy to contact the protected application.

Second, the performance of such a system is an important consideration in
deployment. We show in Section 5 that the benefit of automatic protection and
repair (as well as generation of zero-day signatures) is worth the performance
impact of the system. If the cost is deemed too high, the system can still be
deployed as a honeypot or a “twin system” that receives a copy of input meant
for another host. Third, the proxy should be as simple as possible to promote
confidence in its codebase that it is not susceptible to the same exploits as the
protected application. We implement our proxy in Java, a type-safe language
that is not vulnerable to the same set of binary code injection attacks as a C
program. Our current implementation only considers HTTP request lines. Specif-
ically, it does not train or detect on headers or HTTP entity bodies. Therefore,
it only protects against binary code injection attacks contained in the request
line. However, nothing prevents the scope of training and detecting from being
expanded, and other types of attacks can be detected at the host.

4 Implementation

This section deals with the construction of our prototype implementation. The
proxy was written in Java and includes PayL (400 lines of code) and a simple
HTTP proxy that incorporates the signature matching filter (about 5000 lines
of code). The supervision framework is provided by STEM (about 19000 lines
of C code). One advantage of writing the proxy in Java is that it provides an
implicit level of diversity for the system. The small codebase of PayL and the
proxy allows for easy auditing.

Java HTTP ProxyInput
source

Apache HTTPD

STEM−ISR

iptables

PayLFilters

Fig. 2. FLIPS’s Prototype Implementation Components. We constructed an HTTP
proxy to protect HTTP servers (in this example, Apache) from malicious requests.
The proxy invokes a chain of three filtering mechanisms and PayL to decide what to
do with each HTTP request.

4.1 HTTP Proxy and PayL

The HTTP proxy is a simple HTTP server that spawns a new thread instance
for each incoming request. During the service routine, the proxy invokes a chain
of Filter objects on the HTTP request. Our default filter implementation main-
tains three signature-based filters and a Classifier object. PayL implements the
Classifier interface to provide an anomaly-based score for each HTTP request.
When the proxy starts, it creates an instance of PayL and provides PayL with
a sample traffic file to train on.

The core of the filter implementation is split between two subcomponents.
The checkRequest() method performs the primary filtering and classification
work. It maintains four data structures to support filtering. The first is a list of
“suspicious” input requests (as determined by PayL). This list is a cache that
provides the feedback mechanism a good starting point for matching confirmed
malicious input. Note that this list is not used to drop requests. The remaining
data collections form a three level filtering scheme that trade off complexity and
cost with a more aggressive filtering posture. These lists are not populated by
PayL, but rather by the feedback mechanism. The first level of filtering is direct
match. This filter is the least expensive, but it is the least likely to block mali-
cious requests that are even slightly metamorphic. The second filter is a reverse
lookup filter that stores requests by the score they receive from PayL. Finally, a
longest common substring filter provides a fairly expensive but effective means
of catching malicious requests.

The second component serves as the feedback mechanism in the proxy. It is a
background thread listening for connections from STEM that contains malicious
binary code. This thread simply reads in a sequence of bytes and checks if they
match previously seen “suspicious” input (as classified by PayL). If not, then the
thread widens its scope to include a small cache of all previously seen requests.
Matching is done using the longest common substring algorithm. If a match is
found, then that request is used in the aforementioned filtering data structures.
If not, then a new request is created and inserted into the filters based on the
malicious byte sequence.

4.2 STEM

Our supervision framework is an application-level library that provides an emu-
lator capable of switching freely between derandomizing the instruction stream
and normal execution of the instruction stream on the underlying hardware. As
shown in Figure 3, four special tags are wrapped around the segment of code
that will be emulated.

STEM is an x86 emulator that can be selectively invoked for arbitrary code
segments, allowing us to mix emulated and non-emulated execution inside the
same process. The emulator lets us (a) monitor for derandomization failures
when executing the instruction, (b) undo any memory changes made by the
code function inside which the fault occurred, and (c) simulate an error return
from said function. One of our key assumptions is that we can create a mapping

void foo()

{

int a = 1;

emulate_init();

emulate_begin(stem_args);

a++;

emulate_end();

emulate_term();

printf("a = %d\n", a);

}

Fig. 3. An example of using STEM tags. The emulate * calls invoke and terminate
execution of STEM. The code inside that region is executed by the emulator. In order
to illustrate the level of granularity that we can achieve, we show only the increment
statement as being executed by the emulator.

between the set of errors and exceptions that could occur during a program’s
execution and the limited set of errors that are explicitly handled by the pro-
gram’s code. Due to space limitations, the reader is referred to [29] for details on
the general implementation of STEM. In this section, we describe our additions
to enable STEM to derandomize an instruction stream and provide feedback to
the FLIPS proxy.

