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Abstract 
 

We extend prior research on masquerade detection 
using UNIX commands issued by users as the audit 
source. Previous studies using multi-class training 
requires gathering data from multiple users to train 
specific profiles of self and non-self for each user. One-
class training uses data representative of only one user. 
We apply one-class Naïve Bayes using both the multi-
variate Bernoulli model and the Multinomial model, and 
the one-class SVM algorithm. The result shows that one-
class training for this task works as well as multi-class 
training, with the great practical advantages of collecting 
much less data and more efficient training. One-class 
SVM using binary features performs best among the one-
class training algorithms.  
 
1. Introduction 
 

The Masquerade attack may be one of the most serious 
security problems. It commonly appears as spoofing, 
where an intruder impersonates another person and uses 
that person’s identity, for example, by stealing their 
passwords or forging their email address. Masqueraders 
can be insiders or outsiders. As an outsider, the 
masquerader may try to gain superuser access from a 
remote location and can cause considerable damage or 
theft. A simpler insider attack can be executed against an 
unattended machine within a trusted domain. From the 
system’s point of view, all of the operations executed by 
an insider masquerader may be technically legal and 
hence not detected by existing access control or 
authentication schemes. To catch such a masquerader, the 
only useful evidence is the operations he executes, i.e., his 
behavior. Thus, we can compare one user’s recent 
behavior against their profile of typical behavior and 
recognize a security breach if the user’s recent behavior 
departs sufficiently from his profiled behavior, indicating 
a possible masquerader. 

The insider problem in computer security is shifting the 
attention of the research and commercial community from 
intrusion detection at the perimeter of network systems. 
Research and development is going on in the area of 
modeling user behaviors in order to detect anomalous 
misbehaviors of importance to security; for example, the 
behavior of user-issued OS commands as represented in 

this paper, and in email communications [17]. 
Considerable work is ongoing in certain communities to 
detect not only impersonation, but also author 
identification. For example, Sedelow [16] and Vel [18] 
are two examples bracketing the length of time this topic 
has existed in the literature. 

The masquerade problem is a challenging problem. If 
the masquerader can mimic the user’s behavior 
successfully, he won’t be detected. In addition, if the user 
himself is behaving much differently than his trained 
profile, the detector will misclassify him as masquerader, 
which may cause annoying false alarms. There have been 
several attempts to solve this problem using command line 
sequences, [14] and [9]. The best results so far reported 
are 60-70% accuracy with a false positive rate as low as 1-
2%. The profiles were computed using supervised 
machine learning algorithms that classify training data 
acquired from multiple user. These approaches considered 
training user profiles as a multi-class supervised learning 
task where data gathered on a user is treated as an 
example of one-class, i.e. a distinct user. 

In this paper, we consider a different approach with 
substantial practical advantage.  We examine the task of 
profiling a user by modeling his data exclusively, without 
using examples from other users, and achieving good 
detection performance and minimal false positive rates. 
We also consider alternative machine learning algorithms 
that may be employed for this “one-class” training 
approach.  

One-class training means that we only use the user’s 
own legitimate examples of commands they issue to build 
the user’s self profile. Previous work uses both positive 
and negative examples to build both self and non-self 
profiles, except for Maxion [9], who considers the 
problem of determining how vulnerable a user’s behavior 
may be to mimicry attack. Here we extend this technique 
using one-class SVM. This is important in many contexts, 
especially when the only information available is the 
history of the user’s activities. If a one-class training 
algorithm can achieve similar performance to that 
exhibited by a multi-class approach, we may provide a 
significant benefit in real security applications; much less 
data is required, and training can proceed independently 
of any other user. The study reported in this paper 
indicates that indeed one-class training algorithms 
perform equally well as two class training approaches. 



This self profile idea is similar to the widely used 
“anomaly detection” techniques in intrusion detection 
system [eg. 2, 3]. For example, the anomaly detector of 
IDES [8] uses established normal usage profiles, which is 
the expected behavior, to identify any large usage 
deviation as a possible attack. Several methods have been 
used to model the normal data, for example, decision trees 
[7], neural network [4], and sparse Markov Transducers 
[2], and Markov chains [19]. In this paper, we applied 
one-class Naïve Bayes and one-class SVM algorithms to 
the masquerade dataset of UNIX system call sequences. 

