COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

TOWARDS LARGE-SCALE EXPLOITATION OF CISCO IOS

ANG CUI

ANG@CS.COLUMBIA.EDU Columbia University Intrusion Detection Systems Lab

> Prof. Salvatore J. Stolfo | sal@cs.columbia.edu Jatin Kataria | jk3319@columbia.edu

PRIOR WORK

<u>FX, 2003</u> <u>Lynn, 2005</u> <u>Uppal, 2007</u> <u>Davis, 2007</u> <u>Muniz, 2008</u> <u>FX, 2009</u> <u>Muniz and Ortega, 2011</u>

NOT COMPREHENSIVE, BUT IS A GOOD START

MOTIVATION

MOTIVATION

CISCO IOS IS A HIGH VALUE TARGET

MOTIVATION

CISCO IOS IS A HIGH VALUE TARGET

CISCO IOS IS "UNDEFENDED"

MOTIVATION

CISCO IOS IS A HIGH VALUE TARGET

CISCO IOS IS "UNDEFENDED"

CISCO IOS IS "UNMONITORED"

MOTIVATION

CISCO IOS IS A HIGH VALUE TARGET

CISCO IOS IS "UNDEFENDED"

CISCO IOS IS "UNMONITORED"

CISCO IOS CAN BE **EXPLOITED**, JUST LIKE EVERYTHING ELSE

MOTIVATION

BUT THERE THE PROBLEM OF SOFTWARE DIVERSITY

MOTIVATION

BUT THERE THE PROBLEM OF **SOFTWARE DIVERSITY**

Approximately 300,000 unique IOS images No reliable binary invariant

MOTIVATION

BUT THERE THE PROBLEM OF **SOFTWARE DIVERSITY**

Approximately 300,000 unique IOS images No reliable binary invariant

The (last) major obstacle in large-scale IOS exploitation

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Reliable Shellcode

• IOS DIVERSITY MEANS **BINARY** DIVERSITY

Reliable Shellcode

• IOS DIVERSITY MEANS BINARY DIVERSITY, NOT **FUNCTIONAL** DIVERSITY

Reliable Shellcode

- IOS DIVERSITY MEANS BINARY DIVERSITY, NOT FUNCTIONAL DIVERSITY
- IN FACT, IOS IS RICH IN FUNCTIONAL INVARIANTS
 - FOR EXAMPLE:

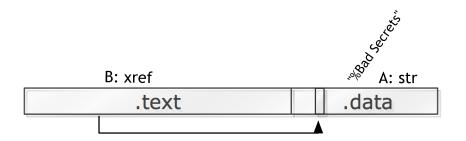
Router>
Router>enable
Password:
Password:
Password:
% Bad secrets
Router>

FUNCTIONAL MONOCULTURE IN EVERY BOX!

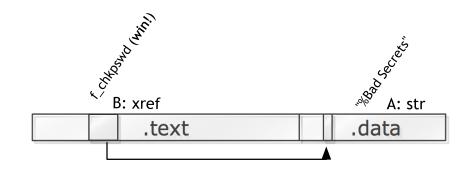
Reliable Shellcode

- General strategy to overcome IOS diversity
 - Use functional invariants to resolve binary targets
 - For example: (see <u>FX, 2009</u>)

Reliable Shellcode


- GENERAL STRATEGY TO OVERCOME IOS DIVERSITY
 - Use functional invariants to resolve binary targets
 - For example: (see <u>FX, 2009</u>)

Reliable Shellcode


- General strategy to overcome IOS diversity
 - Use functional invariants to resolve binary targets
 - For example: (see <u>FX, 2009</u>)

Reliable Shellcode

- GENERAL STRATEGY TO OVERCOME IOS DIVERSITY
 - Use functional invariants to resolve binary targets
 - For example: (see <u>FX, 2009</u>)

DISASSEMBLING SHELLCODE #1

• THERE IS A CATCH (CALLED THE WATCHDOG TIMER)

