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Abstract

We are interested in the prablem of making precise line
drawings using interactive computer graphics. In precise line
drawings, specific relationships are expected to hold between
points and lines. In published interactive drawing systems,
precise relationships have been achieved by using rectangular
grids or by solving simultaneous equations (constraints). The a-
vailability of fast display hardware and plentiful computatignal
power suggest that we should take another look at the ruler and
compass techniques traditionally used by draftsmen. Srap-
dragging uses the ruler and compass metaphor to help the user
place his next point with precision, and uses heuristics to auto-
matically place guiding lines and circles that are likely to help
the user construct each shape. Snap-dragging also provides
translation, rotation, and scaling operations that take advantage
of the precision placement capability. We show that snap-drag-
ging compares favorably in power and ease of use with grid or
constraint techniques.

CR Category: 1.3.6 [Metnodology and Technigues, Interactive
techniques]

Additional Keywords: Interactive design, geometric con-
struction, constraint systems

1. Introduction

Artists drawing technical illustrations often require thart precise
relationships are held among piclure elements. For example, certain
line segments should be horizontal, parallel. or congruent. In the
past_ interactive illustration systems have provided technigues such as
grids and constraints to Facilitate precise positioning. Both of these
technigues have significant limitations. Grids provide only a small
fraction of the desired tvpes of precision, Constraints. while very
powerful. require the user to specify additional structures that are
often difficult to understand and time-consuming (0 manipulale.
Qur interactive technique. snap-dragging. is a compromise between
the convenience of grids and the power of constrainis.
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Snap-dragging 15 based on the familiar idea of snapping the
display cursor (o points and curves using a gravily function. The new
idea is that a set of gravity-active points. lines, and circles called a-
lignment objecis are automatically constructed from hints given by
the vser plus heuristics about typical editing beliavior. The resultis a
system with as much power as a ruler. compass. protractor, and T-
square crafting set, but with little time spent in moving the tools and
sefting up the constructions.

Snap-drageing can be seen as an extension of the idea of gravity-
active grids, used in illustrators such as Griffin [Stone80], Gremlin
[Opperman84]. MacDraw® [MacDraw84]. and Star®  Graphics
[LipkieR2)]. or as a simple form of consiraint solver. used in systems
such as Sketchpad [Sutherland®4]. Thinglab [Borning79]. and Juno
[Nelson85]. Asin a grid system. the cursor may snap to gravity-active
objects provided by the system. However, the sel of gravity-active
cbjects is richer. and varies with the current scenc and the operation
being performed. As in a constraint-tased system. points can be
placed (o satisfv angle. slope. and distance constraints. However,
with snap-dragging. constraints are solved two at a time. with the user
explicitly controlling the placement of each point. and the constrainls
are forgotten as soon as they are used. rather than becoming part of
the data structure.

Snap-dragging 1s currently implemented as part of the Gargoyle
two-dimensional iflustrator. running in the Cedar programming envi-
ronment [Swinehart83]. on the Xerox Dorado high-performance
persanal worksiation [Pier®3). All figures in this paper were created
with Gargoyle,

In Section 2 we will present snap-dragging in more detail.
Scetion 3 ts an analysis of design issues for geometric precision tech-
niques: comparing grids. constraints. and snap-dragging. Section 4
presents more detail on the implementation of snap-dragging.
Seetion 5 summarizes our results.

2. Snap-Dragging

This section describes how snap-dragging is used 1o construct
shapes and perform transformations. In Gargoyle. a special point
called the carer can be placed. with preciston. using gravity. The
caret is distinct from the cursor: the cursor always moves with the
mouse, while the caret can stray from the cursor if a gravity-active
object attracts it. The carct is the source of precision. When control
points are added Lo a scene. they are always placed at the position of
the caret.  Positionming operations use the position of the caret as 4
parameter.

When one control point of an object is moved. affected line
segments are adjusted. in real time. using a technigue called rubber-
banding [Newman79], Transformed objects are smoothly dragged
1o position. The user specifies which region of the scene and which
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kinds of alignment ohjects are of interest. The system automatically
constructs alignment objects of that kind in the requested region. A-
lignment obyjects are visible only when the user is in the process of
moving a point or object. and are drawn in gray so they may be easily
distinguished.