4.3 ISR Technique

The main loop of the emulator fetches, decodes, executes, and retires one instruc-
tion at a time. Before fetching an instruction, de-randomization takes place. Since
the x86 architecture contains variable-length instructions, translating enough
bytes in the instruction stream is vital for the success of decoding. Otherwise,
invalid operations may be generated. To simplify the problem, we assume the
maximum length (16 bytes) for every instruction. For every iteration of the
loop, 16-bit words are XOR’d with a 16-bit key and copied to a buffer. The
fetch/decode function reads the buffer and extracts one instruction. The pro-
gram counter is incremented by the exact length of the processed instruction. In
cases where instructions are fifteen bytes or less, unnecessary de-randomization
takes place, but this is an unavoidable side-effect of variable-length instructions.
If injected code resides anywhere along the execution path, the XOR function
will convert it to an illegal opcode or an instruction which will access an in-
valid memory address. If an exception occurs during emulation, STEM notifies
the proxy of the code at the instruction pointer. STEM captures 1KB of code
forward, opens a simple TCP socket to the proxy (the address and port of the
feedback mechanism are included in the startup options for emulate begin()).
STEM then simulates an error return from the function it was invoked in.

The emulator is designed to execute in user-mode, so system calls cannot
be computed directly without kernel-level permissions. Therefore, when the em-
ulator decodes an interrupt with an immediate value of 0x80, it must release

control to the kernel. However, before the kernel can successfully execute the
system call, the program state needs to reflect the virtual registers arrived at by
STEM. The emulator backs up the real registers and replaces them with its own
values. An INT 0x80 is issued by STEM, and the kernel processes the system
call. Once control returns, the emulator updates its registers and restores the
original values in the program’s registers.

5 Evaluation

Inserting a detection system into the critical path of an application is a contro-
versial proposal because of the anticipated performance impact of the detection
algorithms and the correctness of the decision that the detection component
reaches. Our primary aim is to show that the combined benefit of automatic
protection and exploit signature generation is worth the price of even a fairly
unoptimized proxy implementation. Our evaluation has three major aims:

1. show that the system is good at classification
2. show that the system can perform end-to-end (E2E)
3. show that the system has relatively good performance

The first aim is accomplished by calculating the ROC curve for PayL. The
second aim is accomplished by an E2E test showing how quickly the system can
detect an attack, register the attack bytes with the filters, create the appropriate
filter rules, and drop the next instance of the attack. We send a request stream
consisting of the same attack at the proxy and measure the time (in both number
of ’slipped’ attacks and real time) it takes the proxy to filter the next instance
of the attack. The third aim is accomplished by measuring the additional time
the proxy adds to the overall processing with two different HTTP traces. We
were unable to test how well FLIPS blocked real metamorphic attack instances.
However, the use of the Longest Common Substring algorithm should provided
some measure of protection, as our last experiments showed. We plan to evaluate
this capability in future work on the system.

5.1 Hypotheses and Experiments

We investigate four hypotheses to support our aims.

– Hypothesis 1: The use of ISR imposes a manageable performance overhead.
We evaluate this hypothesis with experiments on STEM that explore the
impact of partial emulation vs. full emulation on Apache requests.

– Hypothesis 2: The efficacy of PayL is good. We evaluate this hypothesis
by showing the ROC curve for PayL.

– Hypothesis 3: The proxy imposes a manageable performance overhead. This
performance overhead is introduced by a few sources:
1. the use of an interpreted language (Java) to implement the proxy and

the anomaly detector.

2. the implementation choices of the proxy (e.g., multi-threaded but syn-
chronized at one filter manager). Performance is easily improved by
adding multiple filter manager objects.

