
Mapping GUIS to Auditory Interfaces

Elizabeth D. Mynatt and W. Keith Edwards

Graphics, Visualization, and Usability Center

College of Computing
Georgia Institute of Technology

Atlanta, GA 3032-0280

beth@cc.gatech.edu, keith(ij)cc.gatech.edu

ABSTRACT

This paper describes work to provide mappings between X-
based graphical interfaces and auditory interfaces. In our
system, dubbed Mercator, this mapping is transparent to
applications. The primary motivation for this work is to pro-
vide accessibility to graphical applications for users who are
blind or visually impaired. We describe the design of an
auditory interface which simulates many of the features of
graphical interfaces. We then describe the architecture we
have built to model and transform graphical interfaces.
Finally, we conclude with some indications of future
research for improving our translation mechanisms and for
creating an auditory “desktop” environment.

KEYWORDS: Auditory interfaces, GUIS, X, visual impair-
ment, multimodal interfaces.

INTRODUCTION

The goal of human-computer interfaces is to provide a com-
munication pathway between computer software and human
users. The history of human-computer interfaces can be
interpreted as the struggle to provide more meaningful and
efficient communication between computers and humans.
One important breakthrough in HCI was the development of
graphical user interfaces. These interfaces provide graphical
representations for system objects such as disks and files,
interface objects such as buttons and scrollbars, and comput-
ing concepts such as multi-tasking. Unfortunately, these
graphical user interfaces, or GUIS, have disenfranchised a
percentage of the computing population. Presently, graphical
user interfaces are all but completely inaccessible for com-
puter users who are blind or severely visually-disabled
[BBV90][Bux86][Yor89]. This critical problem has been
recognized and addressed in recent legislation (Title 508 of
the Rehabilitation Act of 1986, 1990 Americans with Dis-
abilities Act) which mandates that computer suppliers ensure
the accessibility of their systems and that employers must
provide accessible equipment [Lad88].

Our work on this project began with a simple question, how
could we provide access to X Windows applications for
blind computer users. Historically, blind computer users had

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial adventage, the ACM copyright notice and the

title of the publication and Its date appear, and notice is given

that copying ie by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

0 J992 ACM 0.8979 J.550.X/92/OOJ j/@3rj~ .,. $1.50

little trouble accessing standard ASCII terminals. The line-
oriented textual output displayed on the screen was stored in
the computer’s framebttffer. An access program could sim-
ply copy the contents of the framebuffer to a speech synthe-
sizer, a Braille terminal or a Braille printer. Conversely, the
contents of the framebuffer for a graphical interface are sim-
ple pixel values. To provide access to GUIS, it is necessary to
intercept application output before it reaches the screen. This
intercepted application output becomes the basis for an off-
screen model of the application interfaee.The information in
the off-screen model is then used to create alternative, acces-
sible interfaces.

The goal of this work, called the Mercatorl Project, is to pro-
vide transparent access to X Windows applications for com-
puter users who are blind or severely visually-impaired
m92]. In order to achieve this goal, we needed to solve
two major problems. First, in order to provide transparent
access to applications, we needed to build a framework
which would allow us to monitor, model and translate graph-
ical interfaces of X Windows applications without modify-
ing the applications. Second, given these application models,
we needed to develop a methodology for translating graphi-
cal interfaces into nonvisual interfaces. This methodology is
essentially the implementation of a hear-and-feel standard
for Mercator interfaces. Like a look-and-feel standard for
graphical interfaces, a hear-and feel standard provides a sys-
tematic presentation of nonvisual interfaces across applica-
tions.

In this paper, we describe the steps we have taken to solve
these two problems. In the following section, we deseribe the
design for the Mercator interface. We introduce the concept
of audio GUIS and the abstract components of auditory inter-
faces. We also detail some of the techniques we are using to
convey a range of interface attribute information via the
auditory channel.

The second half of the paper describes the architecture we
have constructed to provide this interface transparently for X

1. Named for Gerhardus Mercator, a cartographer who devised a

way of projecting the spherical Earth’s surface onto a flat surface

with straight-line bearings. The Mercator Projection is a mapping

tx.tween a three-dnertsionsl presentation and a two-dimensional

presentation of the same information. The Mercator Environment

provides a mapping from a two-dimensional graphical display to a

three-dimensional auditory display of the same user interfaee.

November 15-18, 1992 UIST’92 61

applications. We detail the requirements and goals of the sys-
tem, the individual components of the architecture, and how
those components interoperate to provide a translation of a
graphical interface into an auditory interface

AUDIO GUIS

The primary design question to be addressed in this work is,
given a model for a graphical application interface, what cor-
responding interface do we present for blind computer users.
In this portion of the paper, we discuss the major design con-
siderations for these interfaces. We then describe the presen-
tation of common interface objects such as buttons,
windows, and menus, and detail the navigation paradigm for
Mercator interfaces. We conclude by discussing the inherent
advantages of a hear-and-feel standard.