Router>
*May 11 16:22:56:599: %SYS-3-CPUHOG: Task is running for (2020)msecs,
<pre>Pmore than (2000)msecs (3/2),process = Exec.</pre>
-Traceback= 0x62641C3C 0x6068D914 0x606A9BD8 0x6074E780 0x6074E764
*May 11 16:22:58.599: %SYS-3-CPUHOG: Task is running for (4020)msecs,
Fmoreithan (2000)msecs (3/2),processi=eExec:eply 0 / Raw / Padding
-Traceback= 0x62641C3C 0x6068D914 0x606A9BD8 0x6074E780 0x6074E764
*May 11 16:23:00.603:0%SYS-3-CPUHOG:Taskoiscrunning for (6020)msecs,
more than (2000)msecs (4/2),process = Exec.
-Traceback= 0x62641C3C 0x6068D914 0x606A9BD8 0x6074E780 0x6074E764
*May 11 16:23:02.599: %SYS-3-CPUHOG: Task is running for (8012)msecs,
Fmoreithan (2000)msecs.(5/2),processi=eExec.eply 0 7 Raw 7 Padding
-Traceback= 0x62641C3C 0x6068D914 0x606A9BD8 0x6074E780 0x6074E764
*May 11 16:23:03:103:0%SYS-3-CPUYLD:1Taskoranpfor0(8516)msecs;0more t
han (2000)msecs (5/2),process = Exec

COMPUTE TOO LONG, AND YOU WILL GET CAUGHT!

SHELLCODE IS HEAVILY **RESOURCE** CONSTRAINED,.

MUST RESOLVE BINARY TARGET USING FAST, (SUB)LINEAR Algorithms.

INTERRUPT-HIJACK SHELLCODE

• Let's kill 3 birds with one stone

INTERRUPT-HIJACK SHELLCODE

- Let's kill 3 birds with one stone
 - FASTER
 - ENABLE-BYPASS SHELLCODE: 2N ALGORITHM
 - INTERRUPT-HIJACK SHELLCODE: TWICE AS FAST

INTERRUPT-HIJACK SHELLCODE

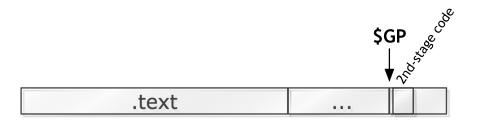
- Let's kill 3 birds with one stone
 - FASTER
 - STEALTHIER
 - ENABLE-BYPASS, VTY REBIND, ETC REQUIRES PERSISTENT TCP CONNECTION
 - INTERRUPT-HIJACK USES THE PAYLOAD OF PROCESS-SWITCHED PACKETS AS A COVERT COMMAND AND CONTROL CHANNEL
 - C&C IS BIDIRECTIONAL THANKS TO IOMEM SCRUBBER

INTERRUPT-HIJACK SHELLCODE

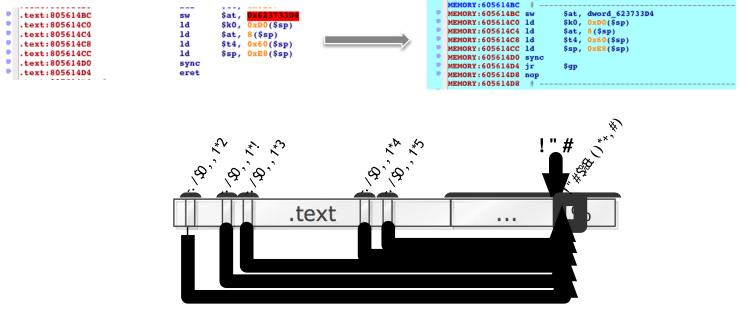
• Let's kill 3 birds with one stone

- FASTER
- STEALTHIER
- More Control
 - NO NEED TO BE CONSTRAINED BY IOS SHELL
 - ROOTKIT RUNS @ SUPERVISOR MODE. WE CAN EVEN WRITE TO EEPROM (SEE LAST SLIDE)

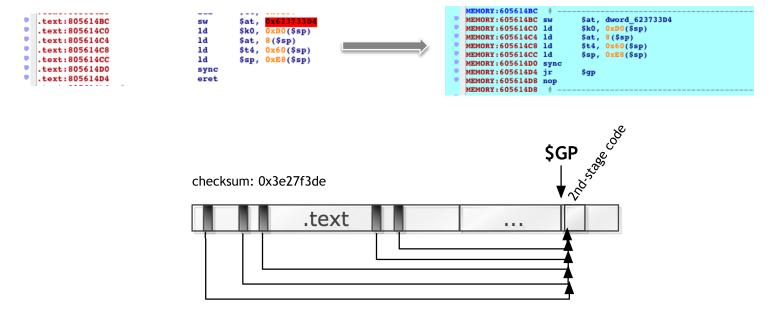
INTERRUPT-HIJACK SHELLCODE


• 1st stage:

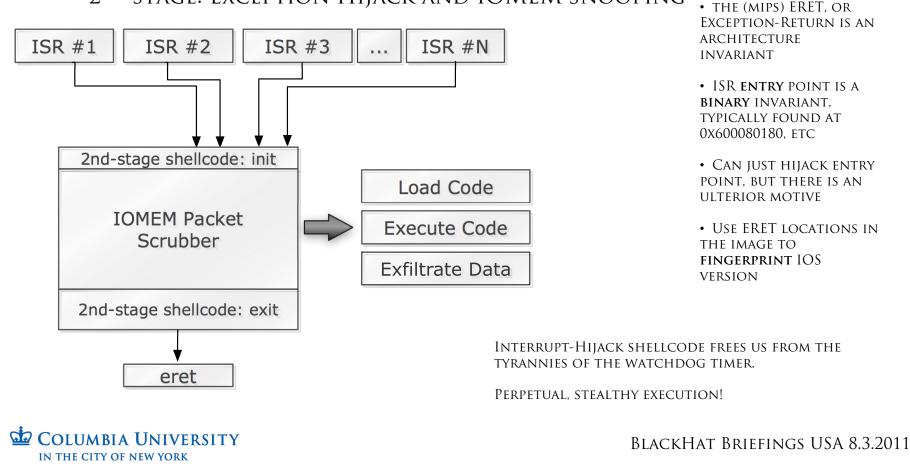
INTERRUPT-HIJACK SHELLCODE

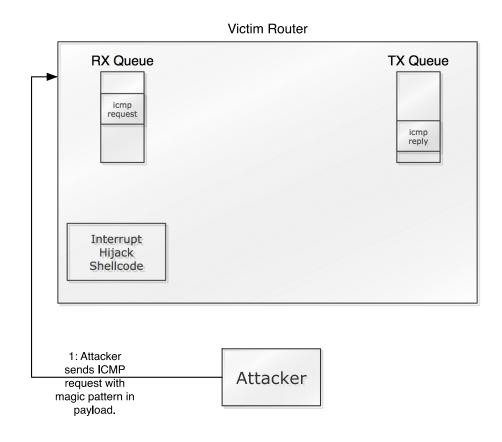

• 1st stage: UNPACK 2nd stage

INTERRUPT-HIJACK SHELLCODE


• 1st stage: UNPACK 2ND stage, HIJACK All INT-HANDLERS

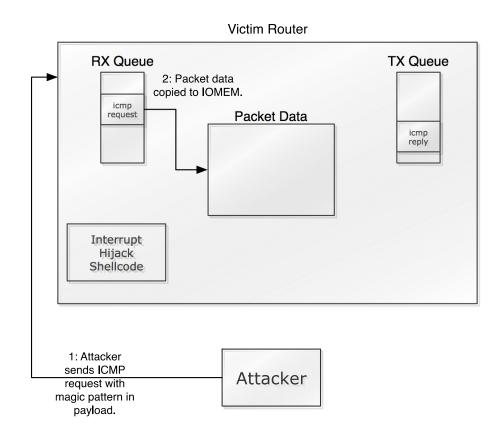
INTERRUPT-HIJACK SHELLCODE


• 1st stage: UNPACK 2ND stage, HIJACK ALL INT-HANDLERS, COMPUTE **HASH** ON ADDRESSES OF "ERET" INSTRUCTIONS (WHY?)

