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A b s t r a c t  

We are interested in the problem of making precise line 
drawings using interactive computer graphics. In precise line 
drawings, specific relationships are expected to hold between 
points and lines. In published interactive drawing systems, 
precise relationships have been achieved by using rectangular 
grids or by solving simultaneous equations (constraints). The a- 
vailability of fast display hardware and plentiful computational 
power suggest that we should take another look at the ruler and 
compass techniques traditionally used by draftsmen. Snap- 
dragging uses the ruler and compass metaphor to help the user 
place his next point with precision, and uses heuristics to auto- 
matically place guiding lines and circles that are likely to help 
the user construct each shape. Snap-dragging also provides 
translation, rotation, and scaling operations that take advantage 
of the precision placement capability. We show that snap-drag- 
ging compares favorably in power and ease of use with grid or 
constraint techniques. 

CR Category :  1.3.6 [Methodology and Techniques, Interactive 
techniques] 

Additional Keywords: Interactive design, geometric con- 
struction, constraint systems 

1. I n t r o d u c t i o n  

Artists drawing technical illustrations often require that precise 
relationships are held among picture elements. For example, certain 
line segments  should be horizontal, parallel, or congruen t  In the 
past. interactive illustration systems have provided techniques such as 
grids and constraints to facilitate precise positioning. Both o f  these 
techniques have significant limitations. Grids provide only a small 
fraction o f  the desired types o f  precision. Constraints. while very 
powerful,  require the user to specify additional structures that are 
often difficult to unders tand and t ime-consuming to manipulate. 
Our  interactive technique,  snap-dragging, is a compromise between 
the convenience of  grids and the power of  constraints. 
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Snap-dragging is based on the familiar idea o f  snapping the 
display cursor to points and curves using a gravity function, The new 
idea is that a set of  gravity-aelive points, lines, and circles called a- 
lignment objects are automatically constructed from hints given by 
the user plus heuristics about typical editing behavior. The result is a 
system with as much power as a ruler, compass, protractor, and T- 
square drafting set. but with little time spent in moving the tools and 
setting up the constructions. 

Snap-dragging can be seen as an extension o f  the idea o f  gravity- 
active grids, used in illustrators such as Griffin [StoneS0]. Gremlin 
[Opperman84]. MacDraw ® [MacDraw84]. and Star O Graphics 
[Lipkie82], or as a simple form of  constraint solver, used in systems 
such as Sketchpad [Sutherland84]. ThingLab [Borning79]. and Juno 
[Nelson85]. As in a grid system, the cursor may snap to gravity-active 
objects provided by the system. However, the set of  gravity-active 
objects is richer, and varies with the current scene and the operation 
being performed. As in a constraint-based system, points can be 
placed to satisfy angle, slope, and distance constraints. However. 
with snap-dragging, constraints are solved two at a time, with the user 
explicitly controlling the placement o f  each point, and the constraints 
are forgotten as soon as they are used. rather than becoming part of  
the data structure. 

Snap-dragging is currently implemented as part o f  the Gargoyle 
two-dimensional illustrator, running in the Cedar programming envi- 
ronment  [Swinehart85]. on the Xerox Dorado high-performance 
personal workstation [Pier83]. All figures in this paper were created 
with Gargoyle. 

In Section 2 we will present snap-dragging in more detail. 
Section 3 is an analysis of  design issues for geometric precision tech- 
niques: comparing grids, constraints, and snap-dragging. Section 4 
presents more detail on the implementation of snap-dragging. 
Section 5 summarizes our results. 

2. S n a p - D r a g g i n g  

This section describes how snap-dragging is used lo construct 
shapes and perform transformations. In Gargoyle. a special point 
called the caret can be placed, with precision, using gravity. The 
caret is distinct from the cursor: the cursor always moves with the 
mouse, while the caret can stray from the cursor if a gravity-active 
object attracts it. The caret is the source o f  precision. When control 
points are added to a scene, they are always placed at the position of  
the caret. Positioning operations use the position of  the caret as a 
parameter. 

When one control point o f  an object is moved, affected line 
segments are adjusted, in real time. using a technique called rubber- 
banding [Newman79], Transformed objects are smoothly dragged 
into position. The user specifies which region of  the scene and which 
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kinds o f  a l ignment  objects are o f  interest. The system automatically 
constructs  a l ignment  objects o f  that kind in the requested region. A- 
l ignment  objects are visible only when the user is in the process o f  
moving  a point or object, and are drawn in gray so they may be easily 
distinguished. 