Design Considerations

There are several design decisions we had to make when
constructing our nonvisual interface. One consideration is
which nonvisual interface modality to use. The obvious
choices are auditory and tactile. We are currently focusing on
auditory interfaces for several reasons:

.

.

.

.

.

Research in auditory interfaces (Gaver, Bly, Blattner et

al) has proven that complex auditory interfaces are usable

[BGB91].

Due to people’s ability to monitor multiple auditory sig-

nals (the cocktail party effect [Che53]) and through the

use of spatialized sound NWF88], we can support many

of the advantages of GUIS such as spatial organization

and access to multiple sources of information.

Tactile output devices are generally more passive than

auditory output. It is more difficult to get the users’ atten-

tion with tactile output.

For the most part, audio hardware is more common and

cheaper than hardware to support tactile displays.

A significant portion of people who are blind also suffer

from diabetes which reduces their sensitivity to tactile

stimuli [HTAP90].

Nevertheless our system will eventually have a tactile com-
ponent as well. For examplle, since speech synthesizers are
notoriously bad at reading source code, we will provide a
Braille terminal as an alternate means for presenting textual
information.

A second major design question for building access systems
for visually-impaired users is deciding the degree to which
the new system will mimic the existing visual interface. At
one extreme the system can model every aspect of the visual
interface. For example, in Berkeley System’s Outspoken,ti
which provides access to the Macintosh, visually-impaired
users use a mouse to search the Macintosh screen [Van89].
When the mouse moves over an interface object, Outspoken
reads the label for the object. In these systems, visually-
impaired users must contend with several characteristics of
graphical systems which may be undesirable in an auditory

presentation, such as mouse navigation and occluded win-
dows.

At the other extreme, access systems can provide a com-
pletely different interface which bears little to no resem-
blance to the existing visual interface. For example, a menu-
based graphical interface could be transformed into an audi-
tory command line interface.

Both approaches have advantages and disadvantages. The
goal of the first approach is to ensure compatibility between
different interfaces for the same application. This compati-
bility is necessary to support collabcmtion between sighted
and non-sighted users. Yet if these systems are too visually-
based they often fail to model the inherent advantages of
graphical user interfaces such as the ability to work with
multiple sources of information simultaneously. The second
approach attempts to produce auditory interfaces which are
best suited to their medium. @3dw89]

We believe that there are many features of graphical inter-
faces which b not need to be modeled in an auditory inter-
face. Many of these features are artifacts of the relatively
small two-dimensional display surfaces typically available to
GUIS and do not add richness to the interaction in an audi-
tory domain. If we consider the GUI screen to be in many
regards a limitation, rather than something to be modeled
exactly, then we are free to use the characteristics of auditory
presentation which make it more desirable in some ways
than graphicat presentation.

We have chosen a compromise between the two approaches
outlined above. To ensure compatibility between visual and
nonvisual interfaces, we are translating the interface at the
level of the interface components. For example, if the visual
interface presents menus, dialog boxes, and push buttons,
then the corresponding auditory interface will also present
menus, dialog boxes and push buttons. Only the presentation
of the interface objects will vary.

By performing the translation at the level of interface
objects, rather than at a pixel-by-pixel level (like Outspoken)
we can escape from some of the limitations of modeling the
graphical interface exactly. We only model the structural fea-
tures of the application interface, rather than its pixel repre-
sentation on screen.

Interface Components
Graphical user interfaces are made up of a variety of inter-
face components such as windows, buttons, menus and so
on. In X Windows applications, these components roughly
correspond to widgets. There does not always exist a one-to-
one mapping between graphical interface components and X
widgets. For example, a menu is made up of many widgets
including lists, shells (a type of container), and several types
of buttons.

Mercator provides auditory interface objects which mimic
some of the attributes of graphical interface objects. In Mer-
cator, we call the objects in our auditory presentation Audi-

62 UIST’92 Monterey, California

TABLE 1. Using Filtears to convey AIC attributes.

Attribute AIC Filtear Description

selected all buttons animation Produces a more lively sound by accenting frequency

variations

unavailable all buttons muffled A low pass filter produces a duller sound

has sub-menu menu buttons inflection Adding an upward irdleetion at the end of an auditory

icon suggests more information

relative location lists, menus pitch Map frequency (pitch) to relative location (high to low)

complexity containers pitch, reverberation Map frequency and reverberation to complexity. Low to

large, complex AICS and high to small, simple AICS

tory Interface Components, or AICS. The translation from Navigation
graphical interface components to AICS occurs at the widget
level. As with graphical interface components, there is not

always a one-to-one mapping between X widgets and AICS.
AICS may also be composed of many widgets. Additionally,
many visual aspects of widgets need not be modeled in
AICS. For example, many widgets serve only to control
screen layout of sub-widgets. In an environment where there
is no screen, there is no reason to model a widget which per-
forms screen layout. For many widgets there will be a one-
to-one mapping to AICS. As an example, push buttons (inter-
face objects which perform some single function when acti-
vated) exist in both interface domains. In other cases, many
widgets may map to a single AIC. For example, a text win-
dow with scrollbars may map to one text display AIC.
Scrollbars exist largely because of the need to display a large
amount of text in a limited area. A text display AIC may
have its own interaction techniques for seauning text.