Figure 1 shows how a user would adjust a point in an existing
triangle to make the base horizontal. In figure 1(a). the user has
activated horizontal alighment lines. and picked up a vertex with the
caret. In figure 1(b). the user drags the vertex until it snaps onto cne
of the alignment lines. When the operation is finished. the alignment
Iines will disappear.

L

Figure 1{a) Picking up a vertex with the caret.

Figure (b} Snapping the caret onto an alignment line.

Figure 2 demonstrates construction of an equilateral triangle,
3/4 inch on a side. with its base at 15 degrees to the horizontal. Con-
structing the tnangle takes six steps:
1) Activate lines of slope 15 degrees (click an a menu).
2) Activate 3/4 inch circles (click on a menu).

3) Place the lower left vertex. A 3/4 inch alignment circle
appears centered on the new vertex. and an alignment
line sloping at 15 degrees appears passing through the
new vertex.

4) Place the second verlex at one of the intersections of the
circle and the 15 degree line. Figure 2(a). A second a-
lignment circle appears. cenlered an the second verlex.

5) Place the last vertex at the intersection of the two circles.
Figure 2(b).

6) Invoke a close polygon command, or place a fourth vertex
on top of the first. Since the operation is finished. the
alignment objects disappear to allow the artist to
inspect the shape. Figure 2(c).

Slopes: 150 120 90 €0 30 o
Circles: 1in 2in

Figure 2(a) The user places the first two points of an cquilateral tri-
angle with side of length 374 inch and with its hase at 15 degrees. A
3/4 inch alignment circle and a 15 degree alignment line appear.
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Figure 2(b) Another circle appears. The last vertex is placed at the
intersection of the two circles,

Figure 2(¢) The triangle is closed and all alignment lines disappear.

The whote process takes six keystrokes and all but two of these
would be needed o draw any triangle. Nole that in a grid system. it
is impossible to construct an equilateral triangle. and in most con-
straint systems. only a triangle with a horizontal base would be easy
to construct.

Once an object has been created, it can be translated. rotated,
scaled. and combined with other objects. The ability L position the
cursor on alignmeni objects makes it easy to perform these
operations with precision. Each transformation is performed in three
steps. First. the objects to be transformed are selected. Second. the
caret is placed at an initial position in the scene. usually on a selected
scene abject or alignment object. Third. the selected objects are
smoothly transformed using the displacement between the original
position of the caret and the new (constantly updated) position of the
caret to determine the current transformation. Like the original caret
position. the new caret position can be snapped to alignment objects.
We will discuss the operations translate, totate, and scale in more
detail next.

2.1 Translation

When performing translation. we simply add a displacement
vector (old caret - new caret) to the original position of each selected
object to gel its new position. We move one polygon P to touch
another polygon Q by selecting P. placing the caret at a point on P.
and snapping the caret onto 4 point on Q. Figure 3 shows how point-
parameterized translation can be used to align two rectangles: the
caret is snapped onto a vertex, A. and then onto a 90 degree line in
this example.

N
o4]

{8) (b)

Figure 3 An example of translation parameterized by two points (A
and B). (a) The caret spaps onto point A on the object. {b) The user
then drags and snaps the curet onto a vertical alignment line at point
B. A single vertical alignment line appears because the user has
expressed an interest in the left edge of the fixed rectangle.
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2.2 Rotation

The center of rotation, called the anchor, is placed by positicning
the caret and invoking the Drop Anchor command. During rotation,
the angle of rotation is kept equal 1o the angle through which the
displacement vector (0ld caret - new caret) has moved from its initial
position. If we initially position the caret on a point A of the selected
object. then the anchor. the point A, and the caret remain collinear
throughout the rotation. Consider the example in figure 4. We place
the anchor point at the base of an arrow, place the caret initially onto
its lip (point A). and drag the caret to the object we would like the
arrow to paint 1o (point B).

A Caret
A

Figure 4(a) The caret, which was initially placed on point A, has been
dragged to an arbitrary position. Anchor, A, and caret are kept

collinear,
A
Anchor

Figure 4(b} When the caret is placed on point B, the arrow points at
it; Ancher, A, and B are collinear.