Figure 1 shows how a user would adjust a point in an existing 
triangle to make the base horizontal. In figure l(a). the user has 
activated horizontal a l ignment  lines, and picked up a vertex with the 
caret. In figure l(b), the user drags the vertex until it snaps onto one 
o f  the a l ignment  lines. When the operation is finished, the alignment 
lines will disappear. 

. . . . . . . . . . . . . . . . . . . . . . . .  

Figure l(a) Picking up a vertex with the caret. 

Figure I(b) Snapping the caret onto an alignment line. 

Figure 2 demonstra tes  construction o f  an equilateral triangle, 
3 /4  inch on a side, with its base at 15 degrees to the horizontal. Con- 
structing the triangle takes six steps: 

1) Activate lines o f  slope 15 degrees (click on a menu).  

2) Activate 3 /4  inch circles (click on a menu).  

3) Place the lower left vertex. A 3/4 inch al ignment circle 
appears centered on the new vertex, and an al ignment 
line sloping at 15 degrees appears passing through the 
n e w  v e r t e x ,  

4) Place the second vertex at one o f  the intersections of the 
circle and the 15 degree line. Figure 2(a). A second a- 
l ignment  circle appears, centered on the second vertex. 

5) Place the last vertex at the intersection o f  the two circles. 
Figure 2(b). 

6) Invoke a close polygon command,  or place a fourth vertex 
on top o f  the first. Since the operation is finished, the 
a l ignment  objects disappear to allow the artist to 
inspect the  shape. Figure 2(c). 
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Figure 2(a) The user places the first two points of an equilateral tri- 
angle with side of  length 3 /4  inch and with its base at 15 degrees. A 
3 /4  inch alignment circle and a 15 degree alignment line appear. 

Figure 2(b) Another circle appears. The last vertex is placed at the 
intersection of the two circles. 

Figure 2(c) The triangle is closed and all alignment lines disappear. 

The whole process takes six keystrokes and all but  two o f  these 
would be needed to draw any triangle. Note that in a grid system, it 
is impossible to construct an equilateral triangle, and in most  con- 
straint systems, only a triangle with a horizontal base would be easy 
to construct. 

Once an object has been created, it can be translated, rotated, 
scaled, and combined with other objects. The ability to position the 
cursor on al ignment objects makes it easy to perform these 
operations with precision. Each transformation is performed in three 
steps. First. the objects to be transformed are selected. Second. the 
caret is placed at an initial position in the scene, usually on a selected 
scene object or al ignment object. Third, the selected objects are 
smoothly transformed using the displacement between the original 
position o f  the caret and the new (constantly updated) position o f  the 
caret to determine the current transformation. Like the original caret 
position, the new caret position can be snapped to al ignment objects. 
We will discuss the operations translate, rotate, and scale in more  
detail next. 

2.1 Translation 

When performing translation, we simply add a displacement 
vector (old caret - new caret) to the original position of  each selected 
object to get its new position. We move one polygon P to touch 
another potygon Q by selecting P, placing the caret at a point on P, 
and snapping the caret onto a point on Q. Figure 3 shows how point- 
parameterized translation can be used to align two rectangles: the 
caret is snapped onto a vertex, A. and then onto a 90 degree line in 
this example. 

,F-1 
(a) (b) 

Figure 3 An example of translation parameterized by two points (A 
and B). (a) The caret snaps onto point A on the object. (b) The user 
then drags and snaps the caret onto a vertical alignment line at point 
B. A single vertical alignment line appears because the user has 
expressed an interest in the left edge of the fixed rectangle. 
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2.2 Rotation 

The center  o f  rotation, called the anchor, is placed by positioning 
the caret and invoking the Drop Anchor  command.  During rotation, 
the angle o f  rotation is kept equal to the angle through which the 
displacement  vector (old caret - new caret) has moved From its initial 
position. If we initially position the caret on a point A of  the selected 
object, then the anchor, the point A. and the caret remain collinear 
th roughout  the rotation. Consider the example in figure 4. We place 
the anchor point  at the base o f  an arrow, place the caret initially onto 
its tip (point A). and drag the caret to the object we would like the 
arrow to point  to (point  B). 

A Caret 

Anchor ~ A ( ~ )  

Figure 4(a) The caret, which was initially placed on point A, has been 
dragged to an arbitrary position. Anchor, A, and caret are kept 
eollinear. 