3. the basic cost of performing proxying, including reading data from the
network and parsing it for sanity

4. the cost of invoking PayL on each request
5. the cost of training PayL (incurred once at system startup, about 5

seconds for a 5MB file of HTTP requests)

We evaluate this hypothesis by using a simple client to issue requests to
the production server and measure the change in processing time when each
proxy subcomponent is introduced. Table 2 describes these results.

– Hypothesis 4: The system can run end to end and block a new exploit.
A positive result provides proof for zero-day protection and precise, tuned,
automated filtering. To prove this hypothesis, we run the crafted exploit
against the full system continuously and see how quickly the proxy blocks
it. We determine the latency between STEM aborting the emulated function
and the proxy updating the filters.

5.2 Experimental Setup

The experimental setup for Hypothesis 3 and Hypothesis 4 included an instance
of Apache 2.0.52 as the production server with one simple modification to the ba-
sic configuration file: the “KeepAlive” attribute was set to “Off.” Then, a simple
awk script reconstructed HTTP requests from dump of HTTP traffic and passed
the request over the netcat utility to either the production server or the proxy.
The proxy was written in Java, compiled with the Sun JDK 1.5.0 for Linux, and
run in the Sun JVM 1.5.0 for Linux. The proxy was executed on a dual Xeon
2.0GHz with 1GB of RAM running Fedora Core 3, kernel 2.6.10-1.770 FC3smp.
The production server platform runs Fedora Core 3, kernel 2.6.10-1.770 FC3smp
on a dual Xeon 2.8GHz processor with 1GB of RAM. The proxy server and the
production server were connected via a Gigabit Ethernet switch. The servers
were reset between tests. Each test was run for 10 trials.

5.3 Hypothesis 1: Performance Impact of ISR

We evaluated the performance impact of STEM by instrumenting the Apache
web server and performing micro-benchmarks on some shell utilities. We chose
the Apache flood httpd testing tool to evaluate how quickly both the non-
emulated and emulated versions of Apache would respond and process requests.
In our experiments, we chose to measure performance by the total number of re-
quests processed, as reflected in Figure 4. The value for total number of requests
per second is extrapolated (by flood ’s reporting tool) from a smaller number of
requests sent and processed within a smaller time slice; the value should not
be interpreted to mean that our Apache instances actually served some 6000
requests per second.

We selected some common shell utilities and measured their performance
for large workloads running both with and without STEM. For example, we
issued an ’ls -R’ command on the root of the Apache source code with both
stderr and stdout redirected to /dev/null in order to reduce the effects of screen
I/O. We then used cat and cp on a large file (also with any screen output
redirected to /dev/null). Table 1 shows the result of these measurements. As
expected, there is a large impact on performance when emulating the majority
of an application. Our experiments demonstrate that only emulating potentially
vulnerable sections of code offers a significant advantage over emulation of the
entire system.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80

re
qu

es
ts

pe
r s

ec
on

d

of client threads

Apache 2.0.49 Request Handling Performance

apache-mainloop
emurand-mainloop
emurand-parse-uri

emurand-header-parser

Fig. 4. Performance of STEM under various levels of emulation. While full emula-
tion is fairly expensive, selective emulation of input handling routines appears quite
sustainable. The “emurand” designation indicates the use of STEM (emulated random-
ization).

Table 1. Microbenchmark performance times for various command line utilities.

Test Type trials mean (s) Std. Dev. Min Max Instr. Emulated

ls (non-emu) 25 0.12 0.009 0.121 0.167 0
ls (emu) 25 42.32 0.182 42.19 43.012 18,000,000

cp (non-emu) 25 16.63 0.707 15.80 17.61 0
cp (emu) 25 21.45 0.871 20.31 23.42 2,100,000

cat (non-emu) 25 7.56 0.05 7.48 7.65 0
cat (emu) 25 8.75 0.08 8.64 8.99 947,892

5.4 Hypothesis 2: Efficacy of PayL

PayL [38] is a content-based anomaly detector. It builds byte distribution mod-
els for the payload part of normal network traffic by creating one model for
each payload length. Then it computes the Mahalanobis distance of the test
data against the models, and decides that input is anomalous if it has a large
Mahalanobis distance compared to the calculated norms.