In previous work, we believe there were several 
methodological flaws in the manner in which data was 
acquired and used. The “Schonlau dataset” from [14] 
presents each user’s command line data with a varying 
number of artificially created masquerade command 
blocks, ranging from 0 to 24, out of a total of 100 
command blocks to be classified. The previous work only 
considered the average performance of a given method 
when it is applied to all of the 50*100 blocks of 
commands issued by the 50 users. However, since the 
masquerade blocks are “randomly” inserted into each 
user’s data by using some other user’s command block, 
each user’s data has a different number of masquerade 
blocks, and the content of these masquerade blocks all 
differ. This data is not a good baseline to compare the 
effectiveness of alternative detection methods because one 
method might be better at detecting certain forms of 
masquerade attack while others are not. Unfortunately, 
since the distribution of such masquerade blocks appear 
many times in the dataset, some algorithms appear to have 
better performance over others, while, in practice or in 
other contexts, this finding may not be true. To better 
compare the alternative methods proposed in this work, 
we follow the exhaustive “1v49” evaluation methodology 
from [9], which will be described in detail in the section 
about the experimental methodology and results. The 
ROC score [5] is used to compare several one-class 
training methods under different false positive rate 
restrictions. This approach provides a better view to 
indicate which algorithm is better for most users. 

Even though one machine learning algorithm may 
perform better than another in terms of detection and false 
positive rate, our most important finding is that one-class 
training can indeed perform as well as multi-class training. 
Even so, the overall performance of both approaches 
indicates that there is much room for improvement.  

The rest of the paper is organized as follows. Section 2 
describes the dataset we used in our research and provides 
a review of recent work, and Section 3 discusses the one-
class Naïve Bayes and one-class SVM methods. Section 4 
describes the experimental setting and our results, and 
Section 5 concludes the paper with our analysis and 
findings. 
 

2. Recent Work 
 

Schonlau et al. [14] and Maxion [9] provide a dataset 
collected from keyboard commands on a UNIX platform. 
The dataset is publicly available at 
http://www.schonlau.net. Unfortunately, there are neither 
timestamps nor other detailed command line arguments 
available in the Schonlau dataset. Hence, the dataset in 
question consists simply of sequential “truncated” 
commands issued by each of 70 users. Each user is 
represented by 15,000 commands, collected over time 
from a few days to a few months. They randomly chose 50 
users to serve as intrusion target, and the remaining 20 
users as masqueraders. The first 5,000 commands of each 
user are “clean data” (legitimately issued by the user), and 
the next 10,000 commands of the target users were 
randomly injected with commands issued by the 20 
masquerade users, apparently none of whom are any of the 
50 users. The commands are grouped into blocks, with 
100 commands per block. The commands in one block are 
either all clean or all masquerade attacks, called “dirty 
blocks”. The task studied in [14] is to accurately classify 
the “dirty” blocks as masquerade commands, while 
classifying the clean blocks as belonging to the user. From 
this point of view, this problem is very similar to a text 
classification problem, where the commands may be 
regarded as words or tokens in a document that is to be 
classified. Their work identifies six masquerade-detection 
schemes. They are: Bayes 1-Step Markov, Hybrid Multi-
Step Markov, Incremental Probabilistic Action Modeling 
(IPAM), Uniqueness, Sequence-Match, and Compression. 
These masquerade detection methods were directly 
applied to this dataset; the first 5000 commands were used 
for training, and the remaining 10000 commands were 
inserted and used for testing, where each were processed 
in blocks of 100 commands. Testing and training were 
performed on a per block basis. The paper by Maxion [9] 
presents a clear and concise review of these six methods. 
The strategies behind each of these methods are quite 
different, but the results show that no method completely 
dominates another using cluster analysis and ROC curves. 