There are two types of information to convey for each AIC:
the type of the AIC and the various attributes associated with
the AIC. In our system, the type of the AIC is conveyed with
an auditory icon. Auditory icons are sounds which are
designed to trigger associations with everyday objects, just
as graphical icons resemble everyday objects [Gav89]. This
mapping is easy for interface components such as trashcan
icons but is less straight-forward for components such as
menus and dialog boxes, which are abstract notions and have
no innate sound associated with them. As an example of
some of our auditory icons, touching a window sounds like
tapping on a glass pane, searching through a menu creates a
series of shutter sounds, a variety of push button sounds are
used for radio buttons, toggle buttons, and generic push but-
ton AICS, and a touching a text field sounds like a old fash-
ioned typewriter.

AICS can have many defining attributes. Most AICS have
text labels which can be read by a speech synthesizer upon
request. Many attributes can be conveyed by employing so-
called jiltears to the auditory icon for that AIC. Filtears pro-
vide a just-noticeable, systematic manipulation of an au&l-
tory signal to convey informationKPC90] KC9 1]. Table 1
details how filtcars are used to convey some AIC attributes.

The navigation pamdigm for Mercator interfaces must sup-
port two main activities. First, it must allow the user to
quickly “scan” the interface in the same way as sighted users
visually scan a graphical interface. Second, it must allow the
user to operate on the interface objeets, push buttons, enter
text and so on.

In order to support both of these activities, the user must be
able to quickly move through the interface in a structured
manner. Standard mouse navigation is unsuitable since the
granularity of the movement is in terms of graphic pixels.
Auditory navigation should have a much larger granularity
where each movement positions the user at a different audi-
tory interface object. To support navigation from one AIC to
another, we map the user interface into a tree structure which
breaks the user interface down into smaller and smaller
AICS, This tree structure is related to application’s widget
hierarchy but there is not a one-to-one mapping between the
widget hierarchy and the interface tree structure. As dis-
cussed earlier, there is sometimes a many-to-one mapping
between widgets and AICS. Additionally, an AIC may con-
ceptually be a child of another AIC but the widgets corre-
sponding to these AICS may be utuelated. For example, a
push button may cause a dialog box to appear. These AICS
are related (the dialog box is a child of the push button) but
the widget structure does not refleet the same relationship.
Figure 1 shows a screen-shot of the graphical interface for
xmh, an X-based mail application. Figures 2a and 2b show a
portion of the xmh widget hierarchy and the corresponding
interface tree structure, respectively.

To navigate the user interface, the user simply traverses the
interface tree structure. Currently the numeric keypad is used

to control navigation. Small jumps in the tree structure are
controlled with the arrow keys. Other keys can be mapped to
make large jumps in the tree structure. For example, one key
on the numeric keypad moves the user to the top of the tree
structure. It is worth noting that existing application key-
board short-cuts should work within this structure as well.

Navigating the interface via these control mechanisms does
not cause any actions to occur except making new AICS
“visible.” To cause a seleetion action to occur, the user must
hit the Enter key while on that object. This separation of con-

November 15-18, 1992 UIST’92 63

Figure 1: An Example X Application (XMH)

trol and navigation allows the user to sately scan the inte-
rface without activating interface controls. Table 2
summarizes the navigation controls.

I+ear and Feel

Just as graphical interfaces use “look-and-feel” standards to
ensure that, for example, all buttons look and behave in sim-
ilar manners, we are using what may be called “hear-and-
feel” standards to ensure that consistency is maintained
across the interface. AICS of the same type are presented
consistently across application. This consistency promotes
usability in our environment.

ARCHITECTURE

We shall now discuss the architecture we have developed for
the Mercator Applications Manager, the system which
implements the interface described above.

There are basically three goals which must be met to gener-
ate an auditory interface from an X application given our
design constraints (application transparency, and so on).
First, we must be able to capture high-level, semantically
meaningful information from X applications. By semanti-
cally meaningful we mean that the information we get must
reflect the structural organization of the interface, rather than
just its pixelated representation on-screen. Second, we must
create a semantic model based on the information retrieved.
And third, once we have retrieved this information from the
application and stored it in our off-screen model, we must be
able to present the structure of the application in some mean-
ingful way, and allow the user to interact with our new repre-
sentation of the interface.

It should be noted that while our current interface uses an
auditory presentation, the facilities we have built could just
as easily present a different 2D graphical interface for a
given application, map it into a 3D interface, or so on, given
the proper mapping rules.

We shall discuss the design and implementation of the vari-
ous system components in the next several sections. Figure 3
gives a bird’s-eye overview of the architecture, to which we
will refer during our discussion.