A 

Figure 4(h) When the caret is placed on point B, the arrow points at 
it; Anchor, A, and B are collinear. 

2.3 Sealing 

The anchor point is also used as the center o f  scaling. The scale 
factor is the ratio o f  the magni tudes  o f  the new caret displacement 
vector (caret - anchor) to the original caret displacement vector. This 
transformation can be used to scale one object until one o f  its dimen- 
sions matches  a dimension o f  another  object. In figure 5 the square is 
enlarged to fit onto an edge o f  the hexagon. 

(a) (b) 
Figure 5(a) The anchor is fixed on one corner of the square and the 
caret is positioned on the adjacent corner. (b) The square is scaled 
as the caret is dragged to the vertex of the hexagon. 

3.  D e s i g n  I s s u e s  for  G e o m e t r i c  P r e c i s i o n  T o o l s  

The ideal tool is powerful but  easy to use. Good tool design, 
therefore, requires a compromise  between functionality and user 
interface complexity. We measure the functionality of  a geometric 
precision tool by examining which geometric relationships can be 
expressed directly. These  relationships must  be weighed against the 
total numbe r  of  commands  the user mus t  learn and the time taken to 
specify all the a rguments  and invoke each command.  

Ease o f  use involves more than the reduction o f  commands  and 

keystrokes. A system that is easy to use will be predictable, require 
user input in proportion to the difficulty of  the task. and be free from 
catastrophic failures that destroy hours o f  work. We will show that 
snap-dragging makes it easy to reach these goals. 

In this section, we will describe the sets o f  relationships we use 
to define the power o f  a geometric tool, and describe some important 
factors in making a system easy to use. in the process, we will 
compare snap-dragging to grids and constraints. 

3.1 Geometric Power 

Our approach to the problem of  making precise line drawings 
has been to assume that the designer will define shapes by carefully 
placing points rather than by sketching and aligning afterwards, 
which is the method used by Pavlidis and VanWyk [Pavlidis85]. Our  
design philosophy focuses the design issues on methods  for position- 
ing points, and especially on the issue of  positioning a new point with 
respect to the other points in a scene or with respect to the 
boundaries o f  the drawing space. Whether  or not  a picture is actually 
produced by placing one point at a time, we can measure the power 
o f  a geometric design system, particularly a polygon-based one, on 
the point-to-point relationships (e.g., distance, slope, angle) that its 
user can express. We describe a taxonomy of  point-to-point relation- 
ships and a taxonomy of  geometric constructions and use them to 
compare grid, constraint, and snap-dragging systems. 

One way to organize the point-to-point relationships that a user 
might want is by the set of  affine transformations that preserve a 
given relationship. We use six groups of  transformations in the 
classification scheme shown in figure 6. Each group is a subset o f  the 
group above it. They are: general affine transformations (called the 
affine group in algebra texts): combinations of  scaling, rotation, and 
translation (the extended similarity group): combinations of  scaling 
and translation: combinations of  rotation and translation (the 
Euclidean group): pure translation (the group of  translations): and 
the identity transformation. The point-to-point relationships that can 
be preserved under these transformations are parallelism (which 
includes collinearity), angles, ratios of  distances, slopes, distances, 
vectors, and coordinates. Each relationship in figure 6 is invariant to 
the group named in its box, and to all those groups below it. We call 
these the seven basic relationships because, when a designer scales. 
rotates, and translates shapes to assemble an illustration, he can count  
on these relationships to be maintained. 

I Affine Transformations 
parallelism 

I Rotation, Translation, & Scaling 
angles, ratios of distances 

I Scaling&Translati°nilR°tati°n&Translati°nls/opes II distances 

I Translation 
vectors 

Identity 
coordinates 

Figure 6 A taxonomy of our seven basic geometric relationships. Re- 
lationships appear in the bottom half of each box. Each relationship 
is invariant to the transformations listed in the top half of its box and 
to all transformations below its box. 
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One way to organize geometric constructions is by the number 
of  points in the construction. We view a construction as a function 
that takes a set of  points as arguments and returns a point or curve in 
the plane. The number  of  point arguments that a construction takes 
has a direct bearing on the user interface: constructions involving 
more points will take more work to specify or will require more 
guesswork on the part of  the tool. However, constructions that take 
many point arguments can potentially be more powerful than those 
that take fewer. The seven basic relationships can be produced using 
constructions that take only zero. one, or two points as arguments. 
One way to do this is: 

Group 0: No points are needed as arguments. Construct a line 
o f  known x coordinate, or known y coordinate. 