Anchar

2.3 Scaling

The anchor point is also used as the center of scaling. The scale
factor 15 the ratio of the magnitudes of the new carel displacement
vector (caret - anchor) 1o the criginal caret displacement vector. This
transformation can be used 1o scale one object until one of its dimen-
sions matches a dimension of another object. In figure § the square is
enlarged to fit onto an edge of the hexagon.

(a) (b)

Figure 5(a) The anchor is fixed on one corner of the square and the
caret is positioned on the adjacent corner. (b) The square is scaled
as the caret is dragged to the vertex of the hexagon.

3. Design Issues for Geometric Precision Tools

The ideal tool is powerful but easy to use. Good tool design.
therefore, requires a compromise belween functionalily and user
interface complexity. We measure the functionality of a geometric
precision tool by examining which geometric relationships can be
expressed directly. These relaticnships must be weighed against the
total number of commands the user must learn and the time taken to
specify all the arguments and invoke each command.

Ease of use involves more than the reduction of commands and

Keystrokes. A system that 1s easy 10 use will be predictable, require
user inpult in propertion 1o the difficulty of the task, and be free from
catastrophic failures that destroy hours of work. We will show that
snap-dragging makes it easy ta reach these goals.

In this section. we will describe the sets of relationships we use
to define the power of a geometric ool and describe some important
factors in making a system easy to use. In the process. we will
compare snap-dragging to grids and constraints.

3.1 Geometric Power

Our approach 1o the problem of making precise line drawings
has been to assume that the designer will define shapes by carefully
placing pomts rather than by sketching and ahgning afterwards,
which is the method used by Pavlidis and YanWyk [Pavlidis85]. Our
design philosophy focuses the design issues on methods for position-
ing points, and especially on the issue of positioning a new point with
respect to the other points in a scene or with respect to the
boundaries of the drawing space. Whether or not a picture is actually
produced by placing one point at a time, we can measure the power
of a geometric design system. particularly a polygon-based one. on
the point-to-point relationships (e.g.. distance. slope. angle) that its
user can express. We describe a taxonomy of point-to-point relation-
ships and a taxenomy of geometric constructions and use them to
compare grd, constraint, and spap-dragging systems.

One way to organize the point-to-point relationships that a user
might want is by the set of affine transformations that preserve a
given relationship. We use six groups of transformations in the
classification scheme shown in figure 6. Each group is a subset of the
group above it. They are: general affine transformations (called the
affine group in algebra texts): combinations of scaling, rotation, and
translation (the cxtended simmilarity group): combinations of scaling
and translation: combinations of rotation and translation (the
Euclidean group); pure Lranslation (lhe group of translations): and
the identity transformation. The point-to-point relationships that can
be preserved under these Lransformations are parallelism (which
includes collinearity). angles. ratios of distances. slopes. distances.
vectors, and coordinates. Each relationship in figure 6 18 nvarant to
the group named in its box, and to all those groups below it. We call
these the seven basic relationships because, when a designer scales.
rotates, and translates shapes 10 assemble an iliustration, he ean count
on these relationships to be maintained.

Affine Transformations

paralielism

Rotation, Translation,
& Scaling

angles, ratios of distances

Scaling & Translation || Rotation & Translation

slopes distances

Translation

vectors

Identity

coordinates

Figure 6 A taxenomy of our seven basic geometric relatienships. Re-
lationships appear in the bottom half of each box. Each relationship
is invariant to the transformations listed in the top half of its hox and
to all transformations helow its box.
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One way to organize geometric constructions is by the number
of points in the construction. We view a construction as a function
that takes a set of points as arguments and returns a point or curve in
the plane. The number of point arguments that a censtruction takes
has a direct bearing on the user interface: constructions involving
more points will take more work to specify or will require more
guesswork on the part of the tool. However, canstructions that take
many point arguments can potentially be more powerful than those
that take fewer. The seven basic relationships can be produced using
constructions that take only zero. one, or 1wo points as arguments.
Omne way to do this is:

Group 0: No points are needed as arguments, Construct a line
of known x coordinate, or known y coordinate.