Information Retrieval
To be able to translate a GUI into another representation we
must first be able to retrieve information about the interface
from the application. Since one of the requirements of the

Figure 2a: XMH Widget Hierarchy

Xmh

I
Dialog

Figure 2b: Corresponding XMH Auditory Interface Component Hierarchy

64 UIST’92 Monterey, California

~
:,

~

~ Non-speech Audio Server

-, Application Mmager components
~ Spatialized Sound Server Network communication
~

~ Inter-object communication
ynthesized Speech Serve

Figure 3: Application Manager Overview

Mereator project is that the system must be able to provide
access to existing applications, the Application Manager
must be able to retrieve information from unmodified X
applications as they are running.

Thus, while simply modifying an X toolkit would have given
us a testbed for research into providing auditory output from
X applications, it would not have been a general solution to

the problem of providing access to already-existing X appli-
cations. Our system uses two approaches to retrieve informa-
tion from running applications: client-server monitoring, and
the Editres protocol, discussed below.

C/ient-Server Monitoring. The mchitecture of X allows us to
“tap” the client-server connection and eavesdrop on the com-
munication between the application and X [Sch87]. Thus, we
can know when text or graphics are drawn, and when events
(such as keypresses) take place. The Application Manager
component which accomplishes this monitoring is called the
Protocol Interest Manager, or PIM. The PIM lies between

the client and server and processes the communication
between them (see Figure 3).

Monitoring the connection between the client and the server
allows us to access the low-level information describing
what is on the user’s screen. Unfortunately, it does not tell us

TABLE 2. Summary of Navigation Controls

Key Action

8/up fttTOW Move to parent

21down arrow Move to first child

6/right tUTOW Move to right sibling

4/left arrow Move to left sibling

O/fns Move to top of tree

Enter Activate selection action

=1*- Can be mapped to other movements

why something is on a user’s screen. This lack of information
is because the constructs in the X protocol are very low-level
and do not embody much information about application
structure or behavior.

For example, the protocol does not express notions such as
“draw a button with the lakel ‘Quit.’” Instead, the protocol
passes messages on the level of “draw a rectangle of the fol-
lowing dimensions at the following X,Y coordinates: and
“render the text ‘Quit’ at the following X,Y coordinates.” It
is difficult for any system to know from simply monitoring
the protocol stream whether the rectangle specified in the
protocol is meant to be a button, a graphic image on a draw-
ing canvas, a menu, or any other interface component.

Thus, simply reading the X protocol as it is passed between a
client and the server is insufficient to provide a good seman-
tically-meaningful translation of a graphical interface. For
this reason, we make use of the Editres protocol described
below.

Editres. Release 5 of the X Window System presented a new
protocol called Editres designed primarily to allow easy cus-
tomization of X applications Pet9 1]. In the programming
model of the X Toolkit Intrinsic layer, applications are built
out of user interface objects called widgets (such as scroll-
bars and push buttons). Widgets have named variable data
called resources associated with them. Resources govern the
appearance and behavior of the widgets in an application.
Examples of data stored in resources include the currently-
displayed text in a widget, the color of a widget, information
about whether the data displayed in the widget is editable,
layout policies, and so on.

The Editres protocol defines a method for querying a running
application and retrieving from it information about the hier-
archy of widgets which make up the application. Addition-
ally, this protocol makes it possible to query individual
widgets about information such as their geometry (X,Y coor-
dinates, width, and height), retrieve resource values (with a
slight modification, see Caveats), and to set the values of
individual resources associated with each widget. In our sys-

November 15-18, 1992 UIST’92 65

I Window Diet I I Clierltllict I

s -$.window client client client

window window Toplevel Dlct XtObj Diet

window Xtobi XtOb”

GEi)
Figure 4: Interface Modeling Data Structures

tern, the Editres Manager sends and receives protocol mes-
sages to and from client applications (see Figure 3).

The Editres protocol allows us to determine the structural
components which make up an application. By combining
the information retrieved from Editres and the information
retrieved from client-server communication monitoring, we
can build a detailed picture of an application running in our
system. To refer back to the previous example of the button,
when we detect a request to draw “Quit” on the screen, we
can use Editres-derived information to determine which
interface component is being rendered.

Sufficiency of Techniques. These two techniques, client-
server monitoring and Editres, give us access to a great deal
of information about X applications. We have available to us
all of the user-generated input events, all of the low-level
application-generated output requests, and a great deal of
structural and high-level semantic information about the
application interface. While this amount of information is
significant, it is not complete: we do not have available to us
anything that is not expressed in terms of either the X proto-
col, or widgets and resources. Thus, information and behav-
ior which is directly coded into an application and not built
in terms of widgets or resources is unavailable. The degree
to which this lack of total knowledge will affect application
accessibility is unclear at this point. Based on our initial
results, it seems promising that we can effectively model
enough aspects of a wide range of applications to the point of
making them accessible.