Group 1: One point, A, is needed. Construct a circle of  points 
that are a known distance from A, construct a line through A 
of  known slope, or construct a point at a known vector 
(distance and slope) from A. 

Group 2: Two points, A and B, are needed. Construct lines 
that are a known angle from segment AB, construct lines that 
are parallel to AB at a known distance, or construct the 
midpoint  o f  AB. Midpoints are a special case of the ratio of  
distances relationship. 

Each relationship can be expressed using a different construc- 
tion group. For instance, parallelism can be created with a Group 3 
construction: 

Group 3: Three points, A, B. and C. are arguments. Con- 
struct a line, parallel to A and B. that passes through C. 

Our  taxonomies of  relationships and constructions highlight the 
limitations of  grid systems. A grid is the computer graphics 
equivalent of  graph paper. When the grid is turned on, all points 
placed by the user will be forced to land on the intersection points of  
the rules of  the graph paper (figure 7). This gives us only a discrete 
set of  absolute coordinates. Only a subset of  the possible coordinates. 
distances, and slopes can be built, and only those that are aligned 
with the grid axes are easy to specify. Operations in Group 2 and 
higher order groups are particularly difficult to achieve since the 
chances are small that a larger set of  points will satisfy a precise rela- 
tionship andlie on the grid. 

t 

Figure 7 An object with horizontal and vertical lines is constructed 
with a grid system. 

Constraint-based systems can potentially provide all of  the rela- 
tionships mentioned above and more. For instance, the Juno con- 
straint-based illustrator [Nelson85] provides some Group 1 construc- 
tions (for horizontal and vertical), and some Group 3 constructions 
(for parallel and congruent). The user selects as many as four points 
at a time and then specifies the new relationship between them that 
the system should enforce. An example is shown in figure 8. Not 
only are a larger set of  relationships possible than with the other two 
approaches, but many constraints can be solved simultaneously. 
Constraint-based illustrators are typically very powerful by our 
metric. 

S O L V E  ) 

, ~  C u r s o r  

Figure 8 A Juno user touches two points with a T-square shaped 
cursor to add a horizontal constraint. After the constraint solver is 
invoked, a new triangle is drawn. 

Snap-dragging, as implemented in Gargoyle, provides only 
Group 1 and 2 constructions. We felt this was an appropriate 
balance between power and ease of  use. Providing more complex re- 
lationships would stretch the capabilities of  snap-dragging: the tech- 
nique relies on being able to guess what relationships will be useful. 
and there would be too many groups of  three or more points to make 
guessing possible. Snap-dragging is generally less powerful than con- 
straints and more powerful than grids. 

3.2 Ease of use 

To be easy to use, a system should be predictable, require user 
input in proportion to the difficulty of  the task. and be free from 
catastrophic failures that destroy hours of  work. In this section we 
focus on how the properties of  geometric precision schemes affect 
these aspects of  system design. 

3.2.1 Predictability and User Confidence 

A system is predictable if the designer can confidently predict 
the results that each action will have on the state of  his illustration. A 
predictable system will provide commands at the right semantic level 
to help the user concisely express his intent, and will provide good 
feedback when the intent has been captured. Too low a semantic 
level requires the user to perform tasks that take too many steps, 
which is tedious and unreliable. Too high a level results in 
operations that are hard to learn and understand. 

Superficially, grid systems are predictable. The grid itself is a 
visible reminder of  the active constraints. The mechanism of  a grid. 
however, provides no straightforward way to express relationships as 
simple as specific distances or angles. For example, a user trying to 
construct a 45 degree line has to express this idea in primitive terms: 
move 5 points over and 5 points up. To be sure the angle is correct. 
he may need to count grid points several times. So while a grid is 
easy to use, it may not inspire confidence that a particular relation- 
ship is satisfied because it provides control at too low a level. 

Constraint-based systems tend to be difficult to control. A set of  
simultaneous non-linear equations almost always has multiple 
solutions. Many points may be moved at once to reach a solution, 
drastically altering the scene. Presenting and controlling all the con- 
straints and possible solutions is a formidable user interface problem. 
Some constraint-based systems do not attempt to describe the con- 
straints graphically, relying on a textual description and letting the 
user correlate the text with the geometry. In any case. getting the 
constraints correct can be more like debugging code than like graphi- 
cal editing. 