PayL’s results have been presented elsewhere; this section describes how well
PayL performed on traffic during our tests. For the purpose of incorporating
PayL in FLIPS, we adapted PayL to operate on HTTP requests (it previously
evaluated TCP packets). To test the efficacy of PayL’s operations on the web
requests, we collected 5MB (totaling roughly 109000 requests) of HTTP traffic
from one of our test machines. This data collection contains various CodeRed
and other malicious request lines. As the baseline, we manually identified the
malicious requests in the collection. The ROC curve is presented in Figure 5.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False Positive Rate (%)

De
te

cti
on

 R
at

e
(%

)

Fig. 5. PayL ROC Curve.

From the plot we can see that the classification result of PayL on the HTTP
queries is not very satisfying. While all the CodeRed and Nimda queries can
be caught successfully, there are still many “looks not anomalous” bad queries
that PayL cannot identify. For example, the query “HEAD /cgi-dos/args.cmd
HTTP/1.0 ” is a potentially malicious one for a web server, but has no anomalous
content considering its byte distribution. If PayL was used to classify the entire
HTTP request, including the entity body, results will be more precise. PayL
alone is not enough for protecting a server, and it requires more information to
tune its models. We emphasize that FLIPS assumes this requirement as part of
its design; we do not filter based on PayL’s evidence alone.

5.5 Hypothesis 3: Proxy Performance Impact

We discovered the performance impact of our unoptimized, Java-based proxy on
the time it took to service two different traffic traces. Our results are displayed
in Table 2 and graphically in Figure 6. Note that our experimental setup is
not designed to stress test Apache or the proxy, but rather to elucidate the
relative overhead that the proxy and the filters add. Baseline performance is
roughly 210 requests per second. Adding the proxy in degrades this throughput
to roughly 170 requests per second. Finally, adding the filter reduces it to around
160 requests per second.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

tim
e

to
 s

er
vic

e
al

l r
eq

ue
st

s
(s

ec
on

ds
)

tim
e

to
 s

er
vic

e
al

l r
eq

ue
st

s
(s

ec
on

ds
)

group (baseline, +proxy, +proxy+filter)

Overhead Added by Proxy Subcomponents

108818 requests
529 requests

Fig. 6. Performance Impact of FLIPS Proxy Subcomponents. A demonstration of how
the proxy affects baseline performance for two different traffic traces. Note that the
smaller trace (529 requests) is measured on the vertical axis on the right side of the
graph. This graph shows the increase in average time to service some number of requests
when the proxy is inserted between the client and the HTTP server, and again when
the filtering in the proxy is turned on.

5.6 Hypothesis 4: The End-to-End Test

To demonstrate the operation of the system, we inserted a synthetic code in-
jection vulnerability into Apache. The vulnerability was a simple stack-based
overflow of a local fixed size buffer. The function was protected with STEM,
and we observed how long it took FLIPS to stop the attack and deploy a filter
against further instances.

Inserting a vulnerability into Apache proved to be the most challenging part
of this experiment. The platform that FLIPS was deployed on (Fedora Core 3)

Table 2. Performance Impact of FLIPS Proxy Subcomponents. Baseline performance
is compared to adding FLIPS’s HTTP proxy and FLIPS’s HTTP proxy with filtering
and classification turned on. Baseline performance is measured by a client script hitting
Apache directly. The addition of the proxy is done by directing the script to contact
the FLIPS HTTP proxy rather than the production server directly. Finally, filtering in
the FLIPS HTTP proxy is turned on.

Component # of Requests Mean Time (s) Std. Dev.

Baseline 529 2.42 0.007
Baseline 108818 516 65.7

+Proxy 529 2.88 0.119
+Proxy 108818 668 9.68

+Proxy, +Filter 529 3.07 0.128
+Proxy, +Filter 108818 727 21.15

employs address space randomization (via the Exec-Shield) utility. We turned
this off by changing the value in /proc/sys/kernel/exec-shield-randomize to zero.
In addition, we marked the httpd binary as needing an executable stack via the
execstack utility.

To test the end-to-end functionality, we directed two streams of attack in-
stances against Apache through our proxy. We first sent a stream of 67 identical
attack instances and then followed this with 22 more attacks that included slight
variations of the original attack. In the first attack stream, FLIPS successfully
blocked 61 of the 67 attack instances. It let the first six instances through before
STEM had enough time to feedback to FLIPS. It took roughly one second for
FLIPS to start blocking the attacks. After that, each subsequent identical at-
tack instance was blocked by the direct match filter. The second attack stream
contained 22 variations of the original. The LCS filter (with a threshold of 60%)
successfully blocked twenty of these. This result provides some evidence that
FLIPS can stop metamorphic attacks. Our results are summarized in Table 3.