Maxion [9] improved upon Schonlau’s result by 
applying the Naïve Bayes classification algorithm using 
the “bag of words” features. Naïve Bayes has been used in 
text classification for a long time and proved to be very 
efficient in this context as well. Naïve Bayes was also 
used in the earlier work [15] on classifying malicious code 
attachments in email messages. Maxion presents a 
detailed analysis of the origins of the classification error, 
revealing why some users are good masquerades and 
others are not. That paper designed another experiment, 
called “1v49”, to perform this error analysis. We also use 
the “1v49” experimental setting in our work, but here it is 



used to compare the performance of different classifiers 
when applied to multiple classes. 

The results for these reviewed methods are displayed in 
Table 1 and serve as a baseline for comparison. 
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Method Hits False Positives 

N. Bayes (updating) 61.5% 1.5% 

N. Bayes (no Upd.) 66.2% 4.6% 

Uniqueness 39.4% 1.4% 

Hybrid Markov 49.3% 3.2% 

1-step Markov 69.3% 6.7% 

IPAM 41.4% 2.7% 

Sequence Matching 36.8% 3.7% 

Compression 34.2% 5.0% 

 
 

3. Machine learning methods 
 
3.1. Learning task 
 

For this masquerade detection problem, the learning 
task is to build a classifier that can accurately detect the 
masquerade commands while not misclassifying the user’s 
legitimate commands as a masquerade. Using the 
Schonlau dataset, which is organized as a set of blocks of 
100 commands, the learning task is to compute a binary 
classifier whose input is a block of 100 commands and 
whose output is a classification of that block as either 
generated by a masquerader or not.  The target 
classification is to detect the masquerader’s command 
blocks. Hence, the masqueraders’ data are positive 
examples, while the user’s legitimate data are treated as 
negative examples. Thus, a true positive outcome is a 
masquerade block of 100 commands, while a false 
positive outcome is a block of commands legitimately 
issued by the user but misclassified as a masquerade. In 
the following description, we call the masquerade blocks 
positive examples and call the legitimate blocks, those 
issued by the user himself, negative examples. One-class 
training means that a classifier is computed using only 
negative examples of the user himself as training data to 
build the classifier, which will be used to classify both 
positive and negative data. Thus, the task is to positively 
identify masqueraders, but not to positively identify a 
particular user. 
 
 
 

3.2. One-class or two class 
 

Previous work considered the problem as a multi-class 
supervised training exercise. The dataset contains data for 
50 users. For each user, a specific class, the first 5000 
commands are treated as negative examples, while the 
data from the other 49 users are treated as positive 
examples. It is reasonable to assume the negative 
examples, which belong to the same user, were treated 
consistently, while the positive examples used in training 
belong to another user. For the masquerade problem, it is 
probably impossible and unreasonable to estimate how an 
attacker would behave. Thus, treating sets of other users’ 
data as positive examples provides a substantive bias (to 
those users’ behavior who probably was not behaving 
maliciously).  We next present the means of implementing 
one-class training for Naïve Bayes classifier and for SVM, 
using only data from a single user when training a 
classifier to profile a distinct user.  
 
3.3. Naïve Bayes Classifier 

 
The Naïve Bayes classifier [12] is a simple and 

efficient supervised learning algorithm, which has been 
proved to be very effective in text classification, and many 
other applications. It is based on Bayes’ rule, 
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which calculates the probability of a class given an 
example. Applied to the masquerade problem, it calculates 
the likelihood that a command block belongs to a 
masquerader (non-self), or some legitimate user. Different 
commands ic , which are used as features here, are 

assumed independent from each other. This is the Naïve 
part of this method.  

There are two common models used in Naïve Bayes 
Classifier, one is the multi-variate Bernoulli model, and 
the other is the multinomial model [11]. In the multi-
variate Bernoulli event model, a vector of binary attributes 
is used to represent a document (in our case, a block of 
100 commands), indicating whether the command occurs 
or doesn’t occur in the document. The multinomial model 
uses the number of command occurrences to represent a 
document, which is called “bag-of-words” approach, 
capturing the word frequency information in documents. 
According to McCallurn [11]’s result, multi-variate 
Bernoulli model performs better for small vocabulary size, 
and the multinomial model usually performs better at 
larger vocabulary size. Because the vocabulary size (the 
number of distinct commands) of this masquerade 
problem is 856, which is a moderate in size, we want to 
compare both of these models for this problem.  
 