With snap-dragging, one point is moved at a time, and all con- 
straints are represented as visible lines and circles so that the con- 
straints remain simple and visible. We believe snap-dragging 
presents commands at the correct semantic level, providing the same 
operations that a designer would use to describe the construction. 

236 



Dallas, August 18-22 Volume 20, Number 4, 1986 
II 

3.2.2 Appropriate User Input 

A system makes appropriate use of user input if a small change 
to the picture always requires a short period of designer time. The 
amount  of  work required to produce a design must be measured not 
only in keystrokes but  in the amount  of  effort it takes to make use of  
the design tools. Most systems do well at providing local optimiza- 
tion of  keystrokes by taking advantage of coherence in the editing 
session, providing ways to free the user from repeatedly indicating 
that the same relationship and/or  values are needed in a sequence of  
editing steps. However. in systems that are optimized for specific 
directions, such as horizontal and vertical, or that limit precise editing 
to a discrete grid. a significant amount  of  planning and extra con- 
struction may be needed for precise editing to proceed at all stages of  
the design. 

Grid systems are both quantized and optimized for construc- 
tions that align with the edges of the page. To maintain precise 
control throughout the editing session, the designer must  plan ahead 
to make sure that all his vertices can be placed on grid points. For 
example, if an arrowhead is to be attached precisely to the middle of  
the edge o f  a rectangle, the rectangle must be an even number of grid 
units long, and the designer must  take this into account when the 
rectangle is created. Otherwise, it may be necessary to change the 
size of  the rectangle when the arrowhead is added, which may 
require further changes to the picture. 

Constraint-based systems often include direction-specific con- 
straints such as horizontal and vertical. A shape defined using these 
constraints cannot be rotated without either changing or violating the 
constraints. Editing the constraints to make them consistent with the 
new rotation requires the user to change the constraint network 
everywhere the horizontal and vertical constraints are used. It is 
possible to design a shape with only a single mention of absolute 
orientation so that it can be rotated by altering that one constraint. 
However. designing such a re-orientable shape requires extra 
planning and effort. 

The most important feature of  an alignment paradigm based on 
points and geometric constructions is that it works equally well at 
arbitrary scales and rotations. The transformation independence in 
Gargoyle comes from three sources. First, Gargoyle treats all angles 
and scaling factors in an equivalent fashion: it is just as easy to align 
the base o f  the triangle in figure 2 with a 15 degree line as it would be 
to make the base horizontal, Second, Gargoyle implements relation- 
ships that are preserved under scaling and rotation, as described in 
section 3.1 above: if the designer uses one inch circles to build a 
shape with one inch features, he can rotate the object and then 
continue to edit it without difficulty. Third, Gargoyle allows the user 
to set the scaling unit to an arbitrary value. If the designer uses 1 
inch circles to create a shape, and later scales the shape, he cannot use 
his one inch circles to modify the shape further. However. if the 
designer can temporarily alter the scaling unit, multiplying it by the 
same factor used to scale the object, the "one inch" circles will again 
line up with the shape, allowing it to be edited in place. This is like 
fitting the grid to an object in a grid-based system, instead of moving 
the object back onto the grid. 

We believe that the transformation independence of snap-drag- 
ging is the most significant advantage it has over grids and constraints 
in reducing the work needed to make an illustration. 

3,Z3 Preventing Catastrophic Failures 

Catastrophic failure occurs when a short sequence of actions can 
destroy large amounts  of  work, requiring the user to redo significant 
parts of  the design. Such failures include scaling by zero, constraint 
solutions that collapse several lines or points together, and accidental 
deletions. In addition, it is a catastrophic failure if, late in the illus- 
tration process, a problem is uncovered that requires significant 
rework o f  pieces of  the illustration. These problems include shapes 

moved prematurely off a grid, designs that are incorrectly quantized, 
subsections of  a design that don't  fit together, constrained objects 
that can't  be rotated, and other failures o f  planning. We feel snap- 
dragging is a good methodology for preventing both types of 
catastrophic failures. 

Most work losses can be prevented by good feedback and by the 
ability to undo an action. Snap-dragging provides visible feedback 
for transformations as they occur. Likewise, undo operations and 
incremental checkpoints of  the system state are easy to implement 
since each operation makes a small change and leaves the scene ob- 
jects in a well-defined state. 