Group L: One point. A, is needed. Construct a circle of points
that arc a known distance from A, construct a hne through A
of known slepe. or construcl a point at a known vecior
(distance and slope) from A.

Group 2: Two points. A and B. are needed. Construct lines
that are a known angle from segment AB, construct lines that
are parallel 10 AB at a known distance, or construct the
midpoint of AB. Midpoints are a special case of the ratio of
distances relationship.

Fach relationship can be expressed using a different construc-
tion group. For instance. parallelism can be created with a Group 3
canstruction:

Group 3: Three points. A. B, and C. are arguments. Con-
struct a line. parallel to A and B, that passes through C,

Our taxonomies of relationships and constructions highlight the
limitations of grid systems. A grid is the computer graphics
equivalent of graph paper. When the grid is wurned on, all points
placed by the user will be forced (0 land on the intersection paints of
the rules of the graph paper (figure 7).  This gives us only a discrete
set of absolute coordinates. Only a subset of the possible coordinates.
distances, and slopes can be built, and only those that are aligned
with the grid axes are casy 1o specify. Operations in Group 2 and
higher order groups are particularly difficult 10 achieve since the
chances are small thal a larger set of points will satisfy a precise rela-
tionship and lie on the grid,

Figure 7 An object with horizental and vertical lines is constructed
with a grid system.

Constrainl-based systems can potentially provide all of the rela-
tionships mentioned above and more. For instance. the Juno con-
straint-based illustrator [Nelson85] provides some Group 1 construc-
tions (for horizontal and vertical). and some Group 3 constructions
(for parallel and congruent}. The user selects as many as four points
at a time and then specifics the new relationship between them that
the system should enforce. An example is shown in figure 8. Not
only arc a larger set of relationships possible than with the other two
approaches. but many constraints can be solved simultaneously.
Constraint-based illustrators are typically very powerful by our
metric.
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Figure 8 A .Juno user touches two points with a T-square shaped
cursor to add a horizonta! constraint. After the constraint solver is
invoked, a new triangle is drawn.

Snap-dragging. as implemented in Gargoyle. provides only
Group 1 and 2 constructions. We felt this was an appropriate
balance between power and ease of use. Providing more complex re-
lationships would sirelch the capabilities of snap-dragging: the tech-
nique relies on being able to guess what relationships will be useful.
and there would be too many groups of three or more points to make
guessing possible. Snap-dragging is generally less powerful than con-
straints and more powertul than grids.

3.2 Ease of use

To be easy to use, a system should be predictable, require user
input in proportion to the difficulty of the task. and be free from
catastrophic failures that destroy hours of work. In this section we
focus on how the properties of geometric precision schemes affect
these aspects of system design.

3.2.1 Predictability and User Confidence

A system is predictable if the designer can confidendy predict
the results that each action will have on the state of his illustration. A
predictable system will provide commands at the right semantic level
10 help the user concisely express his intent, and will provide good
feedback when the intent has been captured. Too low a semantic
level requires the user to perform tasks that take too many steps.
which is tedious and unreliable. Too high a level resulis in
aperalions that are hard o learn znd understand.

Superficially, grid systems are predictable. The grid itself is a
visible reminder of the active constraints. The mechanism of a grid.
however. provides no straightforward way 10 express relationships as
simple as specific distances or angles. For example. a user tryving to
construct a 45 degree line has to express this idea in primitive terms:
move 5 points over and 5 points up. To be sure the angle is correct.
he may need o count grid points several times. So while a grid is
easy 1o use, it may not inspire confidence that a particular relation-
ship 1s satisfied because it provides contral at too low z level.

Constraint-based systems tend to be difficult to control. A set of
simultaneous non-linear equations almost always has multiple
solutions. Many points may be moved at once to reach a solution,
drastically altering the scene, Presenting and controlling all the con-
straints and possible solutions is a foarmidable user interface problem.
Some constraint-based systems do not attempt to describe the con-
straints graphically, relying on a textual description and letting the
user correlate the text with the geometry. In any case. getting the
constraints correct can be more like debugging code than like graphi-
cal editing.