Table 3. End to end response time of FLIPS filtering. Once FLIPS has had feedback
from STEM, it will block all future identical attack instances. With the LCS filter
threshold set at 60%, FLIPS was able to filter 20 of 22 attack variations. Most of the
blocked attacks had an LCS of 80% or more. Obviously, attacks that are extremely
different will not be caught by the LCS filter, but if they cause STEM to signal FLIPS
about them, they will then be blocked on their own merits.

Attack Stream Total # of Requests Time to Block Requests Blocked

Homogeneous Stream 67 1 sec 61
Mixed Stream 22 n/a 20

6 Future Work

There remains a great deal of work in the space of intrusion prevention. We plan
on enhancing our implementation of FLIPS along several axes. First, we will
extend the proxy to handle different services and clients. Second, we will extend
our current treatment of HTTP to include the request headers and entity bodies.
Doing so can enable us to verify our experimental results against real Apache
vulnerabilities. Third, we plan to augment our set of supervision elements by
adding mechanisms like input taint-tracking that may be less expensive than
ISR. We also intend to explore using iptables and libipq as the basis of input
for a more general architecture. Finally, we are currently researching methods
of exchanging signatures that have been generated by FLIPS with other FLIPS
instances to provide inoculation to members of an Application Community [19].

7 Conclusions

Intrusion detection systems traditionally focus on identifying attempts to breach
computer systems and networks. Since detecting intrusions remains a hard prob-
lem, reacting in an automated and intelligent way to intrusion alerts has re-
mained largely unaddressed and is often a manual process executed by overbur-
dened system administrators.

We presented FLIPS, an intrusion prevention system that employs a com-
bination of anomaly classification and signature matching to block binary code
injection attacks. The feedback for this hybrid detection system is provided by
STEM, an x86 emulator capable of performing instruction set randomization
(ISR). STEM can identify injected code, automatically recover from an attack,
and forward the attack code to the anomaly and signature classifiers. We have
shown how FLIPS can detect, halt, repair, and create a signature for a pre-
viously unknown attack. While we demonstrated an implementation of FLIPS
that protects an HTTP server, FLIPS’s mechanisms are broadly applicable to
host-based intrusion prevention.

References

1. K. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D. Keromytis, and D. Li.
A Cooperative Immunization System for an Untrusting Internet. In Proceedings
of the 11th IEEE International Conference on Networks (ICON), pages 403–408,
October 2003.

2. K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting Targeted Attacks Using Shadow Honeypots. In Proceedings
of the 14th USENIX Security Symposium. (to appear)., August 2005.

3. E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized Instruction Set Emulation to Distrupt Binary Code Injection
Attacks. In Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security (CCS), October 2003.

4. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient
Approach to Combat a Broad Range of Memory Error Exploits. In Proceedings of
the 12th USENIX Security Symposium, pages 105–120, August 2003.

5. S. Boyd and A. Keromytis. SQLrand: Preventing SQL Injection Attacks. In Applied
Cryptography and Network Security (ACNS), pages 292–302, June 2004.

6. G. Candea and A. Fox. Crash-Only Software. In Proceedings of the 9th Workshop
on Hot Topics in Operating Systems (HOTOS-IX), May 2003.

7. F. Cuppens and A. Miege. Alert Correlation in a Cooperative Intrusion Detection
Framework. In IEEE Security and Privacy, 2002.

8. B. Demsky and M. C. Rinard. Automatic Data Structure Repair for Self-Healing
Systems. In Proceedings of the 1st Workshop on Algorithms and Architectures for
Self-Managing Systems, June 2003.

9. S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer Systems. In
Proceedings of the 6th Workshop on Hot Topics in Operating Systems, pages 67–72,
1997.

10. M. Handley, V. Paxson, and C. Kreibich. Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-End Protocol Semantics. In Proceedings of the
USENIX Security Conference, 2001.

11. S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a
Distributed Firewall. In Proceedings of the 7th ACM International Conference on
Computer and Communications Security (CCS), pages 190–199, November 2000.