Application Modeling

Based on the information we have retrieved from an applica-
tion, we must be able to synthesize a coherent model of the
application interface. This model must include structural
information (such as the hierarchy of objects which comprise
the application’s interface, and the relations between
objects), semantic information (the types of different objects
in the interface), appearance attributes (“the text in this win-
dow is in boldface”), and behavioral attributes (“clicking this
button causes a dialog box to pop up”).

The modeling techniques must be sufficient to represent any

application which could be run in our environment. The only
way to satisfy this requirement is to have our off-screen
model mimic many of the structural attributes inherent in X
applications. The notion of the window is the lowest com-
mon structural denominator for X applications. Windows are
represented in the X protocol and thus we are guaranteed that
at a minimum we can represent an application’s window
structure.

The problem with using this approach alone is that, like
much of the X protocol, windows themselves are too low-
level to be very meaningful. Thus, we also need to maintain
information retrieved via Editres: information on the struc-

tural components of the application, and the attributes of
those components.

Figure 4 is a diagram of the data structure we are using to
model the interfaces of programs running under the Applica-
tion Manager. This data structure maintains both the low-
level protoeol-related information, and the higher-level Edi-
tres-related information. The lines in the diagram represent
structural connections, not communication pathways. Note
that the Model Manager object is the same object shown in
Figure 3; here we have expanded the detail to show the sub-
objects associated with the Model Manager.

The Model Manager is responsible for maintaining the off-
screen models of all applications running in the environ-
ment. The Model Manager keeps two dictionaries to track
application information. The first is a dictionary of all win-
dows present in the system. This dictionary maintains a one-
to-one mapping of the current X window hierarchy. The dic-
tionary values are Mercator Window objects, which store
known attributes about particular windows.

The second dictionary is the Client Dictionary. This dictio-
nary contains Mercator Client objects which represent per-
application information, Every time a new application is
started, anew Client object is instantiated and placed into the
Client Dictionary.

66 UIST’92 Monterey, California

Client objects maintain information about running applica-
tions the application name, current state, and other informa-
tion. In addition, the Client objects maintain a representation
of the structural layout of the application. Each Client object
maintains a tree of Xt Objects (widgets) which reflect the
widget organization in the actual application. Each Xt Object
keeps information about its name and class (such as
MenuBox or PushButton), and also keeps a dictionary of
resource information.

The other major data structure maintained by Client objects
is a dictionary of all toplevel windows in the application.
Many applications create several toplevel windows and it is
often useful to be able to quickly determine what the top
nodes are in an application’s window hierarchy. This infor-
mation is maintained by the toplevel dictionary.

All of the data structures maintained by the Model Manager
are multiply keyed, so it is easy to determine the window (or
windows) which correspond to a given widget. Similarly,
given a window it is easy to determine the widget which cor-
responds to the window.

Keeping information cached in the Application Manager
itself reduces the amount of Editres and X protocol traffic we
must generate to retrieve information about the interface and
thus can provide performance improvements.

This technique of application modeling gives us the power to
represent any X interface in several forms. Our modeling
scheme provides us with a means to quickly determine the
structural objects which are referred to by X protocol
requests. Based on the structural model of the interface
maintained by the Model Manager we are able to translate
that model to an auditory representation.

Interfaee Presentation and User Input

Once we have retrieved information from the running appli-
cation, organized it into a coherent structure, and stored it in
the off-screen model, we must still present that interface
structure to the user in a meaningful way. Further, to facili-
tate experimentation and user customization, the system
must allow easy modification of the interface.

Ru/es Engine. We are using a translation system which takes
as input the state and structure of the interface we are model-
ing, and produces auditory output. This translation takes
place in the Rules Engine (see Figure 3), which is the heart
of the Application Manager. It is the Rules Engine which
conceptually implements AICS. From a high-level stand-
point, it has two primary functions: presenting the interface
as described by the Model Manager to the user, and process-
ing user input to both the application and the Application
Manager itself.

The Rules Engine is driven asynchronously by the Protocol
Interest Manager, which taps the connection to and from the
X server. The Rules Engine informs the PIM of patterns in
the X protocol which should cause control be passed to the
Rules Engine (that is, the Rules Engine expresses a “protocol

interest,” hence the name of the Protocol Interest Manager).
When protocol events or requests occur which match a spec-
ified pattern, control is passed to the Rules Engine which is
notified of the condition which caused it to awaken. It may
then examine the state of the protocol, generate Editres traf-
fic, or query the Model Manager for current client status.
From these input sources, the Rules Engine may decide to
generate output to the user.