With snap-dragging. one point is moved at a lime. and all con-
straints are represented as visible lines and circles so that the con-
straints remain simple and visible. We believe snap-dragging
presents commands at the correct semantic level. providing the same
operations that a designer would use to describe the construction.
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3.2.2 Appropriaie User Input

A systemn makes appropriate use of user input if a small change
Lo the picture always requires a short period of designer time. The
amount of work required 1o produce a design must be measured not
only in keystrokes but in the amount of effort it takes to make use of
the design touls. Most sysiems do well ai providing local optimiza-
tion of keystrokes by taking advantage of cokerence in the editing
session, providing ways to free the user from repeatedly indicating
that the same relationship and/or values are needed in a scquence of
editing steps. However, in systems that are opuimized for specific
directions. such as horizontal and vertical. or that limit precise editing
10 a discrete grid. a significant amount of planning and extra con-
struction may be needed for precise editing to proceed at all stages of
the design.

Gnd systems are both quantized and optimized for construc-
tions that align with the edges of the page. To mainlain precisc
control throughout the editing session, the designer must plan ahead
to make sure that all his vertices can be placed on grid points. For
example. if an arrowhead is to be attached precisely to the middle of
the edge of a rectangle, the rectangle must be an even number of grid
units long, and the designer must take this into account when the
rectangle is created. Otherwise, it may be necessary 10 change the
size of the rectangle when the arrowhead is added, which may
require further changes to the picture.

Constraint-based systems often tnclude direction-specific con-
straints such as horizontal and vertical. A shape defined vsing these
constraints cannot be rotated without either changing or violating the
constraints, Editing the constraints 1o make them consistent with the
new Ttotation requires the user to change the constraint network
everywhere the horizontal and vertical constraints are used. It is
possible 1o design a shape with only a single mention of absoluie
arientation so that it can be rotaled by altering that one constraint.
However, designing such a re-orientable shape requires exira
planning and effort.

The most important feature aof an alignment paradigm based on
points and geometric constructions is that it works equally well at
arbitrary scales and rotations. The transformation independence in
Gargoyle comes from three sources. First, Gargoyle treats all angles
and scahing factors in an equivalent fashion: it is just as easy to align
the hase of the triangle in figure 2 with a 15 degree line as it would be
1o make the base horizontal. Second. Gargoyle implements relation-
ships that are preserved under scaling and rotation, as described in
section 3.1 above: if the designer uses one inch circles to build a
shape with one inch features, he can rotate the object and then
continue o edit it without difficulty. Third. Gargoyle atlows the user
to set the scaling unit to an arbitrary value. I the designer uses 1
inch circles to create a shape, and later scales the shape. he cannot use
his one inch circles (0 modify the shape further. Howcever. if the
designer can temporarily alter the scaling unit, multiplying it by the
same factor used (o scale the object, the "one inch" eircles will again
line up with the shape, allowing it to be edited in place. This is like
fitting the grid to an object in a grid-based system. instead of moving
the object back onto the grid.

We believe that the transformation independence of snap-drag-
ging is the most significant advantage it has over grids and constraints
in reducing the work needed 10 make an illustration.

3.2.3 Preventing Catastrophic Failures

Catastrophic failure occurs when # shorl sequence of actions can
destroy large amounts of work, requiring the user to redo significant
parts of the design. Such failures include scaling by zero. constraint
solutions that collapse several lines or points together, and accidental
deletions. In addition. it is a catastrophic Failure if. late in the illus-
tration process, a problem is uncovered that requires significant
rework of picces of the illustration. These problems include shapes

moved prematurely off a grid, designs that are incorrectly quantized,
subsections of a design that don't fit together. constrained objects
that can’t be rotated, and other failures of planning. We feel snap-
dragging is a good methodology for preventing both types of
catastrophic failures,

Most work losses can be prevented by good feedback and by the
ability to undo an action. Snap-dragging provides visible feedback
for transtormations as they occur. Likewise, undo operations and
meremental checkpoints of the system state are easy to implement
since each operation makes a small change and leaves the scene ob-
jects in a well-defined state.