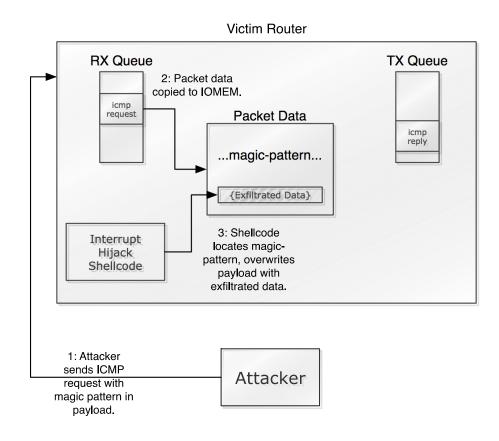


INTERRUPT-HIJACK SHELLCODE

• 2ND-STAGE: EXCEPTION HIJACK AND IOMEM SNOOPING


INT-HIJACK SHELLCODE: FINGERPRINT EXFILTRATION

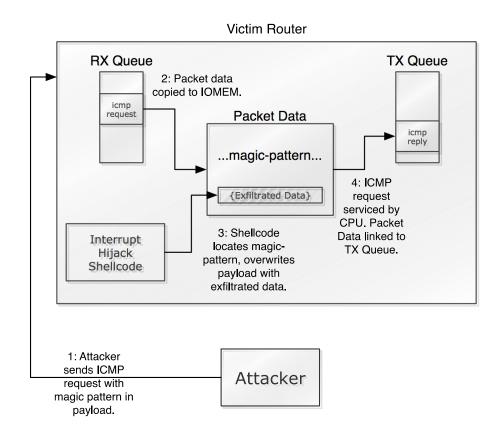
- ICMP IS CONVENIENT, BUT ANY "PROCESS-SWITCHED" PACKET WILL SUFFICE
- C&C INSIDE PAYLOAD OF "Normal" traffic
- Complex third-stage payloads can be assembled in a "protocol-spreadspectrum" manner
- PING, DNS, PDUS, TCP, ALL The same as long as it is process-switched


INT-HIJACK SHELLCODE: FINGERPRINT EXFILTRATION

- ICMP IS CONVENIENT, BUT ANY "PROCESS-SWITCHED" PACKET WILL SUFFICE
- C&C INSIDE PAYLOAD OF "Normal" traffic
- Complex third-stage payloads can be assembled in a "protocol-spreadspectrum" manner
- PING, DNS, PDUS, TCP, ALL The same as long as it is prcoess-switched

INT-HIJACK SHELLCODE: FINGERPRINT EXFILTRATION

• ICMP IS CONVENIENT, BUT ANY "PROCESS-SWITCHED" PACKET WILL SUFFICE

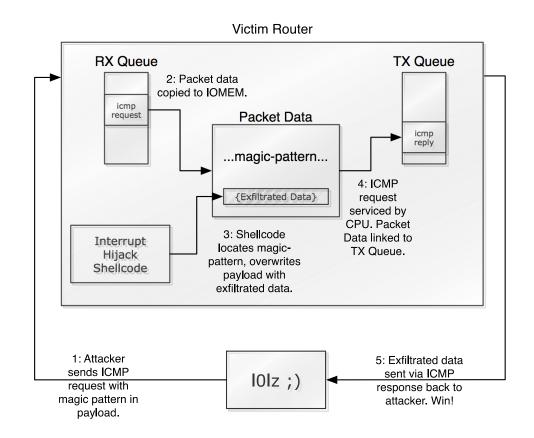

• C&C INSIDE PAYLOAD OF "Normal" traffic

• Complex third-stage payloads can be assembled in a "protocol-spreadspectrum" manner

• PING, DNS, PDUS, TCP, ALL The same as long as it is prcoess-switched

INT-HIJACK SHELLCODE: FINGERPRINT EXFILTRATION

• ICMP IS CONVENIENT, BUT ANY "PROCESS-SWITCHED" PACKET WILL SUFFICE


• C&C INSIDE PAYLOAD OF "Normal" traffic

• Complex third-stage payloads can be assembled in a "protocol-spreadspectrum" manner

• PING, DNS, PDUS, TCP, ALL The same as long as it is prcoess-switched

INT-HIJACK SHELLCODE: FINGERPRINT EXFILTRATION

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

• ICMP IS CONVENIENT, BUT ANY "PROCESS-SWITCHED" PACKET WILL SUFFICE

• C&C INSIDE PAYLOAD OF "NORMAL" TRAFFIC

• Complex third-stage payloads can be assembled in a "protocol-spreadspectrum" manner

• PING, DNS, PDUS, TCP, ALL The same as long as it is prcoess-switched

RUNTIME FINGERPRINT GIVES US POSITIVE ID ON THE VICTIM ROUTER'S HARDWARE PLATFORM AND IOS VERSION!