Failures of planning can never be completely eliminated but a 
tool that is transformation-independent is clearly more adaptable 
than one that provides its full power only in specific directions, such 
as horizontal and vertical, and specific scale units, such as multiples 
of the grid spacing. Errors can be corrected in place, independent of 
orientation. Shapes can be combined and adjusted independent of 
the original orientation or size, Overall, we feel that snap-dragging 
offers a significantly better compromise between power and ease of 
use than grids or constraints. 

4. S n a p - D r a g g i n g  Implementat ion  Detai ls  

In this section we will provide more detail about three important 
aspects of  snap-dragging: how we decide which alignment objects 
are active, how allowing the user to measure existing geometric rela- 
tionships can increase the utility of alignment objects, and how we 
get snap-dragging to work in real time. 

4.1 Choosing Alignment Objects 

Ruler and compass constructions have traditionally been per- 
formed by adding one circle or one line to the scene at a time. With 
computer-aided illustration this approach involves specifying a 
number  of  points and invoking a construction command for every 
line or circle that is desired. In Gargoyle, we try to reduce the effort 
spent on constructions by constructing many alignment objects at the 
same time. Our technique takes advantage of  two kinds of coherence 
in a design session: often consecutive changes will be made to tile 
same region of  the illustration (spatial coherence), or the changes will 
involve similar construction operations (construction coherence). If 
little coherence is present, we provide several ways to turn off align- 
ment object construction. Below, we discuss the creation of  align- 
ment  objects in detail. 

We motivate the construction of multiple alignment objects with 
two examples. First. consider a user who is interested in extending a 
mesh of equilateral triangles. He knows that he will be adding edges 
at 0. 60. and 120 degrees, and that he will placing new vertices 
relative to existing triangle vertices. He might ask Gargoyle to con- 
struct, at each vertex of  the existing triangles, three lines of  slopes 0, 
60, and 120 degrees (see figure 9). 

Figure 9 The designer adds another segment to a mesh of equilateral 
triangles. The alignment lines are shown in gray. 
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Figure 10 The user builds the inner polygon at an offset of ! /4  inch 
from the outer polygon. Alignment lines, constructed ! /4  inch from 
each edge of the outer polygon, are shown in gray. 

Now consider a second construction. The user would like to add 
a polygon that is 1/4 inch from an existing polygon. He might 
request the construction of  all lines that are 1/4 inch away from the 
existing edges, as shown in figure 10. 

The user requests the construction of  alignment objects in two 
steps. First, the user identifies those vertices and segments in the 
scene at which the alignment lines should be constructed. These 
vertices and segments are said to be hot. Next the user specifies the 
types of  construction to be performed. In the examples, the user asks 
for lines with specified slopes and lines at a specified offset. 

Figure 11 illustrates the process by which alignment objects are 
computed by Gargoyle. Those vertices and segments that the user 
has made hot are combined with other vertices and segments 
suggested by heuristics. The resulting vertices and segments are 
called the triggers: each of them will trigger the construction of a- 
l ignment objects. From this set. the system removes any vertices or 
segments that are currently being dragged or rubber-banded, so that 
all alignment objects will be stationary. Finally, the list of  user- 
specified constructions is consulted. Each specified construction that 
takes a vertex as an argument  fires once per vertex, and each 
specified construction that takes a segment as an argument fires once 
per segment, creating the final set of  alignment objects. 

Heuristics [ 

4, 
( T r i g g e r s  ~ ' ~  N°t M°vino I ~ ' ~  Active Triggers ) 

Ho, I 
Objects Firing Rules 

T 
Specified Construction Types 

Figure I I The process of computing the alignment objects. 

Below. we give examples of  heuristics that we have found useful 
for augmenting the set of  triggers and describe the set of  construc- 
tions that we have implemented. 

We can often save the user the trouble of  explicitly making ob- 
jects hot and cold by inferring the region of  interest from his actions. 
One such inference follows from Observation 1: 

Observation 1: When the user moves one point of  a polygon, 
he will often want to align it with other parts of  that same 
polygon. 

A Gargoyle heuristic has been implemented from this observa- 
tion. When the heuristic is activated and the user modifies a 

polygon, Gargoyle uses as triggers the set o f  vertices and segments of  
that polygon. Additional vertices and segments are used as triggers 
only if the user has explicitly made them hot. 