Failures of planning can never be complctely eliminated but a
tool that is transformation-independent is clearly more adaptable
than one that provides its full power only in specific directions, such
as horizonal and vertical, and specific scale units. such as multiples
of the grid spacing. Errors can be corrected in place, independent of
orientation. Shapes can be combined and adjusted independent of
the original orientation or size, Overall, we feel that snap-dragging
offers a significantly better compromise between power and easc of
use than grids or constraints.

4. Snap-Dragging Implementation Details

In this section we will pravide more detail about three important
aspects of snap-dragging: how we decide which alignmeni objects
are etive. how allowing the user 1 measure existing geometric rela-
nonships can mcrease the utility of alignment objects. and how we
get snap-dragging to work in real time,

4.1 Choosing Alignment Objects

Ruler and compass constructions have traditionally been per-
formed by adding one circle or one line to the scene at a time. With
computer-aided illustration this approach involves specifving a
number of pomnts and invoking a construction command for every
line ur circle that is desired. In Gargovle, we Lry o reduce the effort
spent on constructions by constructing many alignment objects at the
same time. Our technique takes advantage of two kinds of coherence
in a design session: often consecutive changes will be made to the
samg region of the illustration (sparial coherence). or the changes will
involve similar construction operations (construction coherence). 1f
little coherence is present. we provide several ways tw turn off align-
ment object construction.  Below, we discuss the creation of align-
ment objects in detail.

We motivate the construction of multiple alignment objects with
two examples. First, cansider a user who is interested in extending a
mesh of equilateral triangles. He knows that he will be adding edges
at 0. 60, and 120 degrees. and that he will placing new vertices
relative to existing triangle vertices. He might ask Gargoyle to con-
struct. at each vertex of the existing triangles. three lines of slopes 0.
60. and 120 degrees (see figure 9).

Figure 9 The designer adds another segment to a mesh of equilateral
triangles. The alignment lines are shown in gray.
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Figure 10 The uvser builds the inner polygon at an offsct of 1/4 inch
from the outer polygon. Alignment lines, constructed 1/4 inch from
each edge of the outer polygon, are shown in gray.

Now consider a second construction. The user would like to add
a polygon that is 1/4 inch from an existing polygon. He might
request the construction of all lines that are 1/4 inch away from the
existing edges. as shown in figure 10.

The user requests the construction of alignment objects in two
steps.  First, the user identifies those vertices and segments in the
scene al which the alignment lines should be constructed. These
vertices and segments are said to be fot. Next the user specifies the
types of construction to be performed. In the examples. the user asks
for lines with specified slopes and lines at 4 specified offset.

Figure 11 illustrates the process by which alignment objects are
computed by Gargoyle. Those vertices and segments that (he user
has made hot are combined with other vertices and Segments
suggested by heuristics. The resulling vertices and segments are
called the triggers: each of them will trigger the construction of a-
lignment objects, From this set. the system removes any vertices or
segments that are currently being dragged or rubber-banded. so that
all alignment objects will be stationary. Finally. the list of user-
specified constructions is consulled. Each specified construction that
takes a vertex as an argument fires once per vertex. and each
specified construction that takes a segment as an argument fires once
per segment. creating the final set of alignment ohjects.

Heuristics

Triggers Not Moving {Aciive Triggers )

Hot Alignment

Firing Rules

Objects

Specitied Construction Types

Figure 11 The process of computing the alignment objects.

Below. we give examples of heuristics that we have found useful
for augmenting the set of triggers and describe the set of construc-
tions that we have implemented.

We can often save the user the Lrouble of expliciy making ob-
jects hot and cold by inferring the region of interest from his actions.
One such inference follows from Observation 1:

Observation 1: When the user moves one point of a polygon,
he will often want to align it with other parts of that same
polygon.

A Gargoyle heuristic has been implemenied from this observa-
tion.  When the heuristic is activated and the user modifies a
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polygon, Gargoyle uses as triggers the set of vertices and segments of
that polygon. Additional vertices and segments are used as triggers
only if the user has explicitly made them hot.

When polygons are being repositioned rather than modified, we
cannot use Observation 1. Instead, we rely on a second observation:

Observation 2: When a polygon is translated. rotated. or
scaled in entirety. the resulting operation is often performed
to make that polygon touch an existing polygon.