Multi-variate Bernoulli model 
Using the multi-variate Bernoulli Model, a command 
block d is represented as a binary 

vector ))(),...,(),(( 21 dbdbdbd m=
→

, with )(dbi  set to 1 if 

the command ic  occurs at least once in this block. Here 

m is the total number of features, i.e., the number of 
distinct commands. Given )|( ucp i , which is the 

probability estimated for command ic for user u  in the 

training data, we can compute )|( udp  of the test block 
d  as: 
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where )|( ucp i is estimated with a Laplacean prior: 
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)(uN  is the number of training examples for user u , 

while ),( ucN i is the number of documents containing the 

command ic  for user u . 

 
Multinomial model 

Using the standard bag-of-words approach, each 
command block   is represented by a feature 

vector ))(),...,(),(( 21 dndndnd m=
→

, where )(dni is the 

number of times command ic appears in the command 

block d . Similarly, given )|( ucp i , which is the frequency 

count computed for command ic for user u in the training 

data, we can compute )|( udp  of the test block d  as: 
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Here α  is used for smoothing, which controls the 
sensitivity to previously unseen commands. (This implies 
there is a non-zero probability any command may be 
issued by any user.) We set it to 0.01 following [9].  

 
One-class Naïve Bayes 

Adapting the above algorithm to one-class Naïve 
Bayes, which uses only positive examples for training, is 
very simple. We only compute )|( ucp i  for useru ’s self 

profile. For the non-self profile, we can assume each 

command has equal probability m/1 , which is essentially 
random. Thus, given a test d , we can compare 

)|( selfdp  with )|( nonselfdp . The larger the ratio of 

)|( selfdp  to )|( nonselfdp , the more likely this 
command block d  is from the user u . 

Applying the one-class Naïve Bayes algorithm to our 
specific dataset is also quite simple. Since each test 
document (a block of commands) has a fixed number of 
100 commands, the probability of “non-self” is the same 
for all tested blocks. Since we do not have to compute the 
probability of non-self; we may compare the probability 
of being “self” to a threshold in order to decide whether 
this block is a masquerade block or not. Furthermore, we 
can easily adjust the threshold to control the false positive 
and detection rate.  
 
3.4. One-class support vector machine 
 

Support Vector Machines (SVM) have been shown to 
be highly effective in text classification as well [6], among 
other important learning tasks. They are maximal-margin 
classifiers, rather than probabilistic as is Naïve Bayes. In 
the two-class formulation, the basic idea is to map feature 
vectors to a high dimensional space and to compute a 
hyperplane that not only separates the training vectors 
from different classes, but also maximizes this separation 
by making the margin as large as possible. 

Scholkopf et al. [13] proposed a method to adapt the 
SVM algorithm for one-class SVM, which only use 
examples from one-class, instead of multiple classes, for 
training. The one-class SVM algorithm first maps input 
data into a high dimensional feature space via a kernel 
function and treats the origin as the only example from 
other classes. It then iteratively finds the maximal margin 
hyperplane that best separates the training data from the 
origin.  

Considering that our training data set Xxxx ∈
�

,...,, 21 , 

Φ  is the feature mapping FX →  to a high-dimensional 
space, we can define the kernel function as: 

))()((),( yxyxk Φ⋅Φ=  
Using kernel functions, the feature vectors need not be 

computed explicitly, greatly improving computational 
efficiency since we can directly compute the kernel values 
and operate on their images. Some common kernels are 
linear, polynomial, and radial basis function (rbf) kernels: 
Linear Kernel: )(),( yxyxk ⋅=  

P-th order polynomial kernel: pyxyxk )1(),( +⋅=  

rbf kernel: 
22 2/||||),( σyxeyxk −−=  

Now, solving the one-class SVM problem is equivalent 
to solving the dual quadratic programming (QP) problem: 
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where iα  is a Lagrange multiplier, which can be thought 

of as a weight on example ix , and ν is a parameter that 

controls the trade-off between maximizing the number of 
data points contained by the hyperplane and the distance 
of the hyperplane from the origin.  