12. G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks
With Instruction-Set Randomization. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS), October 2003.

13. H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In Proceedings of the USENIX Security Conference, 2004.

14. S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Enriching Intrusion Alerts
Through Multi-host Causality. In Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS), 2005.

15. V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution Via Program
Shepherding. In Proceedings of the 11th USENIX Security Symposium, August
2002.

16. A. Kolesnikov and W. Lee. Advanced Polymorphic Worms: Evading IDS by Blend-
ing in with Normal Traffic. Technical report, Georgia Tech College of Computing,
2004.

17. C. Krugel, T. Toth, and E. Kirda. Service Specific Anomaly Detection for Network
Intrusion Detection. In Proceedings of the ACM Symposium on Applied Computing
(SAC), 2002.

18. M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo. Towards Collabora-
tive Security and P2P Intrusion Detection. In Proceedings of the IEEE Information
Assurance Workshop (IAW), June 2005.

19. M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Application Communities:
Using Monoculture for Dependability. In Proceedings of the 1st Workshop on Hot
Topics in System Dependability (HotDep-05), June 2005.

20. J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Anal-
ysis, and Signature Generation of Exploits on Commodity Software. In The 12th

Annual Network and Distributed System Security Symposium, February 2005.
21. R. E. Overill. How Re(Pro)active Should an IDS Be? In Proceedings of the 1st Inter-

national Workshop on Recent Advances in Intrusion Detection (RAID), September
1998.

22. T. Pietraszek. Using Adaptive Alert Classification to Reduce False Positives in
Intrusion Detection. In Proceedings of the Symposium on Recent Advances in In-
trusion Detection (RAID), September 2004.

23. J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances in Exploiting
Buffer Overflows. IEEE Security & Privacy, 2(4):20–27, July/August 2004.

24. J. C. Rabek, R. I. Khazan, S. M. Lewandowski, and R. K. Cunningham. De-
tection of Injected, Dynamically Generated, and Obfuscated Malicious Code. In
Proceedings of the Workshop on Rapid Malcode (WORM), 2003.

25. J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line Intrusion Detec-
tion and Attack Prevention Using Diversity, Genrate-and-Test, and Generalization.
In Proceedings of the 36th Hawaii International Conference on System Sciences
(HICSS), 2003.

26. M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and J. W Beebee. Enhancing
Server Availability and Security Through Failure-Oblivious Computing. In Pro-
ceedings 6th Symposium on Operating Systems Design and Implementation (OSDI),
December 2004.

27. S. Sidiroglou, J. Ioannidis, A. D. Keromytis, and S. J. Stolfo. An Email Worm
Vaccine Architecture. In Proceedings of the 1st Information Security Practice and
Experience Conference (ISPEC), April 2005.

28. S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Architecture. In
Proceedings of the IEEE International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE), Workshop on Enterprise
Security, pages 220–225, June 2003.

29. S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a Reactive
Immune System for Software Services. In Proceedings of the USENIX Annual
Technical Conference, pages 149–161, April 2005.

30. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In Proceedings of Symposium on Operating Systems Design and Implementation
(OSDI), 2004.

31. A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair
of Control-Hijacking Attacks. In The 12th Annual Network and Distributed System
Security Symposium, February 2005.

32. A. Somayaji and S. Forrest. Automated Response Using System-Call Delays. In
Proceedings of the 9th USENIX Security Symposium, August 2000.

33. R. Sommer and V. Paxson. Enhancing Byte-Level Network Intrusion Detection
Signatures with Context. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 262–271, 2003.

34. A. Stig, A. Clark, and G. Mohay. Network-based Buffer Overflow Detection by
Exploit Code Analysis. In AusCERT Conference, May 2004.

35. S. Stolfo. Worm and Attack Early Warning: Piercing Stealthy Reconnaissance.
IEEE Privacy and Security, May/June 2004.

36. G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program Execution Via
Dynamic Information Flow Tracking. SIGOPS Oper. Syst. Rev., 38(5):85–96, 2004.

37. T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload
Execution. In Proceedings of the Symposium on Recent Advances in Intrusion
Detection (RAID), 2002.

38. K. Wang and S. J. Stolfo. Anomalous Payload-based Network Intrusion Detection.
In Proceedings of the 7th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 203–222, September 2004.