Reliable Shellcode

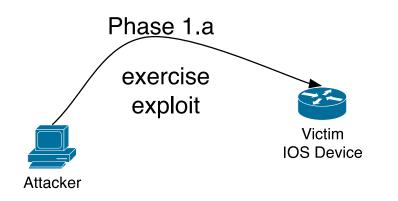
- General strategy to overcome IOS diversity
 - Use functional invariants to resolve binary targets
 - IOS DIVERSITY IS (VERY) FINITE
 - How do you defeat address space randomization?

Reliable Shellcode

• GENERAL STRATEGY TO OVERCOME IOS DIVERSITY

- Use functional invariants to resolve binary targets
- IOS DIVERSITY IS (VERY) FINITE

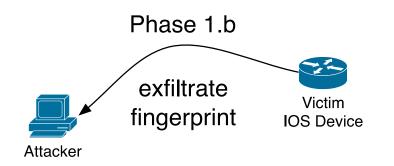
• HOW DO YOU DEFEAT ASR IF THERE ARE **ONLY** 300,000 POSSIBLE PERMUTATIONS?


Reliable Shellcode

• GENERAL STRATEGY TO OVERCOME IOS DIVERSITY

- Use functional invariants to resolve binary targets
- IOS DIVERSITY IS (VERY) FINITE
 - HOW DO YOU DEFEAT ASR IF THERE ARE ONLY 300,000 POSSIBLE PERMUTATIONS?
 - BUILD A LOOKUP TABLE!

GENERALIZED RELIABLE EXPLOITATION OF IOS (IN 4 SIMPLE STEPS)

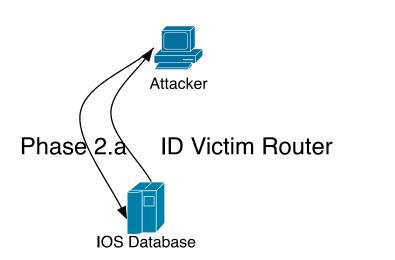


1.A: EXPLOIT VULNERABILITY, LOAD AND RUN 1st stage eret-HIJACK ROOTKIT (~400 bytes, PIC, WILL RUN ANYWHERE)

GENERALIZED RELIABLE EXPLOITATION OF IOS (IN 4 SIMPLE STEPS)

1.A: EXPLOIT VULNERABILITY, LOAD AND RUN 1st stage eret-HIJACK ROOTKIT (~400 bytes, PIC, WILL RUN ANYWHERE)

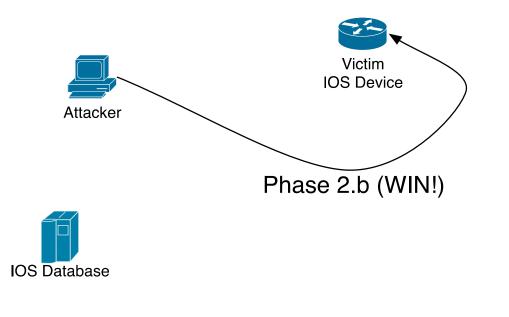
1.B: 1st stage code locates/ HIJACKS All Eret INSTRUCTIONS, EXFILTRATE HASH (**FINGERPRINT**) OF ERET-ADDRS BACK TO ATTACKER (VIA ICMP, ETC)



GENERALIZED RELIABLE EXPLOITATION OF IOS (IN 4 SIMPLE STEPS)

Victim

IOS Device


1.A: EXPLOIT VULNERABILITY, LOAD AND RUN 1st Stage eret-HIJACK ROOTKIT (~400 bytes, PIC, WILL RUN ANYWHERE)

1.B: 1st stage code locates/ HIJACKS All Eret INSTRUCTIONS, EXFILTRATE HASH (**FINGERPRINT**) OF ERET-ADDRS BACK TO ATTACKER (VIA ICMP, ETC)