No heunstic for augmenting the set of triggers follows from this ob-
servation. Instead, the observation suggests that it is important for
the scene objects themselves to be gravity-active. In Gargoyle. all
scene objects are always gravity-active unless they are being dragged
or rubber-banded.

In Gargovle, we have implemented five types of construction to
be used with snap-dragging. Two types of construction are triggered
by vertices, and three tvpes of construction are triggered by segments,
They are:

Yertex Constructions; Construct a line of a specified slope
through the vertex. or construct a circle of a specified radius
centered on the vertex,

Segment Constructions: Construct the two lines {(one on each
side) thal are parallel to the segment, at a specified distance
from it. or construct the two lines (one from each end) that
make a specified angle with the segment. or construct the
midpoint of the segment,

From the five constructions, we have most of the power of the
seven basic relationships. The vertex constructions give us sfope and
distance. The segment constructions give us parailel lines. angles. and
one form of distance ratio (midpoint). Vecrors can be made by using
slope and distance constructions al the same time. Vertical and
horizontal lines at known x and v coordinates are not triggered by
vertices or segments but can be requested by a separate mechanism.

The user activates alignment objects by selecting the appropriate
slopes. radii, angles, and offset distances from menus, and by turning
midpoint construction on or off. New values can be added to the
menus by typing them in or by measuring existing slopes. radi,
angles, and offset distances in the scene (see section 4.2),

It 18 important to note that the system 1s not really guessing
which alignment lines to construct; it is acting on requests from the
user. We found this was essential for user acceplance. A large
number of alignment objects can quickly become overwhelming, We
provide several ways for the user to disable the alignment objects:
gravity can be turned off, so that the alignment objects do not attract
the caret; all hot objects can be made cold: ail sclected slopes, radii,
angles. and offset distances can be deselected: and the heuristics can
be turned off.

4.2 Measuring

It is clear how to use our alignment objects to construct line
segments of known slope or known length. However, it is less clear
how to perform constructions involving relative values such as
making line B parallel to hne A, where the slope of line A is
unknown. One technique that is easy for the programmer to
implement and easy for the user to understand. is (o allow the user to
nieasure scene quantities.

To make two segments parallel. for example, it suffices to
measure the slope of one segment and then adjust the other segment
10 have the same slope. Solving the problem in this way takes about
the same number of keystrokes as it would take 1o set up and solve
the constraint in a constraint-based system. where the user would
point at both segments. choose the parallel constraint, and invoke the
constraint solver. Figure 12 shows the use of measuring to make one
segment parallel Lo another.
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Figure 12(a) Measure the slope of line A, 33.1 degrees, and add it to
the menu. Activate alignment lines of this slope.

S

Figure 12(b) Snap onc end of segment B onto the new 33,1 degree a-
lignment line to make B parallel to A,

In Gargoyle. the distance between a pair of paints, the slope
between a pair of points, the angle made by three points. and the dis-
tance from a point 0 a line can be measured and added to the
appropriate menu by placing the caret successively on the points of
interest and invoking a measuring command.

4.3 Performance

Snap-dragging requires significant rendering and compuling
respurces.  Each time the user begins a new gperation. all alignment
objects must be displaved in less than a second. During transfor-
mations. affected objects must meve smoothly as they are dragged
Into position. An additional real-time computational burden is the
calculaton of points of intersection ameng all alignment objects
whenever the set of alignment objects changes. How can these
computations be performed in a reasonable amount of time?

One observation is that the set of alignment objects doesn't
usually change much from one moment o the next. Making a vertex
hot will add a few alignment objects, Beginning to drag an object
will remove any alignment objects that were triggered by its segments
and vertices. It makes sense to keep a scan-converted version of the
alignment lines around and make small changes (o that. lurther-
more. we know which line slopes and circle radii are currently of
interest.  These lines and circles can be scan-converted in advance
and then stamped onto the sereen as a block of pixels when they are
needed. This is already a practical solution for bi-level displays and
will become so for colar displays.

The problem of smooth motion during dragging is addressed in
many commercial systems.  Common solutions include reducing
detail during dragging (show only a bounding box}. or rendering the
maoving objects into a bitmap that is repeatedly repositioned. These
same tricks can be used for snap-dragging.