The facilities available to the Rules Engine are quite com-
plex. The Engine can specify that the X protocol stream be
effectively stalled--X protocol packets are queued by the
Protocol Interest Manager and not delivered until some later
point. This facility can be useful in preventing deadlccks
(see the section, Inter-Object Communication). Furthermore,
the Rules Engine can actually cause new protocol packets to
be introduced into the protocol stream. When packets are
inserted, the Protocol Interest Manager will rewrite later
packets to ensure that protocol sequence numbers are kept
consistent. Insertion of protocol packets is done to generate
controlling events to the original application based on
actions taken in the new interface. Basically, through the use
of the Protocol Interest Manager, the Rules Engine has com-
plete control over the X protocol stream,

The Rules Engine can also direct the Editres Manager to
query applications and collect replies via Editres. These
actions are taken to update the off-screen model of the inter-
face’s state. The information returned from applications is
stored in the Model Manager and also returned to the Rules
Engine. The Rules Engine can query the Model Manager and
update any information present there.

lianslation Rules and Templates. All of the actions taken by
the Rules Engine are dictated by a set of translation rules. It
is the translation rules which actually create the notion of
AICS from the information available to the Rules Engine.
Currently these rules are expressed in a stylized C++ predi-
cate/action notation by the system implementors. In the
future we will provide an externalized rules representation
which will be read in and parsed by the Application Manager
at start-up time. This representation will allow both the
developers and users of the system to easily customize the
interface.

To obviate the need to install a large number of rules to deal
with different output semantics for widgets on a per-instance
basis, we have developed the notion of rule templates. Rule
templates are sets of rules which are generated and instatled
automatically whenever a widget of a given class is created
by the original interface.

For example, the rule template for widgets of the PushButton
class may provide a set of rules to be fired whenever the
PushButton is activated, desensitized, destroyed, and so
forth. When the Rules Engine detects that a PushButton wid-

get has been created, it generates and instatls the rules speci-
fied in the rule template for this widget class. Thus, a set of
routines will automatically be associated with the push but-
ton which govern its interaction in the new interface. Rule

November 15-18, 1992 UIST’92 67

templates provide a mechanism for ensuring standard behav-
ior across classes of widgets with little work.

Rule list traversal is quite fast predicates are preprocessed
and organized into hash tables based on the event types
which can cause the predicates to return True. Thus, when a
particular event occurs, the system does not need to test the
predicates of all rules, just the ones that have the event as a
condition.

Output. Output to the user is generated via the Rules Engine.
When fired, rules can invoke methods on the Sound Manager
object (see Figure 3) which generate auditory output. The
Sound Manager provides a single programmatic interface to
the various sound servers which run in our environment.
Each of these servers regulates access to the workstation
sound resources and allows access to sound hardware
located on other machines across the network.

The first server is responsible for speech synthesis. The sec-
ond provides digitized (mostly non-speech) audio, and con-
trols access to workstation sound resources. The third server
is responsible for producing high-quality spatialized sound.
This server architecture allows multiple workstations on a
network running Mercator to share audio hardware. The Sta-
tus section gives some more details on these servers.

kput. In addition to representing the interface of the applica-
tion in the new modality, the Application Manager also has
the task of processing user input to both the application and
to the Application Manager itself. In essence, the Applica-
tion Manager must run the existing application from user
input to the new interface. Given user input into the system
and the user’s current context, the Application Manager must
generate X events to the application which correspond to
input to the new interface to cause the application to perform
the desired actions.

Our current implementation supports only the mouse and the
keyboard as input devices, although we do not use the mouse
because it does not seem to be an appropriate navigational
device for nonsighted users. Since under X the keyboard
normally causes KeyPress events to be generated from the
server to the client, the PIM is already in a position to inter-
cept any keystrokes made by the user and process them.

The PIM, under the direction of the Rules Engine, decides
whether keystrokes should be routed to the application (that
is, passed through the PIM unmodified), or whether they are

meant as control input to the Application Manager itself.

Currently, the Application Manager grabs the numeric key-
pad and assumes keystrokes made on it are Application
Manager controls. Other keystrokes are routed to the widget
designated as the current input receptor.

The current input receptor is basically maintained as a
pointer into the Model Manager data structures which
defines where the user currently “is.” Any typed data will be
sent to this widget. When other actions are made by the user
(such as a selection), the Rules Engine will generate mouse

events to the current widget to initiate the action in the appli-

cation.

inter-Objeet Communication

There are some interesting potentird deadlock conditions
which we have had to take care to avoid in the Application
Manager architecture. Since the entire system is driven by
the Protocol Interest Manager, the thread of control must
reside within the PIM when the Application Manager is
“inactive.”

Thus, whenever rule execution terminates, control is passed
back to the PIM where the system blocks until either (1)
some X request or event traffic is generated, or (2) some
other user input takes place which the PIM has been
instructed to monitor. Control must be returned to the PIM
because when the PIM is not executing, the X protocol
stream is effectively stalled.

This blocking behavior can cause several problems. The
most common problem is in Editres handling. Editres
requests are asynchronous. This means that the Application
Manager transmits an Editres query and then, at some
unspecified point in the future, the application returns the
result of the query. The problem is that the Editres protocol
is based on the X protocol, and thus must proceed through
the PIM. While in Figure 3 we have shown the Editres Man-
ager communicating directly with the client, this link is a
conceptual connection only. In reality, the Editres Manager
must establish its own connection with the X server and
transmit Editres queries to the client through the server.