2.A: ATTACKER CONSULTS OFFLINE IOS FINGERPRINT DATABASE, MAKES POSITIVE ID (HARDWARE PLATFORM, IOS VERSION)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

GENERALIZED RELIABLE EXPLOITATION OF IOS (IN 4 SIMPLE STEPS)

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

1.A: EXPLOIT VULNERABILITY, LOAD AND RUN 1st stage eret-HIJACK ROOTKIT (~400 bytes, PIC, WILL RUN ANYWHERE)

1.B: 2st stage code locates/ HIJACKS All Eret INSTRUCTIONS, EXFILTRATE HASH (**FINGERPRINT**) OF ERET-ADDRS BACK TO ATTACKER (VIA ICMP, ETC)

2.A: Attacker consults offline IOS fingerprint database, makes positive ID (hardware platform, ios version)

2.B: CONSTRUCT VERSION DEPENDENT 3rd Stage Payload. Upload Using 2nd Stage C&C (Again, Using ICMP, etc)... **WIN**!

3RD STAGE PAYLOADS!

• MORE DEMOS

- THIRD-STAGE PAYLOADS TO:
 - DISABLE IOS INTEGRITY VERIFICATION COMMAND "SHOW SUM"
 - DISABLE PASSWORD AUTHENTICATION
 - Remote Bricking of Router Motherboard

ACRIFICE

Remotely Bricking Router Using 3RD-Stage Payload Over ICMP!

BLACKHAT BRIEFINGS USA 8.3.2011

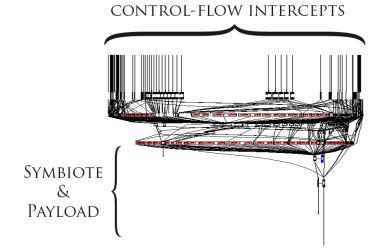
COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

WHAT'S NEXT (OFFENSIVE)?

 More comprehensive fingerprint database
 ~3,000 images in the fingerprint DB. Roughly 1% coverage.

WHAT'S NEXT (OFFENSIVE)?

- More comprehensive fingerprint database
 - ~3,000 images in the fingerprint DB. Roughly 1% Coverage.
- EEPROM RESIDENT MALWARE
 - CURRENT ROOTKIT WILL NOT SURVIVE IOS UPDATE
 - BETTER TO LIVE IN EEPROM
 - LINE CARDS
 - NETWORK MODULES
 - MOTHERBOARD EEPROM


WHAT'S NEXT (OFFENSIVE)?

- More comprehensive fingerprint database
 - ~3,000 images in the fingerprint DB. Roughly 1% Coverage.
- EEPROM RESIDENT MALWARE
 - CURRENT ROOTKIT WILL NOT SURVIVE IOS UPDATE
 - BETTER TO LIVE IN EEPROM
 - LINE CARDS
 - NETWORK MODULES
 - MOTHERBOARD EEPROM
- LAWFUL INTERCEPT HIJACKING, ROUTING SHENANIGANS, BE CREATIVE!

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

WHAT'S NEXT (DEFENSIVE)?

- Software Symbiotes
 - GENERIC HOST-BASED DEFENSE FOR EMBEDDED DEVICES.
 - "Defending Legacy Embedded Systems with Software Symbiotes"
 - •TO APPEAR IN RAID 2011. LOOK OUT!

WHAT'S NEXT (DEFENSIVE)?

CISCO IOS ROOTKIT DETECTORS RUNS ON REAL CISCO IRON DEPLOYED IN REAL NETWORKS WILL CATCH REAL IOS MALWARE SYMBIOTE & PAYLOAD

WHAT'S NEXT (DEFENSIVE)?

CISCO IOS ROOTKIT DETECTORS RUNS ON REAL CISCO IRON DEPLOYED IN REAL NETWORKS WILL CATCH REAL IOS MALWARE A FRIENDLY SHOOTOUT TO TEST OUR DEFENSES? -) SYMBIOTE PLEASE CONTACT US! A PAYLOAD

ANSWERS!