Calculating the points of intersection of the alignmeni lines and
circles is not particularly time consuming. However, finding the
intersections of alignment objects with scene objects and of scene ob-
jects with scene objects can be time consuming. Since scene objects
can be spline curves and other complicated shapes. This cost can be
reduced by usmg spatial sorting techniques (bounding boxes or grids)
and by computing only on demand: the inlersection calculation can
be performed anly when both the scene object and the alignment line
are withmn the gravity field of the caret. This same trick can be used
1o computc the intersections of scene objects with themselves.

5. Conclusion

There are three construction techniques used in computer illus-
tration systems. Gnd systems have been commercial successes
because they are easy 10 learn and implement. Constrainl-based sys-
tems are constantly discussed in the literature because of their great
power. We have shown that ruler and compass style conslruction
systems arc a viable compromise. Most of the advantages that we
claim for snap-dragging are advantages of the ruler and compass
approach. In parlicular, it handles a wide range of alignment types,
works at any rotation and scaling. and provides constraints that are
easy to add. delete. and modify.

These ideas arc beginning o show up in commercial products.
Qubix Graphics Systems has begun to demonstrate a technical illus-
tration workstation that employs the ruler, compass, and protractor
paradigm.

The obvious drawback of a construction approach is that setting
up the constructions may take a long time, Snap-dragging tries o
reduce construction Lime by taking advantage of the repetition that is
ptesent in many constructions: often the same slope or distance is
needed repeatedly or a polygon's vertex is aligned with other vertices
of that same polygon. We believe that snap-dragging is almost as
easy (o learn as grids. while providing most of the power of constraint
systems.

While ruler and compass construction is not inherently compu-
tationally expensive, snap-dragging is; many alignment objecls musl
be drawn and many intersection points must be computed. However,
the computational requirements are bounded, because the user will
wrn off alignment objects when the screen becomes too cluttered.
Improvements in graphics hardware will make the technique feasible
in Jow-cost workstations in the near future.

Below. we include a number of pictures that have been
produced with Gargovle. Currently. only straight line and arc scene
objects are implemented. Figure 13. "Gargoyle Hacker”. shows
some of the types of precision that shap-dragging makes possible.
The fingers of the gargoyle and many of the lines in its wings are par-
allel even though at odd angles. The bands on the arm are paraliel
and end exactly on the arm. The gargoyle’s pedestal contains a piece
of 4 hexagon. Snap-dragging can be used for traditional ruler and
compass constructed letters. as illustrated in figure 14, and for less
convenuonal letlers as illustrated in figure 15.

5.1 Future work

Worik is in progress to extend snap-dragging 1o the ediung of
free-form curves and to three-dimensional objects.

We can easily introduce curves such us Bezier splines that are
controlled by points. since we can already place points precisely. ln
addiion, we would like to exlend our system 10 make alignments
based on the local tangent to a curve to provide a simple way to
position objects on curves themselves, without using control points.

One of the molivations for our work on interactive iwo-dimen-
sional editing is 10 develop better ways 10 edit objects quickly in
three-dimensions.  In three dimensions, the grid approach is
impractical because drawing a full three dimensional grid puts so
many lines on the screen that the user has trouble wdentifying the
proper grid point. and notifying the system of the point chosen.
Constraint-based approaches are also difficult to use. Sorne progress
has been made in MITs Mechanical Engineering Department
towards using constraints in three dimensions to alter dimensions in
mechanical assemblies [Lin&1] [Serrano84]. It is mare difficult (o use
constraints to provide 4 quick-sketch capability. In three dimensions.
there 1s an explosion of degrees of freedom that need 1o be
constrained. requiring a lacge number of constraints. A modified
version of snap-dragging may be successful in providing a precise
three-dimensional quick-sketch capability.
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Figure 13 The Gargoyle Hacker. (drawn by Maureen Stone)
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Figure 14 A constructed Roman letter B. The steps of the construc-
tion were taken from a buok of constructed Roman letters, by David
Lance Goines [Goines82]. (drawn by Eric Bier)

Figure 15 A loge for the Ridge Vineyards Advanced Tasting
Program. {drawn by Ken Pier & Maureen Stonc)