When polygons are being repositioned rather than modified, we 
cannot use Observation l. Instead, we rely on a second observation: 

Observation 2: When a polygon is translated, rotated, or 
scaled in entirety, the resulting operation is often performed 
to make that polygon touch an existing polygon. 

No heuristic for augmenting the set of triggers follows from this ob- 
servation. Instead, the observation suggests that it is important for 
the scene objects themselves to be gravity-active. In Gargoyle, all 
scene objects are always gravity-active unless they are being dragged 
or rubber-banded. 

In Gargoyle, we have implemented five types of  construction to 
be used with snap-dragging, Two types of construction are triggered 
by vertices, and three types of  construction are triggered by segments. 
They are: 

Vertex Constructions: Construct a line of a specified slope 
through the vertex, or construct a circle of a specified radius 
centered on the vertex. 

Segment Constructions: Construct the two lines (one on each 
side) that are parallel to the segment, at a specified distance 
from it, or construct the two lines (one from each end) that 
make a specified angle with the segment, or construct the 
midpoint of  the segment. 

From the five constructions, we have most of  the power of the 
seven basic relationships. The vertex constructions give us slope and 
distance. The segment constructions give us parallel lines, angles, and 
one form of distance ratio (midpoint). Vectors can be made by using 
slope and distance constructions at the same time. Vertical and 
horizontal lines at known x and y coordinates are not triggered by 
vertices or segments but can be requested by a separate mechanism. 

The user activates alignment objects by selecting the appropriate 
slopes, radii, angles, and offset distances from menus, and by turning 
midpoint construction on or off. New values can be added to the 
menus by typing them in or by measuring existing slopes, radii, 
angles, and offset distances in the scene (see section 4.2). 

It is important to note that the system is not really guessing 
which alignment lines to construct: it is acting on requests from the 
user. We found this was essential for user acceptance. A large 
number of alignment objects can quickly become overwhelming. We 
provide several ways for the user to disable the alignment objects: 
gravity can be turned off, so that the alignment objects do not attract 
the caret: all hot objects can be made cold: all selected slopes, radii, 
angles, and offset distances can be deselected: and the heuristics can 
be turned off. 

4.2 Measuring 

It is clear how to use our alignment objects to construct line 
segments of  known slope or known length. However, it is less clear 
how to perform constructions involving relative values such as 
making line B parallel to line A, where the slope of line A is 
unknown. One technique that is easy for the programmer to 
implement and easy for the user to understand, is to allow the user to 
measure scene quantities. 

To make two segments parallel, for example, it suffices to 
measure the slope of one segment and then adjust the other segment 
to have the same slope. Solving the problem in this way takes about 
the same number of keystrokes as it would take to set up and solve 
the constraint in a constraint-based system, where the user would 
point at both segments, choose the parallel constraint, and invoke the 
constraint solver. Figure 12 shows the use of  measuring to make one 
segment parallel to another. 
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Slopes: 150 120 90 60 U 30 0 

A // 
Figure 12(a) Measure the slope of line A, 53.1 degrees, and add it to 
the menu. Activate alignment lines of this slope. 

Figure 12(b) Soap one end of segment B onto the new 53.1 degree a- 
lignment line to make B parallel to A. 

In Gargoyle, the distance between a pair of  points, the slope 
between a pair of  points, the angle made by three points, and the dis- 
tance from a point to a line can be measured and added to the 
appropriate menu by placing the caret successively on the points of  
interest and invoking a measuring command. 

4.3 Performance 

Snap-dragging requires significant rendering and computing 
resources. Each time the user begins a new operation, all alignment 
objects must  be displayed in less than a second. During transfor- 
mations, affected objects must move smoothly as they are dragged 
into position. An additional real-time computational burden is the 
calculation of  points of  intersection among all alignment objects 
whenever the set of  alignment objects changes. How can these 
computations be performed in a reasonable amount  of  time? 

One observation is that the set of  alignment objects doesn't 
usually change much from one moment  to the next. Making a vertex 
hot will add a few alignment objects. Beginning to drag an object 
will remove any alignment objects that were triggered by its segments 
and vertices. It makes sense to keep a scan-converted version of the 
alignment lines around and make small changes to that. Further- 
more, we know which line slopes and circle radii are currently of  
interest. These lines and circles can be scan-converted in advance 
and then stamped onto the screen as a block of  pixels when they are 
needed. This is already a practical solution for bi-level displays and 
will become so for color displays. 