- FEEL FREE TO CONTACT US • {ANG | SAL}@CS.COLUMBIA.EDU
- Please checkout our publications and ongoing research
 - <u>HTTP://IDS.CS.COLUMBIA.EDU</u>
- This work was partially supported by:
 - DARPA Contract, CRASH Program, SPARCHS, FA8750-10-2-0253
 - Air Force Research labs under agreement number FA8750-09-1-0075

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

BACKUP SLIDES

DISASSEMBLING SHELLCODE #1

• ORIGINALLY PRESENTED BY FELIX LINDER

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

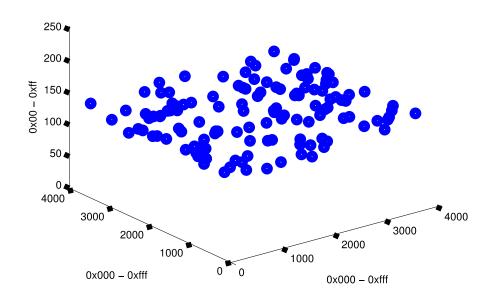
Somewhere in every IOS image...

DISASSEMBLING SHELLCODE #1

• ORIGINALLY PRESENTED BY FELIX LINDER

Somewhere in every IOS image...

.data

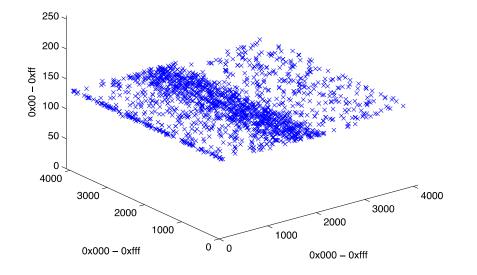

.text

IN THE CITY OF NEW YORK

COLUMBIA UNIVERSITY

COMPARISON OF POTENTIAL FINGERPRINT FEATURES

Distribution of "Bad Secrets" string x-ref in IOS (32-bit memory space)



- FAIRLY RANDOM, CAN BE USED TO FINGERPRINT IOS
- A SINGLE FEATURE FINGERPRINT
- ONE FIRMWARE, ONE ADDRESS
- POTENTIAL FOR COLLISION HIGHER THAN THE NEXT OPTION

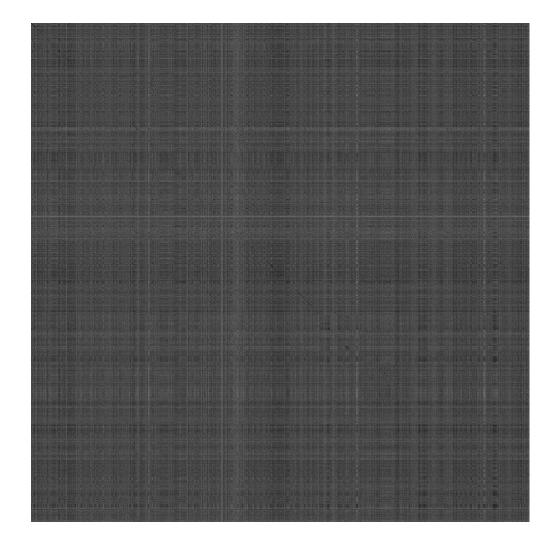
COMPARISON OF POTENTIAL FINGERPRINT FEATURES

Distribution of ERET instruction in IOS (32-bit memory space)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK • Concentrated in A predictable range in IOS memory

• YET DIVERSE ENOUGH TO Uniquely identify Unknown firmware Version

• Also needed in 2ND stage Rootkit, kill 2 birds with One stone


• IN OUR OPINION, A PRETTY GOOD TARGET, BUT THERE ARE MANY OTHERS.

• MULTI-VECTOR FEATURE. Each image contains Approximately 6-30 eret instructions.

THE BASIC IDEA

- REDUCE (BINARY) DIVERSE TARGET TO A (FUNCTIONAL) MONOCULTURE
- TAKE ADVANTAGE OF OFFLINE PROCESSING
 - Use a two-phase attack
 - BUILD A DATABASE OF DEVICE FINGERPRINTS
 - Macro-ize 3^{RD} stage payloads, generate device specific payloads on the FLY

For example

DOTPLOT OF TWO MINOR REVISIONS OF 12.4 IOS IMAGES FOR THE SAME HARDWARE

> IOS 12.4-**23**B vs 12.4-**12** CISCO 7200 / NPE-200