A deadlock condition will arise if the Editres Manager sends
a request and then does not return control to the PIM. If con-
trol is not returned to the PIM, then the server-client connec-
tion is blcxked and the Editres request cannot be sent to the
client (and obviously, a reply will not be generated). This
will cause the Editres Manager to hang until a timeout
expires.

This situation is an example of a general problem in which
various portions of the Application Manager need to gener-

ate X traffic which will produce a response (a so-called
round trip request). Care must be taken that the operation is
separated into two phase~ an initiating phase, and an action
phase which is invoked when the reply returns. For this rea-
son we have built a callback mechanism into the PIM
through which other Application Manager components can
initiate a round trip request and then have a callback routine
automatically executed when the reply is received.

CAVEATS

Editres Weaknesses

The implementation of Editres which comes with Xl 1R5 is
quite powerful, but has what is in our opinion a glaring omis-
sion. While the system supports queries to determine an
application’s widget hierarchy, determine geometry, and set
resource values, it does not provide a means for retrieving
resource values. The reason for this deficiency is that the

68 UIST’92 Monterey, California

MIT-supplied toolkits do not support conversion from
resource internal types to strings (although they do support
the reverse operation). This capability is necessary for
resource value retrieval so that resource values could be dis-
played.

We made a simple addition to Editres to support this behav-
ior. This addition retains complete compatibility with the
older version of Editres but allows the retrieval of resource
values. The code modification is made in a shared library so
none of the applications in the system need to be relinked.
Dependence on shared libraries is not a generally acceptable
solution however, so we plan to submit the code modifica-
tions back to the X Consortium for possible inclusion in
future X releases.

Widget Set Dependencies

The names of widget classes and the resources associated
with widgets vary from widget set to widget set. For exam-

ple, push button widgets have different names and resources
in the Athena widget set and the Motif widget set. These dif-
ferences mean that there is a degree of widget set depen-
dence in the Application Mamger. Currently, support for a
given widget set must be “hard wired” into the Rules Engine.
Eventually, we hope to externalize widget set descriptions
out of the system’s code so that support for new widgets and
widget sets can be added easily without recompiling.

STATUS

The components of the Application Manager are C++
objects; the current implementation is approximately 12,000
lines of code. Our implementation is for the Sun SPARCsta-
tion. The three audio servers discussed in this paper have
been implemented as RPC services, with C++ wrappers
around the RPC interfaces.

The synthesized speech server supports the DECtalk hard-
ware and provides multiple user-definable voices. The non-
speech audio server controls access to the build-in worksta-
tion sound hardware (/dev/audio on the SPARCstation in our
case), and provides prioritized access and on-the-fly mixing.
The spatialized sound server currently runs on either a NeXT
workstation or an Ariel DSP-equipped Sun SPARCstation
and supports the spatialization of up to 5 channels in real-
time [Bu192].

In the current implementation, all of the Application Man-
ager components except for the various sound servers exe-
cute as a single thread of control in the same address space.
We are investigating whether a multithreaded approach
would yield significant performance benefits and better code
structuring.

Due to widget set dependencies inherent in using Editres,
our current implementation only supports the Athena widget
set. We are investigating building support for Motif and pos-
sibly other non-Intrinsics-based X toolkits.

Currently our rule set is somewhat limited. Creating rules in
the present system is difficult because rule writers must have

some degree of familiarity with both X and the Application
Manager as a whole. For this reason there are several inter-
face conditions which we do not handle well at the present.

For example, dialog boxes which appear asynchronously
(for example, to report an error message) are not brought to
the attention of the user.

FUTURE DIRECTIONS

As we mentioned, translation rules are currently imple-
mented as a set of C++ routines which evaluate predicates
and fire actions. In the future we will move away from a
code-based implementation of rules. We plan on supporting
a textual rules language in which translation rules may be
expressed. Further, we foresee using a multi-stage translation
sequence which would support input event and output
request translation, as well as the current semantic transla-
tion. A more flexible rules scheme will allow for greater user
customization and experimentation.

We believe that the Application Manager provides an archi-
tecture for performing some interesting experiments in mod-
ifying application interfaces. Although we are currently
working only with auditory output, there is no reason that the
Application Manager could not be reconfigured to support
general retargeting of interfaces. That is, the automatic
translation of an application interface to a different interface,
perhaps in a completely different modality. With a sufficient
set of translation rules, application GUIS could theoretically
be retargeted to virtually any desired interface including
another (different) two-dimensioml windowed interface, a
three-dimensional visual interface, and so on.

In order to validate our auditory interface designs, we plan to
conduct considerable user testing, At this time, we are com-
piling a list of visually-impaired computer users who have
volunteered to participate in our experiments.

While the Application Manager can provide access to graph-
ical applications, we feel that there is still a need for a more
complete auditory environment in which applications and
data may be grouped, controlled, and organized. Such an
environment would be analogous to the desktop environ-
ments found on many graphical systems, which provide
common file metaphors and inter-application operations
such as drag-and-drop. We are designing such a system to
serve as a higher level of abstraction for dealing with appli-
cations. [ME91] Our model is the Xerox PARC Rooms met-
aphor [HC86], implemented solely with auditory cues. This
portion of the system will mom fully utilize the spatialized
sound capabilities we have built [Bu192].