The problem of  smooth motion during dragging is addressed in 
many commercial systems. Common solutions include reducing 
detail during dragging (show only a bounding box), or rendering the 
moving objects into a bitmap that is repeatedly repositioned. These 
same tricks can be used for snap-dragging. 

Calculating the points of  intersection of the alignment lines and 
circles is not particularly time consuming. However, finding the 
intersections of  alignment objects with scene objects and of  scene ob- 
jects with scene objects can be time consuming, since scene objects 
can be spline curves and other complicated shapes. This cost can be 
reduced by using spatial sorting techniques (bounding boxes or grids) 
and by computing only on demand: the intersection calculation can 
be performed only when both the scene object and the alignment line 
are within the gravity field of  the caret. This same trick can be used 
to compute the intersections of scene objects with themselves. 

5. Conclusion 

There are three construction techniques used in computer illus- 
tration systems. Grid systems have been commercial successes 
because they are easy to learn and implement. Constraint-based sys- 
tems are constantly discussed in the literature because of  their great 
power. We have shown that ruler and compass style construction 
systems are a viable compromise. Most of  the advantages that we 
claim for snap-dragging are advantages of the ruler and compass 
approach. In particular, it handles a wide range of alignment types, 
works at any rotation and scaling, and provides constraints that are 
easy to add, delete, and modify. 

These ideas are beginning to show up in commercial products. 
Qubix Graphics Systems has begun to demonstrate a technical illus- 
tration workstation thai employs the ruler, compass, and protractor 
paradigm. 

The obvious drawback of  a construction approach is that setting 
up the constructions may take a long time. Snap-dragging tries to 
reduce construction time by taking advantage of  the repetition that is 
present in many constructions: often the same slope or distance is 
needed repeatedly or a polygon's vertex is aligned with other vertices 
of  that same polygon. We believe that snap-dragging is almost as 
easy to learn as grids, while providing most of  the power of  constraint 
systems. 

While ruler and compass construction is not inherently compu- 
tationally expensive, snap-dragging is: many alignment objects must  
be drawn and many intersection points must be computed. However, 
the computational requirements are bounded, because the user will 
turn off alignment objects when the screen becomes too cluttered. 
Improvements in graphics hardware will make the technique feasible 
in low-cost workstations in the near future. 

Below, we include a number of  pictures that have been 
produced with Gargoyle, Currently, only straight line and arc scene 
objects are implemented. Figure 13, "Gargoyle Hacker". shows 
some of the types of precision that snap-dragging makes possible. 
The fingers of  the gargoyle and many of the lines in its wings are par- 
allel even though at odd angles. The bands on the arm are parallel 
and end exactly on the arm. The gargoyle's pedestal contains a piece 
of a hexagon. Snap-dragging can be used for traditional ruler and 
compass constructed letters, as illustrated in figure 14. and for less 
conventional letters as illustrated in figure 15. 

5.1 Future work 

Work is in progress to extend snap-dragging to the editing of 
free-form curves and to three-dimensional objects. 

We can easily introduce curves such as Bezier splines that are 
controlled by points, since we can already place points precisely. In 
addition, we would like to extend our system to make alignments 
based on the local tangent to a curve to provide a simple way to 
position objects on curves themselves, without using control points. 

One of the motivations for our work on interactive two-dimen- 
sional editing is to develop better ways to edit objects quickly in 
three-dimensions. In three dimensions, the grid approach is 
impractical because drawing a full three dimensional grid puts so 
many lines on the screen that the user has trouble identifying the 
proper grid point, and notifying the system of  the point chosen. 
Constraint-based approaches are also difficult to use. Some progress 
has been made in MIT's Mechanical Engineering Department 
towards using constraints in three dimensions to alter dimensions in 
mechanical assemblies fLing1] [Serrano84]. It is more difficult to use 
constraints to provide a quick-sketch capability. In three dimensions, 
there is an explosion of degrees of freedom that need to be 
constrained, requiring a large number of  constraints. A modified 
version of  snap-dragging may be successful in providing a precise 
three-dimensional quick-sketch capability. 
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Figure 13 The Gargoyle Hacker. (drawn by Maureen Stone) 

Figure 14 A constructed Roman letter B. The steps of the construc- 
tion were taken from a book of constructed Roman letters, by David 
Lance Goines [Goines82]. (drawn by Eric Bier) 

Figure 15 A logo for the Ridge Vineyards Advanced Tasting 
Program. (drawn by Ken Pier & Maureen Stone) 
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