After solving for iα , we can use a decision function to 

classify data. The decision function is:  

� −=
i ii xxkxf )),(sgn()( ρα  

where the offset ρ  can be recovered by 

),( ijj j xxk�= αρ . 

In our work, we used the LIBSVM 2.4 [1] available at 
http://www.csie.ntu.tw/~cjlin/libsvm for our experiments. 
LIBSVM is an integrated tool for support vector 
classification and regression that implemented Sholkopf’s 
algorithm for one-class SVM. We used the default rbf 
kernel and the default values of the parameters for one-
class SVM. 

Another problem to consider for one-class SVM is how 
to represent the features. We used both a word count 
representation and a binary representation, which are 
equivalent to the multinomial model and multi-variate 
Bernoulli model of Naïve Bayes algorithm, respectively. 
The vectors are normalized to length 1.  
 
4. Evaluation 
 

We conducted two sets of experiments. The first 
experiment repeats the experimental methodology of [14]. 
We show that the performance of one-class training is 
almost the same as the performance of multi-class training. 
This is a significant finding on its own. 

The second experiment aims to compare the 
performance of the two one-class training algorithms 
when applied to multiple users. Following [9], we will call 
the first the SEA experiment, which is from the authors’ 
names in [14], Schonlau et al. The second experiment is 
called 1v49, because we trained using only one user’s data 
and tested on all other 49 user’s data. 

 
4.1. SEA Experiment 
 

Recall that in this experiment, the first 5,000 
commands of a user serve as positive examples, and the 
first 5,000 commands of all the other 49 users serve as 
negative examples. The resultant classifier is tested on the 
rest of the 10,000 commands of the user. These have 

inserted “dirty” command blocks under a probability 
distribution from other users besides the 50 users whose 
commands were trained on. For our one-class algorithm, 
the test data remains the same, but we only use one user’s 
training data (the first 5,000 commands) as negative 
examples for training; there are no positive examples used 
at all to compute the classifier. First we compare the 
Naïve Bayes classifier using the multi-variate Bernoulli 
model and the multinomial model. Then we compare the 
one-class training algorithms against the multi-class 
training algorithms. All the classification algorithms we 
tested do no updating during the test of any parameters 
because we want to compare the pure performance of each 
of them. Maxion [9] used an empirically pre-fixed 
threshold to update the classifier during the experiment, 
which is not an intrinsic characteristic of the classification 
algorithm. 
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Figure 1 displays plots comparing the multi-variate 
Bernoulli model and the multinomial model of Naïve 
Bayes classifier. When using multi-class training, the 
multinomial model is obviously better than the Bernoulli 
model. But the difference is not so obvious in one-class 
training, especially when the false positive rate is low. We 



thus compare both models in the following 1v49 
experiment.  

To compare the performance of the one-class training 
algorithms against the multi-class training algorithm on 
the same test data, we plot the ROC curves as displayed in 
Figure 1. For the multi-class training algorithm, we only 
use the multinomial model Naïve Bayes algorithm as the 
baseline for comparison, which is better than Bernoulli 
model and has been proved to the best among the variety 
of methods as described in [9]. For the one-class SVM, 
we compare both the binary and word count 
representations. From Figure 2, we can see that only one-
class SVM using the word count representation is a little 
bit worse than the other three methods. One-class SVM 
using the binary representation and one-class Naïve Bayes 
achieved almost the same performance as the two class 
Naïve Bayes algorithm.  

We also compare in Figure 3 the performance of all the 
previous algorithms from Table 1 to one-class SVM 
algorithm using binary features, which is best one among 
the one-class training algorithms. One-class SVM-binary 
is better than most of the previous algorithms except the 
two-class multinomial Naïve Bayes algorithm with 
updating.  

This experiment confirmed our conjecture that for 
masquerade detection, one-class training is as effective as 
two class training. 
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4.2. 1v49 Experiment 
 

As we have pointed out, since the dataset used had 
randomly inserted masquerade blocks in each user’s test 
commands (10,000 commands following the first 5,000), 
each user has a different number of “dirty” blocks and the 
origins of these “dirty” blocks also differ. So the result of 
the SEA experiment may not illustrate the real 
performance of a classification algorithm. (There are too 
many unfixed parameters.) To better evaluate the 
performance of a classification algorithm, we can treat 
these 50 users as our selected sample of common users. If 
we can prove algorithm A is better than algorithm B for 
most of the 50 users, we can infer A is better than B in a 
general sense. 