ACKNOWLEGEMENTS

The Mercator project is a joint effort by the Georgia Tech
Multimedia Computing Group (a part of the Graphics, Visu-
alization, and Usability Center) and the Center for Rehabili-
tation Technology. We would like to thank John Goldthwaite
of the CRT.

This work has been sponsored by the NASA Marshall Space
Flight Center (Research Grant NAG8-194) and Sun Micro-

November 15-18, 1992 UIST’92 69

systems Laboratories. We would like to thank our technical
contacts at these organkations, Gerry Higgins and Earl
Johnson, respectively.

Also, a number of people have contributed a great deal of
time and energy to the development of the Mercator Applica-
tion ManageC without their hard work this system would not
have been possible. We would like to thank Dave Burgess for
his work on spatialized sound, Tom Rodriguez for his work
on the application modeling system, and Ian Smith for his
work at the lowest levels of the X protocol.

REFERENCES

[BBV90]

[BGB91]

[Bur92]

[BUX86]

[Che531

[HC86]

[Edw89]

[Gav89]

[HTAP90]

L.H. Boyd, W.L. Boyd, and G.C. Vander-

heiden. The graphical user interface: Crisis,

danger and opportunity. .lourncd ofl%ual

Impairment and Blindness, pages 496-502,

December 1990.

Bill Buxton, Bill Gaver, and Sara Bly. The

Use of Non-SpeechAudio at the Interface.

Tutorial Presented at CHI’91. April 1991.

David Burgess. Low Cost Sound Spatiliza-

tion. To appear in UIST ’92: The Fifth

Annual Symposium on User Inte~ace Soft-

ware and Technology and Technolgy,

November 1992.

William Buxton. Human interface design

and the handicapped user. InCHZ’86 Con-

ference Proceedings, pages 291-297,1986.

E.C. Cherry. Some experiments on the rec-

ognition of speech with one and two ears.

Journal of the Acoustical Society of Amer-

ica, 22, pages 61-62.

Jr. D. Austin Henderson and Stuart K.

Card. Rooms: The use of multiple virtual

workspaces to reduce space contention in a

window-based graphical user interface.

ACM Transactions on Graphics, pages 211–

243, July 1986.

Allstair D. N, Edwards. Modeling blind

users’ interactions with an auditory com-

puter interface. International Journal of

Man-Machine Studies, pages 575-589,

1989.

William W. Gaver. The sonicfinde~ An
interface that uses auditory icons. Human

Computer Interaction, 4:67–94, 1989.

HumanWare, Artic Technologies, ADHGC,

and The Reader Project. Making good deci-

sions on technology: Access solutions for

CLad88]

rLc91]

LPC90]

[ME91]

[ME92]

l?et91]

[Sch87]

[Van89]

WWF88]

Yor89]

blindness and low vision. In Closing the Gap

Conference, October 1990. Industry Experts

Panel Discussion.

Richard E. Ladner. Public law 99-506, sec-

tion 508, electronic equipment accessibility

for disabled workers. In CHI’88 Conference

Proceedings, pages 219–222, 1988.

Lester F. Ludwig and Michael Cohen. Multi-

dimensional audio window management.

International Journal of Man-Machine Stud-

ies, Volume 34, Number 3, pages 319-336,

March 1991.

Lester F. Ludwig, Natrdio Pincever, and

Michael Cohen. Extending the notion of a

window system to audio. Computer, pages

66-72, August 1990.

Elizabeth Mynatt and Keith Edwards. New

metaphors for nonvisual interfaces. In

Extraordinary Human-Computer Interac-

tion, 1991. Draft chapter accepted for

upcoming book.

Elizabeth Mynatt and W. Keith Edwards.

The Mercator Environmerw A Nonvisual

Interface to X Windows and Unix Worksta-

tions. GVU Tech Report GIT-GVV-92-05.

February 1992.

Chris D. Peterson. Editres-a graphical

resource editor for x toolkit applications. In

Conference Proceedings, Fijith Annual X

Technical Conference, Boston, Massachu-

setts, January, 1991.

Robert W. Scheifler. X window system pro-

tocol specification, version 11. Massachu-

setts Institute of Technology, Cambridge,

Massachusetts, and Digital Equipment Cor-

poration, Maynard, Massachusetts, 1987.

G.C. Vanderheiden. Nonvisual alternative

display techniques for output from graphics-

based computers. Journal of Wual Impair-

ment and Blindness, 1989.

E.M. Wenzel, F.L. Wightman, and S.H. Fos-

ter. Development of a Three-Dimensional

Auditory Display System. SIGCHl Bulletin, ~

20, pages 557-564,1988.

Bryant W. York, editor. Final Report of the

Boston University Workshop on Computers

and Persons with Disabilities, 1989.

70 UIST’92 Monterey, California