To meet this requirement, we follow the “1v49” 
experiment, but for a different purpose. We use one user’s 
first 5,000 commands as negative training data to compute 
a classifier without any positive training data. For test data, 
we use the non-masquerade blocks from the 10,000 
additional commands of the same user as negative test 
data, and the other 49 users’ first 5,000 commands as 
positive test data. This data is also organized in blocks of 
100 commands.  

As we mentioned before, the same algorithm might 
perform quite differently for different users. Figure 4 
illustrates the difference. Figure 4 shows the ROC curve 
for user 2, 20 and 40 using one-class SVM with the binary 
feature representation. Such a difference occurs no matter 
which algorithm has been used; the difference is 
determined by the characteristic of each user. 
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To compare the different methods for multiple users, 

we compute the ROC score for each user. In general, a 
ROC score is the fraction of the area under the ROC curve, 
the larger the better. A ROC score of 1 means perfect 
detection without any false positives. Figure 5 below 
shows the ROC scores for users 20 and 40 using the one-
class SVM-binary algorithm. 
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Figure 6 illustrates the performance of several one-

class training algorithms as measured by ROC scores. The 
figure includes results for all 50 users. From Figure 6, we 
can see that one-class SVM using word-count features is 
the worst among the four algorithms. At the high ROC 
score region, with a ROC score higher than 0.8 (which is 
what we prefer) one-class SVM using binary features 
performs best among all. There is no big difference 
between Naïve Byaes using the multinomial model or the 
multi-variate Bernoulli model.  

 
� �� � ���/ ,�� 
 � � ���
 
 � �
 ���
 � ��� �
 0 � ���� ��� ���� ��
 � �� �� � ���/ ,�� 
 � � ���
 
 � �
 ���
 � ��� �
 0 � ���� ��� ���� ��
 � �� �� � ���/ ,�� 
 � � ���
 
 � �
 ���
 � ��� �
 0 � ���� ��� ���� ��
 � �� �� � ���/ ,�� 
 � � ���
 
 � �
 ���
 � ��� �
 0 � ���� ��� ���� ��
 � �
� ��� 
 � 
 ���� ��� ��� � �� �
 �
 ��� ���
 ����� � � ����
 ��� 
 ��
 �� ��� 
 � 
 ���� ��� ��� � �� �
 �
 ��� ���
 ����� � � ����
 ��� 
 ��
 �� ��� 
 � 
 ���� ��� ��� � �� �
 �
 ��� ���
 ����� � � ����
 ��� 
 ��
 �� ��� 
 � 
 ���� ��� ��� � �� �
 �
 ��� ���
 ����� � � ����
 ��� 
 ��
 �
�
 �� " � �� � � �� � �� �� � � ��� 
 � � �' � ��� 
 � �� 	 � � � 
 � 
 ����
 �� " � �� � � �� � �� �� � � ��� 
 � � �' � ��� 
 � �� 	 � � � 
 � 
 ����
 �� " � �� � � �� � �� �� � � ��� 
 � � �' � ��� 
 � �� 	 � � � 
 � 
 ����
 �� " � �� � � �� � �� �� � � ��� 
 � � �' � ��� 
 � �� 	 � � � 
 � 
 ���
�� ��
 � 
 �� ��� ��
 � 
 �� ��� ��
 � 
 �� ��� ��
 � 
 �� �����

 
For the masquerade problem, we are more interested in 

the region of the ROC curve with a low false positive rate; 
otherwise, the “annoyance level” of false alarms would 
render the detector useless in practical use. Therefore, we 
restrict the ROC scores to the curves with false positive 
lower than P, which is called the ROC-P score. For 
example, if we want to restrict the false positives to be 
lower than 5% of all command blocks, we can compute 
ROC-5. Similar to the general ROC score, the ROC-P 
score is the fraction of the area under the ROC curve 
where the false positive rate is lower than P%. Figure 7, 
displays an example of ROC-10, based on the ROC-
curves of users 20 and 40. Only part of the ROC curve is 
drawn here to highlight the plots. 
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Since we can see that one-class SVM using the binary 

feature is generally better than one-class SVM using the 
word count feature, as depicted in Figure 6; here we only 
compare the one-class SVM using the binary 
representation with the multinomial model Naïve Bayes 
and Bernoulli model Naïve Bayes in the following ROC-P 
comparison. Figures 8 plots the comparison for ROC-5 
and ROC-1, which means false positives are below 5% 
and 1%, respectively. From these two plots, we can 



determine that one-class SVM using the binary feature is 
almost always better than the other two one-class Naïve 
Bayes methods. 
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To compare the performance of different algorithms on 

an individual user basis, we compare the ROC-P score 
user by user. Figure 9 shows a user-by-user comparison of 
one-class SVM using the binary feature representation and 
one-class Naïve Bayes using the multinomial model, when 
the false positive rate is lower than 1%. Again we can see, 
for most of the 50 users, one-class SVM with binary 
features is better than one-class Naïve Bayes using the 
multinomial model. However, there are still some users 
whose data exhibit better performance using the one-class 
Naïve Bayes. This suggests that we can choose the best 
algorithm to use for an individual user to improve the 
whole system’s performance.  
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5. Discussion 
 

From our work we can see that one-class SVM using 
binary features performs better than one-class Naïve 
Bayes and one-class SVM using word count features.  

Even so, masquerade detection is a very hard problem, 
and all three algorithms did not achieve very high 
accuracy with near to zero false positive rates for every 
user. This is partly caused by the inherent nature of the 
data available and the difficulty of this problem.  We 
would like to reapply these methods using a richer set of 
data as described by Maxion [10], incorporating command 
arguments. We also believe that temporal data associated 
with each user’s sequential commands will provide 
considerable value as well to improve performance.  

Another problem to consider for the practical utility of 
these approaches is resiliency to direct attack; i.e. how 
could we protect the models that were computed from, for 
example, a mimicry attack by the masquerader?  

In the experiments performed, we did not evaluate 
feature selection. We tested one-class SVM using 100, 



200, and 300 of the most frequently used UNIX 
commands. Each of the results is worse than had we used 
all of the available UNIX commands, whose total number 
is around 870. We also conjectured that 2-gram features 
(adjacent pairs of commands) would perform better than 
individual commands (1-grams) as a feature. However, we 
found that the results were worse when we used all of the 
2-grams. In further work, we would evaluate some feature 
selection methods to improve performance. For example, 
we believe a selection of some features using both 1-gram 
and 2-grams may improve the quality of the user profiles, 
and thus the accuracy of the detector.  

A system to detect masqueraders as described in this 
paper should not be viewed as a single detector, but rather 
as evidence to be correlated with other sensors and other 
detectors. Thus, although the performance of the detectors 
described herein and in prior work seemingly are not 
accurate enough, when one wishes to limit false positives, 
it may be wise to relax the threshold to generate higher 
true positive rates. If the output of the detector were 
combined with other evidence (for example, file system 
access anomaly detection, or other sensors), it may be 
possible to raise substantially the bar in protecting hosts 
from malicious abuse.  
 
6. Conclusion 
 

In this paper, to solve the masquerade detection 
problem, we use one-class training algorithms which only 
train on a user’s clean data. It has been demonstrated that 
one-class training algorithms can achieve similar 
performance as multiple class methods, but require much 
less effort in data collection and centralized management. 
Besides masquerade detection, we believe one-class 
training is also good for some other intrusion detection 
problems where sample intrusion data are hard to get or 
too variable to cluster. 

We also give a detailed comparison of the performance 
of different one-class algorithms as applied to multiple 
users. The results show that for most users one-class SVM 
using the binary feature representation is better than one-
class Naïve Bayes and one-class SVM using the word 
count representation, especially when we want to restrict 
the false positive rate to a relatively low level. 

In our future work, we plan to include command 
arguments, not only truncated commands, as features to 
improve the accuracy of masquerade detection. As the 
number of features increase, we also plan to do feature 
selection to find the most informative features and to 
discard those features that have no value for the target task. 
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